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THE CALCULATION OF ANTENNA RADIATION PATTERNS

BY A VECTOR THEORY USING DIGITAL COMPUTERS

Richard F. Schmidt
Advanced Development Division

.ABSTRACT

This document continues with the application of the field equations to . the
solution of antenna problems begun in X-525-68-201. The electric and magnetic
fields at the reflector boundary after reflection are related to the incident fields
via the boundary conditions. It is shown that the evaluation of the scattered
radiation pattern can be accomplished in an efficient manner by converting,
electric field terms to their magnetic equivalents and utilizing only a simple
magnetic polarization vector. The history of the wave emanating from, the
prime-feed source is next written into the formulation, explicitly, but without
introducing a specific illumination function. A generally-applicable technique
for accommodating feed translation and rotation with six degrees of freedom is
then developed for numerical integration of the field equations. An appendix
containing the subroutines for surface normal and differential area of the set of
conic surfaces (paraboloid, hyperboloid, ellipsoid, sphere, and cone) is included
so that this document provides the means for evaluating a large class of antenna
configurations.
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GLOSSARY OF NOTATION

Symbol

0

r, R

^llCr)

n
S, s

C

W

X r Y I Z i Xl l yl , ZO; Xis' y i ' Zoo

k

E, H

e

D, B

77

K

dl

A	 A	 A

10

Meaning

vector operator del

radial distances, subscripted

scalar wave without time dependence

normal to surface or line, a vector

surface, subscripted

contour.

angular frequency

Cartesian coordinates for reference frames

wave number

electric and magnetic field vectors, subscripted

electrical conductivity, subscripted

magnetic permeability, subscripted

inductive capacity, subscripted

dielectric -displacement and magnetic flux density

surface charge density

sheet current, subscripted

• differential length, a vector

a constant equal to V71 in complex variable theory

unit vectors in the r, 0 1,	 directions, spherical
coordinate system

vii
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GLOSSARY OF NOTATION (Continued)

Symbol	 Meaning

Euler angles of the rigid body transformation

pE	 feed translation vector

G(0, 4))	 feed gain function

Fi , h i	electric and magnetic polarization vectors

radial and angular variables of the cylindrical
coordinate system

F	 focal length, and certain defined functions

a, c

	

	 pai ameters of hyperboloids, ellipsoids, spheres, and
cones

k i	 curvature of a curve

A



THE CALCULATION OF • ANTENNA RADIATION PATTERNS

BY A VECTOR THEORY USING DIGITAL COMPUTERS

INTRODUCTION

Tile field equations

E(x' ' y'' Z') M - wE o 4n Vii H t - d 1	 4^r	 rj <''uo (n x Ht)	 _ (n • E l )\7d dS
L	 J

s,	 .

and

H(x' , y', z') = - 
47T	

(i x H t ) xV^ dS
s,

are applicable to various geometrical and physical. situations. In specific cases
the El and Hl fields must be determined, usually from some radiation source or
prime feed removed from the reflector surface. Expressions for the surface
normal n and the differential area d-S can ordinarily be found by standard
mathematical_ techniques, but moderate amounts of analysis are sometimes re-
quired. The specification of the boundary edge d 1 is inherent in the definition
of the surface. Only physical constants and other terms which are independent
of the reflector geometry remain and integration can, in - principle, be carried
out by means of high-speed digital computers.

Certain general observations can. be  made prior to the introduction of a
specific reflector geometry, and the approach to the overall problem can be
organized somewhat to facilitate computation. Electromagnetic boundary condi-
tions_provide.the transition from the E l and H1 fields to the incident fields Ei
and Hi An inspection of the field equations shows that the electric field appears
in only one of the four integrals. If the reflecting surface is in the spherical
wave zone of the prime feed, which is the usual case, then it is' possible to relate
Ej directly to Hi by a simple expression and cast the entire formulation in
terms, of the incident magnetic field Hi . A consequence of this organization is
the elimination of the unit electric polarization erector in the computations. It
Will be shawn thatthe unit magnetic polarization vector is also simpler , to ex-
press and utilize than the corresponding electric vector. The selection of the
magnetic vector is particularly. significant since the field integrals will be treated

1
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as summations of a large number' of weighted differential areas for every
pattern field point.

APPLICATION OF THE FIELD • EQUATIONS

The transition from the fields E, and H l of the nonconducting medium to the
incident fields E i and H i is made b; regarding the antenna surface as locally
plane -so that the usual boundary conditions apply.

n • (B2 -B 1 ) = 0	 nx(E2-E I) 	0
71-00

•00

r̂  • (D2 -D 1 ) - 77	 nx(H2- H1') 	K2

The boundary conditions state that the normal Components of B and the tangential
components of E are continuous across the specified boundary. The normal
components of D .and the tangential components of H are discontinuous, however,
for that boundary. Since all fields vanish within the perfect conductor, it follows
that the Incident and reflected fields combine to satisfy the boundary conditions,
whenB Z H2 = D2 R E2 0 Then

H 1 • dl = 2H. d 1

n xH1 = 2iixH^

and

ri•E1	 2ii•E.

,in the field equations.

Electric and magnetic fields from the prime feed are relgted by the expres
sions 2

1 The magnetic-'vector is calculated_ approximately 104 times in computing the' fiel;- intensity at one
point of the radiation pattern of a large S-hand antenna.

2 Reference 1, page 284
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7 1 XEi	 4r,/ C Hi

and

where pi is the direction of propagation at the_prime feed. Here Zp	 40 / 

is the intrinsic impedance of free space, and J 
EJ = Zo . It is noted' that the

_ 1H!
spherical-zone fields in the equations for E(x', y.', z') and 11(x', y', z') are orthogo-
nal in space, synchronous in time, and also yield the intrinsic impedance of free
space.

The field equations can now be rewritten as

E (x^ Y^, z') = -	 1 1	 V Hi • d1'_ i	 j wu o (nxHi)^j wE O 2
7t C	 2^r 

s	
^^)

n - (51 xHi ) Vw dS
o

.
and

_	 1
H(x'' y'' 

z') f	 277	
(rixH, )x70dS,	 (2)

fS 1 ,

taking 4, r 	 1 in the space in front of the reflector. At this point in the
development the unit magnetic polarization vector is needed, .and the history of
the wave. from the prime feed cao , be introduced. In addition, the history of the
waves radiated from the reflector should -be considered before proceeding.to a
specific reflector geometry.

Assuming that the reflector is in the spherical wave zone of the source, the
unit electric and magnetic polarization vectors ei and, hi must be orthogonal to
pl and to each other. The unit electric vector will .b.e assumed i to be coplanar

'Ref. 2, page 3; Ref. 3, page 3
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•

with an electric source polarization vector v as shown (Figure 1). Then

x (vx t t

since ei .i. %^ and ^'i 1 (v x i }.

x

(XI Y, Z)
REFLECTOR-.0.

1 r ^,^' e^	 'v (ELECTRIC SOURE

	

i'	 ^•	 .r	 POLARIZATION VECTOR)r^ r

h^

	

	
z

(SOURCE)

i

Figure 1. ' Polarization Vectors

For cases where magnetic fields are-,encountered, as in (n xH i ) of the field equa-
tions, it is necessary to write i

	

IlxHi	 IMconstCflx(;Uli?:Ci),

at a given d S on, .y^.

'Ref. 4, page 150

i



Effectively,

_	 plx[p1x(vxpl)]
h i - Iptx [plx (vxpl )]

via L..

But

h. 	 P1xv._
`	 IFt xv!

directly by inspection of the physical picture or the reduction

Ax [Ax (BxA)]. _ -Ax [AX (Ax E)] = AxB

when A is a unit vector and B is any vector. The elimination of two of the
three vector cross-products is achieved. through the use of hi instead of ei for
the three field integrals which contain Hi . The remaining field integral contains
Ei (or ,ol xNi .) and two vector cross-products are necessary, using either Q i or
h i , to account for the polarization from the prime feed. The orientation of the
electric source polarization vector v is arbitrary and it will be treated as a free
vector 1 , not necessarily bound to origin 0, in subsequent developments.

The history of the wave from the prime feed is now written into the problem
explicitly. It is convenient to begin with the expression 2

Y

µ_
Ei (p, Q, 4))	 1 ?	

P 
Gf. (©s 1b)	 e i (Q, 0), e jkp

P	 Eo	 47T

1 Ref. 5, page 33. In a sense- v is "bound" to the feed at point 
PIG 

in later developments.

Rel. 4, page 150
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where p is the distance from feed to . reflector, P is the total radiated power'
•	 and G f is the gain function of the feed. Capital letters O, (D are used for the

spherical coordinate angles associated with the feed, and 0 , k are reserved for
the field points on a surface (usually a sphere) of observation. Then

M	
1	 Pk

Hi (p, ^' ^'^ -
	2(700

 a^ Gf ( 9 <1>^	
h i 

^^, 4))e-; P

The 11p space divergence (attenuation) from feed to reflector surface and the
accompanying phase chang v^ e - j k p are now a part of the history of the waves
designated Ei and Ii i in the field equations.

The history of waves from the surface of an antenna is contained in the
scalar tp and "the vector V^ of the field equations. Here .

e. j k r

r

and

1	
A	 .

V0 - _ ^^ k i —^ r1 1r

and r is the distance from the reflector surface to the point of the observer.
These factors are under the .integral sign for the general case. Distance r is
variable for the various .differential areas -of surface y, , and vector 1 , is a free
vector , whose Cartesian components vary across yl as shown in Figure 2a.

l	 "	 P (r, 0,0) ---__,—FIELD POINTj^	 r •r==`^O^'_^	
(GENERAL)

.^	 r y

_ p	 0 z

P
-Y	

FEED POINT
REFLECTOR

Figure 2a Iv{eor• Fie(d Geometry
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If the observer is sufficiently far. from the reflector yi , a spherical wave
having only transverse field components results. This field decays as 1/r and
the, phase delay from the surface yl to the field point can be' written as a+i kp̀• 11

to obtain the diffraction pattern. (See Figure 2b.) In this- case the 1/r divergence
term can be taken outside of the integral sign,' and the transverse components of

	

E(x', y', z' ) - -	 j woo (nxH, ),idS47T 

	

51	 (Equation 1 0 page 3)

are obtained by forming

	

EB _ = E ( xl , yl ,z')	 le

and

ire
Ir

l r	 x/	 /^^ FIELD POINT

	

lr	 r	 (REMOTE)

_,.y
P	 0 z

P
t	 '~ FEED POINT

REFLECTOR

Figure 2b. Far-Field Geometry

y	 FEED TRANSLATION AND ROTATION

The combined translation and rotation of a prime feed provides six additional
degrees of freedom for controlling the illumination at ai reflector surface. It is

"y	assumed that this surface has a parametric representation so that a translation



Z

vector (p£ ) and an orthogonal rotation matrix (A) can be introduced to obtain the
correct magnitude, phase, and polarization of the comple . ,vectors E i and Hi at
each d5 of y i . Initially the source pattern function is taken to be F (0, 4))
G I "4 (0,4)). See Figure 3.

REFLECTOR

Y
	 \ Z,

Figure 3. Coordinate Reference Frames

If the prime feed undergoes simple translation, the distance from the feed to
a point on the reflector isgiven by

p' = p-pE _ ( x-x E )	 +' (y-y E ) j ;+ (z-z.) k - X I +•y' j + z' k.

Then

1 y 1	 e_J kp 	 e_jkp'

.	
8	

.



and

x v	 wi x v
•	 h.	 -

1, X	 X v. l

The components of vectors in the coordinate frames with origins 0 and 0' are
indistinguishable and the indicated vector cross-product is well-defined. The
intensity directed toward a point on surface y i can be found in terms of the dis-
placement NE since F (0,4))	 F (0',4'). See Figure 3. Now I TI	 (X: 2+ y' 2 + Z ' 2) !7

can'be calculated, and the two unknowns 0', W'can be found from a system of three
equations.

X1 =
 

/01. sin 0' co s W

Y'. = p' sin 0' sin V

x'	 w' ecos O'

If the translation is degenerate, x E = yE = z E = 0, and the angles 0' and V
become 0 and 4), respectively. Then F (0 9 4)) is evaluated with the ordinary
spherical coordinate angles, as before.

If the feed is displaced and disoriented, or simply disoriented, the vector "7E.
and a 3 x 3 rotation matrix' A with Euler angles a, ^3 10 y can be used to determine
the illumination at the reflector surface. Ordinarily the prime feed.function F
and the source polarization vector v are known in body coordinates, but the re-
flector surface and the field points are :designated in space coordinates. The
inverse matrix transformation,

vx 	 Vol 	 f (cosvcosa-cos,3sina. iny)(-sirrycosa-cos6simcosy)(sin/isim) . 	 vX I

I

V	 Al- l ) vY	 (cosy sinatcos,8cosasiny)( sinysina+cos/3c:osacosy)(-s n,3cosa) 	 vy

vfi	 Vol.	 (sinSsiny)	 (singcosy)	 (cosIS)	
Vol

L.
space	 body

' Ref. 6, page 107



provides the components of the source polarization vector in space coordinates
so that the magnetic Polarization vector becomes

T11 
XVI

Ali	 I^^ 
x 

Vn
1

The vector cross-product is well-defined when the components of 71 and v' are
all relative to space coordinates.

The intensity of the feed pattern F which is directed toward the reflector at
a point (x,y,z) in space coordinates can be determined by , the direct rather than
the inverse transformation. Vector p' has components which are identical in
both 0 and 0' coordinate systems. The components of p' relative to body coor-
dinates,. frame 0" can be found via the matrix transformation

Xa
	

X'

Y"	 A	 Y^

`	 ! Zn	 Z^

where	 A71 = -AT

since the rotation matrix is an orthogonal matrix.

But

sin 0" cos (D"

y 	 sinO" sin(D"

Z" - p'' cos 0"

again provides a system -of three equations in two unknowns, 0"; and 4D" . If the
rotation is' degenerate. (a = ,Q y = 0) so that - A = I, theidentity matrix, the
equations for the case. of simple feed translation reappear.

10



The preceding methods for introducing feed translation and rotation into the
problem are adapted to numerical computation rather than analysis. The re-
flector area is presumed to be subdivided suitably into a number of.differential
areas. If the subdivision or sampling' is adequate, then the field intensity due
to the illumination can be used to "weight" each differential area prior to sum-
mation over the reflector. The precise manner 2 in which the area is ''weighted"
is 'a topic sufficiently broad to deserve detailed treatment, and will not be con-
sidered in this document. It remains to provide the general methods for obtaining
the local normals (n) and the differential areas (dS) on reflector surfaces. The
rotationally symmetric surfaces—paraboloid; h.yperboloid, ellipsoid, sphere and
cone--are presented in Appendix A as they are representative cases which find
frequent application in reflector antenna systems.

SUMMARY

This report provides mathematical subroutines which are required tb trans-
port the illumination of a prime .feed to a reflector surface. The feed translation
vector and the rotation matrix afford an unusual amount of flexibility to the pro-
gram. Utilization of the magnetic quantities throughout greatly simplifies the
formulation and external control. Although the appendix contains only subroutines
for the normal and differential area of rotationally symmetric surfaces derived
from the conic sections, the field equations are not'restricted to these particular
surfaces. Other smooth surfaces, symmetric,or. non-symmetric, can be intro-
duced providing that their sizes and minimum radii of curvature exceed one-
wavelength.

Dual or multiple-reflector systems can be analyzed by the techniques outlined
herein. Complex prime-feed arrangements can also be accommodated , by super
imposing field solutions , or: prime feed-functions. In conclusion, a library of feed
and reflector-surface subroutines can be formed and utilized for many practical
configurations.
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'Ref. 7, page 323

2 Various. integration techniques may be applies'; direct method, trapezoidal rule, Simpson's rule,
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11



1

i

REFERENCES

1. Stratton, i^aius A., "E ;ectromagnetic Theory". McGraw-Hil l- Book Company,
Inc., 1941.

2. Sandler, S. S., "Paraboloidal Reflector Patterns fo,. Off-Axis Feed", Lincoln
Laboratory (M. L T.) Technical, Report No. 205, July 14, 1958

3. Pease, R. L.,, "Paraboloidal Reflector Patterns", Lincoln Laboratory
(M. 1. T.) Technical Report No. 184, August 5, 1958

4. Silver, Samuel (ed.), "Microwave Antenna Theory and Design", McGraw-Hill
Book Company, Inc., 194.9

5. Kaplan, W., "Advanced Calculus", Addison-Wesley Publishing Company,
Inc,, 1959

6. Goldstein, H., "Classical Mechanics". Addison-Wesley Publishing Company,
Inc., 1959

7. Skolnik, M. I., "Introduction to Radar Systems", McGraw-Hill Book Company,
Inc., 1962

8. Parke Mathematical Laboratories, Inc.., "Calculation of the Caustic Surface",
Study No. 3, February 15, 1952, Contract No. AF 19(122)484

9. Korn', G: A., and Korn, T. M., "Mathematical Handbook for Scientists and
Engineers", McGraw- ,Hill Book Company, Inc.,' 1961

10. Pogorelov, A. V., "Differential Geometry", P. Noordhoff N.V. — Gronigen —
The Netherlands

12

V



10

APPENDIX A

Normals-and Differential Areas from Parametric Equations
in Cylindrical Variables (o•,

x-	 ;7 sin y =- :y cos Y

-2

paraboloids z -	 4 F + z 1

hyperboloids z =	 c (1 +"o'2/a2)',2 +	 zi

ellipsoids z= C C 1 - 0-2 ,' a 2 ) 1 ,2	 +•	 z i

spheres .. -	 (( 2 - Cr 2 )12 +	 71

cones z =	 CO- + z l

Tangents 'to Surface : P = a	 p, = ao ' P (x, y, z) =	 x + j y + k z = (x, y, z )

(o- cos, o- sin ^, 0)

paraboloids (sin	 - cos	 o-/ 2F)

hyperboloids pa = [sin	 , - cos	 , o- c /a ( a2 + 0.2 P,

ellipsoids p0 _ [sin	 - cos	 - D•C /a (a2 - 0-2

spheres pa = [sin	 ,	 -• cos .^,	 - o' /(c 2 - Gr2)^h^

cones pa = (sin	 - cos, c)

Normal to Surface: n _ (P^ x ;5	 7i, x T^

Differential Area:

d 	 = (EG - F)'14. da• . d

E - x02 + yA + zq , F =.xa xr
y 
+yo- yo+za z^, G = x 2 + y 2 + z

paraboloids d S = c-0 + u2 /02 ) !~ do' - d r

13
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hyperboloids dS = c7 [1 +` :r2 c 2 /a 2 (a 2 +. ? 2 )]  dcr d r

ellipsoids dS = v- * [ 1 + cr2c2/a2 (a2 - 072)] ^h d7 d^

spheres	 dS = --c/(c 2 - (11 2 ) `2 dc, dr
4

cones	 dS = .7 (c2 + 1) `h do- d r

See also:

Ref. 8, page 3
Ref.' 5; page 206
Ref. 9, page 3.5-10
Ref. 10, page 106

4
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APPENDIX B

Minimum Radius of Curvature from Parametric Equations
in Cylindrical Variables (.r, y )

Curvature k, = t/RC , where RC	radius of curvature.)

x = x(C-) , Y = Y(°•), z = 7(o')

zip 2

k 1 =
(1	 + Z ' 2)3

( x, 2	 .}	 y 2	 ,+	 Z 9' 2	 3

since

X1	 = sink, x '	 =	 0,	 y'	 _ - cost, y" 0,	 z' -	 k.a..

k 1	 -	 maximum at o- = 0.1

paraboloids z"	 _ 1/2 F, min, RC = 2F

C	 ..Cr 2 1 C 2
hyperboloids z"	 - —	 +a	 (a2 } Q 2)3/2

-•	 •-
(a?, +2)1/2

 ---,
a2

min R	 -•
°

—
c

.

ellipsoids z"	 _ - C	
+0. 2

1
+ -

- -	
c

min RC =
a 2

a	 (a 2- (,,2)3/2/2 (a2_ o.2)1/2 a2, C

-012
1 1

spheres z44	 _
3!2C2_o2) 	 (C 2- 0.2 ) 1/2

{
t min RC = c

cones z" = 0 min Rc = CO

1Ref. 10, page 51
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