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THE CALCULATION OF ANTENNA RADIATION PATTERNS

BY A VECTOR THEORY USING DIGITAL COMPUTERS

Richard F. Schmidt
Advanced Development Division

ABSTRACT

This doctment continues with the application of the field equations to the
solution of antenna problems begun in X-525-68-201. The electric and magnetic
. fields at the reflector boundary after reflection are related to the incident fields
via the boundary conditions. It is shown - that the evaluation of the scattered
radiation pattern can be accomplished in an efficient manner by converting-
electric field terms to their magnetic equivalents and utilizing only a simple’
- magnetic polarization vector. The history of the wave emanating from. the
prime-feed source is next written into the formulation explicitly, but without
introducing a specific illumination function. A generally-applicable technique
for accommodating feed translation and rotation with six degrees of freedom is
then developed for numerical integration of the field equations. An appendix
‘containing the subroutines for surface normal and differential area of the set of
conic surfaces (paraboloid, hyperboloid, ellipsoid, sphere, and cone) is included
so that this document provides the means for evaluating a large class of antenna
configurations. | | ' . , |
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GLOSSARY OF NOTATION

Meaning -

vector operator del
radial distances, subscripted
scalar wave without time dependence

normal to surface or line, a vector

~ surface, subscripted
 contour.

angular freque‘nc'y

Cartésiaﬁ @opdinatés for reference frames
wave number |

ele'ctric and magnetic field vectors, subscripted
electridai vconductivity,' sﬁbscripted |
magnetic ‘permeability, subsc;'ipted

indﬁctive capacity, sﬁbscripted :

dielectric 'displaéerﬁent and magnetic flux density '

surface charge density

~ sheet current, subscripted
'differe‘ntial length, a vector
~ a constant equal to ¥ -1in complex variable theory

-unit vectors m the r,vé?, ¢ directions, s_‘pherical_
‘coordinate system . -



GLOSSARY OF NOTATION (Continued)

Meéning
Eulef angles of the rigid body tranSformation
| feed traﬁslatidn véctor ' )
feed gain function
electric and magnetic polarization vectors

radial and angular variables of the cylindrical
coordinate system ' -

focal ‘l'ength, and certain defined functions

" paiameters of hyperboloids, ellipsoids, spheres, and
cones ’

" curvature of a curve

- viii



THE CALCULATION OF ANTENNA RADIATION PATTERNS

BY A VECTOR THEORY USING DIGITAL CCMPUTERS

INTRODUCTION

The field equations

= 1 1 -
E(x',y',2') = ‘j'cue 477 Vk/JH dl°—f Jmuo(an)t,//+(n Ex)Vt,[;]dS
| G
and .
7! 1 'y = 1 T
CH(x,y',2z') = --47[ (0 x H;) xVy dS
. Js :

are applicable to various geometrical and physical S1tuatmns. In specific cases

~ the E and H fields must be determined, usually from some radiation source or

prlme feed removed from the reflector surface. Expressions for the surface

normal & and the differential area dS can ordinarily be found by standard

_ mathematical techmques, but moderate amounts of analysis are sometimes re-
quired. The specification of the boundary edge dl is inherent in the definition .

- of the surface Only physical constants and other terms which are independent

of the reflector geometry remain and integration can, in prmc1p1e, be carried -

out by means of hlgh—speed digital computers

Certai,n general observations can be mac'ie prior to the introduction of a
specific reflector geometry, and the approach to the overall problem can be ’
organized somewhat to facilitate computatxon Electromagnetic boundary condi-
tions prov1de the transition from the E and H, fields to the incident fields E
and H - An inspection of the field equatlons shows that the electric field appears '
in only one of the four integrals. If the reflecting surface is in the spherical
~ wave zone of the prime feed, which is the usual case, then it is possible to relate
E, directly to f-i ‘by a simple expression and cast the entire formulation in
terms of the 1ncldent magnetic field H,. A consequerice of this organization is
the ehmmatxon of the unit electric po;arxzatlon vector in the computations. It
will be shown that the unit magnetic polarization vector is also simpler to ex-
press and utilize than the corresponding electric vector. The selection of the
 magnetic vector is partxcularly mgmhcant since the fxeld integrals will be treated

*



as summations of a large number! of weighted differential areas for every
pattern field point.

APPLICATION OF THE FIELD. EQUATIONS

The transition from the ficlds h, and H of the nonconducting medium to the
incident fields E and H is made by regardmg the antenna surface as locally
plane so that the usual boundary conditions apply
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0 ix(E,~E,) = 0
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~
=
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!
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it

n ﬁx(ﬁz—ﬁl') = K,

The boundary condltlons state that the normal components of B and the tangential
components of E are continuous across the specified boundary. The normal
components of D and the tangential components of H are discontinuous, however,
for that boundary. Since all fields vanish within the perfect conductor, it follows
that the incident and reflected fields combineé to satlsfy the boundary conditions.
-when B -—H =D -uE = 0, Then :

and

in the field equations.

Electrlc and magnetlc fields from the prlme feed are related by the expres—‘
sions 2 ‘

' 1The magnetic’ vector is calculated approxnmately 104 times in computing the*field mtensuy at one
point of the radlauon pattern of a large S-band antenna.
2Reference 1, page 284



and

(2]l

i = Vwe/eg Hoxp,,

where P, is the direction of propagation at the prime feed. Here 2, = )/ u, /e,
: E
is the intrinsic impedance of free space, and l—il-T = Z,. It is noted that the

spherical-zone fields in the equations for E(x,y', 2') and ﬁ(x‘, y',Z) are orthogo-
nal in space, synchronous in time, and also yield the intrinsic 1mpedance of free
space.

. The field equations can now be rewritten as

- - 1 1 = = 1 =
] ' {] ! — P U ——— . i i n
E(x‘,y',z) ’ jweogw v‘k“i ‘dl 27r Sl[pr,o(x1xHi)l// (1)
’u'o % . .
- (-—-) fie (ﬁle.)w] ds
€o A .
and .
T/t ool ' - 1 e . l
Hix',y',2') = =5 <an>xvvds (2)
. ' Sl

taking u. = ¢, = 1in the space in front of the reﬂector At this point in the
development the unit magnetic polaru:atlon vector is needed, and the history of
the wave from the prime feed can be mtroduced In addition, the history of the . :
waves radiated from the reflector should be considered before proceedmg to a

: speclfm reflector geometry

Assummg that the reflecto* is in the spherlcal wave zone of the source, the
unit electric and magnetic polarizatlon vectors € and h must be orthogonal to
pl and to each other. The unit electric vector will be assumed to be coplanar

IRef. 2, page 3; Ref. 3, page 3



*

with an electric source polarization vector vV as shown (Figure 1). Then

X (VX))

€ = 1
i - N (TR
. ;.fl.“i(‘.’x;.l)' p

3 (ELECTRIC SOUKCE |
POLARIZATION VECTOR)

z

o

(SOURCE)

Figure 1. Polarization Vectors

i/
7

‘ For cases where magnetic fields are;er_;gountered, as in (n'xﬁi) of the field equa-
tions, it is necessary to write! - |

“at u given dS on.y,.

1Ref. Z, page 150



Effectively,

}-_1 i ﬁlx[,b'lx(Vxﬁl)]
: lﬁlx[‘,ﬁIX(foQ’l )] |
via .
But
_ PyxV
b Eaer
,F’lXV,

dii'ectly by inspection of the physical picture ox the reduction
Ax [Ax ('éxK)]. = - Ax [Ax (Kxﬁ)] = AxB

when A is a unit vector and B is any vector. The elimination of two of the
three vector cross-products is achieved through the use of h instead of . for
the three field integrals which contain H The remaining f1eld integral contalns
E (or ple ) and two vector cross-products are necessary, using either & & or
h , to account for the polarization from the prime feed. The orientation of the
eleetrlc source polarization vector v is arbitrary and it will be treated as a free
vector , not necessarily bound to ongin 0 in subsequent deveIOpments. '

. The history of the wave from the prime feed is now written into the problem
explicitly. It is convenient to begm with the expressmn"'

%

. Mo\ % P Co
[2 (——0) s G (0,@)] €. (0,0) e7iks
" \€q/ 4n °f i | ‘ |

1Ref. 5, page 33. Ina sense Vis "bound” to the feed at point. p in later developments. .
2Ref 4, page 150 ' '



where o is the distance from feed to reflector, P is the total radiated power
and G, is the gain function of the feed. Capital letters ®, ¢ are used for the
spherical coordinate angles associated with the feed, and ¢, ¢ are reserved for
the field points on a surface (usually a sphere) of observation. Then

TR 1
— . -' _1- (:.0 ¢ -P- . — - ikp
H‘i (0,0,0) = P 2 “ﬁ;- yp G, (0,d) | h, (0,9)e .

The 1/0 space divergence (attenuatlon) from feed to reflector surface and the
accompanying phase chang. e ~ikP are now a part of the hlstory of the waves
designated E, and H, in the field equations.

‘The history of wdves from the surface of an antenna is contained in the
scalar / and the vector Vi of the field equations. Here .

e?jkr

. . ‘ ‘ ’ L/I = "

and
vf-,-‘ ( '.1),* |
Yo o= - ]k"f-i_-,/lr.

and r is the distance from the reflector surface to the point of the observer.
These factors are under the integral sign for the general case. Distance r is
‘variable for the various differential areas -of surface ¥, » and vector 1 is a free
vector whose Cartesian components vary across fyl as shown in Flgure 2a.

P, 6,4 /FlELD POINT
e (GENERAL)

» o ~——FEED POINT
REFLECTOR S

Figure 2. N'ea_r-‘Field‘ Geometry = | |



_ If the observer is sufficiently far from the reflector 7, » @ spherical wave
having only transverse field components results. This field decays as 1/r and
the phase delay from the surface 7, to the field point can be written as ¢*j KB+ 1, .
to obtain the diffraction pattern. (See Figure 2b.) In this case the 1/r divergence
term can be taken outside of the integral sign, and the transverse components of

= ' ' ! | v 1 . __ = o
EMX,y,z2) = - y pe jwpg (AxH )YdS
’ ‘ S (Equation 1, page 3)

are obtained by forming .

. q‘;l”._‘
i

E(x',y,z') * 1,

and

e‘tﬂl
f

E(X‘.‘,y.,z') o i¢>-

//P (@, )
! / o |
—

LT |
W~V FIELD PONT
A r=s~"  (REMOTE)

| ~—— FEED POINT
REFLECTOR .

'Figure 2b. Fcr-Fiéld Geometry -

FEED TRANSLATION AND ROTATION

The combined translation and rotation of a primé feed provides six additional
degrees of freedom for controlling the illumination at a reflector surface. It is
assumed that this surface has a parametric représentation so that a transiation



vector (p ) and an orthogonal ro»atlon matrix (A) can be introduced to obtam the

correct magmtude, phase, and polarization of the complex vectors E and H at

each dS of , . Initially the source pattern function is taken to be F (O ¢) =
G (0,%). bee Figure 3.

REFLECTOR L A"

Figure 3. Coordinate Reference Frames

If the prime feed undergoes simple translation, the distance from the feed to
a point on the reflector is given by

P'E PP T Gex) T H Gy T () k B X Ty T2k
Then -
1

1 ., _. .
S eIk ik



The components of vectors in the coordinate frames with origins 0 and 0' are
indistinguishable and the indicated vector cross-product is well-defined. The
intensity directed toward a point on surface 7, can be found in terms. of the dis-
placement 7, since F (6,9) ~ F (8,4'). See Figure 3. Now 15 = (x'2+y'2 +2' 2"
can be calculated, and the two unknowns @', ¢'can be found from a system of three
equations. ' '

X = 0 sin@® cos ¥
}y'. = o sin @ sin ?b"
22 = o' cos ©

If the translatidn is degenerate_,‘ X, =y, = 2 E = 0, and the angles @' and '
- become © and ®, respectively. Then F (O, ®) is evaluated with the ordinary
spherical coordinate angles, as before.

If the feed is displaced and disoriented, or simply disoriented, the vector 7_.
~and a 3 x 3 rotation matrix! A with Euler angles a, 8, v can be used to determme
the illumination at the reflector surface. Ordinarily the prime feed function F -

and the source polarization vector v are known in body coordinates, but the re-
flector surface and the field points are des1gnated in space coordinates. The
inverse matrix tra.nsformatmn, -

- 7 A .7 ¢ . } ' . TIr o1

v, vt (cosycosa-cosfsina siny) (~simy cosa-cos Bsincosy) (sinfsina) | | v,
v, |= [A| vy |7 | (cosysinatcosBeosa siny) (~siny sinatcosSeosacosy) (~sinfcosa) | | vy
‘e vy (sinBsiny) | (sinfcosy) . (cosf3)’ v;

L o _ - L L d L. . ‘ ) ’ ‘ ' ' - J

space : ' _ . body

1Ref. 6, page 107



. provides the components of the source polarization vector m space coordmates
so that the magnetic polarization vector becomes

]

—_ /Ul XV

’p, x 7" |

The vector cross-product is well-defined when the cbmponents of p; and ¥"are
all relative to space coordinates, -

The intensity of the feed pattern F which is directed toward the reflector at
- a point (x,y,z) in space coordinates can be determined by the direct rather than
the inverse transformation. Vector 7' has components which are identical in
both 0 and 0' coordinate systems. The components of z' relative to body coor-
. dinates, frame 0", can be found via: the matrix transformation - :

x"- ™ N -xl—
yu - A yc
. L2 L4 L
- where ' - A"l = AT

since the rotation matrix is an orthogonal matrix. -

But
X' = >,o" sin'@)"’ cos ¢"
y' = 0 sin@®" sin®"
2 = ' cos@" ..

~ again provides a system'of‘ three e’quations in two unkhbwns, ®", and @¢". If the
‘rotation is degenerate (a = 8 = 7y ='0) so that A =1, the 1dent1ty matrix, the
equations for the case. of 31mple feed translatlon reappear.

10



The preceding methods for introducing feed translation and rotation into the
problem are adapted to numerical computation rather than analysis. The re-
flector area is presumed to be subdivided suitably into a number of differential
areas. If the subdivision or sampling! is adequate, then the field intensity due
to the illumiration can be used to "weight" each differential area prior to sum-
mation over the reflector. The precise manner? in which the area is "weighted"
" is a topic sufficiently broad to deserve detailed treatment, and will not be con-
sidered in this document. It remains to provide the general methods for obtaining
the local normals (fi7) and the differential areas (dS) on reflector surfaces. The
rotationally symmetric surfaces—paraboloid, hyperboloid, ellipsoid, sphere and
cone~are presented in Appendix A as they are representatlve cases which find
frequent application in reflector antenna systems. - :

. SUMMARY

This report provides mathematical subroutines which are required to trans-
- port the illumination of a prime feed to a reflector surface. The feed translation
vector and the rotation matrix afford an unusual amount of flexibility to the pro-
gram, Utilization of the magnetic quantities throughout greatly simplifies the

- formulation and external control. Although the appendix contains only subroutines =
for the normal and differential area of rotationally symmetric surfaces derived
from the conic sections, the field equations are not restricted to these particular
surfaces. Other smooth surfaces, symmetric, or.non-symmetric, can be intro- -
duced prcvldlng that their swes and mlmmum radii of curvature exceed one-
wavelength. ' ‘

Dual or multiple-reflector systems can be analyzed by the techniques outlined
herein. Complex prime-feed arrangements can also be accommodated by super-
imposing field solutions or.prime feed-functions. In conclusion, a library of feed
arid reflector-surface subroutmes can be formed and utilized for many practical -
configurations. '
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1Ref. 7, page 323

- 2Various integration techniques may be apphet’ dxrect method, trapezondal rule, Simpson’s rule,
Filon’s method, Ralston’s method, etc. :
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"APPENDIX A

Normals-and Differential Areas from Parametric Equations

Normal to Surface:

!
- 9Q
|

Differential Area: |

~ dS = (EG - F)% do d{

E ‘—'"xa?' +.y£3 + z?

,parabdloids

o

in Cylindrical Variables (o, ()

x = asinf[, 'y = =u cos ¢
parabol;)ids 7 = Zli.‘_} z,
| hyperboioids 'z = c(l+0%a?)”+ z,
| éllipsoids z = c'(l - o2/a%)" + .zl
spheres z . (¢2 - o) + z,
cones z = co t oz,
— °p _ 98 _. s s o |

Tangents to Surface:} Py = _C-’ o, = 5o _p(g,y,z) = .1, X+t ijy+tkz=(xy,2)
Py 7 (o cos {, o sin é, 1))

pdraboloids ,'50 = (ysin {, -cos {, o/ 2F)A

hyperboloids Py = :sin L, = cos {, oc/a(a? + 02)"4]

ellipscids P, = :sin g, '..'Clos L, - 'g‘c/a'(alzl_ o2y4]

,s'ph'eres P T _:sin »g', = cos [, - c‘r/(c?}'- q2)'/‘] |

cones p.= (sin C’, - cos [, c) |

SR =@, x B/, x By

F=x,xty,y;*2z,2,, G= x? + y} + 2}

dS = o(1 + ¢2/4F?)* do d¢

13



TIRRNLERE Ve T

hyperboloids | | - dS =
ellipsoids | ds =
. spheres - ds =
cones dS =

See also:

Ref. 8, page 3
Ref. 5, page 206
Ref. 9, page 3.5-10
Ref. 10, page 106

o [1 + 72¢c?2/a%(a? + :r2)] " de dY
o [1 t o2¢?/a%(a? - 02)] * do dy
oc/(c? = o2)* do d¢

t

7(c? + 1)% do d/

14



APPENDIX B

Minimum Radius of Curvature from Parametric Equations
in Cylindrical Variables (v, )

Curvature k, = I/Rc; where Rc» = radius of curvature.}

X = x(cr),}" =y(), z = 2(v)

X" Yf' 2 yn Z" 2 2" xu 2
+ + "2
k2 = |x' y' 2’ 2 x = — —
(1 + 2'2)3
(xo 2 4 yo y R 2‘).3
~ since
x = sinl, x' = 0,y = -cosl{,y" = 0,2 = k'7,.
k, = maximum at o = 0.
paraboloids - ' = 1/2F, min-R, = 2F
c o 1 - C a
hyperboloids z' == + = — min R =
, a (32”'0‘2)3/.2 <a2+o.2)1/2 a? s ¢ C
- 2 ‘ : a2
. . c to 1 c a<.
.ellipsoids 2" = - = -+ ‘ = =-— min R =—
‘ a (a2-o.2)3/2 (a2_o.2‘)1/2 Y c C
spﬁeres o 2= i 1 S in R =
, - it - - min K- = ¢
. , \(02‘0’2)3‘/2 (C2..O.2)1/2 . C S
cones ; 2 =0 A . minR =o

- IRef. 10, page SVI
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