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THE USE OF INTEGRAL TRANSFORMS IN THE ESTIMATION
OF TIME VARIABLE PARAMETERS
By Henry C. Lessing and D. Francis Crane

Ames Research Center

SUMMARY

A study has been made of the concept of integral transformations applied
to the differential form of the system equations and the use of these equa-
tions in parameter estimation. The two principal results of this study are:
the extension of the transformation equations to explicitly account for time
variability of the system parameters and an extension of the application of
the concept to the output error formulation of the parameter estimation prob-
lem. It is shown that, as a result, the output error formulation acquires
stability properties that were impossible previously.

Experimental results are presented to illustrate the theoretical
developments. These results show the ability of the new formulations to
estimate parameters that are highly variable with time.

INTRODUCTION

The problem considered in this report can be stated, in general, as one
of obtaining information about a physical system from knowledge of its input
and output. A basic assumption will be made that there is sufficient under-
standing of the system to permit formulation of a mathematical description of
the process involved. In a great majority of engineering situations this is a
realistic assumption; usually enough is known about the system being investi-
gated so that, over the range of operating conditions of interest, the numeri-
cal values of the system parameters are the primary unknowns rather than the
mathematical structure of the relationships among them.

The types of parameter estimation formulation commonly called equation
error and output error are considered in this report, with primary emphasis
on the latter. Both formulations may utilize a predetermined mathematical
description (system equation) as just mentioned, but their operation is funda-
mentally different. If the system output is completely related to the input
through the system equation, the two schemes may be defined as follows. Equa-
tion error is formed by weighting the system variables with estimates of the
system parameters and summing. If the parameter estimates equal the true pro-
cess parameters, the sum will be zero; if not, the sum will equal a quantity
called the equation error. Output error is formed by the difference between
the output of the physical system being investigated and the output of a model
excited by the same input and described by the same system equation but whose



parameters are again estimates of the true system parameters. When the
estimated and true parameters are equal, the outputs of the system and model
become equal, and the output error vanishes.

A significant consideration with regard to these methods relates to the
variables appearing in the system equation. A very large class of physical
systems can be described with acceptable accuracy by means of ordinary differ-
ential equations, and the great majority of parameter estimation work has been
based on this class of system. A fundamental difficulty with this type of
equation is that it is impossible generally to measure the derivatives of the
system input and output appearing in it.

One solution to this problem was developed by Meissinger (ref. 1) in the
form of parameter influence coefficients. These influence coefficients are
the partial derivatives of system variables with respect to system parameters,
and thus provide the information necessary for parameter adjustment in the
output error formulation described above. This technique has been used
successfully in a number of applications (refs. 1 and 2).

Another approach to the problem, the one with which this report is
concerned, lies in transforming the system equation so that it is written in
terms of new state variables that can be generated from those that are mea-
surable. One of the earliest rigorous and useful transformations of this type
to be applied to parameter estimation was developed by Shinbrot (ref. 3). His
transformation consisted of integrals of the product of system variables and
appropriate ''method functions.'" In this way, the system differential equation
was transformed into an equation with easily obtained state variables, and
parameter estimates were then obtained by the equation error (then called the
equations of motion) method.

Much later, but apparently independently, Zaborsky et al. (ref. 4)
rederived Shinbrot's method in connection with the identification portion of
an adaptive flight-control system. Again, the equation error type of param-
eter estimation was used. It is interesting that Zaborsky utilized a form of
method function specifically excluded by Shinbrot on the basis of inaccuracy
of the parameter estimates. Although some problems of this sort were experi-
enced, the system apparently worked well, and the variables generated by the
method function used were simple and required a minimum of the limited
capacity of the on-board computer.

These transformations may be viewed as convolutions with the impulse
response of nonphysically realizable filters. Transformations using physi-
cally realizable filters were developed almost simultaneously by three inde-
pendent researchers. Valstar (ref. 5) and Rucker (ref. 6) in the United
States, and Young (ref. 7) in England, although motivated differently and
approaching the subject from slightly different viewpoints, arrived at essen-
tially identical results: namely, that the system differential equation can
be transformed into a more readily usable state variable form by passing the
system input and output through successive physically realizable transforma-
tion filters. Each researcher utilized his results in an equation error
formulation of the parameter estimation problem.



The transformation formulations developed to date are strictly valid only
for constant parameter systems. The present report extends the concept by
deriving transformation equations that account for time-variant parameters.

Another aspect of these transformations regards their interpretation. As
noted, their developers have taken the point of view that they provide only a
generalized equation error structure for parameter estimation. This point of
view is also maintained in reference 8, where comparisons are made between the
performance capabilities of equation error and output error systems, and a
plausibility argument is given for output error systems (based essentially on
Meissinger's influence coefficient approach) being stable only for suffici-
ently low gains. Asymptotic stability is proven for the generalized equation
error system based on the formulation of Rucker. The present report shows
that by taking the viewpoint that the transformed system equation represents a
generalized model structure, most of the stability properties associated with
the equation error formulation also apply to the output error case.

Experimental results are presented to illustrate the theory and concepts
developed.

NOTATION
a,b parameters of the plant system equation
c system output
Ej equation error or output error
m c+n
n additive noise or transformation order
P performance criterion
s Laplace transformation variable
t time
Trq rth transformation of a quantity q (eq. (6))
u input
Vp parameter rate of change in percent of mean value per second
Yi ith model output
) dla, alb,

%in>Bim estimate of i -

dt dtt



T transformation filter time constant, sec

w frequency, rad/sec
wp frequency of harmonic parameter variation, rad/sec
. . d() d2()
(J,0) >
dt at2

THEORETICAL DEVELOPMENT AND ANALYSIS

Transformation of a System Equation With Variable Parameters

Consider a system with input u and output c¢ which can be described by
a differential equation

dnc mu
E a, &= - E by = = 0 (1)
at™ at™

in which there are N + M + 1 independent, possibly time varying, parameters.
Operate on equation (1) with the integral transformation

t €3
.f h(t - Ej)dEj .. -.[ h(g; - Ez)diz
o) 0

f Zan(i ) —¢ Zb €,) d; h(g, - £,)dg; = 0 (2)
El

This transformation consists of j convolutions of equation (1) with a
transformation filter defined by an impulse response h(t) which, as indicated
by the integration limits, is to be that of a physically realizable system.
For the purposes of this report, we will use the simplest filter and the one
that has been employed most frequently, namely, a first-order lag defined by
the system function

1

H) = 5t ®

or the impulse response

h(t) = L e /T 4)

=



The details of carrying out the transformation (2) utilizing this
impulse response are given in appendix A, where it is shown that the jth

transformation of the term gk(qu/dtk) is given by

[=-]

i k
s s . dig
k E -1 -k 2 k!
I3 = -t %%‘THT A — -13° Tt Tiejaked) * £
i=o l=0 (5)

where
i=2k

0

A

k =< max [N,M]

q=coru

g=aorb

and where f(t) is an exponentially decaying function of time generated by
initial conditions of the parameters, the input wu, the output ¢, and their
derivatives. The symbol T,.q represents the rth operation on q by the
transformation filter described by equations (3) and (4):

£, £,-E, £,-E,

-t
t €3 €,
Teq = —]ii_-f e dEr .. f e dizf q(g,)e ’ dg, (6)
T fe) o] o

where €y = ¢ and T_q = q. If now the general term (5) is used in equa-

tion (2), the result may be written, for a given order of transformation,
j = max[N,M], as

s N M
? % AinCin - E BimUip! + F(t) = 0 (7)
i=o n=0 m=0
where .
dlan
Ajp = T (7a)
dt
i
d by
dt
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A !
1=0
m

Uin = (-1)° % Ti—mZ (D' T Tiejener (7d)
l=0

The choice of this value for j eliminates all derivatives of system state
variables in equation (7). If some derivatives of system state variables are
measurable, they may be retained by choosing an appropriately smaller value
for j.

Some discussion of this result is in order. By application of the
transformation (2), with h(t) given by equation (4), to the differential form
of the system equation (1), we have arrived at equation (7), which is an exact
integral form of the system equation.

The transient response of the differential form is duplicated by
introduction of the forcing function F(t).

The forced response of the differential form is duplicated by
appropriately filtering the input, equation (7d), to compensate for the filter-
ing performed on the output, equation (7c). It will be seen in a subsequent
example with constant parameters that the input filtering introduces zeros
that just cancel poles introduced in the system itself so that the overall
system function, including the input filter, matches the system function of
the differential form.

Parameter variability effects are duplicated through the infinite
expansion in increasing orders of parameter derivatives in equation (7).

Equation (7) does not represent a unique system description: an
arbitrarily large set of system equations of the form of equation (7) may be
constructed simply by setting, in equation (5), j = max[N,M] + i,
i=0,1, 2, . . ., by setting j = max[N,M] and using a different value of
T for each transformed equation, or any combination of these two methods.
Still another alternative exists without changing the form of the transforma-
tion filter. Equation (5) was developed for the case in which all the trans-
formation filters in a given Tp.q were characterized by the same time
constant T as indicated in equation (6). Clearly, this is not a necessary
restriction; each succeeding transformation filter could have a different
value of 1. The resulting equation corresponding to equation (5) is consider-
ably more complex and will not be presented in this report, but there clearly
are an infinity of ways of generating independent transformed system equations,




Transformation of an Example System Equation

In this section, we will consider a simple example to illustrate the
preceding development, Consider the system shown in sketch (a) described by a
differential equation of first order:

u bo
—
;s +a,

—»

Sketch (a) alé + agc - bou =0 (8)
Here, N = 1 and M = 0 and thus there are N + M + 1 = 2 independent param-
eters. Without loss of generality then, one of the parameters may be set
equal to unity, but for the present all three will be retained to illustrate
the transformation equations. With j = N =1 in equation (7), the first
transformed system equation is found to be, upon multiplying through by =,

a;(c - Tye) + agt(Tic) - bOT(Tlu)~W

- ayt(Tie - Tpe) - agr2(Tae) + bt?(Tou)

+a,712(Tpe - Tze) + d,13(T3c) - byt (Tau) >
(9)

+F(t) = 0

J
where F(t) = —al(O)c(O)e_t/T. This equation clearly shows some of the points
mentioned earlier. Consider the initial condition response. As can be seen
by definition (6), the initial values of the transformed input and output
variables are equal to zero (excluding impulsive-type inputs), and at time
zero equation (9) reduces to the identity

a;(0)c(0) - a;(0)c(0) =0

Therefore, if u = 0 for all time, then Tyu = 0 for all time, and the
initial condition response is given by the response of the remaining terms in

equation (9) to the forcing function F(t) = al(O)c(O)e—t/T.

To illustrate how the forced response of the integral form of the system
equation (9) duplicates that of the differential form, equation (8), consider
the parameters to be fixed and take the Laplace transform of equation (9):

T(a;s + ag)

bot
s + 1 c(s) -~ ——u(s) =0

s + 1



= ] In block diagram form (sketch (b)), it can be

seen how the pole at s = -1/t in the input

filter just cancels the zero in the plant

_J which has been introduced by the transforma-
tion. The overall system function thus
remains the same as shown in sketch (a).

Sketch (b)

By setting j = N+ 1 =2 in equation (7), the second transformed
system equation is found to be

a; (Tyc - T,c) + aOT(Tzc) - bOT(Tzu)
- a12t(Tyc - T3e) - ag2t2(T3e) + by2t2(Tau)

+a131%(Tac ~ Tyc) + 8,373 (Tyc) - BOSTs(Tqu)
(10)

+F(t) =0

where now F(t) = -al(O)c(O)(t/T)e—t/T. Additional system equations can be

generated by further transformations, or, as mentioned earlier, by the use of
various values of 1 in equations (9) and (10).

Examples of Two Parameter Estimation Formulations

The use of the transformed type of system equation in parameter
estimation will be examined in detail in the following sections, but some
preliminary discussion is in order here regarding the approach that has been
used exclusively to date, and an extension to this approach. Consider the
equation error type of parameter estimation scheme; an example of this formu-
lation can be illustrated by equations (8) and (9) and the block diagram of
sketch (c). If equation (8) defines a
system whose parameters are to be numeri-

b c
- " %5300 * cally evaluated, and the input and output
are transformed and combined as in equa-
tion (9), then if the parameters appearing
TRANS ORI ION TR“fﬁﬁggle in equation (9) are inaccurate estimates
of the true parameters, the sum will not
equal zero as shown, but will equal a
EMMHOthiiiil_ quantity shown in sketch (c) as E, which
—:::::D (9) is called the equation error. The advan-
l tage of this form of the system equation
4 is that the variables appearing in it are
easily obtained by simple integral opera-
Sketch (c) tions on the input and output, in contrast



to the often impossible task of obtaining the variables of the differential
form of the system equation. This, of course, was the primary motivation for
the original development of the concept. An additional feature has now been
added: equation (9) explicitly includes terms that account for parameter
variability and thus provides more accurate modeling of time-variable systems.
Although this development has been made here only for the case of a physically
realizable transformation filter, an equivalent development is possible for
the nonphysically realizable transformation filters discussed in the
Introduction.

As mentioned in the Introduction, the originators of this type of
transformed system equation, and those who have subsequently used this
approach, have considered the equations only in the above context, that is, as
a generalized structure for the equation error formulation of the parameter
estimation problem. 1In the present report, we will show that another point of
view is possible, namely, that the transformed system equations provide also a
generalized model structure that can be used in the output error formulation
of the parameter estimation problem. This can be illustrated by using equa-
tions (8) and (9). Equation (9) has already been shown to define the same
dynamic structure as equation (8). Thus, it can be considered to define a
model of the system defined by equation (8), a separate dynamic entity which,
if its parameters and initial conditions equal those of the system, and if it
is forced by the same input that forces the system, will have a response iden-
tical to that of the system. Consider the constant parameter, forced response
case of equation (8) with a; set equal to unity. Designate the model output
as y. Then equation (9) may be rewritten! as

y = Ty - OLOOT(le) + BOOT(Tlu) (11)

and used to define a model in an output error formulation as indicated in
sketch (d). When the model parameters a,, and B,, are inaccurate estimates of
as and b,, the model output 1y, and
- the system output ¢ are not equal.
u bo c . . . .
s+og ' Their difference is shown in
sketch (d) as E, which is called
the output error. The next section
: will show that here also, as in the
________+ EQUATION (1) LN E, case of the equation error formula-
M tion, there are significant advan-
tages to using the integral form of
the system equation rather than the
Sketch (d) differential form.

00

1The double subscript notation introduced here for the model parameters
will be used to designate both the appropriate system parameter and its partic-
ular derivative to which the model parameter corresponds. For instance, aj,
corresponds to dla,/dtl.



Parameter Adjustment

To this point, all that has been said regarding the parameter estimates
in either the equation error or output error formulation is that if they are
equal to the true parameters, the resultant errors (E in sketches (c) and (d))
vanish. The means by which the parameter estimates are to achieve the correct
values has not been described.

Two basic approaches exist, each of which is uniquely suited to a
specific type of computer. The first is matrix inversion. In the preceding
section two independent parameters exist in the system described by equa-
tion (8). 1If the parameters are constant then equations (9) and (10) reduce
to the time-invariant case given by the first line, and a matrix inversion
solution yields the two values. This type of solution obviously requires a
digital computer.

Solution by analog computer may be obtained by gradient-type techniques.
A nonnegative, increasing performance criterion must be selected, for instance,

P = %EZ (12)

A parameter adjustment strategy that makes use of knowledge of the gradient of
the surface formed by the performance criterion must also be chosen. One
strategy commonly used is that of steepest descent (ref. 9), defined, for the
case of continuous parameter adjustment, by

. oP(t
V(6 = kg ’a‘yﬁ (13)

where Yij represents each of the independent parameter estimates (aij and

Bij) in turn. Consider the meaning of equation (13). The rate Qij at which

the parameter estimate is varied at time t 1is proportional to the negative
change of P at time t per unit change of Yij at time t. In the equa-

tion error formulation, the instantaneous gradient component BP(t)/ayi.(t)

of the surface formed by the performance criterion is given directly by the
state variable associated with the parameter being considered. This is true
for both the differential and integral forms of the system equation.

In contrast with the availability of exact instantaneous gradient
information obtainable in the equation error formulation, continuous parameter
adjustment in the output error formulation must use inexact information when
the differential form of the system equation is used. This is due to the fact
that the instantaneous gradient component BP(t)/ayij(t) is identically equal

to zero since the model output does not respond instantaneously to changes in
parameter estimates. The parameter estimates must, therefore, be adjusted in
accordance with a prediction of the future response of the model output due to

10




a change in the parameter estimate 'now" at time t. This is the type of
information provided by Meissinger's influence coefficient solutions. However,
the underlying theory is strictly valid only for zero rate of adjustment of
the parameter estimates (ref. 2), and the accuracy of the information degener-
ates as the adjustment rate increases. This limits the use of techniques
based on Meissinger's influence coefficients to parameter estimation of
stationary or very slowly varying systems.

Use of a model defined by the integral form of the system equation
eliminates this difficulty entirely; the model output now responds instanta-
neously to changes in the parameter estimates, the instantaneous gradient com-
ponents are again nonzero, and their values are obtained in the same
straightforward manner as for the equation error formulation.

Stability

Many proofs can be found in the literature that the equation error
formulation of the parameter estimation problem is stable (see, e.g., ref. 8).
The proofs remain valid when the parameter variability effects are explicitly
included in the transformed system equation. No such proofs can be found for
the output error formulations that utilize continuous parameter adjustment.

To date, only the differential form of the system equation has been used, and
gradient information has been obtained from methods essentially the same as
that of Meissinger (refs. 8 and 10). Although successful convergence of the
parameter estimates has been achieved with appropriate®choices for the param-
eter adjustment rate gains (kij in eq. (13)), experience seems to indicate
such formulations can always be made unstable by choosing sufficiently large
gain values (refs. 2 and 8). The stability of the output error formulation,
when a model defined by the integral form of the system equation is used, will
be examined in this section.

Consider a system defined by the differential equation (1). Initial
conditions have no place in the following discussion, so they may be assumed

to equal zero. Then the system is also defined by equation (7) with F(t) = O.
Construct a model of the system

© N M
; ? OLinYin - ; BimUim =0 (14)
i=o n=o m=0

and normalize the system equation (7) by the n = N zeroth derivative param-
eter. Normalize equation (14) by the corresponding parameter estimate. Then

Agn = ogy =1 (15)

It immediately follows that Ajn = ajy =0 for i > 0. If we use the
performance criterion (12), and define the error in a manner similar to

11



sketch (d), then?

E = YON - CON '(16)
Adjusting the model parameter estimates according to equation (13) gives
Gin = *kinEYin » n#N
.1 in“'in (17)
Bim = ‘kimEUim
Now the performance criterion will vary with time according to
P = EE
® N-1 M
- E : U f + B [& (18)
= = Yip%in * imBim 3t/ g
i=o | n=o m=o0 @

Substituting equation (17) in (18) gives

[ee]

N-1 M

° _ 2 E . 2 E 2 oE

P = ~-E klnYin + kimUim + E <§E‘ (19)
n=0 m=0 o8

1=0

The last term in equation (19) is a function of system and model input, param-
eter estimate inaccuracies, and system parameter variability. The first
(bracketed) term is due to adjustment of the parameter estimates in the model.
Thus, the effect of adjusting the parameter estimates according to equa-

tion (17) is to drive the performance criterion toward zero, and a zero value
will be assured if

2]

N-1 M
2 : E : 2 2 : 2 OE
EZ KinYin * KipUim | > E <5?> (20)
n=0 m=0 ® 8

i=o

a condition which can be realized with sufficiently large adjustment gains.

Satisfaction of inequality (20) guarantees convergence of the performance
criterion to zero; it does not, however, guarantee that the parameters will

2Gketch (d) defines E =y - c. In terms of the specific example
considered previously, equations (9) and (11), the definition (16) gives
E=(y - Tyy) - (c - Tyc). This definition simplifies the succeeding equa-
tions, and has no effect on the arguments presented, which apply equally well
to the definition of sketch (d).

12



converge to a unique set. It is obvious from equation (14), the model system
equation, that at any instant of time there are an infinity of combinations of
parameter estimates which will satisfy P = 0. This result has been
thoroughly discussed in the literature (refs. 2 and 8), and is due to the fact
that the performance criterion, equation (12), does not represent a surface
with closed contours of constant P. The analogous digital solution diffi-
culty is a singular matrix resulting from more unknowns than equations.

Unlike the digital case, however, convergence to a unique solution is still
possible in the analog gradient technique case if the adjustment gains for

the parameter estimates are sufficiently small (refs. 2 and 8).

Uniqueness can be guaranteed by generating a set of models, by one or
more of the means previously described, equal to or greater in number than the

parameters to be evaluated. An error vector can then be defined with
components

Er = YoNr - CONI‘ > r = 1,2, « e ey R (21)
and used in a performance criterion

R

1
P = 725% (22)

r=1

Parameter estimate adjustment now proceeds as

R )
®in = Kip z Er¥ine » n#N
T=1
& (23)
R
Bim = “kim ; EI‘Uimr
T=1
J

The variation with time of the performance criterion (22) for this case is

3

o N-1 R
P = - j ) j ‘kin j ‘ErYinr

i=o n=o0 =1 >

(24)
M R
SE
+ 2 Kim E ExUimr * z T \5t
o,B
m=o T=1 T= J

13



and again it can be seen that minimization of the performance criterion is
assured with sufficiently large gain values. Now, however, since the perfor-
mance criterion is formed using independent models that, in number, are equal
to or greater than the number of parameters, the set of parameter estimates
which minimizes P is unique.

Thus, stability of the output error formulation is assured when models
defined by the integral form of the system equation are used, and uniqueness
of the parameter estimates can be assured by utilizing a sufficient number of
models. The reader familiar with the equation error formulation will recog-
nize the direct parallel of these results to that case, but will note also a
significant difference. Whereas, in the equation error formulation, minimiza-
tion of the performance criterion combined with uniqueness of the parameter
estimates means that the parameter estimates have achieved the values of the
system parameters, this is not necessarily true for the output error formula-
tion. Satisfaction of the two conditions guarantees that the parameter esti-
mates will ultimately converge to the correct values, but instead of
achieving the correct values coincident with minimization of the performance
criterion as in the equation error formulation, the analysis in the next
section will show the correct values will be achieved some time after
minimization has occurred.

Convergence of the Parameter Estimates - Output Error Formulation

In this section, convergence of the parameter estimates will be analyzed
for a particular example. The example will also serve to illustrate the
structure of the output error formulation when a vector error is used. The
first-order system defined by equation (8) will again be used. Equation (9)
is an integral form of the system equation, the form that will be used to
define the models. Assume the two independent unknown parameters as ag, and
by,. The parameter a; may be set equal to unity and, of course, all its
derivatives equal to zero. For simplicity, and with no loss of generality as
regards time for parameter convergence, assume also that b, is time
invariant.

Assume zero initial conditions. Then equation (9) may be written
c - Tic + aorTlc - éoTszc + 50T3T3C - e .. - boTTlu =0 (25)

The number of unknown parameters in this equation is determined by the number
of derivatives of ap necessary to adequately approximate its variability.

If the vector error, equation (21), is used to ensure parameter estimate
uniqueness, then the minimum necessary number of error components (and, there-
fore, system models) is determined by the number of unknown parameters in
equation (25). Each model must be defined by an equation that corresponds

to an independent system equation, formed by one or more of the methods
described previously. If, in the present example, these equations are formed
by setting j = 1,2,3, . . . 1in equation (5), then equations (9), (10), and
subsequent transformed system equations result. With the conditions that

14




enable equation (9) to be written as equation (25), equation (10) may be
written as

Tic - Toc + agtTyc - éo2T2T3c + 85313Tye - . . . - bytTou = 0 (26)

— 7 ] and so on for the higher trans-
u c T|C T2C
SYSTEM ' TF ' TF ———— formations. The output of the
system defined by equation (25)
vy - is ¢, that of the system defined
| . .
b MODEL | E| by equation (26) is Tjc, that
defined by the higher transforma-
Yo _ tions, Tyc, T3c, etc. With a
¥ MODEL 2 Ep model defined to correspond to
each of these variables, the
R y. - structure of the output error
¥ MODEL 3 E 4%<f}——*E3 formulation appears as shown in
| . N sketch (e¢), where TF denotes
| | ~ the transformation filter defined
[ | by equation (3) or (4).

Sketch (e) The first model, whose
output is to correspond to equa-
tion (25), is defined by

Yy =~ Ty + og50tTiyy - 010T%Toy; + a2013T3y1 =+« .« = BootTiu =0 (27)
The second model is defined by
Yo = Tyy, + oy tTyy, - 0L10212T2y2 + u203T3T3y2 =« . .= BootT,u = 0 (28)

and, similarly, for the models corresponding to the higher transformations.
In general, the model equations can be written

Yo = PipTye + PppToy + Po Toy oo o0+ QT (29)
- where the P _ and contain the
T IYr To¥r ir Qr

TF --- parameter estimates appropri-
ately weighted for each model.

The important point here
is the model structure implied
by equation (29), shown in
\Par sketch (f). Consider that the
system and model variables have
all reached their steady-state
condition (i.e., that all tran-
Sketch (f) sients have disappeared) and
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that the parameter estimates are set at some incorrect value. Then the error
vector has a nonzero value. If now the parameter estimates are adjusted in
accord with equations (23), and if the adjustment gains are sufficiently large,
the error vector can be driven quickly to the vicinity of zero and constrained
to remain there. As discussed previously, although the set of parameter esti-
mates that initially forces the errors to the vicinity of zero are unique,
they cannot equal the true parameters. This is because the model structure of
sketch (f) defines also the system structure, and the parameter estimates can-
not equal the true parameters until the corresponding variables in model and
system are equal. This is, in model 1, T;y;, T,y;, . . . must equal

Tic, Tpe, . . .; in model 2, Tyy,, Tyy,, . . . must equal Tyc, T3c, . . .;
and so on. In general Tpy, must equal the system variable Tp4p_1C 1in
order that the parameter estimates equal the true parameter values. The time
it takes Tnyy to equal Tp,p-;c, if Ep is forced instantaneously to zero,
can be estimated from the propagation time of a step input through the series
of transformation filters in a model as shown in sketch (f). The percent
error between the two variables is given by

T _s¢c - T
en 100 n+rT1 nyr

n+r-1°

2 n-i1
t 1/t 1 t -t/1
100 |1 + =+ §-<?> + . . .t Tﬁ—:—TjT»<¥> e (30)

and is shown in sketch (g).

From this relationship, the time
for effective parameter conver-
gence can be estimated from the
time for the difference between
the highest order transformation
variables to effectively dis-
appear. Figure 1 gives the time
for the error to drop to a value
of 1 percent.

100

80
60
40

20
This is a general result
since sketch (f), to the right
20 of the summer symbol, is a gen-
eral picture of model structure,
the number of transformations
depending on the number of sys-
Sketch (g) tem poles and the variability of
the ay parameters. The number
of input transformations to the left of the summer symbol is determined by the
variability of the by parameters and by the number of system zeros, but
there is no effect on the length of time for parameter convergence since the
input transformations are not affected by changes in the parameter estimates.
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Although finite parameter adjustment gains prevent the error vector from
being driven to zero instantaneously as was assumed here, it will be seen
subsequently in the experimental results that the parameter convergence times
can be estimated with fair accuracy using figure 1.

Estimation of Nonlinear Parameters

In the preceding sections, the parameters of the system equation have
been considered to be time variable and, at least implicitly, independent of
the system variables. This viewpoint is not necessary. For instance, in the
first-order system example considered in the foregoing section, the parameter
ag could be considered to be a time-invariant nonlinear function of the sys-
tem output c¢. It immediately follows that it is then expressible as a time-
varying quantity, and can be estimated by the means just discussed, Recovery
of the nonlinear function would then be achieved from a plot of the parameter
estimate a,, versus the system output.

Another approach that can be used with the present transformation

equations is due to Shinbrot (ref. 3). For example, if equation (8) is
written as

¢ + ag(c)c - bou =0 (31)
the parameter a,(c) is expressed as a polynomial
ao(c) = kg, + kic + kocZ + . . . (32)
of the complexity felt to be required for adequate approximation. Substitut-
ing equation (32) in (31) and applying the transformation equations gives, for
the first transformation,
¢ - Tye + kytTic + k11T (c?) + kytTy(c3) + . . . - b,tTiu = 0 (33)

and so on as before for the following transformations. Parameter estimation
proceeds exactly as for the linear case.

There are no conceptual difficulties in generalizing further to systems
with time-varying nonlinear parameters. The coefficients in the polynomial
(32) are then functions of time, and are handled in the manner already
illustrated.

PRACTICAL CONSIDERATIONS
As a result of the development and analyses of the preceding sections,

it is possible to draw certain inferences regarding the practical use of the
transformed system equations in the parameter estimation problem.
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Transformation Filter Time Constant

The transformation filter time constant, 1, is fundamental to all the
results developed in the preceding sections, and thus, perhaps not
unexpectedly, satisfaction of various criteria can put conflicting require-
ments on the numerical value to be chosen. For instance, rapid convergence of
the parameter estimates to the true parameter values is a very desirable fea-
ture. The foregoing section has shown that, in the output error formulation,
convergence time is directly expressible in terms of 1, and thus 1 should
be as small as possible.

A somewhat parallel consideration relates to parameter variability. If
all orders of derivatives are generated by the parameter variability, then
obviously the integral form of the system equation must be truncated, with a
resulting loss of accuracy in the system description. It can be seen (e.g.,
eq. (9)) that the accuracy loss can be reduced by choosing a small value for
T, thus reducing the effects of the neglected higher order parameter
derivatives.

In direct conflict with these requirements are the requirements arising
from use of equation (21). Definition of an error vector requires models
defined by independent equations, such as equation (27) and following, whose
outputs correspond to variables generated by independent system equations such
as equation (25) and following. The key word here is independent. As
approaches zero, equation (25) approaches T;c = ¢, equation (26) approaches
Toc = Tyc, etc. That is, the system equations are no longer independent.

This is a result of the nature of the impulse response of the transformation
filter, equation (4), as Tt approaches zero. Regardless of the value of T,
the integral of equation (4) over all positive time is unity sec”™!, and hence
equation (4), as T ~ 0, is a valid definition of a unit impulse. Due to its
sifting property, convolution of the unit impulse with a function simply
yields the function (ref. 11). In terms of the transformation filter fre-
quency response implied by the system function, equation (3), and as shown in
sketch (h), a value of =

IH(jw)l g 0 . --—  --—  approaching zero implies a cut-

= off frequency approaching
infinity and a phase shift
approaching zero.

Thus, Tt cannot be allowed
to become too small or the
information generated by sequen-
tial transformations will be so
small as to be lost in the
noise level inherent in any
computer, and accurate param-
eter estimation will be impos-
sible. Sketch (h) indicates
that maximum independence of
the system equations will occur
bgu:’ with a small value of 1/71

relative to the maximum fre-
quency of the input, since each

o~

Sketch (h

18



transformation will then yield a large phase shift when viewed in terms of the
frequency domain. However, a small value of 1/t relative to maximum input
frequency means that considerable attenuation accompanies each operation by a
transformation filter, and again accurate parameter estimation becomes
difficult because of the resulting low signal levels.

Thus, the value of 1 should be chosen as small as possible for fast
parameter convergence, for estimation of variable parameters and to prevent
loss of accuracy through excessive signal attenuation, but large enough to
ensure independence of the transformed system equations. It is clear that the
range of values of Tt satisfying these requirements shrinks as the number of
transformations required increases, and thus there is some definite practical
upper limit to the complexity of the system to be investigated and to the
complexity of the estimation formulation for which accurate parameter
estimation is possible.

Simplification of Output Error Formulation

The number of transformation filters it is necessary to mechanize in the
output error formulation can be reduced in the following way. It was shown in
the section on parameter convergence time that, after convergence, the rela-
tionship between the model and system variables is Tpy,. = T , . ;c. This
means that, after convergence, the relationships among the model variables are
Tnyy = Tn-i¥psi»> 1 = 1,2, . . ., n. If this relationship among model variables
is preserved for all time, then, for instance, equation (27) may be written

Y1 - Yy *+ OgpT¥y - a10T2y3 + a20T3yh -4 . . = Bgot(T) =0
Equation (28) becomes
Yo, =Yg * %o0TY, - ocloZszL+ + a203T3y5 -+« . = Bgot(Tou) =0

and so on. The last model must still be formed in the original way as given
by equation (29). Thus, the transformation filters in the feedback of all but
the last model may be eliminated. The only effect of this formulation is the
elimination of the independent transients the models previously were capable
of exhibiting. The only transient now existing is due to the last model;
convergence time is unaffected, however, since convergence times for all
models were equal.

EXPERIMENTAL RESULTS

First-Order System

Experimental results for the first-order system used to illustrate the
discussion of the previous section will now be presented. The system is
defined by equation (8), and the two independent parameters were taken to be
ag and by. The output error formulation utilizing a three component vector
error was used as indicated in sketch (e). Mechanization was by analog
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computer, based on equations (22) and (23). The model equations used were

y; = Tyyy - aooTlel + BooTTiu

]

¥, = Tiyz = 0507T 1y, + BooTTou (34)

Y3 = le3 - uOOTT1y3 + BOOTTgu

The value of 71 chosen was 0.1 second. This choice was made as small as
possible on the basis of the preceding discussions. The input chosen was the
sum of sine waves in all cases, three for the analog results to be presented
and eight for the digital results. This type of input is simple to generate,
it provides the capability for repeatable results, and it is easily made to
satisfy the two principal requirements of sufficient information content and
adequate system excitation. A discussion of input requirements may be found
in references 2, 4, and 8.

These models and those used in subsequent examples of the output error
formulation do not contain the terms corresponding to parameter derivatives
which have been included in the previous theoretical developments because it
was found that inclusion of these terms caused a loss of accuracy believed to
be due to numerical difficulties associated with the added complexity. Inclu-
sion of the parameter derivative terms in a digital mechanization of a subse-
quent example of the equation error formulation will be seen to provide more
accurate estimates.

Time-variable parameter estimation.- Figure 2(a) shows the response of
the parameter estimates to step changes of two different magnitudes in the sys-
tem parameters. Convergence of the parameter estimates to the true values is
rapid, of the order of 1 second. This value of convergence time may be
checked against the value estimated using figure 1. The highest transforma-
tion appearing in a model feedback loop, from equations (34), is first order,
and from figure 1, the convergence time is estimated to be approximately five
transformation filter time constants, or 0.5 second. It will be recalled that
this estimate is based on instantaneous reduction of the error vector to zero.
The characteristics of the error traces in figure 2(a) indicate that the data
were obtained with a rather low value of adjustment rate gain for the param-
eter estimates, and that the resulting adjustment rates were the limiting
factor in the time for convergence of the parameter estimates,

Figure 2(b) shows the estimation of system parameters which are varying
in a ramp fashion at rates of change vp = 5, 20, and 40 percent of the mean
value per second. For this type of variation, of course, only the first
parameter derivative has a nonzero value except at those unique instants of
time of transition when all derivatives exist as successively higher order
impulses. Since the model structure contains no variables to account for sys-
tem parameter variability, one would expect the parameter estimates to be less
accurate in the vicinity of the transition points. This is borne out in fig-
ure 2(b) for Vp = 40 percent of the nominal value per second; in the vicinity

of the first transition point, errors relative to the nominal value of
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approximately 9 percent in o5, and 18 percent in B8,, occur. At the lower
variability rates, the effect of the transition points is scarcely evident,
and the general error level is quite low.

When the system parameters vary in a sinusoidal fashion, figure 2(c), all
parameter derivatives exist and, for a parameter variation frequency of
w. = 1 rad/sec, the maximum values of all derivatives are equal. With a trans-

formation filter time constant equal to 0.1, however, equation (25) shows that
the effect of each succeeding parameter derivative on the output is reduced
approximately an order of magnitude. Figure 2(c) shows the result: accurate
parameter estimation at Wy = 0.25 and 0.5, and maximum errors of approxi-

mately 10 percent of the nominal value for oapo and 15 percent for Bpo at
wh = 1
p .

Second-Order System

We present here results for a system with twice the complexity of the
foregoing, a second-order system with one zero, defined by

¢ + ajt + ajc = bju + bgu (35)

This example will also be used to illustrate the effect of additive noise on

parameter estimation, a topic which has not been mentioned to this point. The

nomenclature to be used is illustrated in sketch (i), where the variable n,
the noise, is added to the system output c

n defined by equation (35) to form the quantity m.
u svstem LS m It is assumed that only u and m are.measurable,
+ and thus the transformed system equations are
given by
Sketch (i)
Ty ym - 2Tym + Ty om + ayt(Tym - Ty m) + aOTZ(Ti+1m)
- byt (T5u - Ti+1u) - boTz(Ti+lu) =0 (36)

where 1 =1, 2, 3, and 4.

The first parameter estimates to be presented were again obtained by
analog computer mechanization of the steepest descent solutions of the output
error formulation. Four models were used, corresponding to equation (36),

yi = 2T)y; - Ty, - ao1t(T)y; - T,¥;) - coot?(T,y;)
+ Bo1t(Tyu - Ty, u) + Boorz(Ti+lu) (37)

where i =1, 2, 3, and 4.
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These models were used to form a four-component error vector (sketch (e)),
except that the system variables were considered to be Trm rather than Trc.
It should be noted that if n is simply a constant (bias), its effects can be
eliminated by inclusion of another model or, perhaps more straightforwardly,
by passing both u and m through identical high-pass filters before parameter
estimation is attempted. Results will be presented first for n = 0.

Time-variable parameter estimation.- Experimental results for the system
parameters, again performing step, ramp, and harmonic variations, are pre-
sented in figure 3, where now the true and estimated parameters are super-
imposed in the lower part of the figure. Figure 3(a) shows the response of
the parameter estimates to step changes in the system parameters of three
different magnitudes. The highest transformation in the feedback loop of each
model, from equation (37), was second order. The transformation filter time
constant was again set at 0.1, thus leading to an estimated convergence time
from figure 1 of approximately 0.7 second. Figure 3(a) shows that, as the
starting transient disappears, parameter estimate convergence time approaches
this estimated value, and that convergence time is independent of parameter
step size.

Figure 3(b) shows that the parameter estimates were able to follow ramp
changes of the system parameters with an accuracy somewhat less than that for
the first-order system, but which was nevertheless quite good. The primary
error appears as an almost constant lag of the estimates behind the true
parameters. Again, the effects of the higher parameter derivatives at the
transition points are discernible only at the highest rate shown.

The results for the harmonic parameter variation presented in figure 3(c)
also show some reduced accuracy relative to the first-order system. In this
figure, it can be seen that the primary cause of inaccuracy was a slight phase
shift between the true and estimated parameters; maximum excursion amplitudes
were estimated fairly accurately. Even at wp = 2 rad/sec, where periodically

the error reached values exceeding 50 percent of nominal for Byg, it can be
seen that a fairly accurate overall picture of parameter variability is
obtained.

Error vector components.- As discussed earlier, parameter estimate
uniqueness can be guaranteed only if the number of components in the error
vector is equal to or greater than the number of parameters. It was also
mentioned that, with fewer error components than parameters, parameter esti-
mate uniqueness was still possible in the analog gradient solution case if the
adjustment gains on the parameter estimates are sufficiently small.

These remarks obviously refer to the time-invariant case. The question
then arises: To what extent is it possible to estimate time-variable param-
eters with fewer error components than parameters? Figure 4 is a partial
answer to this question for the second-order system. As shown in the center
of the figure, the number of error components was varied from four to one.
The parameter estimate adjustment gain was maintained at the same value used
to obtain the results of figure 3. It can be seen that, for this level of
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gain, a slight deterioration in accuracy occurred as the number of error
components was reduced to three and then to two. The scalar error case is
completely unacceptable, however, with Ry, approximately 180° out of phase
with b,, and extreme errors in each of the other parameter estimates also.
These results show that the estimation of parameters with a rather high degree
of variability does not necessarily require a complete error vector.

Interaction of parameter estimates.- In all the preceding results, each
of the system parameters was varying in the same manner - step, ramp, or
sinusoid. It is therefore not apparent from these results to what extent
variation of one parameter affects the estimation of another parameter.

If the system variability could be modeled exactly, and if the adjustment
gain could be made sufficiently large that the error vector could be con-
strained to zero, no interaction between parameter estimates would be expected.
The results presented so far show that sufficient gain to maintain the error
vector in the close proximity of zero can indeed be achieved. System vari-
ability is not modeled by equations (37), however, and so inaccuracies in the
estimate of a varying parameter must necessarily exist, with consequent
inaccuracies in the other estimates also.

Figure 5 shows the magnitude of this effect in the second-order system,
again for a sinusoidal variation with Wy = 1 rad/sec. The number of varying

system parameters is clearly evident from the lower part of the figure, rang-
ing from all four, which is a repeat of previous data, to a single varying
parameter, by. The results show that the error in each parameter estimate is
roughly independent of the number of system parameters which are varying; that
is, in this case at least, the inaccuracy in a parameter estimate does not
increase as the number of varying system parameters increases. This may not
be a general result, but it is an encouraging one.

Adjustment gain.- Accurate estimation of variable parameters is obviously
impossible if the maximum adjustment rate of the estimates is less than the
maximum rate of parameter change. This determines the lower gain limit. An
approach to the lower gain limit has already been indicated in the first-order
system results shown in figure 2(a), where the gain was sufficiently low that
the error components were allowed to achieve rather large values. Neverthe-
less, accurate estimation of the variable parameters was possible in
figures 2(b) and 2(c).

The upper gain limit is somewhat less well defined than the lower limit.
It was discussed previously how output error formulations that utilize the
differential form of the system equation can always be made unstable by choos-
ing sufficiently large parameter adjustment gains. It was also shown that use
of the integral form of the system equation eliminated this type of problem.
Even with this constraint on the adjustment gain removed, it will be seen that
there is some maximum value of gain for the best estimation of time-varying
parameters. This is indicated in figure 6 where results for the uﬁ,:].rad/sec

sinusoidal variation are shown for three values of gain: the nominal value
used to obtain all the previous second-order results, twice the nominal, and
ten times the nominal. (The second component E, inadvertently was not
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recorded for the nominal case, but it actually was an active component of the
error vector.) The results for the nominal and twice nominal gain values are
not significantly different. The ten times nominal results show a greatly
increased variance about the true parameter values, however, and thus this
gain value may be considered too great.

Two effects are present which together determine the upper gain limit.
The first is the noise level of the computer; increased gain causes the param-
eter estimates to respond to erroneous signals that are not directly related
to the estimation problem. The second effect is caused by the inexact model-
ing of the system variability. To illustrate this, consider again the first-
order system of equation (8). Let a, be the single variable parameter and
by equal unity. The system is thus described by

C + agc = u
Equation (A4) can be used to write an exact integral form as
¢ - Tjc + agtTic - 12T1(a,T1c) - tTiu = 0 (38)

For this very simple case, the output error formulation requires but a single
model. This is defined by

y; - Ty + 0gptTy, - tTju =0 (39)

Now if a matrix inversion technique is used, or if a gradient technique is
used with the adjustment gain sufficiently large, then the single required
error

E = y, - ¢ (40)

can be held to zero. The model variables will then become equal to the
system variables, and equation (39) can be written

c - Tic + ayotTic - 1Tyu = 0 (41)

The value of oy, that holds E equal to zero can thus be determined from
equation (41). It can be expressed in terms of the true parameter a, by
subtracting equation (38) from (41) and solving to give

Tl(éoTlc)

Qoo = 89 ~ T Tic (42)

Now the zero crossings of Tl(éoTlc) and T;c obviously do not occur at the
same instants of time, and thus the parameter estimate oy, will have an
infinite variation about the true (variable) value a,.

The result is a consequence of infinite adjustment gain. For physically

realizable gain values, the error is not held identically to zero, and the
parameter estimate variability is filtered by the single integration in the
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adjustment loop to give the resultant variability evidenced by all the
estimates that have been presented. As the gain level is increased as in
figure 6, the error components are constrained closer to zero, with the result-
ing increase in variance shown. There is thus no clear-cut upper gain limit,
but best results will obviously be obtained by making the gain only suffi-
ciently large to encompass the bandwidth of the variable parameters.

Equation error formulation.- We present in this section parameter
estimates for the second-order system obtained by digital matrix inversion
solution of the equation error formulation. The transformed system equations
expressed as components in the vector equation error are given by (if all
parameter derivatives higher than the first are assumed to be zero).

Ei = T;_ym - 2Tjm + Tj,.qm

+ aolr(Tim—Ti+1m) + aooTz(Ti+1m) - 801T(Tiu—Ti+lu) - BOOTZ(Ti+lu)

~2011712 (T, m-Tieom) - 209073 (Tieom) + 281172 (Ti4qu-Tj,,u) + 281073 (Tj,,u)
(43)

Two sets of results will be presented, one set for which the parameter
derivative terms were assumed zero, and for which i =1, 2, 3, 4, and another
for which the full equation (43) was used, with i=1, 2, . . ., 8.

These results are shown in figure 7 for a ramp variation of the system
parameters. Large variations of the estimates about the true value of the
parameters occur when the system parameters are assumed to be invariant.
Addition of the parameter derivative estimates greatly improves the accuracy
of the solution because of the more accurate modeling of the variable system
dynamics. Maximum errors occur near the transition points where all orders of
parameter derivatives exist.

The analog results presented previously (fig. 3(b), vy = 40) contained
the assumption of constant system parameters, yet did not exhibit the extreme
variability shown by the analogous digital results. This is because of the
smoothing action of the steepest descent type of solution at the gain levels
used. As discussed in the foregoing section, increasing the adjustment gain
tends to make the analog results increase in variability about the true value.

It will be noted that the roughly constant lag exhibited by the analog
estimates of figure 3(b) has been eliminated by including the parameter deriva-
tive estimates in the digital solution. The fact that the parameter estimates
in the digital solution are not exact during the ramp variation is due to
computation inaccuracies introduced by a relatively large integration step
size.

Noise.- The effects of additive noise on the accuracy of parameter
estimation is shown in figure 8, where the noise-to-output-signal ratio (rms),
n/c, is varied from 7 to 28 percent. Parameter estimate response with no
additive noise is also presented for comparison. The noise was wideband -
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essentially white over the frequency range of interest - filtered by a first-
order low-pass filter with a breakpoint at 10 rad/sec., The sample statistics
for a period of 100 seconds were as shown in the following table. The bias

for all parameter estimates over the same sample period was less than
3.5 percent of their nominal values.

The unbiased nature of the parameter

Standard deviation estimates is due to the fact that the
n/c in percent of models operate only on the input, which
? nominal value is uncorrelated with the noise (ref. 12).
percent SR DR

Goo %o1 Boo Bo1 Even though unbiased, the variance
| . exhibited by the parameter estimates at
the higher noise-to-signal ratios would

11 1g:§ g:g 12:; g:é make it extremely difficult, if not
)8 226 | 13.6 | 32.4 | 15.2 impossible, to determine the details of
- I parameter variability if both noise and

variability existed simultaneously.

Additive noise actually exists in the form of measurement inaccuracies in
every experimental situation. The noise level from this source would normally
be much lower than the maximum level shown in figure 8, but should it be of an
unacceptably high level for any reason, some improvement in parameter estimate
variance could be obtained by changing the makeup of the error vector. Refer-
ring to sketch (e), the error components would be changed to (with m
replacing c)

where i =2, 3, . . . . The amount of improvement is dependent on the
characteristics of the noise, increasing with increasing noise bandwidth with
constant rms.

CONCLUDING REMARKS

This report has considered the concept of applying integral transforma-
tions to the differential form of the system equation. This is a well-known
concept that has received considerable attention as applied to parameter
estimation because it transforms the system equation to a much more usable
state variable form.

Two new developments have resulted from this study. The first is the
extension of the concept to explicitly account for time-variable parameters.
The second is the recognition of the viewpoint that, in addition to the tradi-
tional concept of providing a generalized structure for an equation error
formulation of the parameter estimation problem, the transformed equations can
also represent a generalized model structure for the output error formulation.
This concept provides the output error formulation with stability properties
which were not achievable in previous formulations.
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The experimental results presented showed the ability of the new
formulations to estimate parameters that are highly variable with time. They
also show that extending the integral transformation concept to the output
error formulation enables the use of this concept to obtain parameter esti-
mates that are unbiased in the presence of noise introduced in the output.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 94035, Jan. 6, 1969
125-19-01-16-00-21
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APPENDIX A
DETAILS OF APPLYING THE INTEGRAL TRANSFORMATION

In this appendix, the essential details of carrying out the transforma-
tion equation (2) of the text will be illustrated. The transformation is
carried out term by term on the sums of differentials enclosed by brackets.
The first transformation of the zeroth derivative term is

E-t

t
17 = lf g, (E)q(e)e © d& (A1)
[0}

T

where -
g=coru
g=aorb

and where the notation I? indicates the jth transformation of the kth

derivative term. If equation (Al) is integrated by parts, the result is

t £ £,-t
19 = g (£)T,q - = %o 4 T4
1= go( ) S Sl T £ q(gy)e €1 (A2)

o} (o}

where T,.q is defined by

¢ bt g, f27%s £, 178
1
Tpq = = f e ' dEp . . . f e ' dg, f q(E)e - dg;  (A3)
T
0 o o
Substituting the identity
t=¢+ (t-¢g)
in the exponent of equation (A2) gives
o 1 €o T
I = go(t)qu -7 f Eé'g e T d& J q(gl)e T dEl

0 o}
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which, in the notation of equation (A3), can be written

19 = g ()Ta - TT1(g,T1a) (A4)

Upon integrating again, the result is

t 42 g "2t P f17%
o ng 1 d O T T
Iy= go(t) (Thq) - It (Tyq) + = T dg e dg, q(€1)e dg,
o o
(A5)
Continuing this process then gives, in general,
o ng 2 d2gO
I = go(t)(qu) - T g (Tq) + o7 2 (Tyq) - . . . (A6)
The second transformation of the zeroth derivative term indicated in
equation (2) is ‘ ot
o 1 o} T
I, = ?J I, e de (A7)
o
By proceeding as before, the result is found to be
(o] ng 2 d2gO
Io = g () (T2q) - 21 g~ (T3q) + 3t w7 T - - (A8)
and the general transformation of the zeroth derivative term is given by
= s s dig
o _ a1 (G#j-1)0 5 0 o
' ‘Z( Doargr T ogr Ui (49
i=o

The next transformation in equation (2) to be considered is that of the
first derivative term:

t E-t
I -+ f g0) Pe’ a (A10)

o}

Integrating by parts gives
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t t E-t E-t
1.1 1 T 1 T 1 ©ag) Ty
I =7 8 (t)alt) -7 g,(0aq(0e -5 g, (8)q(8)e = de-— I a(8)e £

1
o) [o]
(A11)

The first integral is seen to be the same as in equation (Al) with g4
replacing g,> and likewise for the second integral, with the derivative of

g replac1ng g, Then the first transformation of the first derivative term
is
11 dg, d’g, 1 0e-t/T
I1==g,(t)(q-Tyq) - gz~ (T\q-Tyq) + 7 T (T,q-T3q) . . .-=g(0)q(0)e
(A12)

The second transformation of the first derivative term is
t E-t
‘/' e d (A13)

which can also be expressed in terms of lower order transformations to obtain

2 _t
T

d d-g
1.1 gl(t)(qu'Tzq) (Tzq T3q)4-31d (T 39-Tyq) .. -—-gl(o)q(o) ( )

2° T

I

(A14)

and, in general,

1 i1 d'g -1 eV ot
- 2t B R o) o (7
(A15)

The same integration pattern holds for the transformation of all higher
derivative terms in equation (2), thus leading to the general term given by
equation (5).

The numerical coefficients (i+j-1)!/i!(j-1)! in equation (5) will be

recognized as the values along the jth diagonal of Pascal's triangle, and
the coefficients k!/1!(k-1)! will be recognized as the values along the kth
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row. This is a simple but effective
aid to writing the transformed system

| equations and is illustrated in
4 sketch (j).

N
¢
N
N

The transformation term f£(t) in
equation (5) generated by the initial
conditions will not be developed in

N
/\‘
\J/l‘
SN,
\'/ |
N
/ \‘_/ N
N

iOR 1

ki{s = NN, .
. . s ;251/1:5‘/'>%/<__4{:_~‘/ general. It is composed of initial
‘7 \\\,/ oSN N NN\ values of the state variables and the

s \(?j?h\f;ﬁ\if7q\ jjq\d;ﬁ\:f7'\\/6 parameters, and initial derivatives of

e = I'—6——15 —20 —I8 —6 ——1— poth, up to and including the (k-1)th
derivative, and decays to zero due to
the exponential term as shown in

Sketch (j) equation (Al5).
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NONDIMENSIONAL TIME, t/T, FOR

PARAMETER CONVERGENCE
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Figure 1.- Time for parameter convergence; output error formulation.
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Figure 2.- Estimation of time variable parameters; first-order system.
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Figure 7.- Estimation of time variable parameters by digital mechanization of
the equation error formulation; second-order system.
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