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NEWTONIAN AFRODYNAMICS FOR CIRCULAR CONES MODIFIED
TO PRODUCE LIFT AT ZERO ANGLE OF ATTACK
By Barbara J. Short

Ames Research Center
SUMMARY

A parametric study was conducted to determine the theoretical aerody-
namic characteristics of right circular cones modified to produce 1lift at
zero angle of attack. In the modification, portions of the cone lying above
and behind an inclined plane surface were removed. Newtonian impact theory
was used to express force and moment coefficients as functions of the manner
in which the cone is terminated by this cutting plane at the base. 1In addi-
tion, relationships were formed that allow limits of acceptable design and
performance characteristics to be imposed, such as lower limits of useful
volume and lift-drag ratios, assurance of maintaining supersonic flow over
the trailing edges, and the permissible range of center-of-gravity locations
to assure trim at zero angle of incidence. The configurations studled sug-
gest that it is practical to trim cones at a useful level of lift-drag ratio
without inclining the axis of the basic cone relative to the airstream.

INTRODUCTION

Vehicles returning to earth from space flights to nearby planets will
enter the atmosphere at speeds considerably greater than returning lunar
vehicles (up to twice as great). With increased entry speeds, configurations
that minimize the heat input change from blunt bodies to conical shapes, and
minimizing heat input can be a very important consideration at such speeds.
The radiative heat input predominant for blunt bodies at hyperbolic speeds is
reduced or even made negligible by use of bodies with oblique bow-shock waves
(cones). The convective heat input is increased, however, so optimum cones
have been sought that minimize the sum of convective and radiative heat
inputs for any specified set of entry conditions (ref. 1).

One attractive method of generating 1ift with cones is by the use of an
oblique base plane (ref. 2). This modification of a cone trimmed at zero
angle of incidence has the added benefit of avoiding crossflow effects that
are detrimental to retaining laminar flow, a regquirement for minimum total
heat input. The aserodynamic characteristics for a family of such configura-
tions are shown in reference 3. Configurations with useful volume distribu-
tion, however, appear to be limited to either low 1lift-drag ratios or cone
angles smaller than the optimum. In the present investigation, therefore, a
parametric study was undertaken to examine other arrangements for terminating
cones to obtain useful lift-drag ratios while maintaining acceptable design
and performance characteristics. To simplify the analysis and to illustrate



the variety of characteristics attainable, only plane surfaces were used to
terminate right circular cones. Undoubtedly, more complicated terminating
surfaces can be found that give more desirable characteristics.

NOTATTION

A base area of unmodified cone

a normal distance from cone axis to intersection of terminating surface
with cone base divided by base radius (fig. 1)

b tan 6 tan

drag
C drag coefficient, —)/=
D € > To A

1lift

Cy, 1ift coefficient,

g

rolling moment

Cy rolling-moment coefficient, %
itchi t
C_ pitching-moment coefficient, fo————iig MOMED
m qAd
C normal-force coefficient, pormal force
N qu
. - yawing moment
Cn yawing-moment coefficient, v
Cp pressure coefficient
Cxy axial-force coefficient, axlal force
gﬁA
Cy lateral-force coefficient, lateral force
e
d base dilameter of unmodified cone
J parameter defined by equations (6)
1 axial length of unmodified cone

% lift-drag ratio

P rolling angular velocity

o} pitching angular velocity



sste

vol
vola

cg

cv

free-stream dynamic pressure

yawing angular velocity

total wetted surface area of forebody
supersonic trailing edge

free-stream velocity
ratio of volume to volume of unmodified cone

axial distance from cone apex

axial distance from cone apex to intersection of the terminating
surface and the upper cone surface (sketch (c))

lateral distance from cone axis
vertical distance from cone axis

vertical distance from cone axis to intersection of the terminating
surface and the cone base (sketch (c))

angle of attack

angle of sideslip

angle of terminating surface measured from the vertical (fig. 1)
half-angle of cone

. . . .- Z
cylindrical coordinate of cone, sin <§T€gﬂ—§> , (sketen (a))

cylindrical coordinate at intersection of terminating surface and cone
surface (sketch (c))
Subscripts
coefficient calculated for Xeg = Zeg = 0

center of gravity

center of volume

ol}

b

partial derivative with respect to ~ as P =+ 0 and

a,=B=q=r=O



where

partial derivative with respect to Y @S g~ 0 and
@:B:P:I‘:O
d
partial derivative with respect to %f as r > 0 and
Q:B:p:q:O
partial derivative with respect to @ as a*O0Oand B=p=g=r=20
partial derivative with respect to B as B> Oanda=p=gq=1r=20
ANATYSTS

The coordinate system shown in sketch (a) was chosen to facilitate the
integration of local pressure over the cone surface to obtain the total

z

Cp cos 8 sinw
Cp cos 8

Cpcos 8 cosw

Sketch (a)

=1

CX—-Apr
1

Cy = - A\jp %

Cn

dS = x tan 6 sec 6 dw dx.

K e X
Yaw
z z
<1 y
Pitch Roll
Sketeh (b)

- %\/P Qp cos @ sin w 4dSs

forces and moments. The origin is
at the cone apex, the x axis is
coincident with the axis of revolu-
tion, and the coordinates y and z
are measured perpendicular to the x
axis. With respect to this system,
the components of force have the
same positive directions as the x,
¥, and z axes. Thus, the coeffi-
cients of force are seen to be

sin 6 ds (1a)
cos 6 cos W dS (1b)
(1c)

The sign convention chosen for
the components of moment is illus-
trated in sketch (b) where the posi-
tive directions of the components
are indicated by the arrows. Thus,
the coefficients of moment about an
arbitrary center-of-gravity location
are



Cqy = izkjp zcgCp cos 6 cos W aS (2a)
1 . .

Cp = KE\/F [(x sec? g - xcg)qp cos 6 sin W ~ zegCp sin plas (2p)

Cp = i%\/ﬁ (x sec® 9 - Xcg)Qp cos 8 cos W ds (2c)

The components of angular velocity, p, q, and r, have the same positive direc-
tions as the components of moment, respectively. In addition, oo 1is positive
when the cone is at positive pitch and B is positive when the cone is at
negative yaw.

Equations (2) have been written for the center of application of the
resultant force located on the x axis. This center of force corresponds to
the center of pressure for a symmetric body. For the present case of an
unsymmetrical, cutoff cone in which the center of pressure is not on the x
axis, the center of application of the resultant force is defined as the
point where the resultant force intersects the x axis. The moment arms are
defined relative to this point of application in the use of equations (2).

The basic assumption of Newtonian
z 2 impact theory is that the flow, upon
striking the body, loses its component
xu— s of momentum normal to the surface, and
T only those portions of the body under
L., w y direct impact from the stream will
experience a pressure force. If the
‘ cone is terminated by a plane at an
angle, 8, from the vertical
1 — (sketch (e¢)), the integration proceeds
only over that portion of the cone
Sketen (c) receiving compression flow. The pres-
sure coefficient is assumed to be zero
on the sheltered surfaces. Thus, the coefficients of force can be evaluated
by the following integrals:

8 tan */2 L
CX:m—2<ff %xdwdx-Lu[nl cpxdwdx> (32)
Z T["wl
Cy = - h tan e ( Jf Jf Cpx cos W dw dx - b/\ b[; qpx cos W dw dX)
1
(3p)
/2 1 pw/2
oy = - 8 tan 0 (Jf Jf Cpx sin w dw ax _‘jp Jf Cpx sin @ dw dx)
3'[/2 Xu w]_
(3c)

The coefficients of moment can be evaluated by the following integrals:



1 pu 1 pT-wy
CZ = H;Eé%_g ch<2‘]F JF Cpx cos W dw dx -b/\ Jf pr cos W dw dX>
7d o fo) X w

u- %1
(ka)
/2
8 tan 6 {f fﬂ 2
C. = x[(x - X., cos® 9)sin W - zZ., sin 6 cos 6]dw dx
m = 733 cos? 6 x/2 €8 c&
1 /2
- Jf Jf Cpxl(x - xcg cos? 9)sin W - zgg sin 6 cos 6]dw dx} (kb)
%, YW

U 1

_htan@ o v * ( 2) W dw dx
Ch = ;EE—ZSE§—5 o J Cpx{x - Xeg cOS g)cos

1 T-Wy
- x(x - X cos?® 9)cos W dw dx (hc)
c
CP g

u 1

Iet a = 2(z/d) and b = tan 6 tan B, then

a(1l + ab)
2(1 + b)tan 6

1

sip-1 (1 + ab) - 2(x/d)tan 6
ob(x/d)tan 6

Wiy

According to impact theory, the pressure coefficient is (ref. L)

C. =2 {%in 6 cos o cos B - cos O sin W sin o cOS B + cos 6 cos W gin B

Y
P
--{,—<> cosecosw———[— <> :lsececosw
X X 2 yA 2
- = = a1 W - (= s - | = 3
v [d sin <;> cos® O sin W <é> sin 6 cos GJ sec é}
cg cg

Let 2(1 +8b)® -1 a4
'Jf(l _ b2)5/2 1+ ab

Q
Q

(5)

for b<1l (6a)

o
1l

2 2 _ - 2
- 2(1 + ab)/2 in (a_+ b) +'Jh£ DA - a?) for b>1 (6b)
n(bz _ 1)5 1 +ab



Cx = Cp = sin® o9 [2 - % cos"ta + J(1 - v3) -

2b(1l + ab W1 - aa]

(1 - b3)

for b # 1 (Ta)

for b=1 (o)

2(2 + aWl - az]
3x

= sin® @ [2 - % cos Y a +

. 2b(a + b1 - a2
CXOL = 2 sin 6 cos 6 [Jb(l - b3) - T ] for b # 1 (Te)
= 2 sin 8 cos 8 [4(1 - ?i'l -8 ] for b =1 (7a)

The subscript O indicates the coefficient for Xeg = Zeg = 0. Thus, CXq
o

is the derivative of the axial force due to pitching about the cone apex and
is given by

Cx = Jb(1 + ab) - i———t“l_azz [3(a +1)(1 + ab) + 2o(1 - a2)(1 - b2)]
do 3n(1 - 13)
for b #1  (7f)
_ h(1 - a)(iSjr alWl - a2 for b= 1 (7e)
Cy =0 (8a)
Cyy = ~cos? 9[2 - % cos™t g - —u(i;b)z cos™a + 27 (1;22)2 + 2(2+3i2)‘/1'—azj

for b # 1 (8b)
_ 4(14a)? cos~ g 4 2(4+5a)d1-a2]
18

T

1

-cos® 6[2 - % cos™t g

for b =1 (8c)



(8a)

5l
Il
]
W
w

(8e)

<&
=

1

Q
[

o

+
o
G I
o
oo

=
jor)

— {% - % cos~ a + J(1-b2) (1+ab) - i(l%;Z? [(1—b2) + (a+b)2]}

for b #1  (8f)
, 1-a? [3a + 2(1-a2)}}- for b

- 1 8
- er (8g)

I
=
o
1
|
Q
o]
[©)]
|
o

2b(a + DW1 - 2 } for b #1  (9a)

Cy = Cr, = sin 6 cos G[Jb(l - b2) -

(1 - b2)
= gin 6 cos 6[4(1 - ?i 1 - azJ for b=1 (9v)
- b1 + ab)® 1 - 12)(2b2 - 1)
CNOL = cos® @ {? - % cos™t a + —i—;§§i—l— cos™ta +2J ( 2
—
=V [(1 C02)(L 4 ab) + (1 -a2) + (a4 b)z}}
(1 - ©2)
for D % 1 (9c)
2(8 + 13a)W1 - a2
= cos® 9[2 -2 cos™t a + E: (1 +a)2 cos"ta - (8 + gi) 2 ]
T T
for b =1 (94)
X z
=cy. - (&) oyp +2 <}> c (9e)
CNg = "Ng, <;:Lg Ny, &)y




A .2 -1 2
CNqO T tan 9‘{ = cos " a + J(1 + ab)(1 + 2b3)

- ﬁ [3(1 + ab)® - ala +b)(1 - bz)]} for b #1  (9f)
R tin 6 {2 ) % cos™ a +i5—;a2 [15 +3(1 - a) - 142 - az)J}
for b =1 (9g)
Cp =0 (10a)
Cig = - <;Z§> Cyg (10b)
cg
Czp = - <§>Cgczﬁ (10c)
Ci. =~ <§> Cy.. (104)
cg

X Z
Cpp = Cmg + <E> Cy, - <E> Cp (11a)
cg cg

Recall that the subscript O indicates the coefficient for Xeg = Zeg = 0.
Thus, Cmo 1s the coefficient of pitching moment about the cone apex:

Cp = = b(1 +sb)  BJI- a2 [213(1 - a2)(1 - p2) + 3(a + b)(1 + ab)]

° 2 3n(1 - b2)°2

for b # 1 (11v)

for b =1 (11e)

2@ -a)h +al1 - a2
15xn

Z

Cng, = Coe + @C;Na - (a)cg% (122)



Coy, =

10

- §_€§E—5 {% - % cos™  a + J(1 + ab) (1 + 2b3)

|2l - a® [3(1 +ab)2 - aa +b)(L - bZ)J}- for b #1

x(1 - b2)%

15x%

for b=1

X Z
Cm + <—> <CN + CN > - <—> <CX + Cx >
do ! cg q Q.o d cg a qO

> 2
o {é - % cos™ta +J (1 + ¥2)(1 + ab)
(1 - 3

- N [3(3 +22)(1 + ab)® + 3(1 - ) (1 + ab)?

3w(1 - p2)°

3a(a +1)(1 - p3)% + (1 - a2) (1 - ) (1 + ab)]}»

for b # 1

~ 8 sinZ® 6 1057

- 21 - a2
1 {? - % cos ™t a +,__£L__J§_

[105 + 15(1 - a)

130(1 - a2®) + 26(1 - a)(1 - az)]:} for b =1

Cn=o

Cn. = C 5) c
ng = “ng <é cg 1B

(12p)

L {% - % cos™l g 4 DL 25 [15 +3(1 - a) - 14(2 - a2)]}

= 3 tan @

(120)

(124)

(12e)

(12r)

(13a)

(13p)



C 1
gy 3 tan 6

N [(1 S2) 4 (a b)'"ﬂ} for b4A1  (13)

i

{% - % cos"ta + J(1 - 3)(1 + ab)

(1 - b=2)
= §—€iﬁ—§ {% - % cos™t a + —*lgi—éf [3& +2(1 - az)]}-
for b =1 (134)
- _(z ’
Cay = <d>cgcns (13¢)
Cp, = cnrO + <§> (CYr + CYl‘() (137)
cg

S {% -2 cos"ta 4+ J(1 + ab)?®
2 g i

8 sin

i, _L__M [3(1 +ab)® + (5 + a%)(1 - p2)(1 + ab)

3n(1l - b2)
-30- a®)(1 - bz)]} for b #1  (13e)
-2@-a) - a2)]} for b =1 (13n)

DISCUSSION OF RESULTS

To indicate the nature of the results obtained from these equations,
numerical calculations are presented for a 30° half-angle cone. Figure 1
shows the variation of lift-drag ratio with the angle of the terminating sur-
face, B, for various values of a. The configurations of interest have been
limited to those for which © < 90O (no windward-facing sections of the ter-
minating plane) and to those that retain the apex of the cone, b = -l/a, when
a is negative. These limitations are shown on a plot of a versus & in

11



figure 2. As can be seen, those configurations for which the terminating
surface intersects the base of the cone below the axis at large values of B

are immediately eliminated.

If it is desired to limit the acceptable configurations to those having
lift-drag ratios greater than or equal to some lower limit, a curve of con-
stant L/D superposed on figure 2 will quickly indicate which configurations
are acceptable. Figure 3 shows that a requirement of L/D = 1/2 eliminates
all those configurations with & < 26° and most of the configurations for
which the terminating surface intersects the base of the cone above the axis.

If it is desired to keep the component of velocity normal to the cutoff
edge supersonic to prevent induced crossflow effects, then the sweep angle of
the terminating edge must be locally always greater than the Mach angle (a
more stringent requirement than preserving the cone apex). If the Mach number
is near 5 on the surface of the cone (ref. 5), then the Mach angle is about
120 and

tan” M(a tan 0) + tan”*(1/tan 8) > 12°

which reduces to
a tan 6 > tan(d - 78°)

This limitation superposed on the previous figure is shown in figure 4. The
line labeled supersonic trailing edge is the line desgcribed by

tan(d - 78°
a = ani(:an 67 ) (ak)

In addition, if it is desired to specify a minimum acceptable volume,
this boundary can be determined from the following:

Cvol ;{2_2 cos™  a + J(1 - b2)(L + ap)- 2L = 8% [(1 - 12) + (a +b)2]}

VOlc 2 7t ﬂ(l - b2)

!

for b # 1 (15a)

1 {2 - % cos™t g + afi - &% [3a +2(1 - az)]} for b =1  (15b)

2 31

n

A limitation of configurations with volumes equal to or greater than half
that of the unmodified cone is shown in figure 5, again superposed on the
previous figure.

These limitations cross-plotted on figure 1 are shown in figure 6. It
can be seen that the maximum L/D is about 0.9 for a 30° half-angle cone
with a volume ratio of 1/2 and supersonic trailing edges.

12



For a vehicle to trim at zero angle of incidence,

cm=cmo+cL@ -CD@
eg cg

the center of gravity must be located on the line described by

®),- %30, o

This line is drawn in figure T7(a) for the particular configuration of
5 = 60° and a = O. For the vehicle to be longitudinally stable,

on, = o, + 01, (), o0 ), <0

the center of gravity must be located forward of the line described by

), w @), a0

as indicated by the solid line in figure T(b). For directional stability,

X
CnB = CnBO + C&B <a‘>cg >0

the center of gravity must be forward of —CnBO/CYB as indicated by the

broken line in figure T(b). The static stability limit on the center-of-
gravity location is dictated by the longitudinal stability for this case.

The intersection of the line for zero angle of trim (fig. T7(a)) and the limit
line for static stability (fig. 7(b)) is hereinafter called the aft cg posi-
tion. In addition, of course, the center of gravity must be located within

the body:
x ‘Cmo/CD
E > (18)
cg (L/D) + tan e

The center-of-gravity location at the cone surface for zero angle of trim is
hereinafter called the fore c¢g position. The locus of permissible center-
of-gravity locations is shown by the solid line in figure 7(c). Also shown
in figure 7 by the small x is the location of the center of volume:

13



X 3 2 -1 2
= = ~ <2 - =cos “a + J(1 + ab)
<d>cv 16(vol/vol,)tan 6 { n (

o opf1 - azé [3(1 +ab)® + (5 + a2)(1 - b2)(1 + ab)
3n(1 - b%)

-3(1-2a3)( - bZ)J} for b # 1 (192)

Ao

CcOs a

_ 3 {2 ;
16(vol/vol,)tan ©

2
&L - a” [1531 + 10(1

15x

a®) - 2(1 - a)(1 - a2)]}

for b =1 (19b)

<§>cv - 16(v013/volc) {Jb(l + ab)®

 on(a + b)I - a2 (5(1 +ab)2 - 2(a + b)zJ}.

3n(1 - v2)°

for b # 1 (19¢)

. 3 [ -8)@ - a®)®® )
B 16(vol/vol,) [ 157w ] for =1 (192)

Plots of the fore and aft c¢g positions and the center-of-volume loca-
tions are shown in figure 8 for the acceptable configurations that meet the
constraints of figure 5. To show the dependence on the variable a as well
as 0, lines designating the configurations with a = O are included in the
figure. TFor the particular configuration shown in figure 7, the range of
permissible values oOf (x/d)Cg lies between 0.44 and 0.64 and of (z/d)cg,
between -0.25 and -0.15 with (x/d)ey = 0.61 and (z/d)ey = -0.09.

A measure of the relative difficulty in achieving a specific center-of-
gravity location is the distance between the desired location and the center
of volume (ballasting distance). The minimum ballasting distance for zero
angle of trim would be the perpendicular distance from the center of volume
to the line described by equation (16). For most of the configurations, how-
ever, this results in static instability, that is, the center of gravity
would be aft of the aft cg position. The distance from the center of

14



volume to the aft cg 1is generally the minimum ballasting distance for the
acceptable configurations. This distance is shown in figure 9 along with the
ballasting distance to the fore cg position. As the center of gravity is
moved forward from the aft cg location, the ballasting distance is
increased, making the weight and balance problem progressively more difficult.
For small static margins, the ballasting distance is about equal to the verti-
cal displacement required (0.05a to 0.104); but, if more stability is needed,
the problem becomes more difficult as the center of gravity approaches the
cone surface.

The static and dynamic stability derivatives are shown in figures 10 and
11, respectively. Values for the fore and aft cg positions are plotted to
indicate the limits of the values for zero angle of trim. TFor illustrative
purposes, the values for the particular configuration with 0 = 60° and a = O
(fig. T) are listed below.

cg Cmg, CnB Clg Cmq Cny. Cip Cnp Clp
Aft 0 0.085 -0.173 -0.069 -0.093 0.013 0.013 -0.026
Fore -.157 317 -.292 -.100 -.173 .080 .080 -.07h

The static stability derivatives are linear with respect to center-of-
gravity position, and the dynamic stability derivatives are quadratic func-
tions of center-of-gravity position. To show the variations of the stability
derivatives with center-of-gravity position, the functions listed are plotted
in figure 12. This type of plot can be composed readily for any of the
acceptable configurations of figure 5 with the aid of figures 8, 10, and 11,
except for the dynamic stability, which requires an intermediate point. This
can be obtained from figure 13, which shows the dynamic stability for

(x/d)cg = 0.55-

It may be noted that in the equations for the aerodynamic coefficients
((7) through (13)) the cone half-angle, 6, is isolated from the brackets.
Thus, the results presented here for the 300 half-angle cone can be used to
determine the results for other values of 6, keeping in mind that the
results would apply at a different value of ® (b = tan 6 tan ®). For exam-
ple, equation (7b) shows that for b = 1, Cp = 0.356 when a = O and 6 = 30°
(5 = 60°). Now, if 6 = 409, Cp = 0.356 (sin 40/sin 30)2 = 0.588. Tnhis
value of Cp applies at b = 1, which specifies that © = 50° when 6 = 40°.
A plot of L/D versus ® constructed by this method for 6 = 40° is shown in
figure 14. The limitation of L/D = 1/2 can be easily applied, of course.
The lines for vol/volc = 1/2 and supersonic trailing edge were constructed
in the manner described above with the use of figure 6. A comparison of
figures 6 and 1% shows that increasing the cone half-angle more severely
limits the configurations that are acceptable and also decreases the maximum
L/D.

15



CONCLUDING REMARKS

A parametric study was conducted to determine the aerodynamic character-
istics of circular cones modified to produce 1lift by a cutoff plane to remove
portions of the upper rearward surface. The following conclusions can be
drawn from the investigation.

The Newtonian impact theory makes it possible to examine a wide range of
configurations differing in cone angle, base plane angle, and volume ratio,
of which previously studied cutoff cones are special cases. The aerodynamic
characteristics are readily calculated as functions of the manner in which a
cone is terminated at the base. The equations and curves presented provide
(1) a useful means to indicate configurations that have acceptable design and
stability characteristics and (2) a capability to study a large number of
different vehicle shapes before resorting to wind-tunnel and free-flight

tests.

The configurations studied suggest that configurations can have accept-
able aerodynamic stability as well as useful lift-~drag ratio and useful
volume without inclining the axis of the basic cone with respect to the
airstream.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 94035, Jan. 20, 1969
124-07-02-14-00-21
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Figure 3.- Configurations with L/D 2 1/2, 6 = 30°.
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Figure 4.- Configurations with L/D > 1/2 and supersonic trailing edges,
6 = 30°.
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Figure 5.- Configurations with L/D > 1/2, supersonic trailing edges, and
vol/vol, = 1/2; 6 = 30°.
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Figure 6.- Lift-drag ratios for acceptable configurations of figure 5, 6 = 30°.
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(c) Statically stable at zero angle of trim

Figure 7.- Locus of permissible center-of-gravity locations for the
configuration with & = 60° and a = 0, 8 = 30°.
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Figure 8.- Center-of-gravity and center-of-volume locations of acceptable

configurations of figure 5, 6 = 30°.
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configurations of figure 5, 6 = 30°.
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Figure 10.- Static stability of acceptable configurations of figure 5, zero
angle of trim; 6 = 30°.
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Figure 11.- Dynamic stability of acceptable configurations of figure 5, zero
angle of trim; 6 = 30°.
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Figure 12.- Variations of stability derivatives with center-of-gravity
position for the configuration with & = 60° and & = 0, 6 = 30°.
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Figure 13.~ Dynamic stability for acceptable configurations of figure 5,
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Figure 1k.- Lift-drag ratios for acceptable configurations, 6 = L40°.
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