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PREMM; PACC. BLANK NOT

ABSTRACT

We discuss the numerical instability arising from the coupling be-

tween hydrostatic equilibrium and thermal processes in a star. Two

alternative physical pictures are possible: the heat wave does or does

not propagate through the adjacent shells in the star in a given time step

(slow or rapid evolution). Correspondingly, we have two alternative ap-

proaches to the mathematical formulation. If the physical picture is

wrong, we encounter a numerical instability.

In practice, different physical pictures are necessary for a model

because of a great difference inthe time scale of heat conduction between

the core and the envelope of the star when we compute air advanced phase

of evolution. After analyzing the nature of the instability, we show that a

single mathematical scheme is possible which always meets the neces-

sary physical picture required by rapid or slow evolution in the stellar

core or envelope.
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1. INTRODUCTION AND SUMMARY

An elegant, widely-used method for the automatic computation of stellar

evolution was developed by Henyey, Forbes, and Gould (1964), herein referred

to as the Henyey method. However, the numerical stability of stellar evolution

computations has not yet been analyzed sufficiently. The problem of the com-

putation of stellar evolution is characterized as a mixed initial--boundary value

problem with four simultaneous differential equations, two describing hydro-

static equilibrium and the other two the thermal process. In the present paper

we shall discuss the most serious numerical instability which arises from

coupling between hydrostatic equilibrium and the thermal process.

a) Explicit and Implicit Methods

We shall consider a method of obtaining the stellar structure at time t ,

assuming that the preceding structure at time t - A t is known. The star is

divided into a suitable number of shells. There are two alternative ways of

solving the problem. One is called the explicit method, in which any quantity

at t is expressed explicitly in terms of the quantities at t -• t. The other is

called the implicit method, in which the quantities at t are expressed implicitly

with respect to the quantities at t A t and some elimination method is required

to obtain the quantities at t. The Henyey method is an implicit method in this

sense.

There are mixed expressions; for example, when the thermal process is

expressed explicitly but the hydrostatic equilibrium is expressed implicitly.

Examples of such expressions were given by Schwarzschild and Selbrrg (1962),
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by Rakavy, Shaviv, and Zinamon (1967), and by Murai, Sugimoto, floshi, and

Hayashi (1968). In these examples, the entropy density, s (M r , t), is calculated

by using quantities determined only at t - At * ,  where M r denotes the mass

inside the radius E. The notation in the present paper is the same as that given

in the textbook by Schwarzschild (1958) unless otherwise indicated. By using

S (M r , t) 9 we can solve the two differential equations of hydrostatic equilibrium

for time t separately ,from the equations for the thermal process. The heat

flux, Lr (t) , is calculated from the temperature distribution after the structure

at t has been obtained. In the following discussion, it is an essential point as

to whether the thermal process is expressed explicitly or implicitly; the expres-

sion for the hydrostatic equilibrium does not matter. Thus we shall call a method

"explicit" whenever the thermal process is expressed explicitly.

b) Stability Condition for a Purely Thermal Process

The stability of a heat-flow problem in a solid body has been well studied

(see, e.g., Richtmyer and Morton 1967). The stability condition of the explicit

method can be written as

2 6 t	 rh (v r) [explicit a ,	 (1)

* Rokavy et al. (1967) hitroduced a damping term in quasi-time, t q . Thus the entropy density
was expressed as s (M r, t; tq ), with s (Mr , t) ^ lim s (Mr, t; Q. They calculated s (M r, t; tq)

9 ~C
by using s (Mr, t; t q — 6t q ) and s (M r , t — At). This was an iteration of the explicit method
for the thermal process, since the mechanical equilibrium was solved separately by assuming
the entropy denisty,

2
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where the time scale of heat conduction through a shell of radial width A r is

given by

1	 as	 KP (A r)2	 2T 1 (d r) a 
S r n cl (r)
	

p C	
()

In the above equation, s rad denotes the entropy density of radiation (4 Fa T3/p) ,

On the other hand, the explicit method is stable for any time step in a purely

thermal problem.

c) Stability Condition for a Coupled hydrostatic-Therm al

System (seal Star)

For the explicit method the stability condition is the same as in relation

(1), since the hydrostatic equilibrium is solved separately from the ;thermal

process, as discussed in § I, a above. For the implicit method, on the other

hand, the condition that the system of four differential equations be stable is

expressed roughly by

Q >'rh  (r) [implicit] ,	 (3)

where rh (r) denotes another time scale of heat conduction expressed by equa-

tion (2) with 6 r replaced by r . We call a system of differential equations un-

stable when it has a branch of a solution growing s strongly that it is practically

impossible to compute all of the independent solutions numerically (Wendroff
E

1966). This point will be discussed in more detail in § Il.

3
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d) Problem Encountered in Practice

We shall now consider the computation of stellar evolution through a phase

with a reasonable number of time steps. As may be seen from the stability

conditions (1) and (3), the explicit method is suitable for rapid evolution (Q t small

i compared with T  (D r)) , e.g., for evolutionary phases with extensive neutrino

loss or thermal instability, but, on the other hand, the implicit method is suit-

able for relatively slow evolution, e.g., in phases of nuclear burning with neg-

ligible neutrino loss.

The time scale of heat conduction varies greatly through the star, especially

in a red giant star with a helium zone and hydrogen envelope.* For a reasonable

division into shells, rh (6 r) has its smallest value at the outermost shell in radi-

ative equilibrium, even where condition (1) must be satisfied in the explicit

method. {In a convective region, 'rh can be considered to vanish.) For a reason-

able value of t^ t, in some cases, Nve encounter a contradictory requirement that

the implicit method is necessary in the outer region but the explicit method is

required in the central region. Typical examples are the phases of and near

carbon burning.

e) Stability of Difference Equations and Conclusion

Fortunately, such a contradictory requirement can be satisfied, as will be

shown in § III. We shall look more carefully into the behavior of the system of
R

For example'rh Or) for a unit scale height of pressure, h, is 2 x 10 13 sec at the central region
(r = h), 8 x 1011 sec at the helium-burning shell, and 3 x 10 sec at the hydrogen-burning shell
of a 15 M  star just before the carbon-burning phase (stage 5, Table 7-6 of Hayashi et al. (1962)).

I
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difference equations of the iienyey method, In the limit of an infinitesimal time

step but keeping spatial stop finite, the difference ngtiations no longer approxi-

mate the original system of Lour differential equations.* It is shown that, with

a properly formulated lienyey method, we can obtain physically significant

branches of solutions by avoiding the unstable branches of solution which the

original system of four differential equations has in the above limit. Solution

by such a method can be expressed by an expansion in which the leading term

is a solution of the explicit method and the first-order term represents the

coupling between a change in the host flux and a change in the hydrostatic equi-

librium. Since this method is essentially a form of the Henyey method, it is

stable for slow evolution. Thus, we can solve stably both the core and envelope,

as well as both rapid and slow evolution, in a single scheme of computation.

Application of this method to a physical problem will be given in a separate

paper (Sugimoto 1969).

11. NATURE OF THE DIFFERENTIAL EQUATIONS

FOR STELLAR EVOLUTION

a) Differential Equations for Stellar Structure

The structure of a star in quasi-static equilibx-ium is determined by the

following four differential equations:

Z In p	 G M=	
(Aa)

B In Mr	
.,

 47T r4

In order to approximate the original differential equations, both the time step and the spatial
step must become infinitesimal simultaneously, keeping 6t/4r finite.

i
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N

In T	 1 ^ In p	
(4b)

In Mr n+l In Mr

i) In r	 Mr	 (40)
6 In Mr	 47rr 3 

1)

6 Lr
I !:_ T	 + ell - 

C	 Mr	
(4d)

'4 In Mr	(	 e) t	 V)

where

1	

-
iin	 I	 1	 f	 (5a)

n +	 tl	 (n 
+ 1)nd	

(n 
1

+ I)rtl(l 
I

1	 3	 P jK Lr

(n 
+ 1)rad 

16 7t acG V Mr

and 1/(n + 1)nd is the adiabatic temperature gradient. For the sake of definite-

ness in the following discussion, we take the dependent variables as In p (pressure) ,

In T (temperature), In r, and L r ; these will be denoted as y,, with i = 1, 2, 3,

and 4, respectively. Hereafter we shall denote a matrix by a capital letter, a

vector by a lower case letter, and their elements with subscripts. The inde-

pendent variable, In M r , will be denoted by x. The nuclear energy generation

rate, e n , the energy loss rate by neutrinos, a, , and the opacity, K , are usually

expressed in terms of p and, T . The density, p, the entropy, and the adiabatic

temperature gradient are in principle expressible as functions of p and T.

Equations (4a)-(4d) are rewritten as

Z Y

	

(Y1 X )	 (6)

i
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Of course, transformations of the dependent variables can be Incorporated, but

an essential point In the following discussion Is that the equations for hydrostatic

equilibrium involviiig y, and (P3 do not contain Y4 . There are two boundary

conditions at the center: r = Lr n 0 at Mr 0. There are tw,.., othe.v, boundary

conditions at the surface: P n T w 0 at Mr M (total mass of the star), when the

surface region Is In radiative equilibrium.

b) Relaxation Method

The relaxation method was first introduced by Henyey et al. (1959), for

solving problems in stellar evolution. The time derivative in equation (4) ^s/Bt,

is replaced by the forward difference, i, e., by (s (t) - s (t - at) )/At. Exc'^ ►pt

for this term, equation (4) does not contain, any time derivative. We shall hence-

forth write d/dx instead of 'V%t. We assume a trial solution y (0) and assume

that

Y = Y ( ') + Sy	 (7)

satisfies equation (6). Assuming that Sy is a small correction to y(0) , then

substituting equation (7) into equation 116)' ., and b",ineearizing it, we obtain

dby
^ = A Sy + b,	 (8 a)X

A4 , 4	 3, 4 = A4, 4 = 0,	 (8b)

where A	
(Zyi/"Yj) 

(0) and b, Y, (Y ( 0 ), X) - dy, ( ','F)/dx are numerically

known functions of x. After having solved equation (8a) and obtained y by (7),

7



Y ( 0 ) is replaced by X . The whole procedure is repeated until b y becomes suit-

ably small. Thus the problem, is how to solve equation (8).

c) Nature of the Differential Equations

for the Correction Term

We consider only a region in radiative equilibrium, since in a convective

region all of the Ai a vanish and y4 is separable from the others. If a finite

efficiency of the convective heat-transport is taken into account by means of

mixing-length theory, for example, it can be treated. in the same tivay a.s the

radiative equilibrium in the sense that 1/(n + 1) depends upon L r . Important

quantities in the following discussion are written as

K M
A2, a = -	

r

16 are cpTs rad r4

1	 ^s	 ^	 n	
-	

a Fv
	1 MAa - , 

0 t 3 In P	 '6 In p T	 a In p T	
r'

T	 as aE
	Aar 2 = -. ^ s (t) - s (t - A t) 

t a In T	 + -an I T
P	 P

(71_nT Mr.. (g)
,p

We consider the computation of a phase of relatively rapid evolution with N

time-steps. Where the heat conduction is negligible, the left hand side of equa-

tion (4d) should. be small compared with each. term in its right hand side. There

8
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is convection wherever the nuclear energy generation is large. Such a convectiv v

region does not contribute to the numerical instability. Therefore the neutrino

loss, G, V , i i approximately equal to (s (t) - s (t -fit) } VA t. The change of en-

tropy density, I s (t) - s (t - d t) (, is at most about (' s / 1 n T) P /N, and less than
r

this for a shell in which the neutrino loss is relatively small as compared with

other shells in the star. Thus the terms proportional to ('()w /^ 1 11 p)T and

03 s /) l n 'I`) p are most dominant in A4, , and A4, 2 , Taking into account only these

terms, we have

f2 in- (A2 a Aa 2)2	
Tl^ (r)	

2

r	 u	 6t
	 (10)

where U ra. d In Mr/d In r is three times the ratio of the density to the mean in-

terior density ao seen in equation (4c). In the limit of infinitely rapid evolution

or an infinitesimal time step, Q is infinitely large, while A4, i/ Aa r 2 
remains

finite.

We consider a range of x , where A can be considered to be practically

constant. The nature of the solution for the homogeneous part of eqt%ation (8a)

is understood by the secular equation,

JA-X1 =0.	 (11)

Taking into account equation (8b) it is easily shown for large f2 that two eigen-

values are given by

9

I

(12)



The other two are given by

Xk = Xk (o) * 0 (Q- 2 ), 1c =a 1, )	 (13)

where hk ( " ) denotes eigenvalues of the equations

d Sys	 a

dx L
3

LAa, j Sy j = 0.	 (14b)

These are the eigenvalues of the two differential equations for hydrostatic equi-

librium, i.e., equation (14a), together with a given distribution of entropy as a

subsidiary condition (14b); they are the eigenvalues of the explicit method. Only

these two eigenvalues are physically significant in the limit of large n.

The general solution of equation (8a) contains strongly growing branches,

exp (tQx ), and the differential equations themselves are unstable. Thus, it is

impossible to obtain independent solutions by numerical integration. Even if one

has started from different sets of initial values, the unstable branch overcomes

the other branches after some steps of integration, and these solutions are no

longer practically independent of each other (Wendroff 1966).*

A measure of the criterion for equation (8) to be practically stable is given

by using equation (10) in the form

surface

I	 Q dx	
r	

(Th (r)/p t I" d In r — 0 (1) .

^0

Even  when we start with properly selected initial values so as not to contain an unstable
branch, approximation with a finite step of integration introduces the unstable branch.

(15)
i
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The stability condition (8) given in § I, c is another expression of the above con-

dition. This means that a, heat wave must propagate throughout the star in a time

A t, as required from the physical picture of equation (4). It is to be noticed that

the integral in the above equation applies only in the radiative region.

M. DIFFERENCE EQUATION'S

We consider only the homogeneous part of equation (8) With a difference

equation of the following type:

4

— 8yk + 1 + b ye + L'
6 i Ai j 

QXk 
8yj

j-1

4

+ L (1 -,8 i ) 1, p xk b y^c+1	 ^,	 (16)

j 1

where the superscript denotes the spatial mesh points, k = 1, 2, ... , K - 1 and

"1 Xk Xk ^ 1 - X k .
	 (17)

We are concerned only with the coupling between hydrostatic equilibrium and

thermal process so that we put 81 =,03 = 1
2^

a) Henyey-Type Elimination

We introduce new independent variables,

	

S 77k - S y^ , i _ 1, 2; 8 77z - S yk + 1 , i = 3, 4.	 (18)

I



Equation (16) then becomes

P k 8 ^k-1 + Q k S nk + pk 8 ^k+ 1 	0,	 (^. )

Of course the first two columns of the matrix P k and the last two columns of R'k

``	 are zeros. :introducing another matrix, r' k , of which the last two columns are
I

zeros, and which satisfies

S 77k-1 c: rk a 7
7 k e	 (20)

the solution of equation (19) is given by

r k+1 - (- pk P k - Q k)- 1 R k ,	 (21a)

8 77
k w rk+lrk+2 .... t" K 577 K ,	 (21b)

We have two independent choices of 8 77 K; since the choice of S 77 a and S r KK is mean

ingless. On the other hand, F, i (i = 1,2, j = 1,2) does not enter into equation

(21a). Thus we have two independent choices of F 1 , for which the determinant of

the submatrix consisting of r' i , (i = 3 ,4, j = 1,2) does not vanish. Consequently,

we have two independent sets of 1,k . Thus we have four particular solutions.*

b) Limit to a Small Time Step with I.ixed Mesh-Points

We now consider the case with a large value of 0. I€ we solve equation (16)

with mesh-points satisfying w = 0 A x « 1, the difference equation (16) approximates

Usually, the two boundary conditions at the center are incorporated in equation (19) for k = 1, so
that P 1 vanishes and the choice of I" is meaningless. Then, we obtain only one set of F k , i.e.,
two particular solutions which satisfy the two boundary conditions at the center of the star.

I
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the differential equation (8) and we pick up the unstable branch. Thus, we ex-

amine equation (21) for the case of v >> I, i.o., for rapid evolution with a finite

number of mosh-points. The result depends upon the detailed formulation of the

difference equations as well as upon the method of elimination.* It W difficult to

show generally what the solution (21) approaches in the U-ndt of a large value of w .

However, numerical experiments show that it approaches the; solution of the ex-

plicit method when we choose

/32 	 0 a n d /34 = 1. ,	 (22a)

or

^-2 t- and  /34 = 0.	 (22b)

We shall examine mathematically the first case, only because a mathemati-

cal proof is easiest in this case. We drop the superscript when no confusion is

anticipated. Taking account of equations (8b), and (22a), the matrix elements

are written as

W ' -p-P k r,k -- Qk

For example, if we assume two sets of values for Sy l , which satisfy the boundary condition at
the center of the star, we can solve equation (16) numerically for the two particular solutions.
Numerical experiments show that these two solutions are not practically independent at the
stellar surface, reflecting the nature of the differential equation (8).

t



-P1,3 r3,1 " Q 1 , 1'	 -PI,3 j 3,2 - Q1121	 -Q1,3,	 0

-Q2,1 	 -Q2,2'	 -Q2,3" -Q2,4
(23)

-P3,3 x'3,1 ` Q3,1'	 -P3,3 P3,2 - Q3 , 2	 "'Q3,3+	 0

-P4,3 173, 1	 "4,1 - Q4,1	 P4,3 r3,2 - 174,2 - Q4, 2'	 0'	 1

We split the matrix W into two parts so that I W I= I W IC I I + I W (^ ) 1: The matrices

W ( ' ) and W(`) denote the same mat-s ix as W but the fourth rows are replaced by

(-Q4 ,1 , - Q4, 2 1 0, 0) and ( -P4 ,3 r3 , 1 - r4, 1 1  - P4, a r3,2 - r4,2 1 0 ' 1 ) , respectively.

Hereafter, we shall not write Ax explicitly, since it is fixed. The element, -. Q 2, 1,

appears if we do not substitute equation (4a) into (4b). It should be noticed that

Q4, 2 Q2, 4 is equal to w 2 and is invariant for a scale change of S 77 i .

We assume that Q2,4 P' a , 1 ' Q2 , 4 P4 2 and the other ^' 
1
, are small compared

with co 2 as should be the case for k = 1. Denoting the co-factor of W i by I W1

we have

IwI	 - Q2,	 IW^^ > ^	 1 +	 IW24I -	
IW4'4I

4	 2,4
Iw2,41	 Q2,4 IW20,

^`riince 1 W	 is a determinant which appears in the explicit method it does not2,4	 pp	 p

v anish insofar as the explicit method is stable. Thus, Q2, 4 I W 2, 4 I is of the order

of CO  and the quantity in the curly brackets in equation (24) is of the order of w "?

We denote a matrix as W (R; i, j )which is the same matrix as W but with the

i-th column of W replaced by the j-th column of R. Using equations (21a) and (24),

and noting R4,1 = R4,2 = 0 because of equation (22a), the other matrix eleme t `s of F

can be expanded in a)'-2 as

(24)

14



1.

Pk+	 W	 (R ► i, j)2.41

2,4

I W (`> (Rc i,	 2 , 41+
! WR ( 	 (R ' 1! )2,4

W2.4	 ^W* (R; 1, 1)4,4
--

T
( O 	 + 	 # 4

W,4 1 	 Q2.4 
jW") (R; i, i) 2 , 4 1 	 Q2,4 ^Wz-4

* Q	 1, 2, 3; j = 1, 2,	 (25)

R 	 I	 r R	 IW ( ^:	 ,	 l.^	 t, j	 1 ,4

Q2.4 I W 2c I	
3	

R	 (e)

^ W 
2 A 	 W4 , 4^	 - 4

W 2 e 4 	 Q2,4 I W2ea 

f
where the quantities in the curly brackets are of the order of w- 2 . Thus, all of

i i
1  and Q 241 1" 4 i

1r emain finite since Q2 ai!Q2 is finite.

C) Physical interpretation

The leading terms of equation (25) and ofQ 2 4 Ilk ; 1 in 	equation (26) contain

neither the (2,4)-element, 174 , nor any co-factor of the (4,4)-element. More-

'

	

	 over, the leading term of equation (25) does not contain the (2,j) elements. Thus,

the leading terms are solutions to be obtained by the explicit method, i.e., by

letting P4,4 and Q4 4 vanish. In spite of a large value of w , these are correct

solutions of equation (14a) with the subsidiary condition (14b), since

15



All, j lax (ij = 1.,3) can be small compared with unity. The Ya is calculated front

"y2 'dx. Thus, the leading terms describe solutions for given distribution of

entropy density as discussed In & I, a, The first-order terms in "2 describe effect

of heat flow, and thus these are proportional to the co-factors of the (2,4) or the

(4,4)-elements.

Thus, the mathematical structure of the above scheme corresponds to a good

physical picture that the heat wave does not propagate in a given time interval,

through a shell in the limit of large rv. On the other hand, when N is small, this

scheme reduces to the usual implicit method and thus corresponds to a good

physical picture that the heat wave propagates well throughout the star. The case

of an intermediate value of o) will be discussed in F III, d.

We must now discuss the number of independent solutions and the boundary

condition for a large value of co throughout the star. We easily find that

rk rk

	

1,1	 1,2

0 (do-2),

rk	 rk

	

2,1	 2,2

which means that the first two columns of rk rk + 1 ... rK are not independent in

the limit of infinite w. Thus we have only two degrees of freedom in the choice

of a solution, i.e., only in the choice of Fl . This corresponds to the fact that we

have only two differential equations of the explicit method in this limit. One of

the boundary conditions in this limit at the center, ,L r 0, has nothing to do with

the hydrostatic equilibrium. One of the boundary conditions at the surface be-

comes a relation for the entropy at the outermost point. Thus we have only two

boundary conditions — one at the center and another at the outermost point —

which are satisfied by using the two independent solutions. If w may be

.

(27)
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regarded afs Infinite In the sholls for lc = 1,2, 0 9 P I k, but small In the shells

for k = k o + 1, . . 0 9 K, Nval lizove four Independent solutions In the outer shells

but those dogencrate intro two independent solutions In the Inner shells. Thus

the two boundary conditions at the outermost shell and one boundary condition at

the center can 
be 

satisfied correctly. Although we have not discussed 
the 

in-

homogeneous term In equation (8), It does not alter the above discussion,

d) Discussion and Comments

It is difficult to treat the case when to takes an Intermediate value, How-

ever, the following discussion will give some idea regarding a practical case.

We must consider a region where 1 < w2 < 10. In this region the strongly-0^0	 P%j

growing branches (equation [121) of the differential equation cannot be solved

exactly, since (o = QAx Is too large. Thus the integral, (15) must be replaced

by 0 , where g is the number of such shells. If fore is smaller than 10 14 , we

caT	 k, a extract th
e
 physics ally pig 	 branches 'equation [13) ) by using the double

precision computation. Although branch (12) is not solved exactly, there will be

no problem, since dY4 /dx will be small enough compared with I A4, j y  I in such

a region.

We have not discussed other choices for equations (18) and (22). For ex-

ample, the choice of ($, 7) as	 ,k S yl 	 8 Y 2(Sy" t 8y 	k + I	 k + 1) prevents subtraction in3	 4 

calculating SY4	 m
k fro other variables by using equation, (20). However, it is to

be noticed that even in the choice of equation (18) , the rounding-off error does

not accumulate. For a phase or a region in which co is small enough, 62 =,6 4 2

or other weighting gives a better approximation and a more rapid convergence

41
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or the relaxation computation than oquation (22). However, It Is only a matter

of progr4amming technique to take this Into account,

In summary, the Henycy method is a good mathematical scheme based on

good physical pictures of both slow and rapid evolution if it Is properly for mu--

lated, We can solve stably the radiation flux, Lr I 
as well as other variables,

even for rapid evolution. The stability of Lr is a good measure of whether the

method has been formulated In a given case so as to represent a good physical

picture.
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