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ABSTRACT 

An analytical  study  was  conducted  for  a  semi-infinite  flat  plate  that  had  fluid  impul- 
sively  moved  on its  surface  and  at  the  same  time  pulsed  with  uniform  heat f l u x  over a 
prescribed  length.  The  numerical  solution,  which  was  obtained by  an implicit  finite- 
difference  method  with  nonuniform  lattice  dimensions, was compared  with a solution  for 
transient  conduction  in a slab and  with a solution of the  complete  energy  equation  from 
the  integral  method of Karman-Pohlhausen.  The  solutions  were  confined  to  positions on 
the  plate  over  which  the flow is strictly  transient  and  to  fluids  with  Prandtl  numbers 
greater  than 1. 
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IMPULSIVE  MOTION ON A FLAT PIATE PULSED  WITH  UNIFORM HEAT FLUX 

by Thomas H. Cochran  and Eva T. Jun 

Lewis Research  Center 

S UMMA RY 

An analytical  study  was  conducted fo r  a semi-infinite flat plate  that had  fluid  impul- 
sively  moved  on its surface  and at the  same  time  pulsed  with  uniform  heat  flux  over a 
prescribed length.  The  numerical  solution,  which w a s  obtained  by  an  implicit  finite- 
difference  method  with  nonuniform  lattice  dimensions, w a s  compared  with a solution  for 
transient conduction  in a slab  and  with a solution of the  complete  energy  equation  from  the 
integral  method of Karman-Pohlhausen.  The  solutions  were confined to  positions on the 
plate  over which  the flow is strictly  transient  and  to  fluids  with  Prandtl  numbers  greater 
than 1. 

INTRODUCTION 

In recent  years,  transient  forced-convection  heat-transfer  has  become of increasing 
interest  to  scientists  and  engineers.  Solutions  for  this  class of problems have  applica- 
tions  to  devices,  such as the  rocket  engine  and  the  nuclear  reactor, in which  startup  and 
shutdown are  important  phases  in  the  operation  cycle of the  equipment.  The  need  for 
solutions  to  transient  forced-convection  problems  may  also  be  necessitated  by  experi- 
mental  testing  in  facilities  that  afford  relatively  short  testing  times,  such as the  shock 
tunnel  and  the  zero-gravity  drop  tower. In the  former,  "pulse type" testing is conducted 
while in the  latter,  experiments  may not be  initiated  until  after  they are released. 

Transient  forced-convection  heat-transfer  problems  may  be  classified as external 
(flat plate) o r  internal  (pipe)  flows.  A  further  breakdown  denotes  the  transient as hydro- 
dynamic,  thermal, o r  both  hydrodynamic  and  thermal. In the  hydrodynamic  problem, 
thermal  boundary  conditions are not a function of time  and  the  fluid flow is unsteady. 
Transient  thermal  problems are characterized by  constant  fluid  flow,  and  the  wall  heat 
flux or  the  wall  temperature are a prescribed function of time.  The  third  case, of 
course, treats both  unsteady  flow  and  unsteady thermal  boundary  conditions. A survey 
of the  work in this  field  has  been  provided  by  Soliman  (ref. 1). Recent  work  includes 
references 2 and 3. 

The  purpose of this  report  is to  solve an external  problem  that is unsteady  both hy- 
drodynamically  and  thermally.  The  problem  may  be  described as follows:  A flat plate 
is initially in thermal  equilibrium  with  quiescent  fluid  that is above it. At some  pre- 



scribed time,  the  fluid is impulsively set in  motion,  and the plate  receives a step  in- 
crease in heat f lux  over a portion of its surface.  Rozenshtok  in a recent  paper (ref. 4) 
treated a similar  problem  except that he  assumed a step  increase  in  surface  tempera- 
ture  rather  than in heat f lux .  He also did not consider  the case for  an  unheated  entrance 
length. In the  present  work,  the  problem is solved  analytically  by  use of the integral 
method of Karman-Pohlhausen.  These  solutions are compared with a numerical  solution 
which is obtained by use of an  implicit  finite-difference  method with nonuniform  lattice 
dimensions  and  which is assumed  to  best  approximate  true  conditions.  The  validity of 
this assumption is substantiated by the close  agreement  between the numerical  solution 
and  an  analytical  solution  for  transient  conduction  in a slab for  t imes and positions on the 
plate  for  which  conduction is the  heat-transfer  mechanism.  The  solution is confined to 
positions on the plate  over  which  the flow is strictly  transient and  to  fluids  with  Prandtl 
numbers  greater  than 1. 

ANALY S IS 

The  equations  to be solved  for  transient  laminar flow in a thermal  boundary  layer 
are 

Continuity: 

Momentum: 

au au au a2u - v dP “ + u - + v - = v -  -_ 

Energy: 

where the symbols are defined  in  appendix A. The  fluid is assumed  to  be  incompressible 
and the  viscosity  constant.  Because of these  restrictions, the continuity  and  momentum 
equations are independent of the  energy  equation  and,  therefore,  may be solved  directly 
for  the  velocity  components U and V. 
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Fluid Flow Conditions 

The  fluid flow problem  associated  with  impulsive  motion  on a flat plate  has  been 
treated by numerous  investigators,  references 5 and 6 being  representative.  Their  solu- 
tions  require  simplification of the  governing  equations  and are of two types.  One  result 
is based on a linearization of the  momentum  equation  to an Oseen-type  (Rayleigh's  meth- 
od) and  another  utilizes  the  momentum-integral  method  (Karman-Pohlhausen  solution). 
Both  solutions  indicate  that there  are two domains  on  the  plate  that are not analytically 
joined. In the first domain,  the  velocity  profile is solely a function of time;  in  the sec- 
ond domain,  the  velocity  profile is only  dependent on distance  from  the  leading  edge of 
the  plate.  A  primary  difference  between  the two resul ts  is the  prediction of the  extent of 
the  domains.  The  Rayleigh  solution  indicates  that it occurs  at x = U,t (ref. 5), whereas 
the  momentum-integral  result  shows  that it occurs  at x = 0.385 U,t (ref. 6). All  symbols 
a r e  defined in appendix A. 

With a knowledge of the  aforementioned  work,  Stewartson (ref. 7) treated  the  full 
time-dependent  momentum  equations  and  obtained  solutions  in  the  form of power ser ies .  
H i s  results  indicate  that  for x > U,t the  time-dependent  Rayleigh  solution is the  correct 
solution  and  that for  x < 0.377 U,t the  position-dependent  momentum-integral  solution 
is the  appropriate  form  to  use.  The  domain  between  these two, U,t > > 0.377 U,t, is 
a transition  region in which  the  velocity is dependent on both  time  and  position.  These 
results are shown graphically  in  figure 1. A detailed  discussion of Stewartson's  work is 
contained  in  reference 8. 

Domain 

I Transient 
I1 Transi t ion 

111 Steady  state - x = 0.377 u,t x = u,t 
I I 
I I 
I I 

I I 
I 

I I 
I I 

q =  f(y,F) I ' q =  f(y,t) 

111 I I1 I 1  

Figure 1. - Hydrodynamic  conditions for impulsive  motion  on  f lat plate. 
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The  present  work is confined to  those  positions  on  the  plate  for  which x > U,t. 
Therefore,  an  exact  solution  for  the  velocity  profile is available  and is 

v = o  (4) 

However, for  the  purpose of obtaining  an  analytical  solution  for  the  energy  equation,  the 
velocity  should be  in a form  that  can  be  conveniently  integrated. An expression  in  ref- 
erence 4 that  closely  approximates  equation (5) is the  fourth-degree  polynomial 

u = u , 2  - - 2 -  + - [ ( H  ) ('J ('Hr] 

where GH = 3.65f i .  A comparison  between  equations (5) and (6) is made  in  figure 2. 

"-" 

Equation  Solution 

" - 6 Approximate 

Y/ 6H 

Figure 2. - Approximate  and  exact  transient  velocity  profiles  for  impulsive  motion  on 
semi-inf inite  f lat plate. 
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Thermal Conditions 

The  plan  to  be  followed  in  finding a solution for the  thermal  problem is to  approach 
it from both  an  analytical  and a numerical viewpoint.  The primary  analytical  approach 
used is the  integral  method  whereas  an  implicit  finite-difference  method  was  used  to  find 
the  numerical  solution.  A  comparison of the  solutions  from  the  different  methods  can 
then be made. 

Integral  solution. - The  thermal  problem  to  be  solved is that of a semi-infinite flat 
plate  subjected  to  liquid  impulsively set in  motion  in  the  plane of the  plate  that at the  same 
time is pulsed  with a uniform  heat  flux  over a portion of its surface (i. e. the  plate  has 
an unheated  entrance  length Eo). Attention is confined to  those  positions  in  the  heated 
region  for  which  the initial hydrodynamic  transition ?T = U,t is upstream. 

The  energy  equation  (eq. (3)), when  viscous  dissipation is neglected  and  equation (4) 
is applied,  becomes 

"+UT=" aT  aT v a2T 
at  aX Pr ay2 

The  boundary  conditions a r e  

T = T, 

T = T, at (Z > Xo7 00) t )  

and  the  initial  condition is 

The  problem is solvable by the  integral  method.  Therefore,  equation (7) becomes 

- a J"' (T - T,)dy + - a f 6 T  U(T - T,)dy = -- - 
at o z o  

where 6T is defined as that  position  above  the  surface of the  plate  where T = T, and 
Pr is the  Prandtl  number PCp/k.  Equation (8) is written  for  fluids  with  Prandtl  nun- 
bers  greater  than 1, and  the  solution  will  be confined to  this  case. 

5 



The  formulation  may  be  further  simplified by  defining a new dependent  variable 

T - T, 
e =  

The  boundary  and  initial  conditions  become 

" a9 - -1 at 6 >zo,O,t) 
a Y  

and  equation  (8) is simplified  to 

- a J ~ T  e d y + -  a / 6 ~  V 

at o 
UB dy = - 

z o  Pr 

The  dependent  variable is now approximated  by a polynomial in y. An expression 
that  has  been  used by others  working on transient  thermal  problems  (see refs. 9 and 10) 
and has  yielded  acceptable  results is 

6 T (  2 1" 6$ 

Substitution of equations (6) and  (10)  into  equation (9) yields 

" 

6 at 2 10 Pr 

where E = &jT/GH. For the  particular  case  at hand, E - < 1 so that  the  term in paren- 
thesis may be  approximated by an arithmetic  average  with  little  error: 
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This  equation  may  be  simplified  by  letting 

tiT2 = + 
so that 

Equation (13) is solvable  by  the  method of characteristics,  the  details of which are pre- 
sented  in  reference 11. The  system of equations for the  characteristics of (13) may be  
written as 

The  solutions of the  system (14) a r e  

6, = 2 . 4 5  
I 

= 2 . 0 4  

" 

1/3 

0 .468  
x - xo = [(pr)l/z] Ucot 

Substitution of equations (15) and (16) into  equation (10) results,  respectively,  in 

0.408 y 
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r 1 2  

0 = 1.02 
1/3 

( 1 -  0 . 4 9 0  y I 

The  solution  predicts two regimes on the  plate  that  are not  analytically  joined.  The 
temperature  in  one (eq. (18)) is dependent  only  on  time  (conduction  regime)  while in the 
other (eq. (19)) it is dependent on distance  from  the  thermal  leading edge, time,  and  free- 
stream  velocity  (convection  regime). 

The  analysis  indicates  that  the  boundary  between  the  conduction and  convection re- 
gimes is described by  equation (17). However,  in  light of Stewartson’s  hydrodynamic 
analyses, it seems  reasonable  to  assume  that  there is a transition  regime  between  these 
two regimes. For this  particular  solution,  equation (17) describes  the  upper  extent of the - 

Regime 

A Conduction 
B Transition 

Figure 3. -Thermal conditions  for  impulsive  motion on flat plate with 
unheated  entrance  length. 

convection  regime  whereas a conservative  estimate of the  lower  limit of the  conduction 
regime is IT - ?i = U,t. A better  estimate  for  this  limit is determined  later  in  the  sec- 
tion  Extent of Regimes.  The  conditions  existing  on  the  plate  are shown graphically in fig- 
ure 3 where  the  extent of the  regimes is denoted in a general  form. 

0 

Since  the  solution  obtained by this method  depends  on  the  form of the  polynomial  that 
was  assumed for 8 in   terms of y (see  eq. ( lo)) ,  other  solutions  to  the  problem  are  pos- 
sible by assuming  different  polynomials. A form in  common  use  besides  the  parabolic 
profile is the  quartic  profile  (ref. 4). For the  problem at hand, the  boundary  conditions 
necessary  to  form  the  required  equation  are 
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8 = 0  at y = 6  T E = o  at y = 6 T  
aY 

2 
" a e - ~  at y = 6  
iy2 

T 

2 
" a e - ~  at y = o  

aY2 

The  quartic  polynomial is 

and the  solutions  to  the  problem  are 

r 

Numerical  solution. - The  form of the  energy  equation  to  be  solved  numerically is 

ae ae a2e 
at  ax 
- +  U , e r f ~ - =  cy- 

aY2 

where q = y/2 fi ,  a is the  thermal  diffusivity and x = X - Xo. An approximate  solution 
of equation (24), with its initial and  boundary  conditions,  was  found  using an implicit 
finite-difference  method.  The  partial  differential  equation  was  replaced  by a finite- 
difference  equation  which  was  then  solved.  This  process is equivalent  to  finding O(x, y, t) 
at discrete  lattice  points in the x-, y-,  t-space (fig. 4). Because of the  exponential  nature 
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,JMAX 

an 
t n  

tn-1 

of the  solution,  and  our  interest  near  the  origin,  nonuniform  lattice  dimensions  were  used. 
These  dimensions  may  be  expressed as 

A t  n = tn - t n- 1 = PTINT(Atn - 1) 

AX. = X  - X  
J j j - 1  

= PXINT(AX ) j - 1  

where  PTINT,  PXINT,  and  PYINT are  greater  than or  equal  to  one. 
The  numerical  values of PTINT,  PXINT,  PYINT, At2,  Ax2, Ay2, MAX, and JMAX 

were determined by trial and e r ro r  under  the  condition that the  solution not be  affected  by 
lattice sizes, that xJMm be  greater  than o r  equal  to  the  heated length of the  plate,  and 

that Y K M ~  be  greater than or equal  to  the  maximum  estimated  thermal  layer  thickness. 
The  finite-difference  equivalent of equation (24), as derived  in  appendix B, is 

where E ,  p, y ,  and p a r e  defined in appendix A, and for  simplicity '(xj, yk, tn) is ex- 
pressed as 0 Initial  and  boundary  conditions a r e  

j , k, n' 

'j, k, 1 = over all j ,  k 
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' l , k , n =  over all k, n 

'j, -+I, n = O over all j ,  n 

If equation (25) is written  for all lattice points of y > 0 at fixed  values of x and t 
. .  

t 

Y =  

Y 

Figure 5. - One  row of lattice  points. 

blZl + c l z 2  = dl  

a2Z1 + b2Z2 + c2Z3 = d2 

a3Z2 + b3Z3 + c3Z4 = d3 



1 

where Z. = 8 m = KMAX - 1, and a, b, c, and  d are defined  in  appendix B. 
This  system of equations is a tridiagonal  matrix, all elements of which are zero  except 
for  the  main  diagonal  and  the two diagonals  on  either  side of it. The  coefficients of Z,  
the  values  for  which  may  be found in appendix B, are functions of lattice point  positions. 
At the first assumed  time t = t2 and  displacement x = x2,  the  elements  on  the  right  side 
of the  system (26) are determined  by  the  initial  and  boundary  conditions.  The  variable 0 
is now determined  from  the  matrix by Gauss'  elimination (see ref. 12). The  solution of 
the  matrix is presented in appendix C. With e known for   the first x-row of lattice  points, 
another set of  KMAX - 1 equations  can  be  written  for  the next  row of lattice  points  in  the 
same  time  plane.  The  elements on  the  right  side of the  matrix  for  this  solution  are  ob- 
tained  from  the  results of the  solution  from  the  preceeding  x-row.  This  process is con- 
tinued  until  the  maximum  displacement in x is reached.  After  obtaining  the  solution  for 
d l  lattice  points  in  the  x,  y-plane at the first time,  can now be  found  at  successive 
values of time by repeating  the  above  processes  until  the  time  reaches  the  limit of inter- 
est, TMAX. 

1 j, i+l ,n '  

e j ,  k, n 

A FORTRAN IV computer  program w a s  written  to  find  the  solution of the  finite- 
difference  equation in the  manner  just  described. A description of the  computer  program 
with flow charts and a listing of the  programs is given  in  appendix D. 

Transient conduction  solution. - The  integral  solution  indicates  that  for  some  posi- 
tions on the  plate  the  mode of heat transfer is strictly  conduction.  This  suggests  that  for 
such  positions a solution  may  be  obtained  from  the  energy  equation in the  form 

with  the  boundary  conditions 

T = T, at (y, 0) 

T = T, at (,, t) 

" - aT - 
aY 

This  problem  has  been  solved in reference 13 and  the  solution is 
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RESULTS 

Conduction  and  Convection Regimes 

A comparison  between  the  analytical  and  numerical  solutions was  made  for water as 
a working  liquid.  The  conditions  assumed  were a free-stream  temperature of 98.9 C 
and free-stream  velocities of 3 . 0 5  and 12 .2  centimeters  per  second.  The  surface  heat 
flux was taken as 1261 watts per  square  meter. In comparing  the  results,  the  numerical 
solution w a s  assumed  to  always  best  approximate  the  true  conditions. 

positions  such  that X - x. > U,t. The  results  are shown  in figures 6(a) and  (b).  The 
curves  indicate  that, of the  integral  solutions,  the  parabolic  profile is in  best  overall 

0 

The  validity of the  conduction  equations was  tested by assuming  velocities,  times,  and 
- 

Equation  Solution 
18 Parabolic  profile -" 21  Quar t ic   prof i le  "_ 28 Transient  conduct ion 

0 " Numerical  

Distance, y, c m  

(a)  Free-stream  velocity in x-direction, 3.05 centimeters  per second; distance from leading  thermal edge, 

Figure 6. - Temperature  profi les. 

0.915  centimeter;  time, 0.154  second. 
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Equation  Solution 
18 Parabolic  profi le 
21 Quart ic  prof i le " - "_ 28 Transient  conduction 

0 -- Numer ica l  

l2 r 

Distance, y, c m  

(b)  Free-stream  velocity in x-direction, 12.2 centimeters  per  second;  distance  from 
leading  thermal edge, 2.72 centimeters;  time, 0.116 second. 

Equation  Solution 
19 Parabolic  profi le 
22 Quart ic  prof i le "" 

0 -- Numer ica l  

0 

+- 

4 -  

2 -  

Distance, y, c m  

(c)  Free-stream  velocity in x-direction, 3.05 centimeters  per  second;  distance  from  leading  thermal edge, 
0.$15 centimeter;  time, 2.02 seconds. 

Figure 6. - Continued. 
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Equation  Solution 
19 Parabolic  profi le "_ 22 Quar t ic   prof i le  

0 -- Numer ica l  

Distance, y, cm 

(dl  Free-stream  velocity in x-direction, 12.2 centimeters  per  second;  distance  from  leading  thermal 
edge, 2.72 centimeters;  time, 1.52 seconds. 

Figure 6. - Concluded. 

agreement  with the  numerical  solution,  the  greatest  discrepancy  between  the two occur- 
ring at large  distances  from  the  surface.  This is understandable  in  light of the  finite 
boundary  condition  imposed  on  the  integral  solution at large  y as opposed  to  the  infinite 
one  that  actually  exists.  The  close  agreement  between  the  transient  conduction  solution 
and  the  numerical  solution is expected  and  validates  the  numerical  approach  to  the  prob- 
lem. 

The  convection  equations were  evaluated for conditions so that X - X. < 0.324 U,t 
(eq.  (23)). This  criterion  was  chosen  from  the two available  ones  (eqs. (17) and  (23))  be- 
cause it minimized  the  size of the  convection  regime,  thus  ensuring  that  the  selected  con- 
ditions  were  definitely out of the  transition  regime.  The  results in figures 6(c)  and (d) 
show that  the  quartic  profile is in  the  best  overall  agreement  with  the  numerical  solution. 

In summary, for the conduction regime,  the  transient  conduction  solution (eq. (28)) 
is representative of the  temperature  profile. For the  convection  regime,  the  integral so- 
lution  using a quartic  profile (eq. (22)) provides a good approximation  for  the  temperature 
distribution. 

Transition Regime 

The  nature of the  temperature  distribution  between  the  conduction  and  convection re- 
gimes was investigated by selecting a velocity (3 .05  cm/sec)  and a position (0.915 cm) 
and  determining  the  numerical  solution  for  different  times.  The  results are presented  in 
figure 7 where  the  conduction  and  convection  solutions, as determined  in  the  previous 
section, are also plotted. 
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The  conditions in figure 7(a) are such that the  position'selected is just out of the  con- 
duction  regime, as defined  by  the  extent  criteria 03 > X - Zo > U,t. As seen  from the 
figure, the conduction  solution is still generally  in good agreement with the numerical 
solution.  However, at large  distances  from the surface,  the two begin  to  deviate  from 
one  another,  signaling  the start of convection effects. This  result  may be logically  ob- 
tained  by  considering  the  physical  processes that are occurring. Conduction  dominates 
as the mode of heat transfer at a position in the thermal  boundary  layer until fluid  that 
was originally  upstream of the thermal  leading  edge  reaches the position  in  question. 
Since the liquid  velocity is greater at large  distances  from the surface,  the  convection ef- 

10 - 
\ 

8 -\ 
Equation  Solution 

"- 
\ 

28 Conduction 
" - 22 Convection 

0 -- Numerical  \ 

, u 6  
s + 

+ 4 -  

2 -  

0 
Distance, y, cm 

(a)  Free-stream  velocity in x-direction, 3.05 centimeters  per second; distance  from  leading  thermal 
edge, 0.915 centimeter,  time, 0.643 second. 

Equation  Solution 
28 Conduction 
22 Convection 

0 --  Numerical  

"_ "_ 

Distance, y, cm 

(b) Free-stream  velocity in x-direction, 3.05 centimeters  per second; distance  from  leading  thermal 
edge, 0.915 centimeter;  time, 0.856 second. 

Figure 7. - Temperature  profiles. 
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fects are realized first at those  distances. 
The  results  in  figure 7(b) are for  a later time  than  those  in  figure  7(a). Here again, 

the  conduction  solution is in fairly good agreement with the  numerical  solution;  however, 
the  deviation  between  these  two  solutions at large  distances  from  the  plate is greater  than 
that in figure  7(a).  Comparison of the  convection  curve  in  figures  7(a) and (b) indicates, 
that as time  progresses, it comes  into  closer  agreement with the  numerical  solution. It 
is obvious  then,  that  the  importance of convection as a mode of heat  transfer  increases 
with  time. 

Equation  Solution 
28 Conduction 
22 Convection 
" Numer ica l  

"_ "_ 
0 

2 /  
I I  I -  I I I I I 7  - -u 

0 10 20 30 40 50  60 70 80 90 100 110 120x10- 
v 

J 
.3 

Distance, y, c m  

(c) Free-stream  velocity in  x-direction, 3.05 centimeters  per second; distance  from  leading  thermal edge, 
0.915 centimeter;  time, 1.516  second. 

Figure 7. - Concluded. 

For  figure  7(c), the conditions are such  that the selected  position is just in the  con- 
vection  regime as determined by the  extent  criterion 0 < X - Z0 < 0.324 U,t. The cur- 
ves  indicate that the  convection  solution is now in best  agreement  with  the  numerical  solu- 
tion  and that the transition  from  conduction  to  convection as the mode of heat  transfer 
has penetrated  to  small  distances  from  the  surface of the plate. 

Two primary  conclusions are to be drawn  from  these  results:  The  first is that  during 
this  regime the mode of heat transfer is changed  from  conduction  to  convection.  The 
second  conclusion is that  in the transition  regime  the  conduction  solution of equation (28) 
is a good approximation  for the temperature  distribution. 
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Extent of Regimes 

From  the  analysis, it was  determined  that  the  upper  extent of the  convection  regime 
was defined  by  equation (23). The  function F2 in  the  extent  criterion, as shown in  fig- 
ure  3, may  then  be  expressed as F2 = 0.443/(Pr)  1/2. For  the conduction regime, its 
lower  extent  has  been  conservatively  estimated as X - x. = U,t. A s  discussed  in  the 
previous  section,  the  onset of convection  effects at a position (Z - Xo) in  the  thermal 
boundary  layer is signaled by the  arrival at the  position of liquid  that was originally up- 
stream of the  leading  thermal  edge.  Since  the  velocity  boundary  layer is larger  than  the 
thermal boundary  layer  for  fluids  with  Prandtl  numbers  greater  than 1, the  liquid  in 
transit from  the  leading  thermal  edge  to a position is not continuously  moving at the  free- 
stream  velocity.  Therefore, X - X. = U,t is conservative  in  that it overestimates  the 
size of the  transition  regime. 

- 

A criterion  for  the  lower  extent of the  conduction  regime  may  be  obtained  by  consid- 
ering liquid particles  in  laminar flow at some  distance  y  above  the  surface of the  plate. 
An expression  for  the  rectilinear  motion of these  particles is 

t 
" x - x  0 =X, +L, U dt 

where x, denotes  the  displacement  over  which  the  liquid  particles  moved at the  free- 
stream velocity  and t, the  time  required  to move this  distance.  Inserting  equation (6) 
into  equation (29) and  integrating  results in 

0 . 0 8 2  y 0.0056 y 
0 

The  displacement X, may be  expressed as 

where t, is determined  from  the  time  required  for  the  hydrodynamic  boundary  layer  to 
increase in size  to  the  distance  y  under  consideration. A relation  for  the  hydrodynamic 
boundary  layer, as presented  in  the  section  Fluid  Flow  Conditions, is 
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so that 
0.0752 U,y 2 - x, = (33) 

V 

The  initial  convection effect at a position (Z - 'io) is realized when  liquid at a distance  y 
reaches  the  position at the  same time that  the  conduction  thermal  boundary  layer  has  in- 
creased  in  size  to  yo E a criterion  for  the  thermal  boundary  layer is assumed  to  be 

T - T, 
= 0.01 

Tw - T, 
equation (28) may be solved  such that 

1/2 
6 T  3 . 2  (2) = y 

Inserting  equations (32) to (34) into  equation (30) results in 

X - ?  = 3.507  2 .687   0 ,587  
0 

+ ~- - " - 
(Pr)1/2 ( ~ r ) 3 / ~  (pr)' Pr 

(34) 

(35) 

where F1 (see  fig. 3) is the  term in parentheses. A plot of the  extent  criteria of equa- 
tions (23) and (35) is provided in figure 8. 

Conduction  regime 

Transit ion  regime 

Convection  regime 

'i I ~~ 
I I I I I 

10 20 30 40 50 60 70 80 90 100 
Prandt l   number,   Pr  

Figure 8. - Extent of regimes as func t ion  of Prandtl   number. 
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SUMMARY OF RESULTS 

An analytical and numerical  study of the  thermal  conditions  on a flat plate  with an 
unheated  entrance  length,  subjected to fluid  impulsively  moved,  and  pulsed  with  uniform 
heat f l u x  yielded  the  following  results: 

1. For  positions on the  plate  denoted as the  conduction  regime  and  describable by the 
conditions X > U,t and FIU,t + Z < X < 03, where X is the  distance  measured  from 
the  leading  edge  along  the  plate, U, is the  free  stream  velocity, t is time, F1 is a 
function of the  Prandtl  number  that is characterist ic of the  lower  limit of the conduction 
regime,  and X is the  unheated  entrance  length,  the  temperature  profile  may  be  pre- 
sented as 

0 

r 

where 

F1 = 3.507 + 2.687  0.587  4.608 for 

(Pr)1/2 ( ~ r ) ~ / ~  Pr 
-"- 

2 Pr 
Pr > 1 

and T is the  fluid  temperature, T, is the  free  stream  temperature, % is the  surface 
heat f lux ,  A is the  surface area, k is the  fluid  thermal  conductivity, v is the  kinematic 
viscosity, Pr is the  Prandtl  number, and y is the  distance  measured  perpendicular  to 
the  plate. 

2. For  positions on the  plate  denoted as the  transition  regime  and  describable by the 
conditions X > U,t and F2U,t + Zo < X < FIU,t + Xo, where F2 is a function of the 
Prandtl  number  that is characteristic of the  upper  limit of the  convection  regime,  the 
temperature  profile  may  be  approximated as 

where 
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F2 = 0.443 for Pr > 1 
(Pr) ‘I2 

3. For  positions on the  plate  denoted as the  convection  regime  and  describable by the 
conditions X > 
sented as 

U,t and X. < Z < F2U,t + Xo, the  temperature  profile  may  be  best  pre- 

f 

where 6H is the  hydrodynamic  boundary  layer  thickness. 

Lewis  Research  Center, 
National  Aeronautics  and  Space  Administration, 

Cleveland, Ohio, February 27, 1969, 
124-09-17-01-22. 
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APPENDIX A 

SYMBOLS 

A 

F1 

F2 

k 

m 

P 

Pr 

PXINT 

PYINT 

PTINT 

Q 
- 
q 

T 

TMAX 

t 

U 

V 

XMAX 

X 

X 
- 

YMAX 

Y 

heated  area of plate,  cm 

ar ray  of constants  in a tridiagonal  matrix 

specific  heat,  J/(kg)eC) 

ratio of thermal  to  hydrodynamic  boundary  layer,  6T/8H 

function of Prandtl  number  that is characteristic of lower  limit of conduction 

2 

regime 

function of Prandtl  number  that is characteristic of upper  limit of convection 
regime 

thermal  conductivity,  J/(m)(sec)(OC) 

order of matrix  equation, KMAX - 1 

pressure,  N/m 

Prandtl  number, pC /k 

growth  rate of x intervals, Ax./&. 

growth rate of y  intervals, A Y ~ / A Y ~ - ~  

growth  rate of t intervals, Atn/Atn-l 

heat  flux, W 

total  velocity,  cm/sec 

temperature, OC 

maximum  time of interest 

2 

P 

J 1-1 

time,  sec 

velocity in x-direction,  cm/sec 

velocity in y-direction,  cm/sec 

total  heated  length,  cm 

distance  measured  from  leading  thermal  edge  along  plate, x = Z 

distance  measured  from  leading  edge  along  plate,  cm 

maximum  estimated  thermal  boundary  layer  thickness,  cm 

distance  measured  perpendicular  to  plate,  cm 

- x cm 
0, 
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Z 

Q! 

P 

Y 

6 

E 

77 

e 
P 

unknown in matrix  equation  representing 6 at all vertical  points above plate at 
fixed t and x 

thermal  diffusivity,  cm  /sec 2 

boundary  layer  thickness,  cm 

l/PYINT 

argument of the   e r ror  function, y /kfi) T - T, 
dependent variable  in  energy  equation, 6' 

Q x , / f i  
dynamic  viscosity, CP 

vv  

V kinematic  viscosity,  (m)  /sec 2 

P 4(AYlJ2  

+ 6T2 
Sub scripts: 

H 

JMAX 

j ,  k, n 

KMAX 

0 

T 

W 

co 

hydrodynamic  conditions 

number of lattice  points on x-scale 

indices  denoting  specific  lattice  points on the x-, y-,  and  t-scales,  respectively 

number of lattice  points on y-scale 

thermal  entrance  condition 

thermal  conditions 

conditions  at y = 0 

free-stream  conditions 
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APPENDIX B 

FINITE-DIFFERENCE APPROXIMATION 

The  finite-difference  approximation of the  energy  equation  in  the  form 

ae ae a2e - + U,erf(q) - = 
at ax 

cy- 

aY2 

is derived  in  the  following  manner:  From  figure 4, it may be  seen  that 

ae 1 
at  

- e  1 - - 
" @ j ,  k,  n j ,  k, n-1 

j ,  k, n Atn 

The  second  partial  derivative  in  y is obtained by considering two consecutive  intervals 

yk-1 yk yk+c Y k t l  

Figure 9. - Two intervals on y-scale. 

on the  y-scale (see fig. 9): 

('j, k+E, n - 2ej, k, n + e j ,  k-1,  n 1 

where 'j, k+E, n 
+ (1 - €)ej, k, n. Although the  existence of a e /ay proves  that ej, kSE,  cannot  be  ac- 
curately  approximated  by a linear interpolation, for  the  case when E = 0.91,  the  results 
derived  from  the  linear  interpolation  differs  from  that of a second-order  approximation 

24 

can  be  expressed by a linear interpolation, 6 
2 2  j,k+E,n J,k+l,n = € e .  



by only 0.2  percent.  The  partial  differential  equation in finite-difference form is then 

1 U,erf(d "@j,k,n - e  j ,k,n-1 ) +  Llx @j,k,n - ' j-l ,k,n 1 
Atn j 

with  initial  and  boundary  conditions 

'j, k, 1 = 

'1, k, n = 

'j, KMAX+l,  n = 

j - > 1 , k >  1 

k > l , n > l  - - 

- 

j - > 1 , n >  1 - 

j > 1 , n >  1 

Equation  (Bl)  can  be  rearranged in the  form 

where p, P ,  y ,  and E are defined in appendix A. Applying the  boundary  conditions at 
k = 2 yields 

I 

'j, k-1,  n ( - P ) + e j , k , n [ P + Y + p ( l + ' ) ] = P e j , k , n - l  + ye.  ~ - 1 , k , n  (B2b) 

For every  given x and tn, equations (B2) make  up a system of KMAX - 1 equations 
with KMAX - 1 unknowns, 6 (k = 2,3, . . . KMAX), in the  following  form: 

j 
j, k, n 
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b l Z l  + ClZ2 

a2Z1 + bZZ2 + c2z3  

= d l  

= d2 

= dg 

where 

n 
is obtained by applying  the  boundary  condition 

where 
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APPENDIX C 

SOLUTION OF TRIDIAGONAL  MATRIX  EQUATION 

The  system of m  tridiagonal  equations (eq.  (26)) can  be  solved by  using  Gauss' 
Elimination  to  yield  the results 

Zm = dm * 

Z.  = d? - c*Z 
1 1 i i+l i = m  - 1, m - 2 ,  ... 2 , l  

where 

c1 c; = -  

bl 

* 'i ci = 
b. 1 - aicr- 

d" = i -  

dl 

1 

and  cf and di (i = 1 , 2 , .  . . m) a r e  computed first and then  used  to  find Zi( i  = m, m - 1, * 
. . . 1). 

If (bi - aici-l) * = 0, c r  and d: a r e  not computed  but rather 

ci+l = 0 * 

and 
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2o j-1 
N, DELT, T 

lNo 
I THaA(j, k, 1) - THETA(j, k, 2) 1 +p MN=O 

Initialize 
X, DEB, THETA(1, k.2) 

Do 11 J = 2, JMAX 

MJ, D E B ,  X + X > XMAX 

constants  and 
coefficients of 

J 

"'I 

J = J T V + l  

0 FlNDZ 

I KLAST - KLAST + 1 I 

&"-- Compute  RAT. A 

ABS(RAT) 
< 1. E - 04 

Figure 10. - Flow c h a r t  
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APPENDIX  D 

COMPUTER PROGRAM 

The  following  sections  give a detailed  description of the  computer  program  written  to 
solve  equation (24) numerically.  The  program  consists of a main  program  and a sub- 
routine FINDZ. Included herein are the  general  description of the  program, a dictionary 
of the FORTRAN symbols  used, a flow diagram  (fig. lo), and  the  program  listings.  The 
input/output format is described,  and  the  computer  input/output of a sample  case is also 
presented. 

Program  Description 

Main program. - The input data  are  read, and the  computation is begun  by  initializing 
x, y, t and  inserting  the  boundary  and  initial  conditions.  For  each  subsequent row in x, 
the  distance  along  x is incremented,  the  constants  and  coefficients of its matrix  equa- 
tion are calculated,  and  subroutine FINDZ is called. 

Subroutine  FINDZ. - The  root of the  matrix  equation Z is found by the  method  de- 
scribed  in appendix  C.  The  column  matrix Z is returned  to  the  main  program  through 
blank COMMON. 

Dictionary of FORTRAN Symbols 

FORTRAN 
symbol 

X 

Y 

T 

XMAX 

JMAX 

KMAX 

DELX 

DELY 

DELT 

Engineering 
symbol 

Ax 

Ayk 

Atn 

j 

" x - x. distance  along  plate -xo 
- 

Y a r r ay  containing  lattice  dimensions in y-direction 

t time 

maximum x of interest 

number of lattice  points in x-direction 

number of lattice  points in y-direction 

length of Jth increment in x 

length of Kth increment in y 

length of Nth increment in t 

29 



I 111 1111 II I 

FORTRAN 
symbol 

DELXO 

DELYO 

DELTO 

THETA(J, K, 2) 

THETA(J, K, 1) 

PARTYO 

RNU 

ALPHA 

BETA 

GAMMA 

SQ 

CD2 

c2 

Z 

Engineering 
symbol 

I, 

CY 

P 

Y 

u, 
E 

77 

m 

value of 1. /PXINT times  the first x-increment 

value of 1. /PYINT times  the first y-increment 

value of 1. /PTINT  times  the first t-increment 

evaluated at N interval in time 

at the Nth interval  in  time 

th  

partial  derivative of 0 with  respect  to  y at y = 0 

kinematic  viscosity,  input  constant 

thermal diffusivity,  input  constant 

1. /Atn 

U,erf 7 7 b j  

2* 
(a/Ay2) t imes PARTYO 

variable  equal  to 0 o r  CD2, used  in  computing  the 
D-array 

free-stream  velocity, input  constant 

1. /PYINT 

Y/2+ 

array containing  values of U,erf(q) at all y-intervals 

KMAX - 1 

arrays containing  coefficients  and  constants of eq. (26) 

defined  in  appendix  C 

defined  in  appendix  C 

B(1) - (A(1) t imes CS(1 - 1)) 

I element of array ITAG, an  indicator of whether th 

DENOM is zero;  0-no,  and  1-yes 

array output from  subroutine FINDZ, 
Z (K) = THETA(J, K+ 1 ,2 )  
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KLAST 

JTV,   NTV 

MN 

M J  

RAT 

INPUT 

on exit from FINDZ, KLAST is last nonzero  element of 
Z; KLAST is immediately set equal  to KLAST + 1 
denoting  the last nonzero  element of THETA(J, K, 2) 
at given J 

because of large  volume of results,  solution at every 
lattice point w a s  not written out;  solutions  were 
written  out only at every (NTV) interval  in  time 
and (JTVfh interval  in x 

th 

result  of MOD(N- 1, NTV) 

result  of MOD(J-~, JTV) 

result  of 1. -THETA(J-1,KLAST72)/THETA(J,KLAST,2); 
at small  values of time, when x becomes  greater 
than  some  specific X(J), dependent on value of T, 
THETA no longer  changes  significantly  with x; when 
RAT is sufficiently  small, THETA(JN, K, 2) is set 
equal  to THETA(J, K, 2) for  all values of K and for  
all J < J N  < JMAX - 

name  list  name  containing  values of ALPHA,  RNU, 
UINF, PARTYO,  XMAX,  TMAX,  JMAX, KMAX, 
DELXO, DELYO,  DELTO,  PXINT,  PYINT,  NTV, 
J T V  

Blank COMMON contains M, A, B, C, D, Z,  KLAST 

The  program  listing is as follows: 

C * * * * I M P L I C I T   F I N I T E   D I F F E R E N C E   E Q U A T I O N  . . . . . . . . . . . . . . . . . . . . . . . .  
C RESULTS  WRITTEN  OUT  ONLY A T  E V E R Y   N T V   I N T E R V A L S  OF T AND  EVERY  JTV 
C I N T E R V A L S  OF X 

C * * * * * * * 9 * * * * * + ~ [ K R E G U L A R  L A T T I C E  SIZES * 9 * 9 4 9 ~ * * * * * * 0 ~ * * * * * * * 9 * * * * * * * * ~ * * * ~  

COMMON M * A v B * C v D * Z * K L A S T  
D I M E N S I O N  A ( 1 0 0 1 v  B(100)r C(LOO)* D(100)r Z ( 1 0 0 ) ~  Y ( l O O ) ,  T H E T A f l Z  

1 1 9  100,2)* F F (  100) 
N A H E L I S T / I N P U T /  A L P H A I R N U * U I N F * P A R T Y O * X P ~ A X , J M A X ~ K M A X ~ J M A X * K M A X ~ C E L X O *  

1 D E L Y O ~ D E L T O ~ P X I N T ~ P Y I N T I P T I N T t N T V I J T V ~ J T V  
LOO R E A D ( S * I I \ I P U T )  

M=KMAX - 1 

CDZ=  -ALPHA * P A R T Y O / ( D E L Y O * P Y I N T )  
Y I 1 )  = 0. 

EPS = l . / P Y I N T  
N= 1 

D E L T  = D E L T O  
T = 0. 

DO 3 K = l r K M A X  
DO 3 J = l r  JHAX 

3 T H E T A ( J , K * 2 )  = 0. 
C AT T=O.*  THETA=O.  FOR ALL X AND Y 
20 N = N + 1  

OELT = O E L T  * P T I N T  
T = T + D E L 1  
I F  (1 -GT.  THAX 1 GO T O  100 
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. .. . ." . . . . . . . "" - 

10 
C 

12 
C 

C 
C 

C 

C 

4 

2 

6 

1 

C 

5 

1 3  

C 
11 

7 

8 

00 10 J = l , J M A X  
00 10 K = l , K M A X  
T H E T A I J I K I L )  = T H E T A ( J + K * Z )  
T H E T A ( J I K p 2 )   S T A N D S   F O R   T H E T A ( J v K , N ) r   ' F H E T A ( J t K , I )   F O R   T H E T A ( J * K , N - I E  
MN = M O O I N - L V N T V )  
I F  N .NE. [ N T V + l )  .AND, MN * E Q e  0 )  W R I T E ( 6 t 6 4 )  T 
B E T A  = l . / D E L T  
SQ = 2.* S Q R T ( R N U * T )  
x = 0 .  
D E L X  = D E L X O  
DO 1 2  K=l ,KMAX 
T H E T A ( l r K , Z )  = 0. 
AT X 0.9 T H E T A = O e   F O R   A L L  Y AND T 
DO 11 J z 2 t J M A X  
M J  = M O D ( J - l p J T V )  
D E L X  = P X I N T  * D E L X  
X = X + D E L X  
I F  ( X  .GT. X M A X l  GO TO 20 

X AND T ARE NOW F I X E D #   C C H P U T E   C O E F F I C I E N T S   A N D   C O N S T A N T S  
O F   F I N I T E - D I F F E R E N C E   E Q U b T I C N   A T   E A C H   P O I N T  OF Y 

D E L Y  = D E L Y O  
DO 1 K = l r M  
IF ( J  .GT. 2 )  GO TO 2 
I F  ( N  -GT. 2) GO TO 4 
D E L Y v  A, C, AND Y ARE  INDEPENDENT OF X AND TI COCPUTED  ONLY  ONCE I N  
THE PROGRAM,  AT J=2, N = 2  
F F ( K 1  IS I N D E P E N D E N T  OF X,  COMPUTED  ONLY WHEN J = Z   A T   E V E R Y   V A L U E  OF N 
O E L Y  = P Y I N T  * D E L Y  
R O E =   A L P H A / D E L Y * * Z  
Y ( K + L )  = Y ( K )   + D E L Y  
A ( K )  = -ROE 
C ( K )  = -RDE*EPS 
ERFARG = Y ( K + l ) / S Q  
F F l K I =   E R F ( E R F A R G ) * U I N F  
GAMMA = F F ( K ) / D E L X  
E ( K )  = B E T A  + GAMMA - ( A ( K )   + C ( K )  1 
02 = 0. 
I F  ( K - 1 )  6,611 
02 = C D 2  

A ( K )  = 0 ,  

C ( M )  = 0, 

B I K )  = 6 E T A  f GAMMA - C ( K )  

D ( K )  = B E T A  0: T H E T A ( J , K + l , l )   + G A M M A * T H E T A ( J - l t  K + l t  2 )  + 02 

I F  ( J  .EQ. 2 .AND. N e E Q e  2) W R I T E ( 6 r 6 6 )  ( Y ( K ) t K = l p K M A X )  
I F  ( N .EQ. ( N T V + l )  .AND. J -EC. ( J T V + 1 )  1 W R I T E ( 6 9 6 3 1  T 
C A L L   F I N D 2  
K L A S T  I S  T H E   L A S T   N O N Z E R O   E L E M E N T   O F  THE S O L U T I O N  FROM F I N D L  
K L A S T  = K L A S T + l  
DO 5 K = l , M  
T H E T A ( J * K + l , Z )  = Z ( K )  
T H E T A ( J , I , 2 )  = T H E T A ( J p 2 , 2 )  - ( P Y I N T * O E L Y O )  * P A R T Y 0  
I F ( M N  .EQ. 0 .AND. MJ .EQ. O ) W K I T E ( 6 r 6 5 ) X , ( T H E T A ( J , K , Z ~ t K L A S T )  
R A T  = 1. - T H E T A (  J - l w  K L A S T v Z ) /   T H E T A (  J, K L A S T r  2 )  
I F   ( A B S ( R A T )  .LT .   1 .E -04 )  GO TO 7 

CONT I NU€ 
GO TO 20 
J P = J + l  

I F  T H E T A  NO LONGER  CHANGE  WITH X t  JUMP OUT OF DO 11 LOOP 

DO 8 J N  = J P t J M A X  
DO 8 K = l t K M A X  
T H E T A ( J N 9   K t  2) = T H E T A ( J  r K 9 2 )  
I F  ( MN .EQ. 0 1 W R I T E ( 6 r 6 7 )  X 
GO TO 20 

32 



63 F O R M A T ( L H L 1 5 5 X S   9 H A T   T I M E  =. F 8 . 5 ~  2x1 4HSEC. l  
64 F O R M A T ( l H l r 5 5 X *   9 H A T   T I M E  = (  F8.51 2x1  4HSEC. l  
6 5  F O R M A T (  / r 3 0 X v   h H A T  X = *  E 1 3 . 5 ,   3 H  CM, 2 x 1  5 9 H T H E T A   A T   V A R I O  

L U S   V E R T I C A L   P O I N T S   ( N O N U N I F O R M L Y   D I S T R L B U T E D ) r /   ( l C ( l P 6 1 3 . 4 1 1 )  
66 F O R M A T ( l H l 1  45x9 4 1 H V A L U E S   U F  Y AT  WHICH  THETA  ARE  CALCULATED.* /  

l ( l O ( L P E 1 3 . 4 ) ) )  
67 , F O R M A T ( 1 H L e  30x9 4 8 H T H E T A   N O   L O N G E R   C H A N G E S   W I T H  X A T  X G R E A T E R   T H  

l A N * E 1 3 . 5 *   3 H   C M )  
END 

C I B F T C   T R I D  

C 
C 

1 
C 

3 

4 

5 
6 

C 

7 

8 
9 

S U B R O U T I N E   F I N D 2  
S O L U T I O N  OF T R I D I A G O N A L   M A T R I X   E Q U A T I O N   B Y   G A U S S '   E L I M L N A T I O N  
REFERENCE -- FORSYTHE  AND WASOW P.104 
D I M E N S I O N  A ~ 1 0 0 ) ~ B ( 1 0 0 ~ ~ C ( 1 0 0 ~ r D ( 1 0 0 ) 1 Z ~ l O O ~ ~ C S ( L O C ~ ~ D S ~ l O O ~ ~  

1 I T A G I  100) 
COMMON M ~ A ~ B , C I D ~ Z ~ K L A S T  
I T A G I L )  = 0 

D S ( 1 1  = D ( 1 )  /8(1) 

I T A G I I )  = O  

c s ( 1 )  = c(I)/a(l) 

DO 4 I=ZvM 

I F  ( I T A G (  1-11 .EQ. 1 )  GO T O  4 
DENOH = B ( 1 )  - A ( I ) * C S ( I - l )  

I T A G ( 1 )  = 1 
DENOML I )  = 0. NO CS(I 1 AND NO OS( 1 )  COMPUTED 
D S ( I + l )  = (D(I)-A(I)*DS(I-l))/C(I) 
C S ( I + l )  = 0. 
GO TO 4 
D S ( I )  = IDII) - A ( I ) * D S ( I - l )   ) / D E N O M  
CS(I) = C ( I ) / D E N O M  
CONT  I .NUE 

I F  ( A R S ( D E N 0 M )  - 1 . E - 3 7 )  11113 

DO 5 I = l r M  
K = M - I + 1  
I F  ( A B S ( D S I K 1 )  .GT. 1 .E-37)  GO TO 6 
Z I K I  = 0. 
Z ( K )  = D S ( K )  
K L A S T  = K 
K L A S T  IS THE LAST  NON-ZERO L E L E M E N T  
K M 1  7 K - 1  
DO 9 J = l v K M l  
I = K - J  

Z(I) = DS(I) - CSII)*Z(I+l) 
GO TO 9 
,?(I) = ( D ( I + L )   - B ( I + l ) * Z I I + l )   - C ( I + l ) * Z ( I + Z )   ) / A ( I + l )  
CONTINUE 
RE  TURN 
END 

IF ( I T A G (  1 ) )  7 , 7 1 8  
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Description of Input  and  Output 

Input. - Input data are read into  the  program  in  namelist  form.  A  namelist  statement 
in  the  main  program  specifies a list of variables  under  the  namelist nam,e INPUT. Data 
cards  must  be  written in the  form  appropriate  for  namelist input for  the  computer  used. 
For  the  present  case,  the  computer  used is the IBM 7090/7040 direct-couple  system,  and 
the  input card  format is specified in reference 14. The first card of each  case  must  have 
a $ sign  in  the  second  column  followed  immediately  by  the  namelist  name.  Each  input 
variable is given  in  the  following  form:  variable  name = number,  separated by commas. 
A $ sign  must  follow  the  last  data  item  indicating  the  end of a namelist  data  group. In the 
program,  the  system of units  used  for  input/output is not restricted. In the input data 
cards  for  the  following  sample  case, all the  values of the  dimensioned  physical  variables 
a r e  given in cgs-centigrade  units: ALPHA and RNU in  square  centimeters  per  second, 
UINF in centimeters  per  second, XMAX, DELXO, and DELYO in  centimeters, and TMAX 
and  DELTO in seconds.  All  other  input  variables  are  dimensionless  quantities.  The  fol- 
lowing listing  shows  an  input  data  card of a sample  case: 

Output. - The  lattice  positions in the  y-direction  are  written out at  the  beginning of 
the  computation.  Values of THETA at these  y-positions  will  be  written out at  increasing 
values of x at  every N T V ~ ~  value of t. 

In some  instances,  one  may  wish  to  see  the  results in t e r m s  of T - T, instead of 
8 defined  presently as (T - T,)/(QW/Ak). Rather  than  multiplying  the  final  result at each 
point  by the  constant (Qw/Ak), it is more expedient  to  redefine 8 as T - T,. The  differ- 
ential  equation wi l l  remain  the  same.  The only alteration  required  in  the  program is the 
input aO/ay at y = O(PARTYO), which,  with the new definition of 8, has to  be  multiplied 
by (Qw/Ak). The  following  listing  shows  the  computer  output of a sample  case: 
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0. 
7.8890E-05 
2 - 8 3 5 l E - 0 4  
8.1425E-04 

4.9500E-06 
9.1729E-05 
3.1681E-04 
9.0062E-04 
2.4149E-03 
6.3424E-03 

4.2952E-02 
1.6530E-02 

1.1149E-01 
2.8924E-01 

VALUES OF Y AT  WHICH  THETA  ARE CALCULATeO 
1.03956-05 1.6384E-05 
1.0585E-04 1.2139E-04 
3.5344E-04 3.9374E-04 
9.9563E-04 1.1001E-03 
2.6613E-03 2.93248-03 
6.9816E-03 7-68478-03 

4-7252E-02 5.1983E-02 
I.BIB7E-02 2 .00 l lE-02  

3.1817E-01 3.5OOOE-01 
1.2264E-01 1.3491E-01 

2.2973%-05 
1.38488-04 

3.23061-03 
1.215IE-03 

8.45828-03 
2.2017E-02 
5.7186E-02 

3.8500E-01 
1.48408-01 

4.3806e-04 

3IO22OE-05 
1.57278-04 
4.8682E-04 

3.5586E-03 
1.3416E-03 

9.30896-03 
2.4224E-02 
6.2909E-02 

4.235lE-01 
1.6325E-01 

3.8192E-05 
1.77956-04 
5.4045E-04 
1.4807E-03 
3.9194E-03 
1.0245E-02 

6.9205E-02 
2.665lE-02 

4.6586E-01 
1.7958E-01 

4.6961E-05 

5.9944E-04 
2.0070E-04 

1.6337E-03 
4.3163E-03 

2.932lE-02 
1;1274E-02 

7.6131E-02 

5-1245E-01 
1.9754E-01 

5.6608E-05 

6.6434E-04 
2.2572E-04 

1.8020E-03 
4.7529E-03 
1.2407E-02 
3.2258E-02 
8.3749E-02 
2.1730E-01 
5-6370E-01 

6.7218E-05 
2.5324E-04 
7.3572E-04 
1.9872E-03 
5-2331E-03 

3.5489E-02 
1.36521-02 

9.2128E-02 
2.3904E-01 
6.2008E-01 

2.1908E-03 
5.7613E-03 

3-9043E-02 
1.5022E-02 

2.6294E-01 
1.0135E-01 

AT T I M E  = 0.00004 3EC. 

lHETA AT VARIOUS VERTlClL  POINTS INONUNLFORMLI OISTRIBUTEO) 
4.53988-05 3.8852E-05 3-2134E-05 2.54kbE-05 1-9061E-05 
3.3636E-07 9.1274E-08 l .9312E-08 3.1335E-09 3.8546E-10 
3.3533E-I8 5.7155E-20 7.4677E-22 7.534LE-24 5.9156E-26 

5.7472E-05  5.163%-05 
AT X = 0.26123E-06 CM 

2 .3762~-06   9 .n811~-07  
5.0716E-I5  1.4985E-I6 
2 -1715E-35 

6.7824E-05 

2.4816E-12 
8.4738E-06 

1-7783E-30 

6.2874E-05 
4.81648-06 

6.9267E-33 
1.2941E-13 

3.5701E-11 
1.3298E-05 

3.6453E-28 

AT X = 0.25904E-05 C M  
1.3181E-04  1.2588E-04 
4.9336E-05  3.9569E-05 
1.0256E-07  2.3633E-08 
l.OlO8E-18 2.2953E-20 

THETA A T  V A R I O U S  VERTLCAL POINTS  INONUNIFORMLY  OISTRIBUTEOI 
1.1943E-04 l .1242E-04 1.0484E-04 9.6685E-05 8.7985E-05 
3.0316E-05 2.1940E-05 1.4789E-05 9.129'4-Ob 5.0592E-06 
4.3260E-09 6.23636-10 7 .0489E- t l  6.2425E-12 4.3412E-13 
4.2498E-22 b.4466E-24 8.0379E-26 8.2548E-28 6.9909E-30 

6-9175E-05 
1.4218E-04 

I -O263E-06 
1.0369E-I5 
2.8168E-34 

1.3723E-04 
5.9292E-05 
3.5837E-07 
3.6083E-17 
1.3216E-36 

7.8785E-05 
2.4611E-06 
2.3816E-14 
4.885lE-32 

2.3536E-04  2.2950E-04 
4 1  X = 0.23357E-04 C M  

2.6524E-05  1.8031E-05 
1-5082E-04  1.3895E-04 

3.1585E-09  5.4454E-10 
1.8969E-20  5.127lE-22 

THETA A T  V d R l O U S  VERTlCAL  POINTS INONUNLFORMLY OlSTRlBUTEOl 
2.2313E-04 2.lb23E-04 2.0876E-04 2.0070E-04 1.9201E-04 
1.2653E-04 1.1364E-04 1.004lE-04 8.6996E-05 7.3624E-05 
1.1367E-05 6.5478E-06 3.392hE-06 1.5555E-06 b.214lE-07 
7.8344E-11 9.3967E-12 9.3881E-13 7.805lE-14 5.3939E-15 
I.1464E-23 2.1200E-25 3.2412E-27 4.0961E-29 4.2784E-31 

2.4571E-04 
1.727lE-04 
4-8118E-05 
6.2254E-08 

2.632lE-35 
1.4728E-17 

2.4076E-04 

3.6655E-05 
1.6209E-04 

1.5313E-08 
5.8084E-I9 
1.5045E-37 

b.055BE-05 
1.8269E-04 

2.1335E-07 

3.6929E-33 
3.0949E-I6 

2.6550E-04  2.5968E-04 
A T  X = 0.20852E-03 CM 

6.1552E-05  5.0764E-05 
1.8349E-04  1.7225E-04 

2.2492E-I1  3.2678E-I2 
1.9429E-06  1.0309E-06 

2.4636E-23  5.5150E-25 

4 1  X = O.18594E-02 C M  
2 . 6 5 6 0 E - 0 4  2.5978E-04 
1.8361E-04  1.723AE-04 
6.1806E-05  5.1044E-05 
2.2153E-06 1.2412E-Ob 
1.6107E-IO  3.4458E-11 
3.4732E-20  L.4926E-21 
1.7677E-37 

THE14 4 1  VARIOUS VERTICAL POINT3 INUNUNLFORMLY O I S T R I B U T E O )  
2.5338E-04 2.4658E-04 2.3926E-04 2.3138E-04 2.2295E-04 
1.6054E-04 1 .4840E-04  1.3594E-04 1.232bE-04 1.1047E-04 
4.0897E-05 3.2089E-05 2.4437E-05 1.7992E-05 1.2748E-05 
5.0303E-07 2.2341E-01 8.9338E-08 3.1816E-08 9.9035E-09 
3.9873E-13 4.0673E-I4 3.4558E-15 2.4384E-I6 1.4255E-17 
L.Ol70E-26 1.544bE-28 1.9319E-30 1.9899E-32 1.6875E-34 

THE14 4 1  VARIOUS VERTICPL  POINTS INONUNIFORMLY OISTRIBUTEOI 
2.5349E-04 2.4669E-04 2-3936E-04 2.3149E-04 2.2306E-04 
1.6067E-04 1.4854E-04 1.3609E-04 1.2342E-04 1.lOb5E-04 
4.1206E-05 3.2426E-OS 2.4800E-05 1.8374E-05 1.3140E-05 
6.5169.6-07 3.1867E-07 1.4417E-07 5.992lE-08 2.2717E-OB 
6.4318E-12 1.0405E-12 1.4498E-13 1 . 1 3 0 0 E - I 4  1.7587E-15 
5.352bE-23 1.5986E-24 3.9693E-26 8.1816E-28 1.3982E-29 

2-7582E-04 
2.0436E-04 
8.5220E-05 
5.579lE-06 
6.4575E-IO 
2.7525E-20 

2.1087E-04 

7.3097E-05 
1.9420E-04 

3.4010E-06 

9.0b91E-22 
1-3072E-10 

2.1394E-04 
9.7738E-05 
8.6459E-06 
2.7319E-09 
6.8925E-19 
1.103lE-36 

2.7593E-04 
2.0447E-04 
8.5429E-05 

2.4052E-09 
5.9450E-Ob 

1.1037E-17 
2.3183E-33 

2.7098E-04 
1.9432E-04 

3.7275E-Ob 
7.3327E-05 

2.1406E-04 
9.792BE-05 
9.0336E-Ob 
7.7978E-09 
1 . 5 l b l E - 1 6  
1 - 9 7 9 . 2 - 3 1  

b.6158E-LO 
6.7603E-19 
2.2451E-35 

THE14 NO LONGER CH4NGES WITH X 4 1  X GREATER  THAN 0.55523E-02 C M  

THETA NO  LONGER CHANGES WITH X 4 1  X GREATER THAN 0.66628E-02 CM 

4 1  T I M E  = 0.00000 SEC. 

THE14 AT VhRIOUS  VERTICAL  POINTS  INONUNIFORMLY OlSTRlBUTEDl 
5.5708E-05  4.0984E-05  4.1954E-05  3.47b7E-05  2.7633E-05 

4.0019E-16  9.5745E-18  1.7254E-19 2 . 3 5 1 4 E - 2 1  2.43i9E-23 
1.2174E-Ob  4.3672E-07 l.Zb23E-07  2.8121E-08  5.0486E-09 

I .  3040E-37 

b.7915E-05 b.2035E-05 
5.5188E-06 2.8087E-Ob 
2.9521E-13 1 .2558E-14  
2.02OLE-32 5.8153E-35 

IT x = 0 . 2 6 1 2 3 ~ - 0 6  cw 
~ . O A Z ~ E - O ~  
b.7627E-IO 
1.92b2E-25 

7.8279E-05 
1.4677E-05 
b.8393E-11 
1.1712E-27 

7.3329E-05 
9.4959E-06 
5.1929E-12 
5.5096E-30 

THE14 4 1  VARIOUS VERIICAL  POINTS INONUNIFORMLY D l S l R l 8 U T E O l  
1.4311E-04 1.3660E-04 1.2888E-04 1.205lE-04 I . l l 5 l E - 0 4  
4.7617E-05 3.7018E-05 2.1289E-05 1.8829E-05 1.1968E-05 
4.2267E-08 8.2162E-09 l .2503E-09 1.4772E-IO 1.3493E-11 
3.Rb42E-20 6.3218E-22 8.3095E-24 8.839OE-26 1.6573E-28 

1.56llE-04 1.5022E-04 
A T  X = 0.25904E-05 C M  

b.9895E-05  5.8692E-05 
5.6652E-07  1.7235E-07 
7.2591E-17 1.8830E-18 
5.9151E-37 

6.87bOE-06 
l .OI87E-04 

9.51b5E-13 
5.4302E-30 

9. l b58E-05 
1.6655E-04 

3.4935E-06 
5.1908E-14 
3.1638E-32 

8.0952E-05 
1.6160E-04 

2.1976E-15 
1.5326E-Ob 

1.5176E-34 

THETA A T  VARIOUS VERTICAL  POINTS  INONUNIFORMLY  OlSTRl8UTEOl 
3.012lE-04 2.9409E-04 2.8632E-04 2.7783E-04 2.6859E-04 

2.9682E-05 1.920lE-05 1.13(lbE-05 6-0504E-06 2.8438E-06 
1.9472E-04 1.7915E-04 1.627lE-04 1.4554E-04 1.218OE-04 

9.0484E-10 1.1982E-10 1.2911E-11 1.1505E-12 8.3818E-I4 
2.22ROE-22 4.256bE-24 6.7207E-26 8.78385E-28 9.4528E-30 

A T  X = 0.23357E-04 CM 
3 . 1 3 6 5 E - 0 4  3.0771E-04 
2.2307E-04  2.0937E-04 
5.7648E-05  4.2632E-05 
2.8171E-08  5.5818E-09 
3.4471E-19  9.6388E-21 

2.5054E-04 
1.0975E-04 

5.0299E-15 
1.1503E-06 

8.4198E-32 

3.2403E-04 
2.4763E-04 
9.1740E-05 
4.0175E-07 
2 - 4 9 0 9 E - I 6  
6.1962E-34 

3.1908E-04 
2.35BlE-04 
7.4202E-05 
1. 1686E-07 

3.7186E-36 
l .Ol92E-17 

4.1660E-04 4.107lE-04 
3.2927E-04 3.1637E-04 
1.6435E-04 1.4504E-04 
1.4360E-05 8.7770E-Ob 
7.5852E-10 1.2930E-10 
4.1588E-21 1.0911E-22 

A T  x - 0 . 2 0 8 5 2 ~ - 0 3  C M  THE14 A T  VARIOUS VERTICAL  POINTS INONUNIFORMLY OISTRIBUTEOI 
4 . 0 4 3 0 E - 0 4  3.9732E-04 3.8973E-04 3.8150E-04 3.7259E-04 
3.0259E-04 2.8794E-04 2.72GLE-04 2.5604E-04 2.3889E-04 
1.2590E-04 1.0722E-04 R.9316E-05 1.2502E-05 5.7lOOE-05 
4.9556E-06 2.5545E-06 1.1879E-Ob 4.9262E-07 1.8016E-07 
1.8529E-11 2.2214E-12 2.219lE-13 1.8413E-14 1.2656E-I5 
2.3560E-24 4.L857E-26 6.1180E-28 7.3567E-30 7.2777E-32 

4.2695E-04 

2.0254E-04 
3.5253E-04 

3.1632E-05 

3.3740E-I8 
1.5885E-08 

3.9390E-36 

4.2200E-04 
3.4132E-04 

2.1942E-05 
1.8359E-04 

3.16246-09 
1 .305 lE- I9  

3.6294E-04 
2.2102E-04 
4.3399E-05 

7.1923E-17 
5.7522E-08 

5.9233E-34 

THETA A T  V4RlOUS VERTLCAL POINTS  INONUNIFORMLY O I S T R I B U T E O I  
4.0595~-04  3 .9897~-04  3 .9140~-04 3.8318~-04 3 . 7 4 2 7 ~ - 0 4  
3.0447E-04  2.8988E-04  2.7443E-04  2.5816E-04  2.4112E-04 
1.2935E-04  1.1095E-04  9.333lE-05  7.6785E-05  6.1600E-05 
7.1622E-06  4.6310E-06  2.5887E-06 1.3461E-06 6.4627E-07 
9.3682E-LO  2.0446E-10  3.8620E-11  6.2704E-I2  8.6961E-I3 
1.7129E-19  6.9432E-21  2.3331E-22  6.4876E-24  1.4908E-25 
3.6797E-37 

4.1825E-04  4.1236E-04 
AT X = 0.18594E-02 CM 

3.3106E-04 3.182OE-04 
1.6729E-04 1.4822E-04 
1.8415E-05 1.2272E-05 
1.3139E-08 3.7426E-09 
5.9904E-17 3.5103E-18 
6.0559E-33 5.2891E-35 

3.6464E-04 
2.2339E-04 
4.8025E-05 
2.8420E-07 

2.82796-27 
1.0243E-13 

4.2860E-04 
3.5426E-04 
2.0507E-04 
3.6249E-05 
1- 1354E-07 
1-0196E-14 
4.4239E-29 

4.2365E-04 
3.430lE-04 

2.6376E-05 
1.8631E-04 

4.0864E-08 
8.5373E-I6 
5.7032E-31 
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