General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
FORMATION OF IONIZED EXCITED STATES FROM THE LOSS OF THE METASTABLE ELECTRON IN THE NOBLE GAS ATOMS

S.H. Koozekanani

The Ohio State University
ElectroScience Laboratory
(formerly Antenna Laboratory)
Department of Electrical Engineering
Columbus, Ohio 43212

TECHNICAL REPORT 1093-39
19 April 1968

Grant Number NsG-74-60

National Aeronautics and Space Administration
Office of Grants and Research Contracts
Washington, D.C. 20546

N69-26663
REPORT 1093-39

REPORT
by
The Ohio State University ElectroScience Laboratory
(Formerly Antenna Laboratory)
Columbus, Ohio 43212

Sponsor National Aeronautics and Space Administration
Office of Grants and Research Contracts
Washington, D.C. 20546

Grant Number NsG-74-60

Investigation of Receiver Techniques and Detectors for
Use at Millimeter and Submillimeter
Wave Lengths

Subject of Report Formation of I onized Excited States from
the Loss of the Metastable Electron in
the Noble Gas Atoms

Submitted by S.H. Koozekanani
ElectroScience Laboratory
Department of Electrical Engineering

Date 19 April 1968
ABSTRACT

It is shown that when the metastable electron of a noble gas atom is removed by a fast collision it is quite possible for the atom to be ionized and excited at the same time. Excitation cross sections for the processes \(np^5 - (n+1)s - np^4 - mf'' \) or \(np^5 - (n+1)s - np^4 - mf'' \) have been calculated in terms of the cross sections for removing the electrons.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. THE METASTABLE ATOM MINUS s-ELECTRON</td>
<td>3</td>
</tr>
<tr>
<td>III. THE METASTABLE ATOM MINUS p-ELECTRON</td>
<td>5</td>
</tr>
<tr>
<td>IV. CONCLUSIONS</td>
<td>6</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>9</td>
</tr>
</tbody>
</table>
FORMATION OF IONIZED EXCITED STATES FROM
THE LOSS OF THE METASTABLE ELECTRON
IN THE NOBLE GAS ATOMS

I. INTRODUCTION

In some discharge situations, we can think that the atom is first excited to a metastable state and then, through collision with another electron, the atom loses its metastable electron and becomes ionized. This situation is to some extent favored over the direct one step ionization. For example, for neon the ionization cross section threshold from the ground state is 21.5 eV, whereas from the metastable 2p53s state it is just about 5 eV. Since there are more electrons available at the lower energies than at the higher 21.5 eV range, it is more probable to ionize the atom from its long lived metastable state than from the ground state; however, this depends upon the population of the metastable states in the particular discharge.

The atom in its metastable state has quite a large cross sectional area since the excited electron has a classical orbit which is extended away from the center of the atom. For example $r_{4s}^{av.}$ for the 4s electron of ArI 3p54s is 14.67 A.U., whereas the corresponding 3p electron has an $r_{3p}^{av.} = 4.2$ A.U. It can be assumed that it is much easier to remove the 4s metastable electron than one of the 3p6 electrons of Ar, since it offers a bigger cross section and is more loosely bound.

The question which one can now ask is what happens when the metastable electron of a noble gas atom is removed in a very short time compared to the relaxation time of the ion. Is it possible for the atom to go to an ionized excited state by just losing its metastable electron, or in equation form, is it possible to have, Fig. 1

\[\text{(1)} \quad np^5 - (n+1)s \longrightarrow \frac{(n+1)s}{np^4 - ml'} \]

where l' is the angular quantum number of the excited electron and m is its principle quantum number? Moreover, for the sake of the argument, what happens if an np electron is lost in a very short time, i.e., Fig. 2

\[\text{(2)} \quad np^5 - (n+1)s \longrightarrow \frac{np}{np^4 - ml} \]
FIGURE 1

Here the metastable electron of a noble gas atom is lost through collision and the atom becomes simultaneously ionized and excited, i.e.,

\[p^5 - ns \rightarrow p^4 - mp. \]

FIGURE 2

Here one of the ground state valence electrons is lost through collision and the atom becomes ionized and excited, i.e.,

\[p^5 - ns \rightarrow p^4 - ms. \]
In Sections II and III of this work, we shall calculate probabilities for these processes in terms of the cross sections for removing these electrons.

II. THE METASTABLE ATOM MINUS s-ELECTRON

When the metastable noble gas atom with configuration \(np^s \) - \((n+1)s\) loses its \(s\)-electrons, it is left in a \(np^s\) state. To write this in a more formal way, we have,

\[
|t^s L'S'J', nl', K, s, JM> \rightarrow |t^s L'S'J'M'>
\]

For the two metastable states of noble gas atoms we have \(J = 2 \), \(K = 3/2 \), \(J' = 3/2 \) and \(J = 0 \), \(K = 1/2 \), \(J = 1/2 \) with \(t = 0 \) and \(t = t_0 = 1 \).

To calculate the cross section for the process of Eq. (3) when the \(s\)-electron is stripped away in a very short time, we expand the initial state which is the product of a metastable atom and a free electron in terms of the final states which are the products of an ejected electron, a free electron, and an ionized atomic state of the form \(np^s - nt' \). In other words,

\[
|t^s L'S'J', nl', K, s J_0 M_0; k_i> = \sum_{n, f} a_n |t^s L'S', n l'' s, LSJM; n, f k_i, E_{lf}>
\]

where, \(|k_i>\), \(|k_f>\) and \(|E_{lf}>\) are the wavefunctions of the initially free and the ejected electrons. From Eq. (2) we have,

\[
a_{mf} = <t^s L'S, m l'' s, LSJM; k_f| t^s L'S'J', l', K, s J M> = \sum_{M_k, m_s, m_{l'}} <t^s L'S, m l'' s, LSJM| t^s L'S'J'M'>
\]

\[
\left(\begin{array}{c} K \\ s \\ J_0 \\
M_k \\ m_s \\
J' \\
(2J_0 + 1)^{\frac{1}{2}}
\end{array}\right)
\left(\begin{array}{c} J' \\ l' \\
M' \\
(2K + 1)^{\frac{1}{2}}
\end{array}\right)
\left(\begin{array}{c} K \\ s \\
M \\
(-1)
\end{array}\right)
\left(\begin{array}{c} J \\ M' \\
-J' + l' + M_k
\end{array}\right)
\]

(3)
amf = (t^4 \sum S \left| t_{l_0}^{l} \right. L S) F_4(t_0, t) F_l(t_0, m l'') \delta(J, l') \delta(t_0, ml')

\sum_{M_k m_s m'} \left(\begin{pmatrix} K & S & J \\ M_k & m_s & -M \end{pmatrix} \right) \left(\begin{pmatrix} J & l' & K \\ M & m & -M_k \end{pmatrix} \right) \langle k_{if} | k_i \rangle |E l_f | n m l_f>

(2J_0 + 1)^{\frac{1}{2}} (2K + 1)^{\frac{1}{2}} (-1)^{K - S + M + J - l' + M_k}

where

\begin{equation}
F_4(t_0, t) = \left[\int_0^{\infty} R_{t_0}(r) R_t(r) r^2 dr \right]^4
\end{equation}

\begin{equation}
F(t_0, m l'') = \int_0^{\infty} R_{t_0}(r) R_{l''}(r) r^2 dr
\end{equation}

and we have assumed that the inner orbitals remain unchanged after ionization. \(R_d(r) \) is the radial portion of the single electron wave-function with \(t^4 \sum S \left| t^L \right. L S \rangle \) being the usual coefficient of fractional parentage.

The probability that the atom after losing its metastable electron is in an excited ionized state of the form \(t^4 \sum S, m l''s, L S J M \rangle \) is proportional to

\[\left| \sum_{l} a_{mf} \right|^2 \]

and the cross section for such a process would be

\begin{equation}
Q(E) = (t^4 \sum S \left| t^L \right. L S)^2 F_4(t_0, t) \frac{F_l}{F_l} (t_0, m l'') Q_s(E) \delta(t_0, m l'')
\end{equation}

\(Q_s(E) \) is the cross section for removing the s electron from the np^3 - (n + 1) s atomic configuration. This cross section has a threshold
of about 4 eV for argon and should be about an order of magnitude larger than the simple ionization cross section, since the metastable electron is farther removed from the center of the atom. Table I gives the product of \(F_4(t, t_0) F_1(t_0, \alpha t') \) for neon, argon and krypton and Table II gives the cross sections for some of the 3p^4 - 4p states of argon II in terms of \(Q_{46}(E) \).

III. THE METASTABLE ATOM MINUS \(p \)-ELECTRON

We assume the atomic configuration \(np^5 - (n+1)s \) loses one of its \(np \) electrons in a fast collision. The cross section for the process should be of the same order of magnitude as the ionization cross section from the \(np^5 \) state under the same conditions. Before removing the \(np \) electron we have to make a change of coupling from \(np^5 - (n+1)s \) to \(\left[\left[\begin{array}{c} np^4, (n+1)s \end{array} \right] - np > \right. \). This will enable us to know what states will be allowed to exist. The neutral noble gas atoms are given in the pair coupling scheme. We first write these states in terms of LS coupled states; here for the metastable states we notice that we have

\[
\left| \begin{array}{c} L_0 \quad J_0 \quad L_0' \quad J_0' \quad L_1 \quad S_1 \quad S_1' \quad J_1 \quad J_1' \quad (t_0^2 \quad L_1 S_1 n t's) \quad L_1 S_1 J_1, \quad (t_0^2) j_0, J M \end{array} \right>
\]

where the symbol \([x] = 2x + 1 \).

To find the cross section we expand the state \(\left| \begin{array}{c} L_0 S_1 J_1, \quad (L_0 S_1 \quad S_1) \quad L_1 S_1 J_1, \quad (L_0 S_1 \quad S_1 J_1) \end{array} \right> \), which is the product of an atomic state and a free electron \(k_i \) in terms of the final state which are a product of the excited ionic states
| $|\ell l \ell S, ml''s, L_k S_k J_k M_k\rangle$ and a free and an ejected electronic state. The new atomic states are exactly the states in the right-hand side of Eq. (10) minus the l, s electron. After some algebra similar to that of Section I we obtain for the cross section,

$$Q(|\ell l \ell S, ml''s, L_k S_k J_n M_k\rangle = Q_{\ell 0}(E) \left\{ \begin{array}{c} L \\
\ell \\
L \\
L \end{array} \right\} \left\{ \begin{array}{c} L_s \\
S \\nS \\
S \

We notice here that the possible excited states are of the form $p^4 - ms$, i.e., the excited electron should be an s-electron.

Table III gives the product of $F_4(t_0, t) F_4(nl', ml'')$ for argon, neon and krypton and Table IV gives the cross section for some of the states of $3p^4 - ms$ of argon. In the metastable states $J = 0$ and $J = 2$.

To obtain the radial wavefunctions, a Hartree Fock self-consistent computer program in the Slater approximation given by Herman and Skilman was used and a computer was used to obtain the radial integrals.

IV. CONCLUSIONS

One sees in these calculations that if the loosely bound metastable s-electron of NeI, ArI or KRI is suddenly removed, the remaining atom is perturbed enough to repel one of its np electrons to an excited shell with fairly good probability.
TABLE I

PRODUCT OF $F_{	ext{d}}(4_p, l) F_{1}{l}(4_p, nt''')$ FOR NEON, ARGON AND KRYPTON

<table>
<thead>
<tr>
<th>nt'''</th>
<th>2p</th>
<th>3p</th>
<th>4p</th>
<th>5p</th>
<th>6p</th>
<th>7p</th>
<th>8p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neon</td>
<td>0.995</td>
<td>-0.049</td>
<td>-0.0246</td>
<td>-0.0138</td>
<td>-0.009</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Argon</td>
<td>---</td>
<td>0.995</td>
<td>-0.047</td>
<td>-0.0233</td>
<td>-0.0134</td>
<td>-0.0087</td>
<td>---</td>
</tr>
<tr>
<td>Krypton</td>
<td>---</td>
<td>---</td>
<td>0.995</td>
<td>-0.048</td>
<td>-0.0232</td>
<td>-0.0132</td>
<td>-0.0085</td>
</tr>
</tbody>
</table>

TABLE II

EXCITATION CROSS SECTION FOR SOME OF THE ArII STATES WHEN $3p^5 - 4s$ METASTABLE STATE LOSES ITS s-ELECTRON IN A FAST COLLISION. ALL ArII $p^4 - 4p$ STATES WITH $J=3/2$ AND $J=1/2$ ARE MIXED. EQUATION (13) IN REFERENCE 5 WAS USED TO CALCULATE THE ABOVE RESULTS.

<table>
<thead>
<tr>
<th>Possible $3p^4 - 4p$ states</th>
<th>$Q(E)/Q_{4s}(E)$ for both the $3p^5 - 4s$ metastables with $J=2$ and $J=0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p^4 [3p] - 4p^2S_{1/2}$</td>
<td>0.109×10^{-3}</td>
</tr>
<tr>
<td>$p^4 [3p] - 4p^2P_{1/2}$</td>
<td>0.351×10^{-3}</td>
</tr>
<tr>
<td>$p^4 [3p] - 4p^2P_{3/2}$</td>
<td>0.406×10^{-3}</td>
</tr>
<tr>
<td>$p^4 [3p] - 4p^2D_{5/2}$</td>
<td>0.198×10^{-3}</td>
</tr>
<tr>
<td>$p^4 [3p] - 4p^4P_{3/2}$</td>
<td>0.002×10^{-3}</td>
</tr>
<tr>
<td>$p^4 [3p] - 4p^4P_{1/2}$</td>
<td>0.002×10^{-3}</td>
</tr>
<tr>
<td>$p^4 [3p] - 4p^4S_{5/4}$</td>
<td>0.006×10^{-3}</td>
</tr>
<tr>
<td>$p^4 [3p] - 4p^4P_{3/2}$</td>
<td>0.001×10^{-3}</td>
</tr>
<tr>
<td>$p^4 [1D] - 4p^2S_{1/2}$</td>
<td>1.444×10^{-3}</td>
</tr>
<tr>
<td>$p^4 [1D] - 4p^2P_{1/2}$</td>
<td>1.529×10^{-3}</td>
</tr>
<tr>
<td>$p^4 [1D] - 4p^2D_{5/2}$</td>
<td>0.002×10^{-3}</td>
</tr>
</tbody>
</table>
TABLE III
THE PRODUCT OF $F_n(b_0, l) F(n f', m f'')$ FOR NEON $n=3$, FOR ARGON $n=4$ AND FOR KRYPTON $n=5$

<table>
<thead>
<tr>
<th>$m f''$</th>
<th>$3s$</th>
<th>$4s$</th>
<th>$5s$</th>
<th>$6s$</th>
<th>$7s$</th>
<th>$8s$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neon</td>
<td>0.904</td>
<td>-0.439</td>
<td>-0.075</td>
<td>-0.044</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argon</td>
<td>---</td>
<td>0.920</td>
<td>-0.425</td>
<td>-0.068</td>
<td>-0.041</td>
<td></td>
</tr>
<tr>
<td>Krypton</td>
<td>---</td>
<td>---</td>
<td>-0.926</td>
<td>-0.416</td>
<td>-0.067</td>
<td>-0.040</td>
</tr>
</tbody>
</table>

TABLE IV
EXCITATION CROSS SECTION FOR THE 3p4-4s STATES OF ARGON II

<table>
<thead>
<tr>
<th>3p4-4s possible states</th>
<th>$\frac{Q(E)}{Q_{sp}(E)}$ from 4s$^2\frac{1}{2}\frac{1}{2}$</th>
<th>$\frac{Q(E)}{Q_{sp}(E)}$ from 4s$^2\frac{3}{2}\frac{3}{2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3p4 [1S] 4s2S$\frac{1}{2}$</td>
<td>0.012</td>
<td>0.012</td>
</tr>
<tr>
<td>3p4 [3P] 4s2P$\frac{1}{2}$</td>
<td>0.024</td>
<td>0.002</td>
</tr>
<tr>
<td>3p4 [3P] 4s2P$\frac{3}{2}$</td>
<td>0.040</td>
<td>0.010</td>
</tr>
<tr>
<td>3p4 [3P] 4s4P$\frac{1}{2}$</td>
<td>0.016</td>
<td>0.005</td>
</tr>
<tr>
<td>3p4 [3P] 4s4P$\frac{3}{2}$</td>
<td>0.080</td>
<td>0.027</td>
</tr>
<tr>
<td>3p4 [3P] 4s4P$\frac{5}{2}$</td>
<td>0.0</td>
<td>0.064</td>
</tr>
<tr>
<td>3p4 [1D] 4s2D$\frac{3}{2}$</td>
<td>0.060</td>
<td>0.006</td>
</tr>
<tr>
<td>3p4 [1D] 4s2D$\frac{1}{2}$</td>
<td>0.0</td>
<td>0.054</td>
</tr>
</tbody>
</table>
REFERENCES

