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ABSTRACT 

The cylindrical ejector nozzles were operated over a range of pressure ratios from 
approximately 1.0 (jet off) to 11. Results were obtained with both 15 0 and 100 boattail 
angles. The 15° configurations utilized different radii of curvature at the boattail junc-
ture with a cylindrical forebody. Subsonically, the jet caused large reductions in boat-
tail pressure drag whether the jet was under or overexpanded. Supersonically, however, 
reductions in boattail drag were obtained only if the jet was near full expansion or was 
underexpanded. A jet boundary simulator was effective in duplicating a fully expanded 
jet with an exit static-pressure ratio of one.
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SUMMARY 

An experimental investigation has been conducted to determine the effects of a cold 
jet on the boattail pressure drag of four isolated cylindrical ejector nozzles. The Mach 
number range was from 0.60 to 1.47. Nozzle pressure ratio was varied from approxi-
mately 1.0 (jet off) to 11. The effects of secondary airflow were also studied. The noz-
zle configurations included three with a 150 trailing-edge boattail angle and one with a 
100 boattail. The boattail juncture with the cylindrical portion of the nacelle for the 15° 
configurations was faired with different radii of curvature. In addition, jet effects were 
simulated by a cylinder positioned downstream of the nozzle exit for the 15° configura-
tions. 

At subsonic speeds, the jet caused large reductions in drag of the 15° boattails. 
This drag reduction was relatively insensitive to nozzle pressure ratio for values much 
less than the design value. However, boattail drag was further reduced as the jet pres-
sure ratio was increased to the design condition and beyond, thereby increasing the jet-
exit static-pressure ratio and hence the tendency for jet pluming to occur downstream of 
the nozzle exit. Supersonically, the boattail pressure drag was unaffected by the jet 
until it also approached full expansion. As it became underexpanded, the boattail drag 
was significantly reduced. The trends were basically the same for the 100 boattails 
except that boattail drag was affected to a lesser degree by the jet. 

In general, the effect of increasing secondary flow was to decrease boattail pres-
sure drag by increasing the jet-exit static-pressure ratio. Secondary flow was most 
effective in reducing boattail pressure drag coefficient at subsonic speeds when the nozzle 
was operating at or near full expansion or was underexpanded. A cylindrical jet bound-
ary simulator was effective in duplicating a fully expanded jet with an exit to local am-
bient static pressure ratio of one.



INTRODUCTION 

Current airbreathing propulsion systems designed for supersonic flight operate over 
a wide range of nozzle pressure ratios. To maintain efficient operation at all flight 
speeds, variations in the nozzle expansion ratio are required. At subsonic speeds, for 
example, the exit area of a variable flap divergent ejector will be smaller than that re-
quired at supersonic speeds. This reduction in exit area necessitates increased boat-
tailing of the a.fterbody. The resultant drag can be a significant portion of the net thrust 
of the propulsion system, particularly at subsonic cruise where the engine is at a re-
duced power setting. In addition, the jet issuing from the exit of the nozzle will have a 
pronounced effect on boattail drag (refs. 1 to 3). 

As part of a program in airbreathing propulsion at the Lewis Research Center, vari-
ous nozzle concepts, designed primarily for supersonic cruise application, are being 
studied at off-design conditions. Subsonic and transonic performance is being obtained 
with cold-flow models in isolated nacelles in the Lewis 8- by 6-Foot Supersonic Wind 
Tunnel. These results will be compared with the installed performance of the same noz-
zles obtained during flight tests using an F-106B aircraft. Nacelles that house an after-
burning J-85/13 turbojet engine as a gas generator will be installed under the large delta 
wing of the F-106B with the nozzles extending downstream of the trailing edge. Scale 
models of the F-106B are also being studied in the wind tunnel (ref. 4) to determine test-
ing procedures that provide correlation with flight data. 

An experimental investigation, therefore, was conducted in the Lewis 8- by 6-Foot 
Supersonic V nd Tunnel to determine the effects of a cold jet on the drag of four isolated 
ejector nozzle. The Mach number range was from 0. 60 to 1.47 and nozzle-pressure 
ratio was ''ed from approximately 1.0 (jet off) to 11. In addition, a cylinder was posi-
tioned downit.ream of the nozzle exit for the 150 configurations to determine the effective-
ness of a jet : oundary simulator in duplicating the effects of a jet on boattail pressure 
drag.

SYMBOLS 

A	 cross-sectional area 

CD	 pressure drag coefficient, D/qA 

C	 pressure coefficient, (p - p0)/q0 

D	 drag 

d	 diameter 

F	 nozzle gross thrust



F - D -	 nozzle efficiency 
F+F5 

F _D	 nozzle gross thrust coefficient 

M	 Mach number 

P	 total pressure 

secondary total pressure measured beneath primary nozzle actuating ring 

P	 secondary total pressure measured at station 7 

p	 static pressure 

q	 dynamic pressure 

r	 boattail juncture radius of curvature 

T	 total temperature 

w	 weight flow rate 

w/ 
- 1 i_.

s

	 corrected secondary weight flow ratio 
wpyTp 

v	 velocity 

x	 axial distance downstream of adapter-afterbody interface 

y	 distance measu-'ed along primary rake from primary airflow passage wall 

z

	

	 radial distance from model surface 

primary flap angle 

o	 boundary-layer Vickness 

momentum thickness 

Subscripts:

i ideal 

m model 

p primary air 

s secondary air 

10 local ambient 

0 boattail surface

3-



0	 free-stream 

7	 nozzle inlet station 

8	 nozzle throat station 

9	 nozzle exit station

APPARATUS AND PROCEDURE


Installation 

The nozzles were strut mounted in the test section of the Lewis 8- by 6-Foot Super-
sonic Wind Tunnel as shown in figure 1. The geometry of the model and its thrust-
measuring system are shown in figure 2. The main part of the model was a strut-
supported cylinder with an ogive nose. The model external shell was grounded and was 
supported from the tunnel ceiling by a hollow, vertical strut. The adapter portion of the 
model was attached to the air bottle, which was cantilevered by flow tubes from supply 
manifolds located outside the test section. Front and rear bearings supported the air 
bottle. Thus, the axial force acting on the floating part of the model, including both the 
adapter and nozzle sections, was transmitted to the load cell, located in the nose of the 
model shell. The nozzle performance presented herein does not include the friction drag 
measured on the floating portion of the model designated as the adapter section. 

The downstream end of the adapter section was arbitrarily selected as being 0. 75 
model diameter upstream of the nozzle throat (station 8). Friction drag on the adapter 
section was estimated using the semiempirical, flat-plate, local skin-friction coefficient 
(given in fig. 6 of ref. 5) as a function of free-stream Mach number and Reynolds number. 
The coefficient accounts for variations in boundary-layer thickness and flow profile with 
Reynolds number. Previous measurements of the boundary-layer characteristics at the 
aft end of this jet exit model in the 8- by 6-Foot Supersonic Wind Tunnel indicated that 
the profile and thickness were essentially the same as that computed for a flat plate of 
equal length. The strut wake appeared to affect only a localized region near the top of 
the model and resulted in a lower local free-stream velocity than measured on the side 
and bottom of the model. Therefore, the results of reference 5 were used without cor-
rection for three-dimensional flow effects or strut interference effects. The calculated 
friction drag of the adapter section was, therefore, added to the load cell reading to 
obtain the thrust-minus-drag of the nozzle section. 

A static calibration of the thrust-measuring system was obtained by applying a known 
force to the nozzle and measuring the output of the load cell. To minimize changes in 
the calibration due to variations in temperature (e.g., aerodynamic heating due to exter-
nal flow), the load cell was surrounded by a water-cooled jacket and was maintained at 
a constant temperature. 
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Primary and secondary air were provided by means of airflow supply lines which 
entered the model through the support strut. Secondary air in the central air bottle 
passed through crossover struts inside the model to simulate cooling flow for the primary 
nozzle and the internal surface of the outer shroud. A uniform primary flow was main-
tamed by using a choke plate and two straightening screens upstream of station 7. 

Primary weight flow rate was determined from static and total pressure and temper-
ature measurements at station 7 and a calibration constant for the flow system based on 
measurements for a standard ASME nozzle. Secondary weight flow rate was determined 
from a standard ASME flow-metering orifice located in the secondary air-supply line. 
The ambient pressure was constant for a given free-stream Mach number; thus, a vari-
ation in nozzle pressure ratio was obtained by varying the nozzle total pressure P7. 

Nozzle Geometry 

The four nozzle configurations that were tested are shown in figure 3. Three of these 
configurations had 150 boattail trailing-edge angles. Since the emphasis of the test was 
on the external drag rather than on internal performance, simple cylindrical ejectors 
were Used for the internal flow. The nozzle exit diameter was 5. 725 inches (14. 542 cm). 
The boattail juncture with the cylindrical portion of the nacelle for these 150 configura-
tions was smoothed with different radii of curvature. These radii were 0 (sharp edge), 
0. 5, and 2. 5 model diameters. In order to simulate another trailing-edge flap position, 
a 100 boattail angle with a radius of curvature of 0. 5 model diameter was also tested. 
The 100 nozzle was the cylindrical-ejector type, but it had an exit diameter of 6.636 
inches (16. 855 cm). In conjunction with the F- 106B flight tests at Lewis Research 
Center, a General Electric J_85/13 primary nozzle was simulated for this test. Since 
the primary nozzle of the J-85/13 engine has a variable throat, two different throat areas 
were used with each of the four afterbody configurations in this test. The smaller throat 
area corresponded to the minimum reheat setting (Primary I) while the' larger area sim-
ulated maximum reheat (Primary II). The actuating mechanism for varying primary 
throat area was simulated by a ring containing 12 slots. Secondary air was forced to 
flow beneath this ring by means of a deflector. 

In addition to these configurations, the nozzles with 15° boattails were tested in the 
presence of a cylindrical section extending from the nozzle exit, (station 9) as shown in 
figure 3(e). The purpose of the cylinder was to approximate the local flow field that 
would exist if a jet were fully expanded with an exit static-pressure ratio p9/p1 0 of 1. 0. 
The jet boundary simulator diameter was equal to the nozzle base diameter.
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Instrumentation 

Afterbody pressure instrumentation for atypical configuration is shown in figure 4(a). 
It was assumed that the flow field over the afterbody was symmetric about the strut cen-
terline. Thus, with the exception of one row of instrumentation, all boattail static-
pressure orifices were located on one side of the afterbody. Limitations in space neces- 
sitated one of the rows being at 3000 instead of 600. 

Boattail static-pressure orifices were located at the centroids of equal projected 
areas and the pressure-drag coefficient was computed using the method described in 
reference 6. Extra pressure taps were located just downstream of the boattail juncture 
of the 150 (r/dm = 0) configuration to help define boattail pressure distributions. These 
pressures were located at 00 , 900, and 1800 and were not used for pressure-drag deter-
mination. In addition, three rows of static-pressure orifices were located on the cylin- 
drical portion of each nozzle at 00, 90°, and 1800 . The axial location of each afterbody 
orifice was determined by the distance x downstream of the adapter-nozzle interface. 
Table I gives the position of each orifice as well as a nondimensional position coordinate 

x/dm. Nozzle exit pressure p9 was assumed to be the average of five pressures located 
in the exit plane (station 9). Local ambient pressure P1 0 was assumed to be the aver-
age of the six pressures located at the trailing edge of the boattail and in the same axial 
plane as orifice 13. 

Details of temperature and pressure instrumentation at station 7 are shown in fig-
ure 4(b). Pressures in the primary airflow passage were measured by two static-
pressure orifices and a total-pressure rake containing 11 tubes. Primary nozzle total 
pressure was obtained from an integrated average of these pressures. The accompany-
ing table lists pressure orifice spacing as distance y from the inner surface of the pas-
sage. Secondary-air total pressure P was measured using four total-pressure tubes. 
Primary- and secondary-air total temperatures were measured by copper -con stantan 
thermocouples. 

Additional secondary-air total-pressure instrumentation is shown in figure 4(c). 
Secondary-air total pressure P 5 was assumed to be the average of four pressures 
recorded beneath the actuating ring of the simulated J-85/13 primary nozzle. The four 
tubes were located at 0°, 90°, 1800 , and 2700 circumferentially. Pumping characteristics 
were determined using this total pressure. Details of boundary-layer rake instrumenta-
tion are presented in figure 4(d). The three rakes were located at 0 0, 900, and 1800 cir-
cumferentially. The survey plane was located approximately at the adapter-nozzle inter-
face. The total pressures from the rakes were used with local static pressures to com-
pare values of V/V 0 using the Rayleigh-pitot equation. 
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RESULTS AND DISCUSSION 


Jet Effects 

Figure 5 presents the boundary-layer characteristics of the basic model used in this 
study. At all Mach numbers, the boundary layer at 00 was noticeably affected by the wake 
of the support strut. The ratio of momentum thickness to model diameter ö **/dm is 
also listed for the boundary-layer rake located at 1800. Momentum thickness was based 
on the local conditions at the outermost tube of the rake and was found to be constant 
between M 0 =0.70and M0 = 1.19. 

A typical boundary-layer profile is shown in figure 6 for the rake at 180 0 and 
M0 = 0. 90. This profile is compared with a 1/7 profile, which is denoted by the solid 
line.

The effect of nozzle jet flow on boattail pressure-drag coefficient is shown in figure 7. 
Results for the 150 boattail configurations are presented in figures 7(a) to 7(f) and the 
10° boattail configurations are presented in figures 7(g) and 7(h). The range of nozzle 
pressure ratios was chosen to encompass the typical operating points of turbojet engines 
designed for supersonic flight. All pressure ratios were obtained with a nominal 3-
percent corrected secondary flow, and corrected secondary flow was varied from 0 to 
15 percent at typical conditions to study its effect. 

Subsonically, even at pressure ratios much less than the design value, large reduc-
tions in boattail drag were obtained for the 150 boattails. This drag reduction was rela-
tively insensitive to nozzle pressure ratio for values much less than the design value. 
However, boattail drag was further reduced as the jet pressure ratio was increased to 
the design condition and beyond. Supersonically, the boattail pressure drag was unaf-
fected by the jet until it approached full expansion. As it became underexpanded, the 
boattail drag was significantly reduced. The presence of a jet was also favorable for the 
100 boattails at subsonic speeds since, in general, boattail pressure-drag coefficient 
was decreased by turning the jet on. Supersonically, however, for the 100 boattails with 
both primaries I and II, the presence of a jet was not as effective in reducing boattail 
pressure-drag coefficient because the exit area A 9 was larger and the jet required a 
larger pressure ratio to be fully expanded. 

The effect of secondary flow on boattail pressure-drag coefficient is also presented 
in figure 7. Secondary weight flow was varied from 0 to 15 percent of primary weight 
flow. The listed values of corrected secondary weight flow ratio are nominal values. 

In general, the effect of increasing secondary flow was to decrease boattail pressure-
drag coefficient. However, for the 15° boattail (r/dm = 0) with primary I (A 9/A8 = 1. 70) 
at M0 = 0. 6 1 1. 201 1.27, and 1. 47, increasing secondary flow initially increased and 
then decreased boattail pressure-drag coefficient. This could have also been the case 
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for the other 150 boattails with primary I at M0 = 1.20., 1. 27, and 1.47 but there were 
insufficient data at the pertinent pressure ratios to substantiate this. For the 100 boat-
tails, increasing secondary flow to 3 percent of primary weight flow increased boattail 
pressure-drag coefficient. Further increases in secondary weight flow decreased the 
boattail pressure-drag coefficient. The exception to the above trends for the 10 0 boattails 
occurred with primary I at M 0 = 0. 6 and 0. 7 where the effects of increasing secondary 
flow were inconclusive. Secondary flow was most effective in reducing boattail pressure-
drag coefficient at subsonic speeds when the nozzle was operating at or near full expan-
sion or was underexpanded. This reduction in drag was due to an increase in p 9/1 0 
caused by increasing secondary flow. 

The effect of nozzle pressure ratio on afterbody pressure distributions is presented 
in figure 8 for all configurations tested. With the jet on, a nominal value of corrected 
secondary weight flow ratio of 0. 03 was selected. At subsonic speeds, the principal 
effect of the jet was to raise the static-pressure level over the entire boattail surface. 
At the transonic and supersonic Mach numbers, the major jet effects were confined to the 
aft portion of the boattail. At these speeds an underexpanded jet forced the trailing com-
pression shock forward on the boattail, reducing pressure drag. This effect was most 
noticeable for the nozzles with small area ratios (primary II) since these configurations 
were underexpanded at these higher speeds and pressure ratios; The major effect of 
increasing the radius ratio r/dm was to reduce the initial overexpansion on the boattail 
and, thus, reduce boattail pressure drag. 

The effect of nozzle exit static-pressure ratio on boattail pressure drag coefficient 
is shown in figure 9. Corrected secondary weight flow ratio was varied from 0 to 0. 15. 
With no jet flow, the exit static-pressure ratio was near one. As the jet was turned on 
and its pressure ratio increased toward the design point, the exit static-pressure ratio 
initially decreased. However, in some cases (in particular, for the 100 boattail with 
primary I), the jet did not attach itself to the shroud until higher pressure ratios were 
attained. In these instances, p9/p0 remained at a value of one until attachment was 
achieved and then decreased as pressure ratio was increased. In this highly overex-
panded flow regime, a system of oblique shocks would be present in the cylindrical por-
tion of the nozzle. As pressure ratio was increased, this system of shock waves would 
move downstream until it reached the nozzle exit. At this point, any further increases 
in pressure ratio causes the exit pressure ratio to increase; the shock system would 
then be located downstream of the nozzle exit. As the jet pressure ratio approached the 
fully expanded condition, the exit pressure ratio would approach one; as the jet becomes 
underexpanded at higher pressure ratios, the exit pressure ratio becomes greater than 
one. At overexpanded conditions, increasing secondary flow had no effect on p9/p10. 
However, at underexpanded and fully expanded conditions, increasing secondary flow 
increased p9/p10.

9



For the 15° boattails with primary II (A9/A8 = 1.22), boattail pressure drag coef-




ficient was predominantly a function of p9/p1 . These configurations were underexpanded 
0 > 1) over most of the range of test variables. For the 150 boattails with pri-

mary I (A9/A8 = 1.70) and the 100 boattails, however, p 9/p10 was not a very good param-
eter in correlating boattail pressure drag. Since these configurations were overexpanded 
over most of the range of test variables, a highly complex flow regime existed in the 
cylindrical portion of the nozzle. Thus, due to this complicated flow, no simple relation 
existed between	 0 and boattail pressure drag. 

In order to facilitate a comparison of the various configurations tested, a nozzle 
pressure ratio schedule was assumed for a typical turbojet engine designed for super-
sonic flight. This schedule is presented in figure 10. The acceleration schedule will be 
used both for configurations with primary I and for configurations with primary II. A sub-
sonic cruise point was chosen at a pressure ratio of 3.2 and M 0 = 0. 90. 

Using the assumed pressure ratio schedule, the effect of nozzle jet flow on boattail 
pressure-drag coefficient is shown in figure 11. The effect of a jet was generally favor-
able in that boattail pressure-drag coefficient was decreased in most cases. The only 
exception was the 100 boattail with primary I at Mach numbers from 1.00 to 1.47 where 
the jet effect was minor. For the very underexpanded conditions associated with the 150 
boattail (r/dm = 2. 5) with primary U, the boattail pressure-drag coefficient was decreased 
to the extent that a thrust was obtained on the boattail between M 0 = 0. 6 and 0. 96. In 
addition, for all configurations using primary U, which was underexpanded at most con-
ditions, boattail pressure-drag coefficient was lower than that for the configurations 
using primary I, which was operating at less than the design pressure ratio at many test 
conditions. For all configurations, a dip occurred in the drag coefficient curves between 
M0 = 1. 00 and 1. 20. This phenomenon resulted from the higher pressures caused by a 
terminal shock wave on the boattail. In free flight the flow field near the front of an ogive 
cylinder creates a terminal shock that moves aft rapidly with increasing flight velocity 
and disappears downstream at speeds slightly above Mach 1. However, in a tunnel instal-
lation, large models retard the aft movement of the terminal shock. Thus, the resultant 
boattail pressure drag can be influenced by tunnel installation effects particularly at 
speeds where the terminal shock is near the boattail. These phenomena are discussed 
more thoroughly in reference 7. 

The effect of r/dm on boattail pressure-drag coefficient for the assumed pressure 
ratio schedule is presented in figure 12. Corrected secondary weight flow ratio was 
maintained at a nominal value of 0. 03. Increasing boattail juncture radius of curvature 
decreased boattail pressure-drag coefficient over the entire range of test Mach numbers. 
In particular, for the 15° boattails with primary I (A9/A8 = 1. 70) at subsonic cruise, a 
reduction in boattail pressure-drag coefficient of 21 percent was achieved by increasing 
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r/dm from 0 to 0. 5. An additional reduction of 45 percent was obtained by increasing 
r/dm to 2.5.

Jet Boundary Simulator Effects 

A comparison of jet-boundary simulator data with jet-on and jet-off data is presented 
in figure 13 for the 15° boattail configurations. The jet-boundary simulator was a cylin-
der positioned downstream of the nozzle exit, and its diameter was equal to that of the 
nozzle exit. Jet-on data were obtained by interpolating values of boattail pressure-drag 
coefficient in figure 9 for p9/p1 o = 1 and (w5/w)y T5/T = 0. 03. When P9/Ps o = 1 
and P7/p0 is at or near the design point, the nozzle is fully expanded, and the jet will 
exit in an axial direction. The jet-boundary simulator was very effective in duplicating 
a jet with an exit static-pressure ratio of one when compared with jet-on (p 9/p10 = 1) 
data for the 15° configurations with primary II. These configurations were operating at 
nozzle pressure ratios at or near design. 

However, the jet-boundary simulator was not very effective when compared with 
jet on (p9/p10 = 1) data for the 150 configurations with primary I. This was particularly 
true at subsonic and transonic Mach numbers. The ineffectiveness of the simulator in 
this case was due to the nozzle not operating at or near the design nozzle-pressure ratio. 
The nozzle was highly overexpanded and sometimes separated. Thus, the jet was smaller 
than the jet-boundary simulator and a true comparison could not be made. For these 
configurations, the only good agreement with jet-on was between M 0 = 1.20 and 1. 47 
where the nozzle was operating at or near design. Thus, a jet-boundary simulator was 
effective in duplicating a fully expanded jet with an exit static-pressure ratio of one. 

Thrust and Pumping Characteristics 

The thrust and pumping characteristics of each of the configurations tested are pre-
sented in figures 14 to 19. For these figures, quiescent data are also presented. The 
effect of nozzle pressure ratio on nozzle efficiency and pumping characteristics is shown 
in figure 14. Pumping characteristics were determined using the secondary total pres-
sure measured beneath the primary nozzle actuating ring. Corrected secondary weight 
flow ratio was held constant at a nominal value of 0. 03. Also shown in the plots are cases 
in which the secondary air total pressure was less than free-stream static pressure, or 

<p0. In these cases,' the ideal gross thrust of the secondary air F 5 was set equal 
to zero. Subsonically, nozzle efficiency improved when nozzle pressure ratio was in-
creased until the design value was reached. At pressure ratios higher than design, the
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efficiency had a tendency to remain constant. Supersonically, efficiency generally im-
proved with increasing nozzle pressure ratio. 

The effect of secondary flow on nozzle efficiency and pumping characteristics is 
shown in figure 15. Corrected secondary weight flow ratio was varied from 0 to 0. 15. At 
nozzle pressure ratios much less than design, nozzle efficiency was improved by increas-
ing secondary flow. The peak in efficiency was reached at the high values of secondary 
flow. At pressure ratios just below design, small amounts of secondary flow were very 
effective in improving nozzle efficiency. Further increases in secondary flow had little 
effect on efficiency. Above the design pressure ratio, efficiency was generally insensi-
tive to changes in secondary flow. 

Figure 16 presents the effect of nozzle pressure ratio on the ratio of boattail pres-
sure drag to the ideal gross thrust of the primary and secondary. For all configurations 
tested, increasing nozzle-pressure ratio decreased the ratio of boattail pressure drag to 
the ideal thrust of the primary and secondary. This was due to a twofold effect. As the 
pressure ratio was increased, the ideal gross thrust also increased, thus reducing the 
ratio D/(F1 + Ff5). In addition, for most of the configurations, increasing pressure 
ratio reduced the boattail pressure drag, particularly at pressure ratios at or above 
design. 

The effect of boattail juncture radius of curvature on nozzle efficiency using the 
assumed pressure ratio schedule is shown in figure 17. Corrected secondary weight flow 
ratio was held constant at a nominal value of 0. 03. When using the acceleration schedule 
(open symbols in fig. 17), r/dm effects on nozzle efficiency were, in general, minor. 
This was because, at these particular pressure ratios, boattail pressure drag was such a 
small percentage of gross nozzle thrust that even large changes in r/dm had little effect 
on nozzle efficiency. The effects of r/dm became important only for the 150 boattail 
with r/dm = 2.5 above M 0 = 0.95 where nozzle efficiency was improved from 1 t 2 per-
cent. At subsonic cruise, nozzle efficiency was improved by 1. 5 percent when r/dm 
was increased from 0 to 0. 5. An additional improvement of 3.2 percent was obtained 
when r/dm was increased to 2. 5. 

Nozzle gross thrust coefficient, as influenced by nozzle pressure ratio and secondary 
flow, is presented in figures 18 and 19, respectively. 

Total pressure loss through the secondary flow passage as influenced by secondary 
flow variations is presented in figure 20. This loss was independent of free-stream Mach 
number and nozzle pressure ratio. 

SUMMARY OF RESULTS 

An experimental investigation has been conducted to determine the effects of a cold 
jet on the boattail pressure drag of four isolated ejector nozzles. The Mach number 
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range was from 0. 60 to 1. 47. Nozzle pressure ratio was varied from approximately 1. 0 
(jet off) to 11. The effects of secondary airflow were also studied. The nozzle config-
urations included three with a 15 0 trailing-edge boattail angle and one with a 100 trailing-
edge boattail angle. The boattail juncture with the cylindrical portion of the nacelle for 
the 150 configuration was faired with different radii of curvature. In addition, jet effects 
were simulated with a cylinder positioned downstream of the nozzle exit for the 150 con-
figurations. The following results were obtained: 

1. Subsonically, even at pressure ratios much less than the design value, large 
reductions in boattail drag were obtained for the 150 boattails. This drag reduction was 
relatively insensitive to nozzle pressure ratio for values much less than the design value. 
However, boattail drag was further reduced as the jet pressure ratio was increased to 
the design condition and beyond. Supersonically, the boattail pressure drag was unaffect-
ed by the jet until it approached full expansion. As it became underexpanded, the boat-
tail drag was significantly reduced. The trends were basically the same for the 10° boat- 
tails with larger exit areas except that the boattail drag was affected to a lesser degree 
by the jet. 

2. For a given nozzle area ratio, boattail pressure drag coefficient is predominantly 
a function of exit static-pressure ratio when the nozzle is fully expanded or 'is highly 
underexpanded and pluming effects are important. However, in regions where the nozzle 
is overexpanded, no simple relation exists between exit pressure ratio and boattail pres-
sure drag because of jet overexpansion and separation effects. 

3. In general, the effect of increasing secondary flow was to decrease boattail pres-
sure drag. Secondary flow was most effective in reducing boattail pressure drag coef-
ficient at subsonic speeds where the nozzle was operating at or near full expansion or 
was underexpanded. This reduction in drag was due to an increase in jet-exit static-
pressure ratio caused by increasing secondary flow. 

4. A jet boundary simulator was found to be effective in duplicating a fully expanded 
jet with an exit to local ambient static-pressure ratio of one., 

5. When operating at a typical turbojet pressure ratio schedule, increasing boattail 
juncture radius of curvature decreased boattail pressure-drag coefficient over the entire 
range of test Mach numbers. For example, at subsonic cruise a reduction in boattail 
pressure drag coefficient of 21 percent was achieved by increasing the radius to model 
diameter ratio from 0 to 0. 5 for the 15° boattails with primary I (nozzle exit to throat 
area ratio, 1.70). An additional reduction of 45 percent was obtained by increasing the 
radius to model diameter ratio to 2. 5. 

Lewis Research Center, 
National Aeronautics and Space Administration, 


Cleveland, Ohio, December 31, 1968, 
126-15-02-10-22.
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Figure 1. - Model installed in 8- by 6-Foot Supersonic Wind Tunnel.
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Figure 18. - Concluded.
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Figure 19. - Effect of corrected secondary weight flow ratio on nozzle gross thrust coefficient. 
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(e) Boattail angle,	 15°; radius ratio,	 2.5; pri 
mary I; nozzle exit to throat area ratio, 
1.70; design pressure ratio, 7.96. 
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Figure 19. - Concluded.

85 



1.02 

1.00 

0

.98 

a)

.96 

Ln 

-o 
C 
0 
U

.92 

on

angle,

 
SIN OZONE	 0 15 1 IUlIRRU10 1 

15	 if •AIIL_ iauuui••uui •u•iuuuiiuu EMEMMUMMEMENEOM No MEEMMONMEEM&M ME MEMEMERROMMEM •U•UUUUiiURU• 
MEMEMMEMEMEMEMEM 

' 0	 .02	 .04	 .06	 .08	 .10	 .12	 .14	 .16


Corrected secondary weight flow ratio, w5/w1Ji'Ti 

Figure 20. - Total-pressure loss through secondary-flow passage. 
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