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A COMPARISON OF THREE SETS OF HIGHER ORDER

ADIABATIC PLASMA EQUATIONS

Gerald E. Wilson

Laboratory for Theoretical Studies

ABSTRACT

A comparison is made among three methods of obtaining highly accurate

approximate expressions for the average motion of plasmas in slowly varying

electric and magnetic fields. It is shown that no inconsistencies are revealed

by this comparison and that, in fact, two of the techniques are completely equi-

valent while most of the results of the third can be obtained from the equiva-

lent pair. As a byproduct of the comparison, a function is obtained which can

be shown to be conserved along the guiding center trajectory.
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A COMPARISON OF THREE SETS OF HIGHER ORDER

ADIABATIC PLASMA EQUATIONS

I. INTRODUCTION

Three papers Frieman et al. 1 (1), Macmahon2 (II), and Wilson3 (III) have

been presented describing separate approaches to the task of obtaining highly

accurate approximate solutions to the Boltzmann and/or hydromagnetics equa-

tions for slowly varying fields of arbitrary geometry. Techniques (I) and (III)

are very closely related as a closed system of self-consistent equations, cor-

rect to first order in e = m/e the particle mass to charge ratio, is obtained by

maintaining both microscopic and macroscopic equations. In (II), the a expansion

is introduced directly into the heirarchy of moments equations obtained from

the Boltzmann equation. First-order portions of certain quantities can be de-

termined explicitly in terms of higher moments but for this totally macro-

scopic description, closure may be obtained only through the imposition of

additional approximations.4

It may easily be verified by inspection of the original papers that the assump-

tions upon which these works are based are completely equivalent in most plasma

density and temperature realms of interest. Each set of conditions may be re-

duced to assuming that the expansion parameter a may be as small as desired.

Moreover, (I) and (II) are based on the Boltzmann equation with the Lorentz

force expression while (III) is based on a separate solution of the Lorentz
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equation combined with an expression of phase space conservation; an equivalent

approach. Thus W as much as comparable expressions are calculated the re-

sults of the three :oust reasonably be the same. However, the veracity of this

supposed equivalence is far from obvious, even though one of the results of (II)

is verified in (III)5 The equivalence of the microscopic equations in (I) and (IM

is totally obscured by the nature of the special variables chosen in (IIn, and

other results of (II) which should be obtainable from (III) have not been calcu-

lated. The purpose of this paper is to show that the expected equivalence does

obtain; that the additional results of (Il) can be derived from (III), and that (I)

and (III) are as alike as to allow the calculation of the results of one from those

of the other. A by-product of the inspection is the discovery of the form of a

function which is conserved along the higher order guiding center trajectory.

With this in mind, in Section H the relevant results of (I) are rederived in

the notation of (III), while Section III supplies the analogous results of (III).

In Section IV, a detailed comparison is made between (1) and (III), the results of

(II) are verified by use of (III), and the conservation of a proposed function along

the guiding center path is demonstrated.

H. HIGHER ORDER CHEW-GOLDBERGER-LOW THEORY

(I) is an extension to higher order in a of a procedure proposed by Chew,

Goldberger and Low .6 The method is based on an ordering scheme that re-

quires, in addition to the assumption of slowly varying fields, plasma densities
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and temperatures such that the plasma frequency is of order of magnitude E- i

and the Debye length of order e. Implied in this (as in all three theories dis-

cussed in this paper) is the assumption that as E ~ 0 the component of the electric

field parallel to B also vanishes.

One proceeds, then, to solve the collisionless Boltzmann equation

at + (v • 0) f + E (E1 + E ll L + v x B) • 0, f = 0	 (1)

in the limit as E -• 0. In (1), the subscripts a and i refer to the directions parallel

to and perpendicular to the magnetic field B; 0 , is the divergence operator in

velocity space; L = B/I BI with M in the direction of the principle radius of

curvature of the lines of magnetic induction and N = L x g.

Referring to Figure 1, to all orders, v may be represented by

v = U + 7iL + Q(M sin v + N cos v)
	

(2)

where

(a) U = E xB
B (C)	 v1_Ul	 v,^

(V/

(b) Tl = L ' v	 (d) v = tan	
v' • IV

3



/j

x

Figure 1. Cylindrical Coordinate System (Different From That of (I))

The distribution function f is assumed to be represented by a power series

ti
in a and each term f i is given in general by f i = f i + f i where

	

,*i	 i
(a) 

J 
dv f i = f i ,	 (b) 

fo 
dv f  = 0	 (4)

0

Under the conditions stated, it follows from (1) that the zero order term of

the distribution function is independent of v. This knowledge plus the assump-

tion that f i is periodic in v makes it possible to arrive at an equation for f o by

averaging (1) over v and neglecting all but the lowest order terms.

To next order, f is not independent of v and the solution is algebraically

more difficult to obtain. One may invert (1) to find a f i la v in terms of the
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previously defined To. By integrating d f 161v over phase from zero to v and

ti
imposing 4b, one may obtain f V The result is:

f	 L x V') - Vf +	
dV

0 B	 U—t

LI
2 	 a f 0

 [1,, sin v cos v + Ip Csin2 V	 V2 a (Z

	

V	
2

I (2

LXV I) 
dL

+ au	 v') VL

-7+	
sin v cos v + I,, `sing V	 01)] : IVCI 13f77 	 (5)771

where:

I" = 4 iN - ii,

+

V	 U + ^L

The notation d/dt refers to the convective derivative 8 la t + (U + 7)L) • V and

the double dr.i tensor product notation is exemplified by ab : Ve = a • (b • V) e.

By substituting (5) in (1) and integrating over v one may obtain an equa-

tion, of the following form for the first two terms of the power series

5



cldt + (a'V)f + 6 aft + rd^ = 0
C7 ^2)

where

(6a)

for f:

2	 2

a' = V +BLx d+BZB(•Lx0)B+ a ZB LIy OL

0,2 

VV2

+ e msz [13V ffaA dV - -i ..4
B dt	 B d

+iylL V-LN dt - NL OLM' d

+ 2,N •	 UM OL - i d UN OL) (6c)

6

(6b)
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r = E" +U•C
dt

 
+ zv•L

+ E 2B BD • B CM • d + U M QI.^ - B ^N t + U IV : L

+ Z 
I.8: VU ',a: v•L - Z I- : V U I,O

+B M aU { N • ^ + U N : v L) - •N • aU (M • a + U •M : v-L^

+ B M d U N: v •L - •N • d U A: v L (6d)

where:

Iy
	

NM

I  = fig + .99 .

To obtain a closed set of equations suitable for the study of plasma behavior,

one must add to (6) equations which will determine the fields E and B self-

consistently. This has been accomplished and reported in the original paper$

and will not be discussed here. Equations (5) and (6) are the relevant equations

to be studied in Section IV. It will be observed in Section III that an equation

which serves the same purpose as (6) but which has a radically different ap-

pearance can be obtained. We will show that the two equations are consistent.
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I v cos v + j ,, sin e v] : D-L (8c)

III. THE GUIDING CENTER PLASMA

The approach first outlined by Grad 9 , 10 and extended in (II) is quite dif-

ferent from that of the previous section. It is based on guiding center orbits

obtained by solving the single particle equation of motion:

8v	 1

St - e [Ei +EII'L+ vx B]	 (7)

As outlined in (III), 11 the higher order terms of this solution can be calculated

in terms of a "nicei12 set of variables chosen to have the property that their

equations of motion are free of any rapidly oscillating terms depending on phase.

If the particle coordinates are represented in terms of "nice" variables as (P,

E, H, ,D) these variables are related to those of Section H by the following

E
BLx v'	 (8 a)

2	 012

2 - 2 + B ^° M+ L x v'	 dV

2

+ B 2 CIa sin v cos v + j^ sin e v] : 0 V	 (8b)

H	 B U [o - A +L x V ] : 0 •L - B 10" + L x v'1 ' a

P = r -

1

3



4D = v + B(E)
	

(8d)

where the order E (8 (E )) terms of (8d) are known but never used.

In the present case, the variables may reasonably be referred to as the

guiding center variables since P is the position of the guiding center and the

motion of the guiding center may be completely described in terms of P, Z, H

and their derivatives. One may also describe the instantaneous motion of the

particle itself in terms of these variables by using the inversion relations

	

v = U(r) + 77 L (r) + Q {M (r) sin v + .9(r) cos v}	 (9a)

r = P + B(r) (R(r) sin v - fA(r) cos v) .	 (9b)

In (9), the lengthy transformations (8) must be used to develop the expressions

for r and v as power series expansions to the order of accuracy destred.1"

The time derivatives of (8) are:

z
Sp = U+HL+BLxdt+B2B('LxV)B

/z	 11
	 ]

A. B •L E ^M Tt + U M : DL) 
+ 2 (

1

, + 2 IB! O L (10a)

9
i



(y2)
	 22

St	
= - 2 Ij : V (U + HL)

	

2	 ji
+ e 2B	 BN dt/- B M dv

+ A L . VL N dv - N L : DL{41 dv

E

	

+ 2	
CC

 d + c I^ pL

+ 2 (N • du i :  pL-i • UN: VL}

+ 2 I0 : V V I 1 : V V + '2 dt I^ V

e^ (Ell dI.1	 c1f 3 ..	 dV	 d	 dY
+ B 2 e + Q dt .M • dt + Z M	 dt I1 : v v + dt	 • dt

+2B ^ML : p U-UM: pL] I 1 : p L+ e 11-1— ML : p L I1 : VL (lob)

E z
StI _ E^

+U d + 2 p.L

+ 2B B p • B(M •	+ UN: VL^ - B(N • ^ + UN^: VL)
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+ MM : VUI Q VL - ii : VLI^ VU

-2V VI'a 2dt I^: VL

+ BIUL: VL (4 • d + UM: VL)

2 I 1 : VU (M d + UM : VL) - M•L : VL (ELI + U	 )

- dt (lYl • a + U M : VL) -	 aU V . L I
J

3
- 

E B[3.,
 a + Z U 1,: VL

J
 V . L- B  ML VLV • L

+ B M • dtJ (N d + U-9:  VL/ - N a (M d + U M : V L)
^x

+
 B I-

M•d UN: VL- N a U1N: V L
J 

(lOc)

2w	 = B+N dM + 2 Iy VV .

Here d/dt and V are defined as d/d t + (U + HL) • V and U + HL respectively.

These definitions agree with those of the previous section to lowest order. In

the next section the notation V and d/dt will be used only when higher order terms

are to be neglected.
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In (III), a further change of variables is constructed so that one velocity

space component is characterized by the magnetic moment series correct to

order E. The resulting equation is of a simpler form and is more useful for

the purposes of (III). This equation will be discussed and compared with an

analogous equation in Section IV, but at this point we choose to present the con-

sequences of the results thus far obtained. That is, one may determine the

probability density F of guiding centers in the volume element d 3 PIdIdHdO

through the conservation relation

12
S
	

(SH
a t +°	 (Sp F) +	

a	
S t F+ H	 F) = 0	 (11)

a
(22)

The theorem of phase independence of Reference 12 14 and Equation (10d) jus-

tify the absence of a term involving S(D/St in (11).

Equation (11) may be written in a form more suitable for comparison with

(6) as follows

^2

aF + SP	 + S 2) aF + SH aF

a(2
at	 (	 °St	 ) F	 St	

2)	

St aH

S ( )
4T-	 _	 SP	 a	

22	
a ISM-F °	 (St' +	 22	 St	 + a  (St) .

a 2

(12)

12



Since the right-hand-side of (12) does not vanish, this equation expresses the

fact that F is not conserved along a guiding center path. We will note presently

that a function can be found that does satisfy such a criterion. Again, the dis-

cussion of the self-consistent closure of the system is to be omitted since (8),

(10), and (12) are the results necessary for comparison with (6).

IV. COMPARISON

With the notation established and all necessary results stated, we can now

proceed to demonstrate that the results of Sections II and III are consistent with

each other. The connection with (II) will be dealt with separately since the

microscopic equations of (I) and (III) are of primary interest.

The two distribution functions of Sections II and III

f (r, 
C-2

 2 77, v

and

s
F P, 2 , H, 0)

may be related by equating the number of particles in d 3 r a da d 71 d v to the

number of guiding centers in d 3 P I d Y_ d H d 0; an equation expected to be true

on physical grounds. That is

f d 3 radad77dv = Fd 3 PEdEdHd4	 (13)

13
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The transformation Equations (S) make it possible to relate the particle

and guiding center volume elements through the Jacobian of this transformation

so that

	

d3 ra, do, d77dv = Jd 3 PEdEdHd(b .	 (14)

From (13) and (14) one may conclude that

E2 02
F \P, 2 ,H	 = Jf(r, 2 , 7),v	 (15)

In (15) the argumen t ;D has been dropped in F because, as previously pointed

out, F is known to be phase independent.

In an attempt to arrange ( 15) so that both sides of the equation are in terms

of the same variables it is advantageous to expand f in Taylor series about the

guiding center variables as follows

•
Q 2 	 72

 )

f r, 2 , rl, v	 = f P, 2 , H, ^ + (r - P)	 f

(a 2 L2 of	 of	 df
+ 2 - 2 a(2

2
2k,/ ' H) 	 + (v- ^) av	 (ib)

Recalling from Section H that one may always write f as

f(
^2	 ^2	 ^2

P, 2 , H, 0 = f (P, 2 H + f P, 2 , H,	 (17)

14



we can substitute (5) into (17) and then (17) and (8) into (16) to obtain

a2 	 f2
f r, 2 , 71, v	 = f P, 	 H

dV	 2	 1
3	 - B ^M •	 +'T I0 : VVI of

J

	

	 12

a12/

2
+ B 	 d + UM: v^.) + 4 I^ : vij all

12^2
f P, 2, H + e y P, 2, H . (18)

It is important to understand exactly what has been done here. Equation

(17) represents no transformation of variables but only a renaming of arguments.
IF

The expression for f is obtained by merely inserting into (5) the arguments in-

dicated in (17). The function f (r, 2/2, 71) is determined by (6) with a, p, and F

written as functions of 0, a2/2 and n. In like manner, the function f (P, E2/2,H)

that appears on the right-hand-side of (18) is determined by (6), provided the

arguments of a,13 and r are now replaced by P, 1 2 /2 and H. From this point on

then we assume (18) to have been enforced and all expressions of both sections

II and III are to be considered functions of P, .1 2/2 and H.

Taking note that the right hand side of (18) is independent of 0, and recall-

that F is also independent of 0 one inn conclude that must be^	 ^	 y	 J	 phase in-

dependent for (15) to hold. From (8) it can be shown that this is true; J is

15



independent of 0 and of the form

	

J = 1-Mat+giNLvL- IpvV 	 (19)

thus revealing no inconsistency.

Proceeding, one may invert (15) to obtain

	

f = J- 1 F- e y	 (20)

Insertion of (20) and (6) yields

ddt = J da + E J ^	 (21)

where:

2	 2	 2
dt	 at +a P, 2 ,H v +,3( 2 ,H a + r P, 2 ,H aH

a

	

	
•

C21

Using some shorthand notation we rewrite (12) as

DF

	

+ F A = 0	 (22)

where:

U2-,DF	 d  Y tSl	 S	
8  SH aF

Dt - at	 F + St a112)+ St aH

2

16

Op-



and

E^

SP	 a S 2) a SH
= V ' Va. + ^s St + dH Sia ^2^

Subtracting (21) from (22) one may obtain the following relation which must

be satisfied by Equations (6) and (10)

22

+
SP	 S 2	 aF	 (SH	 d 

Cam- a} OF+ St - Q 
E2 \- r,7W

a^ 21

F d' J 3' y

	

_ 
J	

+ J a _ e J Tt` .L-	
(23)

Equations (10), (19), and (21) yield

a = -1dt
J t

which is to be expected since the left-hand-side of (23) contains no term propor-

tional to F.

The comparison expressed by (23) now acquires additional significance.

One may note that y is obtained by an entirely separate calculation from (6) and

(10), and that d' y/dt need be computed to lowest order only. Thus a si-nple cal-

culation yields a check on the order e terms ^f the left-hand-side of (23) which

were originally obtained by means of tedious calculation.

(24)

17



The calculation of d' -//dt is straightforward. Second derivatives of F result

but they can be eliminated by differentiating the lowest order form of (6) to find

d' 
OF = (MM+A

a \ 2	

N) : v(U +H LL) a
(
^z - v - .L aH	 (24a)

(dt	
2)	 alt )

z	 _

dt H
	 v) F + 2 v .L ads - UL : vL aH

a (21	
(24b)

The final result ford' y/dt is

E
d
/y =	 3E{N dVI	 vV+^ d	 dV
dt	 B 2	 dt 1	 dt	 dt

+ (E IS 
+ U d (2`g i-t  + -4 I^ : v L

z

+23M ' d v•L+ 4 dt l^ v 

+ 4s I^ VVI 1 : v V- 2 ({N d+ U V^ : v L) E^
a(2

- B 2 (M d + U M : vL) I l : vV+ E Tt (M • d + UlY! : vL)

18



	

+ lif : vL E;^ +U •	 + E2 ML: OLv • L+ 4  dt Ip OL

dV	 s
+ IV . LM • dt + 2 Ip : vvv - L

•s
- UL: VL E (M • d + UM : OL) + 4 Ip : QL dF

z

	

+ B E M •	 d + U N : OL) + 4 Ip D L (L • O) F	 (25)

Inserting the appropriate expressions (6) and (10) into the left-hand-side of (23)

yields (25); which was to be shown.

Given the results of (III) one may derive (1) for given (8) and constraint (4b),

J ana f 1 can be obtained and thus (6). Some ambiguity is involved in the converse

due to the arbitrariness involved in the choice of intermediate variables used to

solve the single particle equation. Nevertheless, a set of equations that is at

least equivalent to those of (III) may be obtained by using (5) and (4b) to calcu-

late transformation equations of the form of (8). These relations will yield J and

y (though possibly not the Game J and y) and (23) can be used to complete the

derivation. The ambiguity is no shortcoming: those equations obtained could

have been originally derived through the method of (IM. We simply remark that

in using (IM as a starting point the ambiguity is removed by specifying the al-

lowed choice in variables.

19



1.,4

Simplification in the form of each of these kinetic equations can be achieved

by transforming velocity space variables so that the magnetic moment series

makes up one component. The kinetic equation of (I) becomes16

L9 t (r, lL , 71) + a(r, )u, 71) - Of(r, µ, 77) + F( r , kL ,'1) a77 ( r, µ, 71) - 0 (26)

where

µ = 2B C1 - B (iii M- MiV) : v(U + 77L
J

do i^	 (
dt

Note that f remains as originally defined, the probability density of particles

in the r d 2/2	 v space not in r	 v.

In (III), a new distribution function f is defined such that I represents the

probability density of guiding centers in the space P, A, V 	 where

2.

A	 2B B2 M dt (U+HL ) - B 2B (2 -NM- 2 MN) 0(U+HLj (27)

and

VII = H + B (M • d + UM : VL) + E 2B (2 -NM- 2 AN) : 0•L

20



The equation expressing conservation of guiding centers in this space is

S' V
at + V • SStP f + aV II 	St II 	 = 0	 (28)

The expression for S' P/S t -,an be obtained from (10a) by using (27) and

S III = Ell + U d + BAV L

+ E A 2 IQ : vLI 'a : vu- 2 I,,.: vUI.,: v .L+ Iy : , vUv • •L

Lx(L•V)U
+ LL: VUIy:VL +dtIy:vL+BV•	 B

+ V • (Ru g : vL- MU & : vL1

LX(L • V)L
+ EV IL A Iy : VLV • L +BV •	B

E	 dU	 d_
	 dU	 dL	 ( )1 7

	+ B M dt N dt N dt M • dt	 29

In exactly the same manner as outlined above, we form the equations

z
f OPdAdV I, dO = f 0 rd(2 d77dv	 (80a)

21



(30b)

and

z
Gd 3 PdAdV 11 d^ = d3 rd 2)d77dv

and conclude that

?(P, A, V 11 ) = Gf(r, µ, 7^, v) = G 
IT 

(P, A, V11)

- E A(NM -MN) : OL aVil	 G(+y 'l

where

G = B C1+ B (NM - MR) : V(U+V11 L)J.

Inserting (29) into (27) one may obtain

_	 S' V
a - at	 ^ f + I' - St 

11	
c3V II

G + L D,tG + G 0 • (8
,

g tP) + 
aVll 

S 
St

li

- E {A Dt (NM-MN) : DL- A(NM-MN) : OLUL : pL df
l	 avll

+ e A(L • V) f (31)

22



where

D'	 a	 rS' P	 l	 S VII a
Dt - at + ice' °/ + fit aV

	

u	 -

Substituting the quantities specified into (31) and performing the operations indicated

yields equality.

Since the sum of ° • (S' P/Stand a/aV,, (S' V,,/Stdoes not vanish, Equation 	 3

(28) expresses the fact that D' f/Dt # 0 and, like F, f is not conserved along a

guiding center trajectory. We postulate that a function that does satisfy such a

requirement is K(P, A, Vii ) = f /G. We then form the expression:

	

D,tK - G
1 D'
 Dt f Gz D,tG - Gf IV	 StP) + av CS St II) + G D'tG = 0.

Thus, correct to first order in e, the function

f/B S1 + B (N M- MN) : °(U +V 11 L)t

is conserved along a guiding center trajectory. 18

The additional results of (In that are to be verified here are the first order

corrections to the heat flux tensor Q. To follow the procedure of (III) which was

used to verify the pressure tensor of (II) (see footnote 5), we begin with the defi-

nition of the heat flux tensor:

Q = m1fd 3 v(v-n)(v-u)(v-a)	 (32)

23



(34a)

where

fd3v = fJ'dAdV11 d(D

where f is the solution of (1) and the definitions

U = n
J

fvd 3 v 	(33a)

and

n = r f d 3 v	 (33b)

will be used.

In order to calculate Q correct to order E from the results of Section III,

an equation of the general type (30a) must be enforced. Here we desire a differ-

ent result from that obtained between f and f. This is the relation:

J' = 1 + E( 2 B A) 1/2 cos <DV E (2 B A) 1/2 s in fi 0 • k ) • (34b)(11) -	 B

Now using (34) and definitions (33) in (32) with v given by (9a) and (d) we n.an

arrive at the following portions of Q previously presented in (11)19

P
[Q : L Ll 1 = B L x [VR 2 - p V - P + (RI, - 

3 R 2 ) ( L • v) L

24



1

zr,;

is

+ 2(Q11- Q)(•L•v)a, +2QVull

+ 2Q{N .Li: Val +IVL'! : vU,
	 (35a)

$ (Q (MM+N•N)]1= 2 B L x
IVR3

+ 14(Q +R2)
 - R31 (L • v)L- pj v • P	 (35b)

where, to lowest order

p = m n ,

p 	 m f f(VII ull)'dAdVil

1
U11 = n ?V11  dA d 4 i;

Pl . = mIf BAdAdVii

a

C

1

Q II = m 1 •f 
(
VII uil) 3 d Ad V II ,

	 Q = m If 2A(V,, u ll ) dAdVll

R = m ^f BA^V -u )' dAdVRII - m f •f V II - ull) 
4 d Ad VII	

s	 II	 II	 II

R3 = mrf[BA] 3 dAdv ii ,	 P = 'P Il LL + Pl ({'^ +Pi 1Q)
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We hasten to note that one important result of (II) that cannot be obtained

from (III) is that of the comWtation of u l correct to order E 2. In principle,

however, this can be accomplished by calculating the order e 2 portions of relations

(3) and usinT a higher order version of the procedure outlined above.

To sum tip, one must conclude that the computations provided here lend
y

strong credibility to the assertion that all three of the papers treated are correct

and equivalent. To be sure, one would expect this to be true, but given the vast

-)bse:-vable differences pointed out in the introduction, and given the possibility of

algebraic as well as theoretical error, this demonstration is altogether reassuring.
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FOOTNOTES

1. E. Frieman, R. Davidson, and B. Langdon, Phys. Fluids 9, 8, 1475 (1966).

2. A Macmahon, Phys. Fluids 8, 10, 1840 (1966).

3. G. Wilson, (to be p0lished).

4. This necessity is verified in (1) where a closed system of hydromagnetics

equations is obtained :n the two dimensional case only.

5. See Ref. 3, eq. 38.

6. G. Chew, M. Go:dherger, and F. Low, Proc. Roy. Soo. (London) A236, 112

(1956)

7. This equation and 6b are written in a slightly different form from that shown

in (1). For the purposes of comparison it is convenient to adhere strictly to

the notion that f represents probability density in the velocity space

element a d Q d Ti d v and is, therefore, a function of a 2/2,  71 and v.

8. Ref. 1, pp. 1477-1479.

9. H. Grad, Proceedings of the Symposium on Electrodynamics and Fluid

Dynamics of Gaseous Plasmas, (Polytechnic Press, Brooklyn, New York,

1961, pp. 37-64).

10. H. Grad, AEC Report NYO-1480-50, MF-48, New York University, 1966.

11. Ref. 1, Sec. H.
y

12. M. Kruskal, J. Math, Phys. 3, 806 (1962).

13. In principle, Relations (8) may be calculated to all orders in e.

14. Ref. 11, p. 817, Sec. C.1.
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15. See T. Northrop, M. Kruskal, and C. Liu, Phys. Fluids 9, 1503 (1966),

pp. 1505-1506 for a discussion.

16. R. Davidson, Phys. Fluids 10, 669 (1967).

17. In (29) d/dt L is the convective derivative of L, aL/at + ( S' P/St • 0)L cor-

rect to order E.

18. The fact that f/B is conserved along the lowest order guiding center tra-

jectory has been pointed out by Y. Whang (to be publie ned).

19. Ref. 2, eqs. 14-16. Note a difference in definition by a factor of 2 between

35a and that given in (IT).
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