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ABSTRACT
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Thesis directed by: Dr. Richard A Holzsager
Assistant Professor of Mathematics

The graph topology F on the set F of functions from a topological space X

to a topological space Y is given by the basis (F U I U is any open set in the prod-

uct space X x Y) where FU = {f e F I the graph of f c U}.

A study was conducted to find those properties needed on the spaces X

and Y to ensure that F under the graph topology possess certain topological prop-

erties. The properties of F investigated included the separation properties of

T o, T 1 , T2 and regularity. Also included were comparisons between the graph

topology and the pointwise convergence, the compact open, the uniform converg-

ence and the sup metric topologies. Finally, continuity of the evaluation map

with respect to the graph topology was investigated.

The conclusions reached concerning F and the separation axioms included:

(1) X T 1 and Y T o implies (F,^ r) is To.

(2) (F, F) To implies that X is To and Y is To.

(3) X T 1 9 Y T 1 if and only if (F, F) is T1.

Ia



(4) XT,, YT  if and only if (F, F) is T2.

(5) (F, F) regular implies Y regular.

(6) X regular and compact, Y regular implies that (3, F ) is regular where

3 is a set of continuous functions from X to Y.

The conclusions reached concerning comparisons of F with the usual

function space topologies included:

(1) X T 1 implies that h contains the topology of pointwise convergence

on F.

(2) X T 2 implies that F contains the compact open topology on F.

(3) X T2 , compact implies that F is equivalent to the compact open to-

pology on 3, a space of continuous functions from X to Y.

(4) X and Y uniform spaces and X compact implies that F is equivalent to

the topology of uniform convergence on 3, a space of continuous functions.

(5) X and Y metric spaces and X compact implies that F is equivalent to

the sup metric topology on 3, a space of continuous functions.

The main result with respect to the evaluation map is that if X is regular

then the evaluation map e : (3, F) x X Y is continuous with respect to the graph

topology on 3, a set of continuous functions.
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INTRODUCTION

During a study of almost continuous functions, S. A. Naimpally [4] de-

veloped a new function space topology which he called the graph topology. In a

later paper, Naimpally [5] investigated some further properties o,' the graph

topology. In particular, Naimpally stated conditions under which the graph to-

pology would be a T 1 or a Hausdorff topology. He also stated conditions under

which the graph (F) topology would be comparable to the pointwise convergence

(p.c.) topology, to the compact open (k) topology, to the uniform convergence

(u.c.) topology and to the sup metric topology.

The purpose of this thesis is to review and extend Naimpally's work ors

the properties of the graph topology as given in Reference [ 5 f .

In Chapter I, relevant definitions are presented along with some general

remarks and lemmas concerning the ,graph topology. In Chapter II, theorems and

examples are stated concerning conditions under which the graph topology is To

and regular. Naimpally's conditions for T i and Hausdorff are also presented in

Chapter II. In Chapter III, Naimpally's conditions for comparability of the graph

topology with the pointwise convergence and the compact open topologies are re-

viewed. A theorem proven by Naimpally in Reference [5] concerning conditions

for the equivalence of the graph topology and the compact open topology is shown

to be false by counterexample and a correct set of conditions is given for the
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equivalence on a space of continuous functions. In Chapter III, theorems stronger

than those proved by Naimpally are given concerning the comparability of the

graph topology and the uniform convergence topology. Conditions for the equiva-

lence of the graph topology and the sup inetric topology are also given.

In Chapter IV, the evaluation map and its continuity with respect to sev-

eral function space topologies is discussed. In particular, classical results re-

lating continuity of the evaluation map with the pointwise convergence and the

compact open topologies are reviewed. Conditions are presented for continuity

of the evaluation map with respect to the graph topology.

In Appendix A., two general lenunas are presented. In Appendix B, a

lemma proving that the graph of f is homeomorphic to X for continuous functions

f is given. In Appendix C, theorems concerning the continuity of the evaluatiun

map with respect to the uniform convergence topology and the sup metric topology

are presented.

i•



CHAPTER I

THE GRAPH TOPOLOGY

A. Definitions

Let X and Y be topological spaces and let F = Y x be the set of all functions

or. X to Y. For f e F, the graph of f is the set G( f ) _ f( X, f (X)) I x F X). G(f )is

a subset of the space X x Y. Is is understood that X x Y is assigned the usual

product topology.

As st-Ladari noiatioi. , : ,.oughout this thesis, a set of the form FU will be

taken to mean *ho fet. `'u = f  c F j G( f ) , f -} «-here U is any subset of X x Y.

Naimpaliy ^ 5 c = ;fines the gr.--.ph topology F for F as that topology generated

by the basis tFU j U open in X x Y} where U ranges over all of the open sets of

X x Y and X x Y is assigned the usual product topology. The proof that (F u ) is a

basis for a topology on F is given in Lemma II of Appendix A.

If 3 is any subset of F then for U c X x Y, 3c = {f e 3 j G( f ) C U} = 3(1 Fu.

E. General Remarks and Lemmas

L U is an open set in X x Y then U is of the form U = U U a x V. for some
ati

index set J where U a , Va are open sets in X and Y respectively. This follows

3
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since the collection {U x V U open in X, V open in Yl is a basis for the product

topology on X x Y.

If U is an open set in X x Y and if U = U U ,, x V., then FL is the empty set
^TJ

if { Uz 1 2 E J) does not cover X. That is, if ( Ua j a E J) does not cover X then

there is a point x E X\ U U µ and (x, f(x)) cannot belong to U for any f E F. Thus
of J

FU = ^r in this case. Henceforth in this paper, it will be assumed when dealing

with sets of the form FU, where U = 7
	

2	 aU, x V, that IU a E J } covers X.Q 

Most problems treated in this paper (and in Naimpally F51 also) will be

of the type which require those conditions needed on the spaces X and Y to ensure

that the space F possesses a certain property.

By examining Chapter 7 in Kelley [21, it can be seen that most of the de-

sired properties fcr function spaces are obtained from conditions imposed only

on the range space Y. In fact the domain space X seems to play a small role in

determining properties of function spaces under the usual function space topologies.

The fact that FU is empty (given U in XxY) if FX (U), the projection of U into the

coordinate space X, does not cover X gives an indication Fiat We properties of

the graph topology may depend on properties of the domain space X. This is in

fact true and in later chapters it will be seen that properties of F under i do rely

on properties of both topological spaces X and Y.

The fcllowing two lemmas concerning the structure of certain sets in

(F, ^ ) will prove useful later on in the text.

LEMMA I.B.I. Let U, V c X x Y. If F U f 0, then U c V if and only if F U c FV.
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Proof. Note that if FU j^ (^, there iE a function f E FU . Then G( f ) c U and

hencep x (U) D X , that is p x (U) covers X.

Suppose FU ^ ^6 and FU c Fv . Let (x, y) be any point of U and let f E Fu c Fv.

Then f E FU c Fv implies that G( f ) c U and G( f ) c V. Define g E F by

f(z)	 z	 x
g( z ) _	 y	 z=x.

Then for z ^ x, (z, g(z)) = (z, f(z)) E G(f ). Also (x, g(x)) = (x, y) EU.

Thus G( g) c U or g E F U since G( f ) c Il n V. Therefore g E F v since FU c Fv . But

g E Fv implies that G(g) c V and hence (x, g(x)) = (x, y) E V.

Thus U c V since (x, y) was an arbitrary point of U.

Suppose U c V and FU ^ t, and let f E F U . Then G( f ) c U which implies that

G( f ) c V since U c V. Therefore f E F v and FU c Fv since f was an arbitrary point

of FU.

LEMMri I.B.2. Let X be a T 1 space and F be the set of all functions from X to
Is

a topological space Y. If V is closed in X x Y then F v is closed in (F, F) , that is

Fv = Fv.

Proof. Suppose that X is T 1 and V is closed in X x Y. ThenF v c Fv is immediate.

Let g be any point of Fv and suppose that g ^ Fv then G(g) ^ V. This implies

that there is a point x E X with (x, g(x)) ^ V. Thus since V is closed in X x Y,

there is a set O 1 x 02 c X x Y with 0 1 open in X, 02 open iD Y, (x, g(x)) E 0 1 x 02

and 0 1 x 02 r, = (^.
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Since X is T 1 , the set (x} is closed in X which implies that XMxI is open

in X. Let P = [(X\(x I) x Y, u (X x 0 2 ) then P is open in X x Y. Since g(x) E 02,

G(g) c P or g E FP an open set in (F, F) .

Suppose h is a point of F P then G(h) c P and hence h(x) E 0 2 . But this im-

plies that (x, h(x)) E 0 1 x 0 2 . Therefore (x, h(x) ) ^ V since O1 )('02^  V = ^.

Thus G( h) Q V which implies that Fp FV - 0 since h was an arbitrary point of FP.

However FP Fy = 0 and g E Fr an open set in (F, 1") contradicts the as-

sumption that g E v . T'_,erefore for each g E FV , G( g) c V or E FV . Thus FV c FF	 V

and FV is closed in (F, F).



CHAPTER H

SEPARATION PROPERTIES OF THE GRAPH TOPOLOGY

A. To

The following example shows that the implication X T o and Y T o => T To is

not true in general.

EXAMPLE II.A.1. Let Xand Y be the topological spaces X = {a, b}, Y = {p, q}

with topologies O X = {0, X, {a}j and Oy = {(^, Y, {p}} respectively where a and

b and p and q are distinct points of X and Y. Define the functions f and g on X to

Y by

f: a	 p	 g:	 a

	

b q	 b — q

Then f and g are distinct points in F = Y X . Note that G(f) _ {(a, p), (b, q)}

and G(g) _ {(a, q), (b, q)}.

Let FU be any basic open set in the graph topology F on F with f e F U where

U = U U,,x V,, and U,,, V Q are open in X and Y respectively for each a E J.
"Ej

Then f E FU implies that G(f ) c U by definition of F U . But G(f l c U implies

that (b, q) E U = U U,, x VQ . Then (b, q) E UQ x Vg for some 8 E J, and thus b E U,3
CJ

an open set in X and q E V,3 an open set in Y. By definition of O x, the only open set

rF,
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in X which contains b (is X) also contains a. That is b E U A open in X implies that

a E U.. Thus (a, q) E U^ x Vp and (b, q) E Up x VQ . However this implies that

G( g) c Up x V  C U. Therefore G(g) C U or g E F U and we have shown that if f E FU

then g E FU.

Similarly, suppose F V is any basic open set in (F, F) and g E Fv where

V = U WQ x Z. where WQ , Z a are open respectively in X and Y for each a E K.
a EK

Then the following implications hold:

gEFV ^> G(g)CV => (b, q)EV = uW,,xZL

_> there is a a E K such that (b, q) E W  x Z^3

=>b E W^ and q E Z 1

^ a E Wp and p E ZR by definition of the topologies O X and Oy respectively

=> f (b, q ), ( a, p)} E W  x ZR C V

=> G(f) CV => f EFV.

And thus if FV is any basic open set in (F, F) containing g then F V also contains f.

In summary, we have shown in this example that the points f and g of the

space (F, T) cannot be separated by open sets in this space—that is we have

shown that any open set in (F, F) containing one of f or g also contains the other.

Therefore (F, F) of this example is not a T o space. However X and Y are To spaces

by construction of O X and O y . Thus X To andY To are not sufficient conditions to

ensure that (F, F) be To.

The following theorem yields sufficient conditions for the space (F, T) to

be a To space.
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THEOREM II.A.2. If X is a T 1 topological space and if Y is a To topological

space then (F, I') is To.

Proof. Let X be a T 1 space and Y a T o space and let f, g E F with f and g

distinct points of F. Since f and g are distinct there is a point x E X such that

f(x) ;^ g(x).

Since Y is To , f (x) E Y, g(x) E Y and f ( x) 5^ g(x) , one of the following two

cases must hold:

Case i. There is an open set U in Y with f (x) E U and g(x) ^ U.

Since X is T 1 , the set {x) is closed in X. Thus XM x) is open in X and the

set V = (X x U) u [(X V x)) x Y, is open in X x Y.

If y E X and y 7^ x then (y, f(y)) E (X\{x)) x Y . By assumption, f(x) E 

so that 
(
X, f ( x ) ) E X x U. Thus G(f) C V. However, by assumption g(x) ^ U so

that (x, g(x)) d_ X x U and thus G(g) V.

Therefore FV is an open set in (F, ?-) which contains f but not g.

Case ii. There is an open set U in Y with g(x) E U and f (x) ^ U.

In a manner entirely similar to case i above, an open set F V in (F, I') can

be constructed such that g E FV and f # Fv . .

Thus if f ^ g there is an open set in (F, 1" ) containing one of f or g but

not the other, which implies that (F, 1,) is To.

Although Example H.A.1 indicates that X To and Y T o are not sufficient

conditions for (F, F) to be T o , they are necessary conditions as the following

theorem shows.
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THEOREM II.A.3. Suppose X and Y are topological spaces, Y contains at least

two distinct points and F = Y x , then (F, F) To implies that X is T o and Y is To.

Proof. Assume that (F, F) is a T o space and let p, q be distinct points of Y.

Define f, g E F as f (x) = p and g(x) = q for each x E X. Then p ^ q implies

that f ^ g.

Since ( F, f') is To one of the following cases must hold.

Case i. There is a basic open set F U in ( F, i) such that f E FU and g oe FU

where U = U U,, x Va and Ua, V Q are open in X and Y respectively for each a E J.
aEJ

f E FU and g e FU implies that G( f ) c U and G(g) V U. But G( g) ^ U implies that

there is a point x E X such that (x, g(x)) _ (x, q) ^ U = v U., x V Q . But G( f ) c U

implies that ( X, f (x)) _ (X, p) E U. Thus there is an index 8 E J such that

(X, p) E U  x V0 . Then (x, q) ¢ U implies that (x, q) ^ U18 x VI.. Thus we must have

P E V, and q ^ V Q where V, is open in Y.

Case ii. There is a basic open set F U in (F, F) such that g E FU and f ^ FU.

By a proof entirely similar to that of case i above, an open set Vp in Y can be

found such that q E V,3 and p ^ V13.

Therefore there is an open set V. in Y containing one of p or q but not the

other which implies that Y is To.

Assume that (F, F) is To and X is not To. Then there are distinct points

a, b in X such that every open set containing one of a or b also contains the other.

Define functions f and g belonging to F as follows

p	 x E X, x^ b
f(x) _

q	 x = b
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p	 x E X	 x^ a

g ( X ) _
q	 x = a

Let FU be any basic open set in (F, F) with f E F U where U = U U a x Va and Ua,
aci

Va are open in X and Y respectively for each a E J. Then G( f ) c U so that there

is a^ E J with (a, f (a)) = (a, p) E Up x V p . Thus a E Up and p E Vp . By assump-

tion, since a E UR an open set in X, b E Up and this implies that (b, p) = (b, g(b))

E Up x Vp.

Similarly, there is a y E J such that (b, f(b)) _ (b, q) E U  x V-, which

implies that b E Uy and q E Vy . By assumption, since b E Uy, an open set in X,

a E Uy and this implies that (a, q) = (a, g(a )) E U  x V.. Thus we have

(i) if x E X and x ^ a, x X bthen (x, g(x)) = (x, p) = (x, f(x)) E U since

G(f) CU

(ii) (a, g(a)) E UR x Vp C U

(iii) (b, g(b)) E U  x Vy c U

or G(g) c U which implies that g E F U . Hence if FU is any basic open set in (F, F)

which contains f then FU also contains g.

Similar:y, it can be shown that any basic open set in (F, F) which contains

g also contains f. The last two statements contradict the hypothesis that (F, F)

is To and hence the assumption that X is not T o is false. Thus (F, I- ) To implies

that X is To , and it has been shown that X and v T„ are necessary conditions for

(F, F) to be To.

Theorem H.A.2 indicates that X T i and Y To are sufficient conditions for

(F, F) to be To . The following example shows that in general X T 1 is not a nec-

essary condition for (F, F) to be To.

9-
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EXAMPLE II.A.4.	 Let X = (a, b) and Y = (p, q) be topological spaces with

the topologies OX =	 {t, { a) , X) and Oy =	 {^t, (p} , { q) , Y) respectively Y ,here a

and b and p and q are distinct points.

There are only four functions mapping X into Y, with

G(f 1)	 = {(a, p ), ( b , p)}

G(f 2) = {(a, p ), (b, q)}

G(f3) = {( a, q )• ( b , p)}

G(f4) = { ( a , q), (b, q )} .

The set U = Xx(q) = {(a, q), (b, q)} is open inXxY and G(f4)cUbut

G (f  LU for i = 1, 2 or 3. Thus FU = (f 4) is an open set in (F, F).

The set V = X x (p) = {(a, p), (b, p)} is open in X x Y. Also G (f 1 ) c V

but G (f i ) e V for i = 2, 3 or 4. Thus Fy = {f 1 j is an open set in (F, F) .

To prove (F, F)is To , it is sufficient to show that there is an open set

containing f 3 but not f 2 -

Let W = (a) x (q)uV thenW is open inXxY andW	 {(a, q), (a, p), ( b, p)).

Also W D G(f 3 ) but W I G(f 2)1 that is f 3 E Fw and f 2 4 Fw . Therefore (F, F ) is To.

Although X is To , X is not T 1 since every open set containing b also contains a.

Thus (F, F) To implies X is To holds but (F, F) To does not imply that X is T 1 in

general.
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B. T1

The following example of Naimpally [5] further illustrates the premise

that space (F, I, ) does not inherit its separation properties from the space Y.

The example shows that even though Y is taken as a discrete space, this in itself

is not sufficient to guarantee that (F, I, ) will be a T i space.

EXAMPLE U.B.1. Let X = {a, b) and Y = {p, q} be topological spaces with

the topologies OX = {¢, {a}, X}and Gy = {¢, Y, {p}, {q)j respectively where

a ?^b,p ?^ q.

Define f , g E F as

	

f. a p	 g: a^

	

b q	 b — q .

Then G( f ) _ {( a, p), (b, q)1 , G( g) _ {(a, q), (b, q)} and f and g are distinct

points of F.

Let FU be any basic open set in (F, F) such that f E F U then G( f ) C U. Sup-

pose U	 U Ua X V. where U,, V a are open in X and Y respectively for each a E J.
_	 2EJ

Then G( f) c U implies that there is an index E J such that ( b, q) E Ua X Vp.

However since Up is open in X and since b E U F„ Up must also contain a

(i.e., U,, = X by definition of OX). Thus (a, q) E Up X VQ which implies that

G ( g ) - { ( b , (;), (a, q)} C U,, x V,3 _ U.

Thus g E FU and we have shown that any basic open set in (F, F) which

contains f also contains g . This implies that ( F, I, ) is not a T i space.



f E FZ

gEFp,

which implies that (F, f) is a T 1 space.

gEFZ

f , Fp

I%
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By definition of ©x , X is a To space but X is not T i . Therefore this ex-

ample indicates that in general X T o and Y discrete are not sufficient conditions

for (F, F) to be T1.

In Reference W Naimpally presented the following necessary and suf-

ficient conditions for the space (F, r) to be TV

THEOREM U.B.2. If X and Y are topological spaces and if Y contains at least

two distinct points then (F, i) is T 1 if and only if X is T 1 and Y is TV

a	 Proof. .'assume X and Y are T 1 spaces and suppose f g with f, g E F. Since

f 7' g, there is a point x E X such that f (x)	 g(x).

e

Since X is T 1 , the set (x) is closed which implies that the set X\{ x) is

=	 open in X. Also since Y is T, and f(x) g(x) there are open sets V and W in Y

such that

f(x) E V ,	 g(x) Je V

g(x) E W ,	 f(x)	 W .

Thus the set Z = [ ( X\(X))  x Y] u X x V contains G(f) but does not contain G(g) and

the set P = [(X\ {x)) x Y] u X x W contains G(g) but does not contain G( f ). Then the

open sets FZ and Fp in (F, F) separate the points f and g in the following manner
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Next suppose ( F, F) is a T 1 space and let P and q be two distinct points

of Y. Define f , g E F by f ( x) = p, g(x) = q for each x c X, then P ^ q implies

f i g.

Since (F, I') is T 1 , there are open sets Fu and Fv in ( F, F) such that

f e Fe ,	 g 0 FU

geFV ,	 f4FV.

Suppose U = U U a x V. where U a , Va are open in X and Y respectively for each
a`- J

J. Then g ^ FU implies that G(g) e U and hence that there is an x E X such that

(x, g(x)) = (x, q) EU. Thus ( x, q) ^ U L x Va for any a c J'. However f E FU im-

plies that G( f ) c U and hence that there is an index a e J such that, (X, f ( X))

_ (x, p)EU3XVQ.

Thus we have ( x, q) ^ Ua x Va and ( x, p) ,E Ua x Va, which implies that

q e Vo, p E V  where Va is open in Y. ,. sitmilar argument applied to the set FV

will yield an open set V. in Y such that q E Vy and p ^ Vy . Thus Y is a T 1 space.

Again assume (F, f) is T 1 . Let a and  be distinct points of X and P and

q be distinct points of Y. Define f, g E F by

f(x) = p, for each x e X

p	 for	 x e XVa}

g ( x ) _	 -q	 for	 x - a .

Since f ^ g and ( F, F) is T 1 , there is a basic open .let FU in (F. I') such the

g e Fe and f E Fu . But g E Fe , f ^ FU implies that (.., f(a)) = (a, P) e U since f

and g agree everywhere except at a e X.
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Suppose U = U Ua x Va where Ua , Va are open in X and Y respectively for
a`-J

each a E J. Then G(g) C U implies that there is an index a E J such that (b, g(b) )

_ (U, p) E UQ x V^„ The point a E X cannot belong to U,3 otherwise (a, p) E U18 V  C U

since p E V^ and this contradicts the fact that (a, p) , U. Thus U,3 an open set

in X with a ^ Up, b E U13.

By a similar argument, if a function h E F is defined as

p, x E X\{b}
h(x) _

q,x =b

h

-3_

i
s

then since f h and (F, F) is T i there is a basic open set Fv in (F, F) such

that h E FV , f Fv . Then h E Fv , f 4 Fv implies that (b, f (b)) = (b, p) ; V. Since

G(h) C V suppose (a, h(a)) _ (a, p) E U  x V y C V where Uy and V. are open in X

and Y respectively. Then b U. for otherwise (b, p) E Uy x Vy C V contradicting

the fact that (b; p) e V.

So Uy is an open set in X with a E Uy , b ^ U.. Thus a and b can be separated

by open sets in X which implies that X is TV

C. T2

In Reference [5] Naimpally stated the following theorem without proof.

THEOREM II.C.1. If Y has at least two points then (F, I') is T 2 if and only if X

is T i and Y is T2.
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.Proof. Assume (F, F) is a T 2 space and let p, q be distinct points of Y. De-

fine f, g E F by

f(x) = q, for each x EX and

q, for x E X\i a}
g ( x ) _

P, for x = a .

Since p ^ q implies that f ^ g and since (F, F) is T 21 there are basic open sets

FU and FV in (F, I') such that f E F U , g E FV and FU n FV = ^5 where U = U Ua x V0.,
0.E J

V = U U^ X V^ and the sets U 0., Up and Va , V^ are open in X and Y respectively.
,3EK

Since G( f ) c U, there is an index ^3 E J such that (a, f (a)) = (a. p) E Ur. x V,,.

Similarly, since G( g) c V there is an index y E K such that (a, g( a)) _ ( a, q)

EU`XV'•
Y	 y

Thus p CV,, and q E Vy where V ,, and V,y' are open sets in Y.

Suppose V^3 r^ V,y` X c^ then there is a point z E Y with z E Vr n Vy . Define

hEFby

q, for x E X\{a}
h(x) =

Z,	 x = a .

Then since (a, h( a)) _ (a, z) E ( U13 X V5 ) (Uy x v 	 since h = g = f on

XM a }, G(h) c U V. Thus h E FU .^ FV contradicting the assumption that FU FV = 4).

Thus VQ r Vy = ^b which implies that Y is T2.
T

Since (F, F) T Z implies that (F, F) is T I , then (F, h) T Z implies that X is

T 1 by Theorem H.B.2.
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Assume X is TV Y is T 2 and let f, g E F with f X g. Since f ^ g, there

is a point a E X such that f(a) 74 g(a). Since Y is a T 2 space, there are open sets

V and V' in Y such that f (a) E V, g(a) E V' and V n V' 	 Also since X is a T1

space, the set (a} is closed in X and hence the set XML) is open in X.

Define open sets U and U in X x Y as

U, = [X x V] U [X\{ a} x Y]

and

l7 = [X x V' ] v [X\(a} x Y] .

By construction, G( f) c U and G(g) c U. Thus f E Fu and g E FU where F U and FO are

basic open sets in (F, F) .

Suppose F^t n FO ^ q5 then there is a function h E F such that h E FU n FU.

By Lemma I of Appendix A, Fun F^ = F^^ . Thus h E Fj Inij which implies that

G(h) r U n ^,j. But this implies that (a, h(a)) E U, n U and hence that h(a) E V n V' by

s -
a	 construction of Ik and 0.

•	 But h(a) E V n V' contradicts the assumption that V n V' _.

Thus Fil n FO _ and (F, F) is T2 .

D. Regularity

In general, proofs and counterexamples involving the graph topology are

harder to construct for the regularity separation axiom. In particular counter-

1W
	 examples Lend to be either very complicated or trivial. In large measure, these

difficulties are due to the fact that one can no longer restrict attention to finding
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appropriate basic open sets in F that provide the required separations. For ex-

ample to separate points from closed sets in (F, I"), arbitrary unions of basic,

open sets in F enter the picture. Arbitrary closed sets and arbitrary unions of

open sets in F are quite unwieldy and have few restrictions as to their structures.

The following example shows that in general X regular and Y regular are

not sufficient conditions for (F, 1') to be regular.

EXAMPLE II.D.1. Let X = { a, b} and Y = {p, q} be topological spaces with

the topologies ©X = {0, X} andey = {0, Y, {p}, { q}j respectively where a X b

and p ^ q. As in Example H.A.4, F = Y X consists of the functions f 11 f 2 , f 
39

and f 4 where

G(f 1 ) = {(a, P), (b, P))

G (f 2 ) = ( ( a, P), (b, q)}

G(f3) = ((a, q), (b, p))

G(f4) = (( a , q ), (b, q)} .

The following table lists all the open sets in X x Y and the open and closed

sets in (F, F) :

open in X x Y	 open in (F, F)	 closed in (F, F)

F
U 1 = Xx Y	 F = Fu l	It

U 2 - Xx {P} = (( a , P), ( b , P)}	 F„ 2 = {f l }	 F\FU2 = { f 2 , f3, f4l
U 3 = Xx {q} = { ( a, q ) , ( b , q) j

ll	
FU3 = ( f 4 }	 F\FU3 = {f,, f 2 , f3 1
F U2 'uFU3 = (f 1 , f 4/

11 
	 F\(FU2uFU3)

{f 2 , f3}
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Consider the set F\FU F\F'c is closed in (F, C) and f 1 F\FU Let U FU

	

2	 2	 2	 aeJ	 a

be any open set in (F, F) which contains F\F U^ = tf 21 f 3 , Q, where F U is ac	 a

basic open set in (F, F) for each a E J (i.e., U a is open in X x Y for each a E J).

Then there is an index ,Q E J such that f 2 E FU . So G (f 2 ) c UA an open set in X x Y.
A

From the above table, the only open set in X x Y which contains the graph of f 2 is

X x Y. Thus Up = X x Y and FU . 
= FxxY = F. Therefore the only open set in (F, F)

A

which contains F\FU is F and hence contains f I f This implies that (F, t') is not
s

regular since the point f 1 and the closed set F\,FU c cannot be separated by dis-

joint open sets.

However since X is indiscrete and Y is discrete, X and Y are regular spaces.

Thus X regular and Y regular does not imply that (F, F) is regular.

The next theorem shows that Y regular is a necessary condition for the

regularity of (F, h) .

THEOREM H.D.2. If X and Y are topological spaces and F is the space of all

functions from X to Y then (F, F) regular implies that Y is regular.

Proof. Assume that (F, F) is regular. Let p E Y and let V be any open neigh-

borhood of p in Y. To prove that Y is regular, it is sufficient to find an open neigh-

borhood Q of p in Y such that p E Q c Q c V.

Define f E F by f (x) = p for each x E X, then f E FxXv since by construction

G( f ) c X x V. Also FxXv is a basic open set in (F, F) because V is open in y.

Since (F, F) is regular, there is an open neighborhood U FU of f with
a  J	 a

f E U FU c U FU c Fxxv, where Ua is open in X x Y for each a E J. In particular,

	

aeJ	 a aeJ	 a

f E FU for some a E J and the relation f E FU c FU c FxxY holds. By Lemma I.B.2,

	

a	 a	 a

F U c Fxxv implies that U a c X x V.
a
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Let a E X, then the point (a, p) = ( a, f (a)) E U a since G( f ) c Ua. Since

Ua is open in X x Y, let (a, p) , WxQcU Q where W is open in X and Q is open in Y.

Then Q c V because W x Q c U,, c X x V and p E Q.

Let q be any point of Q and define g E F by

f(x) = p for x?^ a, x E X

g ( x ) _
q	 for x -- a .

Then g E 
FUa 

for suppose F A iQ any basic open set in (F, F) with g E FA and

A = U AQ x B^ where A., Bp are open in X and Y respectively. Since G(g) c A,f3 6K

(a, g(a)) = (a, q) E A,/ x By for same y E K. So q E B y , an open set in Y. However

q E Q which implies that the open set B, y and the set Q have a point r ^ q in com-

Mon, that is r E B ,y n Q.

Define a function h E F by

f(x) = g(x) = p for 	 a, x E X

h(x) =	
r	 for x = a .

Then (a, h(a)) = (a, q) E (A,y x B,y ) n (W xQ). This implies that G(h) c AnU a or

that h E FAnU a . By Lemma I of Appendix A, FAnU a = FA n FU 
a • 

Therefore every

open set F A in (F, F) which contains g also contains : point h i g with h E F A n FUa.

That is g E FU CL

Thus gEFU cF XXV orG(g)cXxV. Since G(g)cXxV, (a, g(a)) = (a, q)
a

E X x V. This implies that q E V. But q was an arbitrary point of Q. Therefore

Q c V and it has been shown that p E Q c Q c V with Q an open set in Y. This com-

pletes the proof of Theorem II.D.2.
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Suppose 3 is a space of continuous functions from a space X to a space Y,

then the following lemma provides information about the structure of certain

closed sets in (3, F) . The lemma is useful in proving that certain conditions on

X and Y are sufficient to ensure the regularity of (3, F).

LEMMA H.D.3. If 3 is a space of continuous functions from the regular space

X to the topological space Y and if V is a closed set in X x Y then 3V is closed in

(3, r).

Proof. Assume that 3 is a space of continuous functions from X to Y, that

is regular and that V is closed in X x Y .

Let g be any point of 3 v , the closure of 3v . It is sufficient to prove that

g E 3V or that G(g) c V. By way of contradiction, suppose that G(g) a V. Then

there is a point (x, g(x)) E G(g) with (x, g(x)) ^ V. Since V is a closed set in

X x Y and (x, g(x)) 1 V there is a basic open set O x B in X x Y (i.e., 0 open in X

and B open in Y) such that (x, g(x)) E 0 x  and (0 x B) n Y = ^. Since g E 3, g is

continuous and there is an open set U in X such that x E U and g(U) c B. Let

W = OnU then xEW and g(W)cg(U)cB.

Since X is regular, there is an open neighborhood 0 1 of x in X with x E 01

C 6 1 cW. Thus g(O 1 ) c g(b l ) c g(W) c B.

X\O I is open in X. Let P = [ ( X\O- x Y, u (X xB) , then P is open in X x Y.

Since g(b i ) c B, G(g) c P or g E 3p . Let h be any point of 3p then h(O 1 ) c B. There-

fore ( x, h(x)) E 0 1 x B since x E O 1 . ' Thus ( x, h(x)) X V since (O 1 x B) n V c (Ox B)

n V = ^6. However (x, h(x)) ^ V implies that G(h) Q V or that h ^ 3 v . Since h was

an arbitrary point of 3P and h ^ 3v , 3P n 3V = ^. But 3P is an open neighborhood
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of g in (3, h). Thus 3p n 3V (t contradicts the assumption that g E 3V . There-

fore G( g) must be contained in V. Hence g E 3V for each g E 3V and the lemma is

proved.

As an aside, Lemma I.B.2 provides a similar structural theorem for

closed sets in a space of non-continuous functions when X is TV

The following theorem provides sufficient conditions for regularity of the

space (3, F).

T IHEOREM II.D.4. Let 3 be a set of continuous functions from a compact,

regular space X to a regular space Y then (3, I , ) is regular.

Proof. Assume that X is a compact, regular space, that Y is regular and that

3 is a set of continuous functions. Let f E 3 and let 3U be any basic open set in

(< , F) containing f where U :" U U. x V. and U a , V,,in X and Y respe , .tively forar 

each a E J.

	Since f E 3U , G(f) c U. This implies that for each x E X, there is an index	 =

a x E J with ( x, f (X)) E Ua x Va . Since Y is regular, for each x E X there is an
x	 x

open neighborhood VQ of f ( x) with f (x) E Va' c V a' c_ Va . Since f E 3, f is con-
X	 x	 x	 x

tinuous so that for each F X, there is an open neighborhood Wx of x with f ( W x
 ) c Va'

X

Since Ua n W. is an open neighborhood of x and since X is regular, there is an
X

open neighborhood Ua of x with x E Ua c U 	 c Ua n W x . Then for each x E X,
X	 x	 x^	 x

f (x) E f (U"'. ) c f(UaX) c f (Uax n Wx) c f (W. ) c Vaz byc hoice of Wx.

Since X is co npact and i Ua' I x E X} is an open cover of X, there is a
`	 x

n
finite sub-cover ^U a'	 i = 1,	 , n of X. Let V = U U Q' x Va' and

x i 	 i=1	 xi	 xi
n

V' = U Ua x Va	 Then V is a finite union of closed sets in X x Y and V' is a
i = 1	 xi	 xi
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finite union of open sets in X x Y making V and V closed and open respectively in

X x Y. Thus 3v , is open in (3, r) and by Lemma II.D.3, 3v is closed in (3, F) .

Also G( f ) c V c V sincejU a'x	i = 1, • • nJ covers X, since f
l 

c f (U '} c Va'xi c V' by construction of U ax and since Ua x' x V a' c U' x V'a xi	 axi	 i	 i	 xi	
aXi	

axi

for i = 1, • • •, n. By Lemma I.B.1 V c V implies that 3 v , c 3v . Therefore

f e 3V , c 3V and 3V is a closed neighborhood of f.

Finally it remains to show that 3 v c 3U . By construction, Ua c U,, and
x	 x

n

Va c V a for each x EX. Therefore V = U UQ x VQ c U U Q x VQ = U.
X	 x	 ;= i	 Xi	 x;	 XIx	 X	 x

Again by Lemma I.B.1, V c U implies that 3V c 3c and the theorem is proved.

As a final note on regularity, it is shown in Kelley (21, p. 141, that if X is T2

and compact then X is a regular compact space also. Thus

COROLLARY II.D.5. If 3 is a set of continuous functions from the T 2 , com-

pact space X to the regular space Y then (3, F) is regular.

Proof. The proof follows immediately from Theorem II.D.4 and the above re-

mark as Kelley's proof.



CHAPTER III

THE GRAPH TOPOLOGY AND OTHER FUNCTION SPACE TOPOLOGIES

In this chapter comparison of the graph topology with the pointwise con-

vergence topology, v ith the compact open topology, with the uniform convergence

topology and with the sup metric topology will be made.

A. Compe.rison With the Topology of Pointwise Convergence

Naimpally's Example II.B.1 will serve in this section to shed some light

on a comparison of the p.c. and the graph topologies.

EXAMPLE III.A.1. Let the spaces X = {a, b}, © x = {4f , {a}, X}and Y = {p, q},

©y = {,^, Y, {p), {gtij be given as in Example II.B.1. Then as was remarked pre-

^o
	 viously, X is a T o space and Y is discrete. The four functions in F = Y x are:

f: a	 p	 g: a'\

	

b q	 b — q

h: a	 p	 is a\,p

b'r	b q .

By definition, a subbasic open set for the p.c. topology is a set of the form

W(x, U) = (f e F I f (x) a U) where x is a fixed point in X and U is a fixed open set

in Y.
r^.

" 25
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The following is a listing of some of the subbasic open sets for the p.c.

topology, P , on F in this example:

•	 W(a, {p} )	 =	 { f , h}

W(a, {q}) = {g, i}

W(b, {p} ) = {h, i}

W (b, { q} ) =	 { f , g} .

Note that the following relations hold:

{f} = W(b, {q}) n W(a, {p})

W 	 n W(b, {q})

{h} = W (a, {p}) n W ( b, {p})

{i} = W(a. {q}) n W(b, { p}) .

{g} =

Therefore every point of F is a finite intersection of open sets in (F, P). How-

ever this implies that every point of F is open in (F, P) or that F is a discrete

space under the p.c. topology.

As was shown in Example U.B.1, (F, F) is not a T 1 space. Therefore the

p.c. topology and the graph topology on F of this example are not comparable.

To get meaningful results on,comparisons between the p.c. and the graph

topologies, it is necessary to consider X a T i space as the following theorem due

to Naimpally [5] indicates.
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THEOREM III.A.2. If X is a T 1 space and if F is the set of all functions from

X to a space Y then graph topology on F contains the p.c. topology on F.

.Proof. Suppose X is T, and F = Y Z . Let W(x, U) = ( f E F 1 f (x) E U) (where

x is a fixed point in X and U is open in Y) be any subbasic open set for the p.c.

topology on F. Since X is 'r^, the set {x) is closed in X. Jet V = [(X\,(X)) x Y]

u (X x U). then V is open in X x Y.

Suppose f s W(x, U) then f ( x) E U so that G( f ) c V or f E FV . Therefore

W(x, U) C FV . Similarly, if f E F,^ then G( f ) c V so that f (x) E U or f E W(x, U) .

Therefore W(x, U) C F V C W( x, U) or W ( x, U) = FV which implies that W(x, U) is

open in (F, F) .

B. Comparison With the Compact Open Topology

Since the compact open topology contains the pointwise convergence

topology, Example HI .A.1 also shows that F of that example is discrete under the

k-topology. Therefore since F under the grap : topology was not even T 1 , this

example shows that the k topology and the graph topology may not be comparable

when X is only a T o space. In fact Naimpally showed in Reference i5^ that the

strongar condition of X being T 2 is needed for a meaningful comparison of the

k-topology with the graph topology. Naimpally ' s rnsul'^ is:

THEOREM III.B . 1. If X is a T 2 spare and if F is the set of all functions from

X to Y then the graph topology contains the compact open topology on F.

i
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Proof. Suppose X is T 2 and  = YX . Let W(K, U) _ {f ' f(K) c U} (where K is

a fixed compact subset of X and U is a fixed open set in Y) be any subbasic open

set for the k-topology on F.

Since X is T 2 and K is compact, K is closed in X. Therefore the set

V = (XxU)u [(X\,K) - Y]is open inXxY.

Suppose f E W(K, U) then f (K) c U so that G( f ) c V or f E ?v. Therefore

W(K, U) c Fv . . Similarly, if f E Fv then G( f ) c V so that f (K) c U or f E W(K, U) .

Therefore W(K, U) c Fv c W(K, U) or W(K, U) = Fv which implies that W(K, U) is

open in (F, 7 ) .

Naimpally stated in his Theorem 42 of Reference _5 1 that if X is a T 2 , com-

pact space then the graph topology coincides with the k-topology on F. In fact,

this statement is false as the following counterexample shows.

EXAMPLE III.B.2. Let X = Y = i0, 11 with the usual topology. Define

f E  = Yxby

0	 X E (0, 11
f(x) =	

1	 x = 0 .

Let U = { ( x, y) E X x Y 1 y< x or x+ 3/4 < y}. By construction, U is open in X x Y

and G( f ) c U. Thus f E FU and FU is an open neighborhood of f in (F, F) . It suf-

fices to show that FU is not a neighborhood of f in (F, k) to show that the graph

topology i s not contained in the k topology.

Let {Ki i = 1,	 n} be a collection of compact sets in X and

{ U i i = 1,	 r} be a collection of open sets in Y. Then the set ft 
1 

W ( K i , U i
i'
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is an arbitrary basic open neighborhood of f in the k topology on F where

W(K i , U i ) = {gE F ( g(K i ) CU 1 } for i. = 1,---,n, when f(Ki)cUi

Let J be the set of indices j from 1 to n such that K j n (0, 11	 Then

there are two cases to consider:

Case is If J = v then K i n (0, 11 _ - and K i = i'W for each i = 1, • • •, n.

Define h E F by h(x) = 1 for each x E [0, 11 . Then since f (i'01) = f (K,) c U i and

i	 since f(0) = 1, 1 E U i for each i = 1, • • •, n. But 1 EU i implies that h(K i ) cUi

for each i = 1, • •, n or that h E nl W(K. , u . ^ . However G(h) Z U since the
I

point (1, 1) _ (1, h(1)	 U by construction of U. Thus if J =	 1 (1 1 W (K i , U i ) 0 FU.

Case ii: Suppose that J 3^ ^t and define W = nl U j . By definition, f = 0
j "i

on (0, 11 . Thus for each j E J, since K j n (0, 11	 ^t and since f E W(K j , Uj)

0 E U .. Therefore 0 E nU . _ W and W is an open neighborhood of 0 in Y.I	 j eJ	 J

Since W is an open neighborhood of 0, there is a point y o E M(\\0}. Define

a function h _ F by

0x E (0, 1]

h(x)

46	
1	 x = 0

r	 _	 Then by definition, h E n W(K i , U i .
.=1

Also h(y o - yo since yo # 0. However the point ( yo, h ( yo^) - ( y o , yo) U

by construction. This implies that G(h) ^ U or that h e FU.

Thus 
lnl 

W(K i , U i	 FU . Since 
lni 

W(K i , U i ) was as arbitrary open

neighborhood of f in (F, k), this shows that F U cannot be a k neighborhood of f.

Therefore FU is not open in the k topology and I k.
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The next theorem gives a correct set of conditions insuring the equivalence

of the k topology and the graph topology on a space of continuous functions.

THEOREM III.B.3. If 3 is a set of continuous functions from a compact, T2

space X to a topological space Y then the graph topology on 3 is equivalent to the

compact open topology on 3.

Proof. Suppose X is a compact, T2 space and 3 is a set of continuous functions

in Yx . Let `iU be any basic open set in (5, F) where U = U U a X Va and U^, VQ
aEJ

are open in X and Y respectively for each a E J .

Let f be any point of 3- U . To show that 3U is open in the k-topology on 3,

it suffices to show that -
CIU

is a k-neighborhood of f.

Since f c 3U , G(f) C U . Therefore for each x E X , there is an index ax E 3

such that (X, f (x)) E U,, x V,,	 Since f is continuous there is an open set OX in
X	 X

X with x c O X and f (OX ) c Vd for each x --- X .
X

Since X is compact and To , X is regular. Therefore there is an open set

• U a ' such that x E U,,' CU, ,' OX n U a for each x E X, "Thus f (x) E f (Ua ) C f ( U " )
X	 X	 X	 X	 X	 X

C f(O X nU QX ) C f(OX )C V" X.

Since X is compact aid since (u,",
X

x E X1is an open cover of X, there is

a finite subcover {U,,' 
X i 	 \

ni . Then f j U Q'
X
 1 C V 

X
Q	 But X compact

i	 i

and U z' closed in X implies that U Q  is compact. Therefore f E n W ii 	 Va ,
Xi Xi 	 i=i	 X;	 Xil

a basic open set in the k topology on 3.
n	 _

Suppose g e h W U'	 V	 then g(U '	 c V	 since U' C U' for
i= 1 	 aXi	 aXi	 \ a.	 ,,x l 	 ,Xi	 ^Xi

each i = 1, • • ^, n. But fU,, x	1, • • , n 
I 

is an open cover of X. Therefore
i
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G( g) c u U a'I_ 1 x VaXi c U or g E 3U . Since g was an arbitrary point of nW(UaXi 
I VaXi)'

this implies that r)W(UaX , VaX 
I 

C 3" .

	Therefore f E 
1 

^Ua

i
f1 	 , Va j C 3U which implies that 3U is a k-neighbor-

	

=	 xi	
Xi

hood of each of its points. That is 3U is k-open. Hence F c k. By Theorem III.B.1,

k c r on 3 since 3 c F and k C f' on F.

Therefore k and F are equivalent topologies on 3.

C. Comparison With the Topology of Uniform Convergence

The two theorems of this section are stronger than those in Naimpally [5]

since uniform continuity is not required.

THEOREM III.C.1. Let (X, U,) and (Y, U) bo uniform spaces. If 3 is a set of

functions from X to Y which are continuous with respect to the uniform topologies

on X and Y then the graph topology on 3 contains the uniform convergence topology

on 3.

Proof. A basis for the u.c. uniformity on 3 consists of sets of the form

W(V) _ {( f , g) E 3 X 3 1 (f (x), g(x)) EV for each x E X} where V is an element of

the uniformity U on Y.

Let 0 be any open set in the uniform topology on 3 and let f be any point

of 0. Then 0 is a neighborhood of f in the u.c. topology and thus contains a set of

the form W(V) [ f ] _ Ig  E 3 + (f (x) , g(x)) E V for each x E X} where V is an element

of U.

From page 179 of Kelley [2], the family of open symmetric members of a

uniformity form a basis for the uniformity. Let V 1 be an open symmetric mem-

>>er of U such that V 1 0 V 1 C V.
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Let x EX then V 1 Lf (x) ] is a neighborhood of f (x) in Y. Since f is con-

tinuous with respect to the uniform topologies on X and Y, there is an open sym-

metric member U X of U such that f(U X [xJ) C V 1 [f (x)] for each x E X. Since UX

and V 1 are open members of U and 'J respectively, the set P = U U,, [x] x V1 [f (X)]
XEx

is open in X x Y. Also G(f ) C P since U. and V 1 contain the diagonals in X xX and

Y x Y respectively. Thus f E 3P.

Suppose g E 3P then G( g) C P. This implies that for any x E X, there is a

Y E X such that (x, g(x)) E U Y [y] x V 1 (f (y) j . Thus x E U Y [y] and ( f (Y), g(x)) E V1.

By definition of U Y , f (U Y [y]) C V 1 [f (y)]. Thus X E U  [y] implies that f(x)

E V 1 [f (y)] or that (f (y), f(x)) E V 1 . Since V 1 is symmetric, (f (X), f(y)) E V1.

Therefore ( f (x) , g(x)) E V 1 o V 1 C V. for each x E X.

This implies that ( f , g) E W(V) or that g E W(V) [ f J . Thus f E 3P C W(V) [f] c0

and 0 is a F neighborhood of each of its points. Therefore the topology of uniform

convergence is contained in the graph topology.

THEOREM III.C.2. Let (X, 11) and (Y, ,J" be uniform spaces and let 3 be a

set of functions which are continuous with respect to the uniform topologies on X

and Y. If X is compact then the graph topology on 3 is equivalent to the uniform

convergence topology on 3.

Proof. By Theorem III,C.1, the u.c. topology is contained in the graph topology.

Let 3U be a basic open set in (3, F) and let f E 3U where U = U U,, , x Va
aej

and U,,, V,, are open in the uniform topologies on X and Y respectively. Then

G(f)CU.
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By Lemma I of Appendix ';, G(f) is homeomorphic to X since f is con-

tinuous. Thus G( f ) is compact since X is compact.

From page 199 in Kelley [2),  the open cover {U,, x V Q 1 a E J } of the com-

pact set G( f ) in the uniform space X x Y is a uniform cover. Therefore there

exists open symmetric sets U 1 U and V 1 E U such that

G(f) c U U 1 [x] x V 1 [f(X)) C U UQ x Va c U
X 6 X	 ae J

Let g E 3nW(V 1 ) [f] then g(x) E V 1 [f(x)] for each x E X. Therefore

[x] x V rf x for each x EX. This im lles that G(g) c U U [x]
( X ' g t ^)) E U 1	 1 l ( )]	 p	 XCX 1

X V 1 [f (x)] c U or that g E 3U . Therefore f E 3 n W(V 1 ) [ f ] c 3c which implies that

3U is a u.c. neighborhood of each of its points. Therefore the graph topology is

contained in the u.c. topology on 3.

4

D. Comparison With the Sup Metric Topology

Let F be a set of functions from a set Xto a metric s pace (Y, d). If

~" -a f, g E F then ( f, g) _ Sup d (f (x) , g (x)) is a metric on F called the sup metric.
t	 X F X

THEOREM III.D.1. If (X, d`) and (Y, d) are metric spaces with d and d'

bounded metrics and if 3 is a set of continuous functions from X to Y then the sup

metric topology on 3 is contained in the graph topology on 3.

Proof. Let 0 be any open set in the sup metric topology on ,  and let f be any

point of O. It suffices to show that 0 is a F neighborhood of f. Since 0 is open in
3

the sup metric topology, there exists an open p ball N E (f ) of radius E > 0 about

f with f ENE(f)c0.
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Since f is continuous, iven x X and given E > 0 there is a 
ax 

> 0 (b x de-

pends on x) such that f;, ^x ( x ) '  Ne ^3 (f (x)) where N sx (x) is a d' ball of

radius 6 . about x and N, s f (x) is a d ball of radius E /3 about f (x).

Consider U = U N, (x; x N./3 (f (x)) . By construction of U, G(f)cU and
xcx	 x

U is open in X x Y. That ie f E r3l , a basic open set in (3, F).

Let g E 3 U then G(g) c U. Therefore for each point z E X, (z, g( z)) E U.

This implies that for each z E X, there is an x' E X such that (z, g(z )) E N S x, (x' )

x NE/3 (f W) ) . Thus d' (z, x') < S x , and d(g(z), f(x' )) < E/3. However

d' (z, x') < S 
x, 

implies that d(f(z),  f (x')) < E/3 by definition of 8x'. Thus

d(f(z), g(z)) < d(f(z), f(x')) + d(f(x'), g(z))

< /3 + E /3 .

But d(f(z), g(z)) < 2E/3 for each z EX implies that p(f, g) = Supd(f(z), g(z)) <E,
zex

Therefore g E N, ( f ) and f E 3U c N E ( f ) c O or 0 is a F neighborhood of f. This

implies that 0 is a F open set and that the sup metric topology on 3 is contained

•	 in the graph topology on 3.

If (X, d') and (Y, d) are metric spaces with bounded metrics then the

product topology on X x Y is induced by the metric

D (( x l' Y 1)' ( x 2' Y^)) = d' ( x l , x 2) + d ( y l , Y2)

where x l , x 2 E X and y l , y 2 E Y.

THEOREM IH.D.2. If (X, d') is a compact metric space and (Y, d) is a metric

space (d', d bounded metrics) and if 3 ie a set of continuous functions from X

to Y then the graph topology is equivalent to the sup metric topology on 3.
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Proof. Let 3U be an open set in (3, 7) where U = U U. x V,,and U,,, V,,are
aEi

open in X and Y respectively for each a E J. If f is any point of 3U , then it suffices

to show that 3 U is a p-neighborhood of f since the sup metric topology c Fby

Theorem III.D.1.

By Lemma I of Appendix B, G( f ) is homeomorphic to the compact set X

since f is continuous. Thus G(f ) is compact. The collection {U a x Va I a E JI is

an open cover of the compact set G(f ) in the metric space (X x Y, D). Let E > 0

be the Lebesgue number of this open cover. Then by definition of the Lebesgue

number, given x E X there is an index ax E J such that N D (X, f (x)) c Ua x x Va x

Therefore U ND (x, f(X) c U Ua x Va c U.
xex	 a EJ	 x	 x

x

Consider the sup metric open neighborhood NE ( f ) of f. Then f E NE ( f )

and if gEN EP (f), p(f, g) = Supd(f(x), g(x)) <E.
xEX

Therefore given x E X,

D((x, g(x)), (x, f(x))) = d' (x, x) + d(g(x), f(x))

< 0 + E = E .

Thus (x, g(x)) E N D (x, f(x)) for each x E X. Therefore G(g) c U ND (x, f(x))cU
xeM

or G(g) c U . Thus if g E N En (f ), g E 3U which implies that f E N E ( f ) c 3U or that

3U is a p-nuighborhood of f.

Therefore 3U is p-open in 3 and the graph topology is contained in the

sup metric topology on 3.



CHAPTER IV

CONTINUITY OF' THE EVALUATION MAP

If 3 is a set of functions defined on the space X with range in the space Y

then the evaluation map is the map e : 3 x X -Y where e( f, x) = f (x) for each

point ( f, x) E 3x X. Because of this definition, two types of continuity can be

considered for the map e: separate continuity and joint continuity. The map a is

separately continuous in f and x when a is continuous in each coordinate separ-

ately. That is when a is continuous as a function of f when x is held fixed and e

is continuous as a function of x when f is held fixed. The map a is jointly con-

tinuous if a is continuous. That is if a is continuous when both f and x vary si-

multaneously. Note that separate continuity is a necessary condition for joint

continuity.

Considering separate continuity of e, suppose f E 3 is fixed and x E X is

allowed to vary. Then since e( f, x) = if x), the continuity of a in x is equivalent

E to the continuity of f. Thus to consider either separate or joint continuity of f,

it is necessary that ;) be a space of continuous functions. Hence throughout this

chapter, attention will be centered on spaces 3 of continuous functions from X to

Y.

A good reference on the evaluation map is McCarty [3].

36
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A. Classic Results--The Pointwise Convergence

and the Compact Open Topologies

The following theorem yields necessary and sufficient conditions for

separate continuity of e.

THEOREM W.A.1. If (3, 0) a topological space of continuous functions on

the space X to the space Y then the evaluation map a is separately continuous with

respect to 0 if and only if 0 D P, the topology of pointwise convergence.

Proof. Assume a is separately continuous with respect to (3, 0) and suppose

0 is a subbasic open set in (3, P). Then by definition of the topology P, 0 is of

the form 0 = ff E3 I f (x 0 ) E V, for some fixed x  E X and fixed V open in Y}.

Since a is separately continuous in f and x with respect to 0, the function

e (f, x 0 ), where x o is fixed and f is allowed to vary, is continuous with respect

too. Denote the function a (f, x o ) by e.
0 ( 

f) , then e x maps 3 into Y by ex (f)
0	 0

= e ( f , x o ) = f (x 6 ) for each f E 3.

Since e x o is continuous on (3, 0) and since V is open in Y, eXo (V) is open

in (3, 0). However e - 1 (V) _ {fE31e
xo

(f)EV }_ (fE31 f(xo)EV}=0.

Thus 0 is open in 0 and P c 0.

Next suppose that P c 0 and consider a as a function of f only. That is let

x be fixed at x o E X, allow f to vary and consider the function a (f, x o ) = e X (f)
0

for f E 3 Again e x maps 3 into y. Let V be any open set in y, then e x- 1 (V) _ (f 3
0	 0

1 e x
 
 ( f ) = f (X 0 ) E V). By definition of the topology P, eX o (V) is a subbasic open

set in P. Thus eXo( V) is open in P c 0 and hence is open in 0. Thus the function

e xo (f) = e(f, X 0 ) for f E 3is continuous in f.
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The continuity of a ii x for fixed f is equivalent to the continuity of f by

a remark made in the introduction to Chapter IV. By assumption,	 0) is a

space of continuous functions from X to Y. Thus a is continuous in x for fixed f

by assumption.

So a is separately continuous in f and in x with respect to (?, 0) when

c 0 and the proof is complete.

COROLLARY IV.A.2. The pointwise convergence topology on 3 ; s the smallest

'4 =	 topology on v for which a is separately continuous.

Proof. The proof of this corollary follows immediately from the ;goof of

Theorem IV.A.1.

Now turning to the continuity of e, that is the joint continuity of e, the
4

following definition can be made.

Definition: If 3 is a space of continuous functions from a topological space X

t^ 	 to a topological space Y, then an admisslble topology for 3 is a topology 0.1 3 which

mak;is the evaluation map e 3 v X — Y continuous (i.e. jointly continuous).

The following theorem was presented by Arens in Reference [1] .

THEOREM IV'.A.3. If -j is a space of continuous functions from the sp».:e X to

the space Y and if 0 is an admissible topology for 3 then the compact open topology

is coarser than 0, that is k c 0.
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Proof. Let W(K, U) be any subbasic open set for the k-topology on 3 where X

is a compact set in X, U is open in Y and W( K, U) := {f E 3 I f(K) c U) . It will be

shown that W(K, U) is a p neighborhood of each of its points.

Let f be any point of W (K, U) then f ( K) c [: so that e( f, x) = f ( x) E U for

each x E K. This implies that ( f, x) E e - 1 (U) for Each x E K. Since ® is admissible,

e -1 (U) is open in 3 x X. Thus for each x E K, there is a 0 open set W x and an X

open set V , such that ( f, x) E Wx x V x c e- 1 (U).

The collection LVx I x E K} is an open cover of the compact set K. Let

(Vx	 i = 1, • • • , n} be a finite subcover of K and let 0 = n W x 	Then 0, a
i j'-' 	 1

finite intersection of 0 open sets, is 0 open and f E 0 since f E Wx for each x E K.

Let g be any element of 0 and x E K then x E Vx for some j = 1, • • -,n

since K c U V x . Since g E W x , (g, x) E W x x Vx c e-1 (U). It follows that
i = 1	 i	 1	 1

e(g, x) = g ( x) E U for each  E K. Thus g ( K) c U or g E W(K, U).

Since g was an arbitrary element of 0, we have shown that f E 0 c W(K, U)

which implies tl^at W(K, U) is a ® neighborhood of each of its points.

.	 Thus W(K, U) is a p open set and hence k c 0.f

Theorem IV.A.3. does not indicate that the k topology is the smallest ad-

miscible topology for 3. In fact in Reference [1], Arens shows that in general

there is no smallest admissible topology for 3. However, as the next theorem

shows, Arens proved that if the space X is locally compact and T  then the com-

pact open topology on t3 is the smallest admissible topolo g on'3.

THEOREM N .A.4. If 3 is a set of continuous functions from the locally com-
a

pact, T  space X to the space Y then the k-topolog y is admissible.

w
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Proof. It must be shown that the map e ' :-I x X - Y is continuous with respect

to the k-topology on C.- .

Let ( f , x) be any point of ) x X and V be any open neighborhood of

e( f, x) = f(x) in Y. Since f E 3, f is continuous by hypothesis and there exists

an open neighborhood 0 of x in X such t.tat f (0) c V.

Since X is a locally compact, T 2 space the family of all closed compact

neighborhoods of any point in X is a base for the neighborhood system of the

point. (&--.e Kelley, Reference ^ 2], p 146.)

Let K be a closed compact neighborhood of x such that K c 0, then f(K;

c f(0) `V. 'thus  f E W(K, V), that is W(K, V) is an open neighborhood of f in the

k -topology.

Since K is a neighborhood. of x, x belongs to the interior of K, , E K`. Them

W(K, V) x ';° is an open set in the space (3, k) x X containing ( f. x).

Let (g, y) be our point in W(K. V) x K° then g E W(K, V) and  c K° c K.

However, g E W(K, ) implies that g(K) c V so that g(y) E V since y E K.

Therefore for ea.:h (g, y) E W(K, V) x K°, e(g, y) = g(, , N ^ V or e(W(K, V)

x K° c V. Thus a raps the open neighborhood W(K, V) x K° of ( f , x) into V which

implies that a is continuous at (f, x) .

So a is continuous on -f x X with respect to the k topology aad the theorem

is r_roved.

B. Continuity With Respect to the Grdpb Topology

In Chapter III it was shown that rather strong conditions on the space X

(i.e. T 2 , compact) are required to force equivalence of the k-topology and the
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graph topology on a space of continuous functions. BecauGe of this, it might be

expected that weaker conditions on the space X could result in admissib-:Uty for

the graph topology. This is in fact so as the following theorem shows.

THEOREM IV.B.1. If 3 is a space of continuous functions from tl.e regular

space X to the space Y then the graph topology on 3 is admi.-sible.

Proof. Let ( f, x) be any point of 3 x X and V be any open neighborhood of f (x)

in Y. Since f E 3, f is continuous by hypothesis and there is an open neighborhood

0 of x in X with f (0) c V.

Since X is regular, there is an open neighborhood 0 1 of x in X with x E O1

0 1 c 0. It follows that f(x) E f(0 1 ) c f (O 1 ) c f (0) c V. Since O 1 is closed in X,

X\07 1 is ,,per. in X.

Let U = ( X\O 1 ) x Y u X x V then G(f) c U since f(6 1 ) c V. Thus f E 3U and

3U is an _,Deu neighborhood of f in the graph topology on 3.

Tne set (71X O 1 is an open neighborhood of ( f. x) in the spr..-e (3 , 7) X X.

A

	

	 Let (g, y) be any point of 3U X O 1 the►. G(g N U and y E O 1 . Since G(g) c U

and  E0 1 c0 1 , ( y, g(y)) E X. V. Thus e(g, y) = g(y) E V and we have shown

that, for every point (g, y) E 3 U X O 19 e(g, y) = g(y) E V. liis implies that

e(3U x 0 1 ) ` V or that a is continuous at ( f, x) with respect to the F topology on

3 and the theorem is proved.

The followbg, c — ollary adds additional inform tion to the results obtained

in Chapter III, Section D co - ,̂ arning comparison of the k-topology and the graph

topology.

c

I
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COROLLARY IV .B.2. If 3 is a set of continuous functions _rom the regular

space X to the space Y, then the k-topology on 3 is contained in the graph topology

on 3, that is k c F.

Proof. The proof follows immediately from Theorem IV.B.1 and Theorem

IV.A.3.

Two additional results concerning the admissibility of the topology of uni-

form convergence and the sup metric topology an 3 appear in Appendix C.

The following additional result holds regarding the separate continuity of

e and the graph opology.

THEOREM IV.B.3. If 3 is a set of continuous functions from the T i space X

to the space Y then the evaluation map is separately continuous with respect to

the graph topology on 3.

Proof. If X is T i then the pointwise convergence topology is contained in the

graph topology by Theorem III.A.2. Therefore a is separately continuous with

respect to the graph topology by Theorem IV.A.1.

WT



APPENDIX A

A BASIS FOR THE GRAPH TOPOLOGY

Let F = Y X, the set of all functions from X to Y. Define Fu = If E F I G(f) c U)

for U c X X Y.

LEMMA I. If U, Vc XX Y then Funv = Fu nFv•

.Proof. Suppose Funv = 0. If f E Fu n Fv then G( f ) c U and G( f ) c V which im-

plie s that G( f ) c U n V Thus f E F u n v contradicting the a ssumption that Fu -) v

Therefore if Funv = ^b then F u n Fv = O and Funv = Fu n Fv'

Suppose F u n Fv = 0. If f E Fu n v then G( f ) c U n V which implie s that

G( f ) c U and G( f) c V. Thus f E F u n Fv contradicting the assumption that Fu n Fv =.

Therefore if Fu n Fv = ^5 then Funv - 0 and Fu n v = Fu n Fv.

Suppose neither Fu n Fv nor Fu nv is empty and let f E Funv. Then G(f ) c U,--V

or f E Fu and f E Fv . Thus f E Fu n Fv and Funv c Fu n Fv.

	

Let g E Fu Fv 	 G(g) c U and G c V or G

	

u v	 (g)	 (g)cUnV. Thus gEFunv

and Fu n Fv c Funv'

Therefore in any case Funv = Fu n Fv.
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LEMMA II. The collection 8 = (Fu I U an open set in X, Y } is a basis for a

topology on F.

Proof. A sufficient condition for 6 to be a basis for a topology on F is: for

every two members Fu and Fv of 6 and for each point f E Fu n Fv there is an Fw E 8

such that f E Fw c Fu n Fv .

Let Fu and Fv E 8 and suppose f E Fu r, Fv. Then by definition, G( f ) c U and

G(f) c V or G(f) c U O V. Since U and V are open in X x Y, U r '• V is open in X x Y.

Therefore Fu n v E 8. But G( f ) c U n V implies that f E Funv • By Lemma I above,

Fun v = Fu n Fv. Therefore f E Fu r v c Fu nFv holds. Let F w = Fu n v E 8 and the

condition assuring that 8 is a basis for a topology on F is met.

a



APPENDIX B

CONDITIONS FOR THE GRAPH OF A FUNCTION TO BE

HOMEOMORPHIC TO THE DOMAIN SPACE

LEMMA I. Let f be a function from a topological space X to a topological

space Y. If f is continuous, then G( f ) is homeomorphic to X.

Proof. The map p : G( f ) -- X by p (x, f ( x) ) = x is the required homeomorphism.

Suppose P(x, f (x)) = p(y, f (y) then x = y by definition of P. But then.

f(x) = f(y) since f is a function. Therefore (x, f(x)) = (y, f(y)) and p is 1-1.

Suppose x E X then x, f (x) E G(f) and p (x, f (x) = x which implies

that p is onto X.

Note that G( f ) c X x Y and G( f ) is given the subspace topology induced by

the product topology on X x Y. Let pX and pY be the projections of X x Y onto X and

Y respectively. Then p X and pY are continuous since the product topology is the

smallest topology on X x Y such that the projection ma ps are continuous.

However p = pX( G( f . Therefore P is continuous since it is a restriction

of a continuous map.

Consider P- i . P 	 X G( f) c X Y. Since p is onto X. Therefore by

Theorem 3, p. 91 in Kelley [2], p' is continuous i f and only if px o p-1 and pY o P-1	
4

are continuous.

45
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Let x e X then px o p
- 1 (x ) = px (x, f ( x) ) = x so that px o p- 1 is the

identity of the space X into itself. Thus px o p-1 is continuous.

Also pY op-1 (x) = py (x, f(x)) = f{x) so that Py op-1	 f. Thus

p Y o p- 1 is continuous since f is continuous by hypothesis. Therefore p-1 is con-

tinuous which proves that p is a hor,.3omorp).Asm of G( f ) onto X.



APPENDIX C

CONTINUITY OF THE EVALUATION MAP WITH RESPECT TO THE

UNIFORM CONVERGENCE AND THE SUP METRIC TOPOLOGIES

Although the two theorems of this appendix do not involve the graph to-

pology, the fact that they are of interest in connection with the evaluation map

justifies their appearence here.

THEOREM I. If 3 is a set of continuous functions from a topological space X

to a metric space (Y, d) then the sup metric topology on 3 admissible.

Proof. Let (f, x) E 3 x X. and let V E (f (x)) be an open ball of radius E > 0 about

f (x) in Y. Since f is continuous, there is an open set 0 in X with x E 0 and

f(0) CV C/3 (f (x)). Let N, /3 (f ) be ap -ball of radius E/3 about f, then ( f , x)

E N E / 3 (f) x 0 an open subset of 3 x X.

Suppose (g,y)EN E/3 ( f)xO then g EN E/3 (f) and y EO. However gENE /3(f)

implies that p(f, g) = Sup d(f(x), g(x)) < E/3. Thus d(f(x), g(x)) < E/3 for
X E X

each x E X and in, particular, d (f (y) , g (y) ) < c:13.

Since y E0, f(y) E f(0)C V E/3 (f(X)^.

f

47
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By the triangle inequality,

d(f(x), g(y)) _^ d(f(y), g(y)) + d (f(x )• f(Y))

< E/3 + e/3 < e .

Then since d(f(x), g(y)) < e, g(y) e V E (f (x)). Thus e(g, y) = g(y) a V E (f (x))

which implies that e I N E/3  ( f) x 01 c V E (f (x)) since ( g , Y) was an arbitrary point

of N e 3 (f ) x 0. Therefore the open neighborhood NE/3 ( f) x 0 of ( f, x) is map-

ped into V E (f (x)) by e. This implies that a is continuous on 3 x X since (f, x)

was an arbitrary point of 3 x X.

THEOREM U. If 3 is a set of continuous functions from the topological space

X to the uniform space (Y, U) then the topology of uniform convergence on 3 is

admissible.

Proof. Let (f, x) E 3 x X and let V (f (x) J be any open neighborhood of f (x) in

Y where V E U. Choose U E U such that U is open, symmetric and U o U c V then

U[f( x )] is also a neighborhood off(x ) inY. Since f is continuous, f -1 (U(f(x, )

is a neighborhood of x in X.

Also W(U) [f] = ig e 3 1 (f (x), g(x)) e U for every x e X) is a neighbor-

hood of f in the u.c. topology on 3.

Therefore W(U) [ f] x f" 1 (U [f (x)]) is a neighborhood of ( f, x) in 3 x X.

Claim that e(W(U) [f] x f' 1 (U (f(x)])) c V[f(x)], Let ( g , Y) be any point of

W(U) [f] x f - l (U [f (x)]). Then g e W(U) [f] which implies that (f (x), g(x)) e U

for each x e X. Thus in particular, (f.(y) , g(y)) e U . ,,i.3o Y e f " 1 (U (f (x )l )

implies that f(y) e U [f (x)) or that (f (x), f(y)) a U.
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Thus (f (y), g(y)) and (f (x), f(y)) E U which implies that (f (x), g(y))

c  oUcV or that g(y) c V[f(x)].

Howc-ver e(g, y) = g(y). Therefore e(W(U) [f] x f -1 (U[f(x)]))cV[f(x)]

and a is continuous at ( f, x) .
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