General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)



1.0 =& [l
== & [l liz2
E— E [ EX]
T

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963

©

llie
2 e

n
&)}




Pl
- 3
B v

197856

(ACCESSION NUMBER)

——

1

7

(THRU)

/

{CoDE}

(PAGES) "

(CATEGORY)




FUNCTION SPACE TOPOLOGIES—THE GRAPH TOPOLOGY

by
Peter Andrew Bracken

Thesis submitted to the Faculty of the Graduate School
of the University of Maryland in partial fulfillment
of the requirements for the degree of
Master of Arts
1969




ABSTRACT

Title of Thesis: Function Space Topologies—The Graph Topology
Peter Bracken, Master of Arts, 1969

Thesis directed by: Dr. Richard A Holzsager
Assistant Professor of Mathematics

The graph topology I" on the set F of functions from a topological space X
to a topological space Y is given by the basis {FU | U is any open set in the prod-
uct space X xY}where F, = {t < F| the graph of f C U},

A study was conducted to find those properties needed on the spaces X
and Y to ensure that F under the graph topology possess certain topological prop-
erties. The properties of " investigated included the separation properties of
Ty T, T, and regularity. Also included were comparisons between the graph
topology and the pointwise convergence, the compact open, the uniform converg-
ence and the sup metric topologies. Finally, continuity of the evaluation map
with respect to the graph topology was investigated.

The conclusions reached concerning I and the separation axioms included:

(1) XT, and YT implies (F, ') is T,.

(2) (F, ") T, implies that Xis T,and Yis T,.

(3) XT,,YT, if and only if (F, ') is T,.




(4) XT,,YT,fand only if (F, ") isT,,

(6) (F,T") regular implies Y regular.

(6) Xregular and compact, Y regular implies that (3, [') is regular where
3 is a set of continuous functions from X to Y.

The conclusions reached concerning comparisons of I" with the usual
function space topclogies included:

(1) XT, implies that I" contains the topology of pointwise convergence
on F,

(2) XT, implies that I' contains the compact open topology on F.

(8) XT,, compact implies that I" is equivalent to the compact open to-
pology on J, a space of continuous functions from X to Y.

(4) Xand Y wiform spaces and X compact implies that " is equivalent to
the topology of uniform convergence on J, a space of continuous functions.

(5) X and Y metric spaces and X compact implies that " is equivalent to
the sup metric topology on J,a space of continuous functions.

The main result with respect to the evaluation map is that if X is regular
then the evaluation map e : (3, [") x XY is continuous with respect to the graph

topology on 3, a set of continuous functions.
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INTRODUCTION

During a study of almost continuous functions, S. A, Naimpally (4] de-
veloped a new function space topology which he called the graph topology. Ina
later paper, Naimpally (5] investigated some further properties c. the graph
topology. In particular, Naimpally stated conditions under which the graph to-
pology would be a T, or a Hausdorff topology. He also stated conditions under
which the graph (') topology would be comparable to the pointwise convergence
(p.c.) topology, to the compact opca (k) topology, to the uniform convergence
(u.c.) topology and to the sup metric topology.

The purpose of this thesis is to review and extend Naimpally's work o=
the properties of the graph topology as given in Reference [51.

In Chapter I, relevant definitions are presented along with some general
remarks and lemmas concerning the graph topology. In Chapter II, theorems and
examples are stated concerning conditions under which the graph topology is T,
and regular. Naimpally's conditions for T, and Hausdorff are also presented in
Chapter II. In Chapter III, Naimpally's conditions for comparability of the graph
topology with the pointwise convergence and the compact open topologies are re-
viewed. A theorem proven by Naimpally in Reference [5] concerning conditions
for the equivalence of the graph topology and the compact open topology is shown

to be false by counterexample and a correct set of conditions is given for the
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equivalence on a space of continuous functions. In Chapter I, theorems stronger
than those proved by Naimpally are given concerning the comparability of the
graph topology and the uniform convergence topclogy. Conditions for the equiva-
Jence of the graph topology and the sup metric topology are also given.

In Chapter IV, the evaluation map and its continuity with respect to sev-
eral function space topologies is discussed. In particular, classical results re-
lating continuity of the evaluation map with the pointwise convergence and the
compact open topologies are reviewed. Conditions are presented for continuity
of the evaluation map with respect to the graph topology.

In Appendix A, two general lemmmas are presented. In Appendix B, a
lemma proving that the graph of f is homeomorphic to X for continuous functions
f is given. In Appendix C, theorems concerning the continuity of the evaluation
map with respect to the uniform convergence topology and the sup metric topology

are presented.




CHAPTER I
THE GRAPH TOPOLOGY

A. Definitions

Let X and Y be topological spaces and let F = Y* be the set of all functions
on Xto Y. For f € F, the graph of f is the set G(f) = {(x, £(x)) | x ¢ x}. G(f)is
a subset of the space X« Y. I! in understood that X x Y is assigned the usual
product topology.

As standard novation “rroughout this thesis, 1 set of the form F; will be
taken to mean *the et I - {f eF | G(f) - "} where U is any subset of X xY.

Naimpalsy {5} ¢<fines the gr:ph topology I" for F as that topology generated
by the basis {FU | U open in X x Y} where U ranges over all of the open sets of
X xY and X xY is assigned the usual product topology. The proof that {FU} isa
basis for a topology on F is given in Lemma II of Appendix A,

If 3 is any subset of F then for UCXx Y, 3, = {f €3] G(f) CU} = 3NF.
B. General Remarks and Lemmas

If Uis an open set in X x Y then Uis of the form U = UJ U,x V, for some
ae

index set J whereU_, V_ are open sets in X and Y respectively. This follows




since the collection {U =~V | U open in X, Vopen in Y} is a basis for the product

topology on X x Y,

If Uisan open set in XxYand if U = GE' U, xV, then F is the empty set
if {U,1 | ae J} does not cover X. That is, if {Ua {ace ]} does not cover X then
there is a point x € X\aEJJ U, and (x. f(x)) cannot belong to U for any f < F, Thus

F, = ¢ in this case. Henceforth in this paper, it will be assumed when dealing

with sets of the form F,,, where U = L Uax V_,that {U, | 2 ¢ J} covers X.

Most problems treated in this paper (and in Naimpally 5] also) will be
of the type which require those conditions needed on the spaces X and Y to ensure
that the space F possesses a certain property.

By examining Chapter 7 in Kelley [2], it can be seen that most of the de-
sired properties fcr function spaces are obtained from conditions imposed only
on the range space Y. In fact the domain space X seems to play a small role in
determining properties of function spaces under the usual function space topologies.
The fact that F;, is empty (given U in XxY) if g, (U), the projection of U into the
coordinate space X, does not cover X gives an indication .hat the properties of
the graph topology may depend cn properties of the domain space X. This is in
fact true and in later chapters it will be seen that properties of F under [ do rely
on properties of both topological spaces X and Y.

The fcllowing two lemmas concerning the structure of certain sets in

(F, [ )will prove useful later on in the text.

LEMMA LB.1. LetU, VCXxY, If F, 7 ¢, then UC Vif and only if F, CFy.




Proof. Note that if F; # ¢, there is a function f € ;. Then G(f) CUand

hencep, (U) > X, that is p, (U) covers X,

Suppose F, # ¢ and F; CF,. Let (x,y) be any point of U and let f € F; CF,.

Then feFU CFy implies that G(f) CU and G(f) c V. Define g ¢ F by

f(z) z 7 x,
g(z) = -

y zZ < x.

Then for z # x, (z. g(2)) = (z. £(2)) € G(f). Also (x. &(x)) = (x,y) €U,
Thus G(g) CUor g € F; since G(f) CUNV, Therefore g ¢ F, since F;; CF,. But
g € Fy implies that G(g) € V and hence (x, g(x)) = (x,y) eV,

Thus U C V since (x, y) was an arbitrary point of U,

Suppose UC Vand F; # ¢ and let f € F. Then G(f) C U which implies that
G(f) CVsince UCV. Therefore f ¢ F,and F; CF, since f was an arbitrary point

of F,.

LEMMa LB.2. Let X be a T, space and F be the set of all functions from Xto
a topological space Y. If Vis closed in X x Y then F is closed in (F, I'), that is

F, = Fy.
Proof. Suppose that Xis T, and V is closed in XxY. ThenF, C fv is immediate.

Let g be any point of F, and suppose that g ¢ F, then G(g) ¢ V. This implies
that there is a point x € X with (x, g(X)) £V. Thus since V is closed in X x Y,
there is a set O, x0, CX xYwithO, open in X, O, open in Y, (x, g(x)) €0, x O,

and O, x OzﬁV = b,




Since X is T,, the set {x} is closed in X which implies that X\{x} is open
inX, LetP = [(x\{x}) x Y] U (X x0,) then P is open in Xx Y, Since g(x) €0,,
G(g)CPor g € F, an open set in (F. ).

Suppose h is a point of F, then G(h) P and hence h(x) €0,. But this im-
plies that (x, h(x)) €0, x0,. Therefore (x. h(x)) £V since 0, x0,"V = ¢,
Thus G(h) ¢ Vwhich implies that F, ~F, = ¢ since h was an arbitrary point of Fp.

However F,~F, = ¢and g € F, an open set in (F, I') contradicts the as-
sumption that g ¢ fv. Therefore for each g ¢ Fv, G(g) ¢VorgeF,. Thus Fv CFy

and F is closed in (F. [).
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CHAPTER II
SEPARATION PROPERTIES OF THE GRAPH TOPOLOGY

A, T,

The following example shows that the implication XT, and YT, = ' T, is

not true in general.

EXAMPLE II.A.1. Let Xand Y be the topological spaces X = {a, b}, Y = {p, q}
with topologies @, = {¢, X, {a}} and ©, = {cb, Y, {p}} respectively where a and
b and p and q are distinct points of X and Y. Define the functions f and g on X to
Y by

f: a-p g: a\

b~ q b-q.

Then f and g are distinct points in F = Y. Note that G(f) = {(a. p), (b, Q)}
and G(g) = {(a, @), (b, )}

Let F, be any basic open set in the graph topology " on F with f € F; where
U= GEJJ U,xV, and U_, V_are open in X and Y respectively for each a € J.

Then f € F, implies that G(f) CU by definition of F;. But G(f) C Uimplies
that (b, q)eU = _lC_JJ U,xV, . Then (b, q) € Ugx V, for some B eJ,and thusb € Uy

an open set inX andqeV ; an open set in Y, By definition of ©,, the only open set




in X which contains b (is X) also contains a, That isb ¢ U; open in X implies that
a€ Uﬁ. Thus (a. q) € Ug x Vs and (b, q)e Uﬁ x V5. However this implies that
G(g) cUg xV; CU, Therefore G(g)CUoreg ¢ F; and we have shown that if f € F
thengeF,.,

Similarly, suppose F, is any basic open set in (F, ') and g € F,, where
V= aleJK W, x Z, where W_, Z, are open respectively in X and Y for each o €K,

Then the following implications hold:

geF, = G(g)cV = (b,q)eV = UW, xZ,

=>there isa 3 €K such that (b, q) ¢ Wyx Zg

=>beW[3 and quﬁ

= aeW; and p € Z; by definition of the topologies 0, and ©, respectively
e {(b, q), (a, p)} €EW;xZ,CV

>G(fycV>feF,.

And thus if F, is any basic open set in (F, ) containing g then F also contains f.
In summary, we have shown in this example that the points f and g of the
space (F, I') cannot be separated by open sets in this space—that is we have
shown that any open set in (F, I") containing one of f or galso contains the other.
Therefore (F, I') of this example is not a T, space. However Xand Y are T, spaces
by construction of &, and ®,. Thus X T, andY T, are not sufficient conditions to
ensure that (F, I') be T,.
The following theorem yields sufficient conditions for the space (F, ") to

be a T, space.




THEOREM IL.A.2. If Xisa T, topological space and if Y is a T, topological

space then (F, I') is T,.

Proof. Let Xbea T, space andY a T, space and let f, g€ F with f and g
distinct points of F. Since f and g are distinct there is a point x € X such that

f(x) # g(x).

Since Y is Ty, f(x) €Y, g(x)eYand f(x) # g(x), one of the following two
cases must hold:

Case i. There is an open set U in Y with f(x) ¢ U and g(x) £ U,

Since X is T, the set {x} is closed in X. Thus X\{x} is open in X and the
set V= (XxU)u [(X\{x}) xY] is open in X x Y.

EyeXandy 7 x then (y, f(y)) € (X\{x}) x Y. By assumption, f(x) €U
so that (x. f(x)) e XxU. Thus G(f) c V. However, by assumption g(x) £U so
that (x, g(x)) ¢ Xx U and thus G(g)Z V.

Therefore F is an open set in (F, I') which contains f but not g.

Case ii. There is an open set U in Y with g(x) e Uand f(x) £U,

In a manner entirely similar to case i above, an open set F,in (F, ™ ean
be constructed such that g€ F and f £ F,.,

Thus if f 7 g there is an open set in (F, I") containing one of f or g but
not the other, which implies that (F, I') is T.

Although Example ILA.1 indicates that XT; and Y T, are not sufficient
conditions for (F, I') to be T,, they are necessary conditions as the following

theorem shows.
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THEOREM II.A.3. Suppose X and Y are topological spaces, Y contains at least

two distinct points and F = Y*, then (F, I') T implies that Xis T, and Yis T,,.

Proof. Assume that (F, ') is a T, space and let p, q be distinct points of Y.
Define f, ge F as f(x) = p and g(x) = q for each x ¢ X, Then p ¥ q implies

that f # g.

Since (F, ') is T, one of the following cases must hold.

Case i, There is a basic open set F;, in (F, I") such that f ¢ F|; and g ¢ F
where U = al;JJ U, x V_and U, V, are open in X and Y respectively for eacha € J.
f eF,and g £ F, implies that G(f) C U and G(g) ZU. But G(g) ¢ U implies that
there is a point x € X such that (x, g(x)) = (x, q) U = uU, x V. But G(f)cU
implies that (x, f(x)) = (x, p)eU. Thus there is an index £ ¢ J such that
(x, p)eUgx Vg, Then (x, q) £U implies that (x, q) £ Ug x Vg Thus we must have
pe VB and q fVB where \F is open in Y,

Case ii. There is a basic open set F; in (F, [") such that g ¢ F; and f ¢F.
By a proof entirely similar to that of case i above, an open set Vﬂ in Y can be
found such that qe V, and p € Vg,

Therefore there is an open set V; in Y containing one of p or q but not the
other which implies that Yis T.

Assume that (F, ') is T, and Xis not T,. Then there are distinct points
a, b in X such that every open set containing one of a or b also contains the other.

Define functions f and g belonging to F as follows

P xeX, x7b
f =
(%) q <= b
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g(x) -~ _
q

Let F, be any basic open set in (F, I') with f ¢ F; where U = atlj U, xV,andU_,
V, are open in X and Y respectively for each a € J, Then G(f) ¢ U so that there
isafB e J with (a, f(a)) = (a, p)eUg xV;, Thus aeUgandp € Vs, By assump-
tion, since a € Uj an open set in X, b e Uy and this implies that (b, p) = (b, g(b))
€ U/j X V,B'

Similarly, there is a7 € J such that (b, f(b)) = (b, @) €U xV_ which
implies that b e U, and q € V.. By assumption, since be U,, an open set in X,
a € U, and this implies that (a, q) = (a, g(a)) € ny Vy. Thus we have

(i) if xe Xand x 7 a, x # bthen (x, g(X)) = (x,p) = (x, f(x)) € U since

G(f)cu

(ii) (a. g(a)) € Uﬁ X Vﬁ cu

(ii) (b, g(b)) U, xV, U
or G(g) cU which implies that g < F ;. Hence if F; is any basic open set in (F, I')
which contains f then F  also contains g.

Similar.y, it can be shown that any basic open set in (F, ') which contains
g also contains f. The last two statements contradict the hypothesis that (F, I')
is T, and hence the assumpticn that X is not T, is false. Thus (F, I') T, implies
that X is T,, and it has been shown that X and VT, are necessary conditions for
(F, ') to be T,.

Theorem IL.A.2 indicates that X T, and Y T, are sufficient conditions for

(F,[")to be T,. The following example shows that in general X T, is not a nec-

essary condition for (F, ") to be T,.
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EXAMPLE ILA.4, Let X = {a, b} and Y = {p, q} be topological spaces with
the topologies 8, = {cb. {a}, X} and ©, = {¢, {p}, {q}, Y} respectively where a

and b and p and q are distinct points.

There are only four functions mapping X into Y, with

{(a. p), (b. P)}

o
—
-
-
S
|

{Ca. P). (b, @)}

(%}
———
-
~N
S
|

G(fy) = {(a. @). (b, p)}

{(a,. Q). (b, @)} .

()]
—
-~
F-
g
|

The set U = Xx {q} = {(a. q), (b, q)} is open in Xx Y and G(f4)CUbut
g G(fi) ZUfor i = 1,2 0r 3. Thus F, = {f4}is an open set in (F, ).

Thé set V= Xx{p} = {(a. p), (b, p)} is open in X x Y, Also G(fl) cv

but G(fi) ¢Vfor i = 2, 3 or 4. Thus F, = {f1} is an open set in (F, '),
- To prove (F, I)is T, it is sufficient to show that there is an open set
containing f, but not f,.
Let W= {a} x{q}uVthenWisopeninXxY and W = {(a, q). (a, p), (b, p)}.

Also WO G(f,) but W} G(f,), that is f, € F, and f, £ F,. Therefore (F,T) is T,
Although X is Ty, X is not T, since every open set containing b also contains a,
Thus (F, ') T, implies X is T, holds but (F, I') T, does not imply that Xis T, in

general.
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B. T,

The following example of Naimpally [5] further illustrates the premise
that space (F, [') does not inherit its separation properties from the space Y.
The example shows that even though Y is taken as a discrete space, this in itself

is not sufficient to guarantee that (F, ') will be a T, space.

EXAMPLE II.B.1. Let X = {a, b}and Y = {p, q} be topological spaces with
the topclogies ©, = {¢. {a}, x}and e, = {d), Y, {p}, {q}} respectively where

a#b,p 7 q.

Define f, g ¢ F as

b - q b

[

Then G(f) = {(a. p). (b, @)}, G(g) = {(a, @), (b, q)}and { and g are distinct
points of F.
Let F, be any basic open set in (F, [') such that f € F, then G( fycU., Sup-
pose U - 191 U, xV, where U_, V_are open in X and Y respectively for each a € J.
Then G(f) CUimplies that there is an index [ € J such that (b, q) € U, x Vse
However since Ugis open in X and since b € U;, U; must also contain a
(ie.,U; = Xby definition of 8,). Thus (a, q) € Uy x V5 which implies that
G(g) = {(b. 4), (a, q)} CUﬁ x Vg U,

Thus g ¢ F; and we have shown that any basic open set in (F. ') which

contains f also contains g. This implies that (F. [') is not a T, space.
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By definition of ©,, X is a T space but X is not T,. Therefore this ex-
ample indicates that in general X T, and Y discrete are not sufficient conditions

for (F, I') to be T,.

In Reference [5] Naimpally presented the following necessary and suf-

ficient conditions for the space (F, I') to be T,.

THEOREM IL,B.2, If Xand Y are topological spaces and if Y contains at least

two distinct points then (F, [") is T, if and only if X18 T, and Y is T,.

Proof. Assume X and Y are T, spaces and suppose f 7 gwith f, g ¢ F. Since

f 7 g, there is a point x € X such that f(x) ¥ g(x).

Since X is T,, the set {x} is closed which implies that the set X\ {x} is

open in X. Also since Yis T, and f(x) # g(x) there are open sets Vand Win Y

such that
f(x) e V, g(x) £V

g(x) € W, f(x) £ W.

Thus the set Z = [(X\{x}) x Y:] u X x V contains G(f) but does not contain G(g) and
the set P = [(x\{x}) x Y] v X x W contains G(g)but does not contain G(f). Then the

open sets F,and Fy in (F, I") separate the points f and g in the following manner

feF,, g £ F,

.

g€F, f¢F,

which implies that (F, I') isa T, space.
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Next suppose (F, ') is a T, space and let p and q he two distinct points
of Y, Define f, g¢ Fby f(x) = p, g(x) = q for each x €X, then p 7 q implies
f % g

Since (F, I') is T,, there are open sets F,and F, in(F, ") such that

feFU, gtFU

Suppose U = aLSJJ U, xV, where U , V_are open in X and Y respectively for each
= J. Then g £F implies that G(g) ¢ U and hence that there is an x € X such that
(%, g(x)) = (x,q) €U, Thus (x, q)£U_x V, for any a ¢ J. However f ¢ F, im-
plies that G(f) C U and hence that there is an index 8 € J such that (x. f(x))
= (x, p)EUBxV .
Thus we have (x, q) £Ugx Vg and (x, p) € Ug x Vg, which implies that
q £V, pe€Vywhere Vsis open in Y. .. similar argument applied to the set F,
will yield an open set V7 in Y such that q ¢ V7 andp ¢ v, Thus Yisa T, space.
Again assume (F, [") is T, Let a andb be distinct points of X and p and

q be distinct points of Y. Define f, g ¢F by

f(x) = p, for each x € X
P for x € X\{a}
g(x) = -
q for X~ a.

Since f # g and (F. ') is T,, there is a basic open set F; in (F. ") such the .
geF, and f ¢F,. ButgeFy, f¢F, impliesthat {, f(a)) = (a, p)£U sincef

and g agree everywhere except atae X,
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Suppose U = aLgiJ U, xV, where U_, V_ are open in X and Y respectively for
each a €J. Then G(g)CU implies that there is an index 5 € J such that (b. g(b))
= (b, p) € Ugx V. The point a € X cannot belong to Uﬁ otherwise (a, p) €Uy xV,CU
since p € V, and this contradicts the fact that (a, p) £U, Thus U; is an open set
in Xwith a £ Ug, b eUg.

By a similar argument, if a functionh ¢ F is defined as

{p, x € X\{b}
h(x) = -
q.x=b

then since f # hand (F, ') is T, there is a basic open set F; in (F, ') such
thath e F,, f ¢ F,. Then heF,, f £F, implies that (b, f(b)) = (b, p) £ V. Since
G(h) CV suppose (a, h(a)) = (a, p)e U, x V. CVwhere U, and V., are open in X
and Y respectively. Then b ¢ U, for otherwise (b, p)eU, xV, CVcontradicting

the fact that (b; p) £ V.

So U, is an open set in X with a €U, , b#U, Thus a and b can be separated
by open sets in X which implies that X is T,.
CI T2

In Referernce [5] Naimpally stated the following theorem without proof.

THEOREM II.C.1. K Y has at least two points then (F, ') is T, if and only if X

is 'l‘1 and Y is Tz.
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Proof. Assume (F, ) isa T, space and let p, q be distinct points of Y. De-

fine f, g€ F by

q, for each xeX and

f(x)

q, for xeX\{a}

1

g(x)
p, for x = a.
Since p # q implies that f # g and since (F, I) is T, there are basic open sets
F,and F in (F, ') such that f ¢F, g ¢ FyandF,~F, = ¢ whereU = U U xV_,

a€]

v = BLEJK U'ﬁ' x V, and the sets U, U g and Vv, V, are open in Xand Y respectively.
Since G(f) ¢ U, there is an index J ¢ J such that (a, f(a)) = (a.p) €U, xV,.
Similarly, since G(g) C Vthere is an index 7 € K such that (a, g(a)) = (a, q)
€ U ! X V ! .
Y Y
Thus p ¢ \ and q € Vy' where Vg and VV’ are open setsiny.
Suppose V,~ V.’ 7 ¢ then there is a point z € Y with z ¢ V,nV . Define
h e F by

q, for xeX\{a}
h(x) =

Then since (a, h(a)) = (a, z)e (U,BX Vﬁ)m(Uy’ x Vy’) and sinceh = g = fon
X\{a}, G(h) cUnV, Thus h¢ F,~ F, contradicting the assumnption that F ~F, = &.
Thus Vs mvy’ = ¢ which implies that Y is T,.
Since (F, I") T, implies that (F, ") is T , then (F, ") T, implies that X is

T, by Theorem IL.B.2.
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Assume Xis T,,Yis T,andlet f, g¢ F with f 7 g. Since f 7 g, there
is a point a € X such that f(a) # g(a). Since Y isa T, space, there are open sets
Vand V' in Y such that f(a) eV,g(a) eV and VnV' = ¢, Also since Xisa T,
space, the set {a} is closed in X and hence the set X\{z} is open in X,

Define open sets L and Uin Xx Y as

[Xx V] U [X\{a}xY]

<
t

and

<
1

Xx V'] o [X\{a}xY].

By construction, G(f)c liand G(g)CU. Thus f € F|, and g ¢ F|y where F, and Fy are
basic open sets in (F, [M).

Suppose F|,nF; 7 ¢then there is a function h ¢ F such that h ¢ Fy A F)y.
By Lemma I of Appendix A, F\ynFy = F~y. Thus h € F|~ywhich implies that
G(h) c UnU. But this implies that (a, h(a)) € UnU and hence that h(a) e VNV’ by
construction of U and U.

But h(a) ¢ VNV’ contradicts the assumption that VAV’ = ¢

Thus F, nFy = #and (F, I') is T .
D. Regularity

In general, proofs and counterexamples involving the graph topology are
harder to construct for the regularity separation axiom, In particular counter-
examnries tend to be either very complicated or trivial. In large measure, these

difficulties are due to the fact that one can no longer restrict attention to finding
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appropriate basic open sets in[" that provide the required separations. For ex-
ample to separate points from closed sets in (F, I'), arbitrary unions of basic,
open sets in [ enter the picture. Arbitrary closed sets and arbitrary unions of
open sets in [" are quite unwieldy and have few restrictions as to their structures.
The following example shows that in general X regular and Y regular are

not sufficient conditions for (F, I") to be regular.

EXAMPLE II.D.1. Let X = {a, b} and Y = {p, q} be topological spaces with
the topologies ®, = {¢, X} and®, = {<1>, Y, {p}, (q}} respectively where a 7 b

andp 7 q. As in Example II.A4, F = YX consists of the functions fl, f ,f

2? " 3?

and f s where

{¢a. p). (b, p)}

Q
——
-
[
——
}

G(f,) = {(a. . (b, @)}
G(f,) = {(a @) (b, p)}
6(f,) = {(a @) (b @} -

The following table lists all the open sets in Xx Y and the open and closed

sets in (F, [):
open in Xx Y open in (F, I') closed in (F, I')
¢ o F
U, = XxY F = Fy, ¢
U, = Xx o} = {(a p), (b, P} Fu, = {f,} F\Fy, = {f, f5, fq}
Us = Xx{a} = {(a. @). (b, )} Fy, = {f4} F\Fy, = {t,, £, £5}
Fy, Fy, = {f;, fs} F\(Fy,vFy,)

f,, f3}
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Consider the set F\Fuz' F\FUz is closed in (F, ') and f, ¢F\F, . Let U F,
2

a€e] o

be any open set in (F, ') which contains F\FUﬂ = {fz, f3. fq}, where F, isa

&

basic open set in (F, I') for eacha € J (i.e., U _is open in Xx Y for eacha ¢ J).
Then there is an index £ € J such that f, eF%. So G(f,) U, an open set inXx Y.
From the above table, the only open set in X x Y which contains the graph of f, is

XxY, Thus Uy = XxY and FUB = Fy,y = F. Therefore the only open set in (F, I')

X

which contains F\FUz is F and hence contains f , This implies that (F, I") is not
regular since the point f and the closed set F\FU2 cannot be separated by dis-
joint open sets.

However since X is indiscrete and Y is discrete, X and Y are regular spaces.

Thus X regular and Y regular does not imply that (F, I') is regular.

The next theorem shows that Y regular is a necessary condition for the

regularity of (F, I").

THEOREM II.D.2. If X and Y are topological spaces and F is the space of all

functions from X to Y then (F, ') regular implies that Y is regular,

Proof. Assume that (F, [") is regular. Let p €Y and letV be any open neigh-
borhood of p inY. Tn prove that Y is regular, it is sufficient to find an open neigh-

borhood Q of p in Y such that p e Qc Qc V.

Define f ¢ F by f(x) = p for eachx ¢ X, then f ¢F, . since by construction

v

G(f)c Xx V. Also F,.y is a basic open set in (F, ") because V is open iny.

v

Since (F, [") is regular, there is an open neighborhood U F, of f with

ag]J a

fe U F

ae€]

UcUFUcF

ae] a

xxy» Where U_ is open in X x Y for each a ¢ J. In particular,

f e F, for some a ¢ J and the relation f ¢ F, cF, cF, , holds. By Lemma LB.2,
a a a

FUa CFy,y implies that U _c Xx V.
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Let a € X, then the point (a, p) = (a, f(a)) cU, since G(f)cU,. Since
U, is open in XxY, let (a, p) € Wx QC U, where W is open in X and Q is open in Y,
Then Q¢ V because Wx Qc U, cXx Vand p €Q.

Let q be any point of O and define g € F by

f(x) = p for x ¥ a, xeX
g(x) =

q for x = a .

Then g € ﬂ: for suppose F, i= any basic open set in (F, ') withg ¢ F, and

A= aLst A; xB; where As, Bg are open in X and Y respectively. Since G(g) CA,
(a, g(a)) = (a, @) € A x B, for same ¥ €K, Soq¢B_, an open set in Y. However
q € Q which implies that the open set B, and the set Q have a point r 7 qin com-
mon, that is r ¢ B, nQ.

Define a function h € F by

f(x):g(x)zpforxfa, x € X
h(x) =

r for x = a .

Then (a, h(a)) = (a, q) € (A, xB ) (WxQ). This implies that G(h) CAnU, or
thathe F AnU, * By Lemma I of Appendix A, qua =F,n FUa' Therefore every
open set F, in (F, I') which contains g also contains ¢ point h # g with h ¢ FAf\Fua.
That isg ¢ F, .

Thus g € ﬂ:CFxxv or G(g) CXxV, Since G(g)CXxV, (a, g(a)) = (a, 9)
€ XxV, This implies that q €V, But q was an arbitrary point of Q. Therefore

Q cVand it has been shown that p € QC QC Vwith Q an open set in Y. This com-

pletes the proof of Theorem IL.D.2.



22

Suppose J is a space of continuous functions from a space X to a space Y,

then the following lemma provides information about the structure of certain
closed sets in (3, ') . The lemma is useful in proving that certain conditions on

X and Y are sufficient to ensure the regularity of (3, I'),

LEMMA I1.D.3. I 9 is a space of continuous functions from the regular space
X to the topological space Y and if Vis a closed set in X xY then Sv is closed in

(3, M.

Proof. Assume that 3 is a space of continuous functions from X to Y, that

is regular and that Vis closed inXxY.

Let g be any point of Bv' the closure of Sv. It is sufficient to prove that
g € 3, or that G(g) CV, By way of contradiction, suppose that G(g) V. Then
there is a point (x, g(x)) € G(g) with (x, g(x)) ¢ V. Since Vis a closed set in
XxYand (x, g(x))# V there is a basic open set 0xB inX x Y (i.e., O open in X
and B open inY) such that (x, g(x)) € OxB and (OxB)NY = ¢, Since g¢ 3, g is
continuous and there is an open set U in X such that x € Uand g(U) CB, Let
W = 0nUthenx ¢ W and g(W) C g(U) CB.

Since X is regular, there is an open neighborhood O, of x in X with x € O,
c0, cW. Thus g(0,)ce(0,)ce(W)cB.

X\O, is open in X. Let P = [(X\ﬁl) x Y] U(XxB), then P is open in XxY,
Since g(0,)CB, G(g) CPor ge 3,. Let hbe any point of 3, then h(0,) cB. There-
fore (x, h(x)) € 0, x B since x € 0,. “Thus (x, h(x)) # V since (0, x B) nVc (Ox B)
NV = ¢. However (x, h(x)) ¢V implies that G(h) ¢ V or that h ¢ 3,. Since h was

an arbitrary point of 3, and h ¢ 3., 3, N3, = ¢, But 3, is an open neighborhood
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of g in (2, I'). Thus 3, nd, = ¢ contradicts the assumption that g ¢ 5\,. There-~
fore G(g) must be contained in V. Hence g ¢ &, for each g ¢ 2—3‘, and the lemma is
proved.

As an aside, Lemma I.B.2 provides a similar structural theorem for
closed sets in a space of non~continuous functions when X is T,.

The following theorem provides sufficient conditions for regularity of the

space (&, I'),

SIEH RS EREE T RS

THEOREM II.D.4. Let 3 be a set of continuous functions from a compact,

regular space X to a regular space Y then (I, ') is regular.

Proof. Assume that X is a compact, regular space, that Y is regular and that
Jis a set of continuous functions, Let f ¢ 3 and let Su be any basic open set in

(3, T') containing f where U~ UJ U,xV, andU_, V_in X and Y respectively for
a€

eachae€]J,

Since f € BU, G(f) cU, This implies that for each x ¢ X, there is an index

a, € Jwith (x, f(x))e U“x x Vax . Since Y is regular, for each x € X there is an

. + Since f €3, f is con-
X

open neighborhood V' of f(x) with f(x) eV cVS' cV
X X

X

tinuous so that for each - ¢ X, there is an open neighborhood W, of x with { (Wx) cv,'.
X

Since U, ~W_is an open neighborhood of x and since X is regular, there is an

X

open neighborhood U, of x withxe U cU, cU, nW
X X

x x!

Then for each x € X,

x*

£(x) € f(Ua'x)c f(ﬁa' ) < f(u, nwx) C £(W,) <V, by choice of ,.

X
Since X is co npact and {Ua’ | x € X} is an open cover of X, there is a
X

li=1, - ,n} of X, LetV = .ﬁl-ﬁa' xVa'x and {
i i= L i

finite sub-cover {Ua'x

n
V' = 'U1 Us, xV, . Then Vis a finite unjon of closed sets in XxY and V' is a
1=

a
xj i
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finite union of open sets in X x Y making Vand V' closed and open respectively in

XxY, Thus 3y, is open in (&, I') and by Lemma ILD.3, 3, is closed in (3, I'),

Also G(f) c V' CV since {Ua' [i=1, =, n} covers X, since f(Ua'x )
Xy i
c f(ﬁ 'H> vy, © V. by construction of Um'xi and since U, =V, <U; xV,

a a . . . .
xl 1 xx xl 1

for i = 1,+++n, By Lemma I.B.1V' CV implies that 3,, ¢ 3,. Thérefore

fed,, 3, and 3 is a closed neighborhood of f.

vl

Finally it remains to show that 3, C 3,. By construction, ﬁa'x cU, and

X

ngCs3s

V' ¢V, for each x ¢X. Therefore V =
X X

Again by Lemma I,B.1, VCU implies that J, C 3, and the theorem is proved.

i L x<X x x

U, xV, < UU, xV, =U,
1

i

As a final note on regularity, it is shown in Kelley {2], p. 141, that if X is T,

and compact then X is a regular compact space also. Thus

COROLLARY II.D.5. If Jis a set of continuous functions from the T,, com~

pact space X to the regular space Y then (&, I') is regular.

Proof. The proof follows immediately from Theorem II.D.4 and the above re-

mark as Kelley's proof.




CHAPTER III

THE GRAPH TOPOLOGY AND OTHER FUNCTION SPACE TOPOLOGIES

In this chapter comparison of the graph topology with the pointwise con-
vergence topology, ith the compact open topology, with the uniform convergence

topology and with the sup metric topology will be made.

A, Cormperison With the Topology of Pointwise Convergence

Naimpally's Example II.B.1 will serve in this section to shed some light

cw

on a comparison of the p.c. and the graph topologies.

EXAMPLE lILA.l. Let the spaces X = {a, b}, ©, = {#, {a}, X}and Y = {p. q},
8, = {#. Y. {p}, {q} be given as in Example II,B.1. Then as was remarked pre-
. viously,X is a T, space and Y is discrete. The four functions inF = YX are:

f: a—p g: a
b~ q b

h: a—-p i: a P
b/ X .

By definition, a subbasic open set for the p.c. topology is a set of the form
W(x, U) = {f eF| f(x)e U} where xis a fixed point in X and U is a fixed open set
inY,

25
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The following is a listing of some of the subbasic open sets for the p.c.

topology, ©, on F in this example:

i

w(a, {p}) (£, h}

wla, {q}) {g, i}

Wb, (p}) = {n, i}

Ww(b, {q}) {f, g} .

Note that the following relations hold:

(£} = wib, (@) nwla. {p})
{g} = wla, {@}) nw(b, {a})
iy = wla, {p}) ~nw(b. {p})
{iy = w(a. {q}) ~w(b, {p}) .

Therefore every point of F is a finite intersection of open sets in (F, P). How-
ever this implies that every point of F is open in (F, P) or that F is a discrete
space under the p.c. topology.
As was shown in Example II.B.1, (F, ') is not a T, space. Therefore the
p.c. topology and the graph topology on F of this example are not comparable.
To get meaningful results on . comparisons between the p.c, and the graph
topologies, it is necessary to consider X a T, space as the foliowing theorem due

to Naimpally (5] indicates.
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THEOREM III.A.2. If Xis a T, space and if F is the set of all functions from

X to a space Y then graph topology on F contains the p.c. topology on F,

Proof. Suppose Xis T, and F = YZ, Let W(x, U) = {f ¢ F| f(x) ¢ U} (where
x is a fixed point in X and U is open in Y) be any subbasic open set for the p.c.
topology on F. Since X is T,, the set {x} is closed in X, Let V = [(x\{x}) x Y]

v (XxU), thenVisopeninXxY.

Suppose f < W(x, U)then f(x)e Usothat G(f) CVor f ¢ F,. Therefore
W(x, U) CF,. Similarly, if f ¢ F, then G(f) CVso that f(x) €U or f € W(x, U),
Therefore W(x, U)CF, CW(x, Uyor W(x, U) = F, which implies that W(x, U) is

open in (F, I').
B. Comparison With the Compact Open Topology

Since the compact open topology contains the pointwise convergence
topology, Example III.A.1 also shows that F of that example is discrete under the
k-topology. Therefore since F under ihe graph topology was not even T,, this
example shows that the k topology and the graph topology may not be comparable
when X is only a T, space. Infact Naimpally showed in Reference (5] that the
stronger condition of X being T, is needed for a meaningful comparison of the

k-topology with the graph topology. Naimpally's rosul. is:

THEOREM II.B.1. IfXisaT, space and if F is the set of all functions from

Xto Y then the graph topology contains the compact open topology on F,
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Proof. Suppose X is T,andF = Y*, Let W(K. U) = {f | £(K) U} where K is
a fixed compact subset of X and U is a fixed open set inY) be any subbasic open

set for the k-topology on F.

Since Xis T, and K 1s compact, K is closed in X. Therefore the set
V= (XxU)w [(XN\K) Y] is open in Xx Y.

Suppose f ¢ W(K, U) then f(K)< U sothat G(f) CVor f € 7,. Therefore
W(K, U)CF,. Similarly, if f ¢F then G(f) CV so that f(K) CUor f € WK, U},
Thercfore W(K, U)C F, CW(K, U)or W(K, U) = F, which implies that W(K. U) is
open in (F, ).

Naimpally stated in his Theorem 42 of Reference (5! that if Xis a T,, com-
pact space then the graph topology coincides with the k-topology on F. In fact,

this statement is false as the following counterexample shows.

EXAMPLE II.B.2. Let X = Y = [0, 1] with the usual topology. Define
f<F = Y¥by

- {o x €(0, 1]
o S B x =0 .

Let U = {(x. y)<Xx Y| y<xor x+3/4 <y}. By construction, U is open in Xx Y
and G(f)CU, Thus f € F; and F;; is an open neighborhood of f in (F, I'). It suf-
fices to show that F is not a neighborhood of f in (F, k) to show that the graph

topology is not contained in the k topology.

Let{K. {i =1, -, n}be a cnllection of compact sets in X and

1

{u, i =1, -+ r}be a collection of open sets in Y. Then the set frjl W(K,.u,)
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is an arbitrary basic open neighborhood of f in the k topology on F where
WK, U,) = {chl g(Ki)CUi} for i =1,+..n, when f(K,) cu,.

Let J be the set of indices j from 1 to n such that K, ~ (0, 1] 7 ¢. Then
there are two cases to consider:

Casei: HJ = ¢thenK,n (0. 1] = ¢and K, = {O}foreach i =1, n,
Define h e Fby h(x) = 1 for each x ¢ [0, 1]. Then since f({O}) = f(Ki) CcU, and
since f(0) = 1,1 €U, foreachi = 1,++ -+, n. But 1 <U, implies that h(Ki) cy,
foreachi = 1,++ e+, northath:¢ F\ “(K‘ , U;)- However G(h) ¢ U since the

i=

point (1. 1) = (1, h(1)) ¢ U by construction of U. Thus if J = ¢, ,nlw(xi,ui)szx«‘u.

Case ii: Suppose that J 7 ¢ and define W = N Uj . By definition, f = 0
j€]

on (0, 1], Thus for each j ¢ J, since K, (0, 1] 7 ¢ and since f e W(K,, U,),
0eUL. Therefore 0 € ﬂJ U,=Wand W is an open neighborhood of 0 in Y.
je
Since W is an oper neighborhood of 0, there is a point y « W\{0}, Define

a function h < F by

m

Yo x £ (0, 1]

h(x) =
1 x = 0.

Then by definition, b < 1 W(K,.U,).

Also h(y, ) = v, since y, # 0. However the point (yo, h(y, )) = vy ¥,) #U
by construction. This implies that G(h) ¢ U or that h ¢ F,.

Thus iriml W(K,.U,)2F

neighborhood of f in (F, k), this shows that F; cannot be a k neighborhood of f.

n
ye Since N W(Ki, Ui) was an arbitrary open
i=1

Therefore F, is not open in the k topology and I'¢Z k.
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The next theorem gives a correct set of conditions insuring the equivalence

of the k topology and the graph topology on a space of continuous functions.

THEOREM III.B.3. If Jis a set of continuous functions from a compact, T,
space X to a topological space Y then the graph topology on & is equivalent to the

compact open topology on I,

Proof. Suppose Xis a compact, T, space and Jdis a set of continuous functions

in YX, Let 3, ke any basic open set in (3, ) where U= U U x V_ andU_,V,

ae]

are open in X and Y respectively for each a€J .,

Let fbe any point of 3. To show that 3, is open in the k-topology on 3,
it suffices to show that 3, is a k~-neighborhcod of f.
Since f ¢ BU » G(£YCU. Therefore for each x¢X, there is an index o €]

such that (x, f(x)) eU, x V_ . Since f is continuous there is an open set O, in

X with x¢O_ and f(Ox) CV, for each x<X,
Since X is compact aud T,, X is regular. Therefore there is an open set

U suchthat x U cU, c0,nU, for eachx¢X, Thus f(x) ¢ f(Ua' )c f(ﬁa’ )
X X

X b3 X X

c f(oxmua ) (o), .

X

Since X is compact aad since {Ua' | x e X}isan open cover of X, there is

X

a finite subcover {Ua’x Pi=1, -, n}. Then f(f]a'x_ ) ¢V, . But X compact

i

and U closed in X implies that U,' ~is compact. Therefore f n W(ﬁa'x Vv

i 1 i axi},

1=

a basiz open set in the k topology on 3.

Suppose g ¢ .nl W(ﬁa'x A ) then g(Ua'
i= i i

)Cva since U cU,' for
i x x; i

a
i i i Xq

1

eachi =1, n, But {Ua'x li=1, - - ,n}is an open cover of X, Therefore
i
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Gig)c UU“I;;i x mei C U or ge 3, Since gwas an arbitrary point of rwW(ﬁa'Xi vV i),
this implies that mw(ﬁa'xi , vaxi) c 3.

Therefore fe iE\l ﬁa'Xi, VaXi) € 3, which implies that Jis a k-neighbor-
hood of each of its points. That is & is k-open. Hence ['C k. By Theorem IIL.B.1,
kclon & since 3cFacdkcl"on F,

Therefore k and " are equivalent topologies on 3,
C. Comparison With the Topology of Uniform Convergence

The two theorems of this section are stronger than those in Naimpally (5]

since uniform continuity is not required.

THEOREM III.C.1. Let (X, U) and (Y, U) be uniform spaces. If Jis a set of
functions from X to Y which are continuous with respect to the uniform topologies

on X and Y then the graph topology on & contains the uniform convergence topology

on 3,

Proof. A basis for the u.c. uniformity on 3 consists of sets of the form
W(v) = {(f, g)edx 3| (f(x), g(x)) eV for each x ¢ X} where Vis an element of

the uniformity Uon Y,

Let O be any open set in the uniform topology on 3 and let f be any point
of O. Then O is a neighborhood of f in the u.c. topology and thus contains a set of
the form wW(Vv) [f] = {g €3 | (f(x), g(x)) eV for each x € x} where Vis an element
of U,

From page 179 of Kelley [2), the family of open symmetric members of a

uniformity form a basis for the uniformity. Let V, be an open symmetric mem-

ber of U such that V, oV, CV,




R ot TR

32

Let x ¢ X then V, [f(x)] is a neighborhood of f(x)in Y. Since f is con-
tinuous with respect to the uniform topologies on X and Y, there is an open sym-
metric member U, of U such that (U, (x]) ¢V, [f(x)] for each x € X. Since U,
and V, are open members of Uand U respectively, the set P= xLéJx U, [x <V, [f(x)]
is open in X x Y, Also G(f) C P since U, and V, contain the diagonals in X xX and
Y x Y respectively. Thus f € 3.

Suppose g € 9, then G(g) CP. This implies that for any x €X, there isa
y € X such that (x, g(x)) ey, [yl xv, [f(y)}. Thus x €U, y) and (f(y), g(x)) ev,.
By definition of U, f(Uy [y]) v, [f(y)]. Thus x € U [y] implies that f(x)
eV, [f(y)] or that (f(y), f(x)) €V,. Since V, is symmetric, (f(x), f(y)) €ev,.
Therefore (f(x), g(x)) €V, oV, CVior each x X,

This implies that (f, g) e W(V) or that g e W(V) [f], Thus fed,cWV)[f]l cO
and O is a [ neighborhood of each of its points. Therefore the topology of uniform

convergence is contained in the graph topology.

THEOREM III.C.2. Let (X, W) and (Y, ) be uniform spaces and let 2 be a
set of functions which are continuous with respect to the uniform topologies on X
and Y. If X is compact then the graph topology on < is equivalent to the uniform

convergence topology on 3.
Proof. By Theorem III.C.1, the v.c. topology is contained in the graph topology.

Let &, be a basic open set in (3, I') and let f € J; where U= U U_xV,

ae]

and U_, V_ are open in the unifor.a topologies on X and Y respectively. Then

G(f)cu.
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By Lemma I of Appendix B, G(f)is homeomorphic to X since f is con-
tinuous. Thus G(f) is compact since X is compact.

From page 199 in Kelley {2], the open cover {Ua xV, lae J} of the com-~
pact set G(f) in the uniform space Xx Y is a uniform cover. Therefore there

exists open symmetric sets U, - Uand V| € U such that

Gy c U U, x] < v, [f(0)] ¢ aLEJJUa xV, cu.
Let ge 3nW(V,) (f] then g(x) eV, [f(x)] for each x ¢ X. Therefore
(%, 8(2)) €U, [x] xV, [f(x)]for each x €X. This implies that G(g) ¢ U Uy ]
x V, [f(x)] CUor that g € %;. Therefore f e ZnW(V,) [f] C&; which implies that
SU is a u.c. neighborhood of each of its points. Therefore the graph topology is

contained in the u.c. topology on 3,
D. Comparison With the Sup Metric Topology

Let F be a set of functions from a set Xto a metric snace (Y, d), If

f, geFthen p (f, g) = Sup d(f(x), g(X)) is a metric on F called the sup metric.
xf X

THEOREM III.D.1. I (X, d')and (Y, d) are metric spaces withd and d'
bounded metrics and if 3 is a set of continuous functions from X to Y then the sup

metric topology on 3 is contained in the graph topology on 3.

Proof. Let Obe any open set in the sup metric topology on < and let f be any
point of O, It suffices to show that O is a I neighborhood of f. Since Ois open in
the sup metric topology, there exists an open 0 ball N, (f) of radius € > 0 about

f with f eN_ (f)cCO,
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Since f is contiruous, iven x : X and given ¢ >0 there isa > > 0 (3, de-
pends on x) such that f(. 5 (xf) TNy (f(x)) where Nsx (x) isad' ball of
radius &, about x and N_ . {f(x); is a d ball of radjus /3 about f(x).

Consider U = xLixNE’x (%) «N_ 4 (f(x)) . By construction of U, G(f)cU and
Uis open in XxY, Thatie { €2, a basic open set in (3, T).

Let g ¢ J, then G(g) < U, Therefore for each point z ¢ X, (2, g(z)) € U.
This implies that for each z ¢ X, there is an x' € X such that (z, g(z)) € N5, (x")
xNg 5 (f(x')) . Thus d' (z, x") <% _,and d(g(z), f(x')) < €/3. However

d' (z, x')<8_, implies that d(f(z), f(x')) < ¢/3 by definition of 5x'. Thus

d(f(2), g(2)) < d(f(z), f(x")) + d{f(x"), &(2))

< /3 +€/3 .

But d (f(z), g(z)) < 2¢/3 for each z € X implies that o(f, g) = %‘:gd(f(z); g(z))<e,
Therefore g e N, (f) and f e 3, CN, (f)CO or Ois a ["neighborhood of f. This
implies that O is a " open set and that the sup metric topology on 9 is contained

in the graph topology on &,

If (X, d") and (Y, d) are metric spaces with bounded metrics then the

product topology on X x Y is induced by the metric
D((xv Vy)e (%20 y,‘)) = di(xg %) * d(y, v,)
where x;, x,eXandy,, y, €Y.

THEOREM III.D.2, I (X, d') is a compact metric space and (Y. d) is 2 metric

space (d', d bounded metrics) and if J ic a set of continuous functions from X

P SRR

to Y then the graph topology is equivalent to the sup metric topology on 2.

i
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Proof. Let 3, be an open set in (3, ") where U = UJ U, xV, and U, V, are
a €
open in X and Y respectively for each a € J, If f is any point of SU, then it suffices
to show that Su is a p-neighborhood of f since the sup metric topology C by

Theorem III,D.1.

By Lemma I of Appendix B, G(f)is homeomorphic to the compact set X
since f is continuous. Thus G(f) is compact. The collection {Ua xV, | ae] } is
an open cover of the compact set G(f) in the metric space (XxY,D), Lete >0
be the Lebesgue number of this open cover. Then by definition of the Lebesgue
number, given x € X there is an index a_ ¢ J such that NP (x, f(x))cU, =V, .
Therefore xleJxNGD (x, f(x)) ¢ aerJ U, xV, < U.

Consider the sup metric open neighborhood N (f) of f. Then f eN/ (f)
and if g €N (f), o(f, g) = §ggd(f(x), g(x)) <e.

Therefore given x €X,
D((x, e(x)). (x. f(x))) = 4’ (x, x) + d(g(x), £(x))

<0 +e = €.

Thus (x, g(x)) € N2 (x, f(x)) for each x € X. Therefore G(g)C UXNED (x: f(x))cU
x€

orG(g)C U. Thusif g eN/” (f), ge 3;which implies that f €N/ (f)C 3, or that

3, is a p-neighborhood of f.

Therefore J; is p-open in 9 and the graph topology is contained in the

sup metric topology on J,




CHAPTER IV
CONTINUITY OF THE EVALUATION MAP

If 9 is a set of functions defined on the space X with range in the space Y
then the evaluation map is the map e : 3x X—Y where e(f, x) = f(x) for each
point (f, x) € 3x X. Because of this definition, two types of continuity can be
considered for the map e: separate continuity and joint continuity. The map e is
separately continuous in f and x when ¢ is continuous in each coordinate separ-
ately. That is when e is continuous as a function of f when x is held fixed and e
is continuous as a function of x when f is held fixed. The map e is jointly con-
tinuous if e is continuous. That is if e is continuous when both f and x vary si-
2 multaneously. Note that separate continuity is a necessary condition for joint
continuity.

Considering separate continuity of e, suppose f € J is fixed and x € X is
allowed to vary. Then since e(f, x) = i(x), the continuity of e in x is equivalent
+ to the continuity of f. Thus to consider either separate or joint continuity of f,

it is necessary that 5 be a space of continuous functions. Hence throughout this
chapter, attention will be centered on spaces J of continuous functions from X to
Y.

A good reference on the evaluation map is McCarty (3.

36
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A. Classic Results-The Pointwise Convergence

and the Compact Open Topologies

'The following theorem yields necessary and sufficient conditions for

separate continuity of e,

THEOREM 1V.A,Ll. I (9, @) a topological space of continuous functions on
the space X to the space Y then the evaluation map e is separately continuous with

respect to @ if and only if ® > P, the topology of pointwise convergence.

Proof. Assume e is separately continuous with respect to (J, ®) and suppose
0 is a subbasic open set in (J, P). Then by definition of the topology P, 0 is of
the form O = {f €3 | f(xo) €V, for some fixed x,€X and fixed V open in Y}.
Since e is separately continuous i f and x with respect to ®, the function
e (f , X 0) , where x 0 is fixed and f is allowed to vary, is continuous with respect
to ®. Denote the function e(f, x ) by e,, (f))then e, maps Sintoy by e, (f)
= e(f, x,) = f(x,) for each f 3.

. Since e, . is continuous on (3, ®) and sinceV is open inY, ex'o1 (V) is open
in (3, ). Howeverex'o1 (V) = {f €3 | e, (fye V} = {f €3 | f(xo) € V} = 0.
Thus O is open in ® and P @.

Next suppose that P c @ and consider e as a function of f only, That is let
x be fixed at x ¢X, allow f to vary and consider the function e (f, xo) = €y (f)
for f <3, Again ex0 maps J into Y. Let V be any open set in Y, then ex'ol (V) = {f €3
| ey (f) = f(x,) € v}. By definition of the topology P, ex'o1 (V) is a subbasic open
set in °, Thus e,"o1 (V) is open in P ¢ @ and hence is open in @. Thus the function

e, () = e(f, x ) for f € 31s continuous in f,
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The continuity of e ia x for fixed f is equivalent to the continuity of f by
a remark made in the introduction to Chapter IV, By assumption, (3, 9) isa

space of continuous functions from Xto Y. Thus e is continuous in x for fixed f

by assumption.

So e is separately continuous in f and in x with respect to (3, ®) when

P ¢ ® and the proof is complete.

COROLLARY IV.A.2, The pointwise convergence topology on 3 ‘s the smallest

topology on o for which e is separately cortinuous.

Proof. The proof of this corollary foliows immediately from the proof of

Theorem IV.A.l.

Now turning to the continuity of e, that is the joint continuity of e, the

following definition can be made.

Definition: If 3 is a space of continuous functions from a topological space X
to a topological space Y, then an admissible topology for 3 is a topology cu 3 which

makas the evaluation map e : & ¥ X—Y continuous (i.e. jointly continuous).
The following theorem was presented by Arens in Reference [1].

THEOREM 1IV.A.3. If < is a space of continuous functions from the sp.ce X to
the spaceY and if ® is an admissible topology for 3 then the compact open topology

is coarser than @, that is k¢ 8.
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Proof. Let W(K, U) be any subbasic open set for the k-topology on 3 where K
is a compact set in X, U is open in Y and W(K, U) = {f ¢ 3| f(K)yc U}. It will be

shown that W(K, U) is a @ neighborhood of each of its points.

Let f be any point of W(K, U) then f(K)c U so that e(f, x) = f(x)eU for
each x ¢ K. This implies that (f, x) ¢ e™! (U) for each x ¢ K. Since 8 is admissible,
e"! (U) is open in 3 x X, Thus for eachx ¢ X, there is a ® open set W_ and an X
open set V_ such that (f, x) e W, x V_ce ! (U).

The collection {V, | x ¢ K} is an open cover of the compact setK. Let
(v,

finite intersection of ® open sets, is ® open and f ¢ O since f ¢ W,_ for each x ¢ K.

NERRt *++, n}be a finite subcover of KandletO = R W_. ThenO,a
i=1 X

Let g be any element of O andxeK then x eV, for some j = 1, +++,n
}

since K ¢ il:J1 in. Since g ¢ wx,, (8, X) € wxj x vxj C e ! (U). It follows that
e(g, x) = g(x) €U for eachx e K, Thus g(K)c U or g ¢ W(K, U).

Since g was an arbitrary element of 0, we have shown that f € O ¢ W(K, U)
which implies tirat W(K, U) is a ® neighborhood of each of its points.

Thus W(K, U) is a ® open set and hence k ¢ 8.

Theorem IV.A.3. does not indicate that the k topology is the smallest ad-
missible topology for 3. In fact in Reference (1], Arens shows that in general
there is no smallest admissible topology for ©. However, as the next theorem

shows, Arens proved that if the space X is locally compact and T, then the com~

pact open topology on & is the smallest admissible topology on 3,

THEOREM IV.A4. If 3 is a set of continuous functions from the locally com- '

pact, T, space X to the space Y then the k-topology is admissible.
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Proof. It must be shown that the map ¢ * Fx X ~Y is continuous with respect

to the k-topology on< .

Let (f. x) be any point of 3 <« X and V be any open neighborhood of
e(f, x) = f(x) in Y. Since f €3, f is continuous by hypothesis and there erists
an open neighborhood O of x in X such t.at £(0) cV.

Since X is a locally compact, T, space the family of all closed compact
neighborhoods of any point in X is a base for the neighborhood system of the
point. (Sce Kelley, Reference /2], p 146.)

Let K be a closed ccmpact neighborhood of x such that K c 0, then f(K)

c f(0)C V. Thus f € WK, V), that is W(K, V) is an open neighborhood of f in the
k -topology .

Since K is a neighborhoed of x, x belongs to the interior of K, << K°. Then
W(K, V) x X° is an open set in the space (3. k) x X containing (f. x).

Let (g. y) be auy point in W(K, V)x K° theng ¢ W(K, V) andy <K° c K.
However, g € W(K, %) implies that g(K) c V so that g(y) ¢V since y < K.

Therefore for ea.h (g, y) € WK, V) xK°, e(g, y) = g(. = Vor e(W(K, V)
x K°) c V. Thus = maps the open neighborhood W(K, V) x K° of (f, x) into V which
implies that e is contibuous at (f, x).

So e is continuous on 3 x X witk respect to the k topology aad the theorem

is rroved.
B. Continuity With Respect to the Graph Topology

In Chapter III it was shown that rather strong conditions on the space X

(i.e. T,, compact) are required to force equivalence of the k -topology and the
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graph topology cn a space of continuous functions. Because of this, it might be
expected that weaker conditions on the space X could result in admissibiiity for

the grapnh topology. This is in fact so as the following theorem shows.

THEOREM IV.B.l. If 3is a space of continuous functions from the regular

space X to the space Y then the graph topology on 2 is admi-sible.

Proof. Let (f, x) be any point of 5 x X and V be any open neighborhood of f(x)
inY. Since f € 3, f is continuous by hypothesis and there is an open neighborhood

0 of x in X with f(0) c V.

Since X is regular, there is an open neighborhood 0, of x in X with x € 0,
c0,c0. It follows that f(x) e f{0,) ¢ f{0,) c f(0)c V. Since O, is closed in X,
X\0, is uper. in X.

Let U = (X\0,) x YUXx Vthen G(f)c U since f(0,) c V. Thus f ¢ 5 and
SU is a1 _peu neighborhood of f in the graph topology on 3.

Tne set 2 x 0, is an open neighhorkood of (f. x) in the spe.e (2, My x X.

Let (g, y) be any point of SUx 0, ther. G(grcUandy ¢ 0,. Since G(g) c U
andy €0, cﬁl, (v g(y)) € Xx V. Thus e(g, y) = g(y) ¢ V and we have shown
tha. for every point (g, y) ¢ S*Ux 0,,e(g ¥) " g(y)eV. rhis implies that
e(5U x 01) - Vor that e is continuous at (f, x) with respect tn the [" topology on
J and the theorem is proved.

The following, c~cilary adds additional information to the results obtained
in Chapter I, Section D co:22rning comparison of the k-topology and the graph

topology.

GRS s
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COROLLARY 1V.B.2. I Jis a set of continuous functions :rom the regular
space X to the space Y, then the k-topology on 3 is contained in the graph topology

on J, that iskc .

Proof. The proof follows immediately from Theorem IV.B.1 and Theorem

IV.A3.

Two additional results concerning the admissibility of the topology of uni-
form convergence and the sup metric topology on 3 appear in Appendix C.

The following additional result holds regarding the separate continuity of

e and the graph :opology.

THEOREM 1V.B.3. If dis a set of continuous functions from the T, space X
to the space Y then the evaluation map is separately continuous with respect to

the graph topology on .

Proof. If X is T, then the pointwise convergence topology is contained in the

graph topology by Theorem III.A.2. Therefore e is separately continuous with

respect to the graph topology by Theorem IV.A.1,




APPENDIX A
A BASIS FOR THE GRAPH TOPOLOGY

Let F = YX, the set of all functions from X to Y. Define F, = {f eF| G(f)cU}

for Uc Xx Y.
LEMMA L KU, VCXxYthenF ., = F,"F,.

Proof. Suppose F, ., = ¢. I f e F,NF, then G(f) c Uand G(f) c V which im-

plies that G(f) cUNV Thus f € F,, contradicting the assumption that F, ., ~ .

Therefore if Forv ™ ¢ then F,NF, = ¢ and Fyay = FynFy.

Suppose F nF, =~ ¢. If f ¢F . then G(f) c UnV which implies that
G(f)cUand G(f)cV. Thus f ¢ F,NF, contradicting the assumption that F, "F, = ¢.
Therefore if F, "F, = ¢then F , = ¢andF ., = F ,"F,.

Suppose neither F " F_ nor Fy~y isempty andlet f ¢F Then G(f)cUNV

unv®

or f eFU and f €F,. Thus f eF,NF, and Fumvc FUr\Fv.

Let g e F,nF, then G(g) cUand G(g)cVorG(g) cUNV. Thus geF .,

and F, "F_cF

U v unv*

my 3 - = e
Therefore in any case F ., = F,"F,.
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LEMMA II. The collection B = {F, | Uan open set in Xx Y} is a basis for a

topology on F.

Proof. A sufficient condition for B to be a basis for a topology on Fis: for
every two members F; andF, of B and for each point f € F;, N F, there is an F, € B

such that f ¢ F,CF,NF,.

Let F; and F, € B and suppose f € F;nF,. Then by definition, G(f) C Uand
G(f)CVor G(f)cUNnV, Since U and V are open in XxY, UV is open in X x Y.
Therefore F~, ¢B. But G(f) CUNVimplies that f € F.,. By Lemma Iabove,
Fynv = Fy"F,. Therefore f € Fy CF NF, holds. Let F, = F, . €Band the

condition assuring that B is a basis for a topology on F is met.




APPENDIX B

CONDITIONS FOR THE GRAPH OF A FUNCTION TO BE =

£

HOMEOMORPHIC TO THE DOMAIN SPACE

LEMMA 1. Let f be a function from a topological space X to a topological

space Y. If f is continuous, then G(f) is homeomorphic to X,

Proof. The map p: G(f)~X by p(x, f(x)) = x is the required homeomorphism.

Suppose p(x, f(x)) = p(v, f(v))then x = y by definition of p. But then.
f(x) = f(y) since f is a function. Therefore (x, f(x)) = (y, f(v)) and p is 1-1.
Suppose x € X then (x, f(x)) ¢ G(f) and p(x f(x)) = x which implies
that p is onto X.
Note that G(f)CXxY énd G(f) is given the subspace topology induced by
the product topology on X xY. Let p, and p, be the projections of Xx Y onto X and
Y respectively. Then p, and p, are continuous since the product topology is the '

smallest topology on X x Y such that the projection maps are continuous.

However p = Py oy Therefore p is continuous since it is a restriction

of a continuous map.

1

Consider p~', p"1: X~ G(f)CX..Y. Since pis onto X. Therefore by

2

Theorem 3, p. 91 in Kelley (2], p~! is contiruous if and only if p, op ! and py op™!

are continuous.

Il

il
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Let x ¢ Xthen py o p™ ! (x) = py (x, f(x)) = x so that p, op”! is the
identity of the space X into itself. Thus p, o p~'is continuous.
Also py op™! (x) = py (X, f(x)) = f(x) sothat p, op™? = f, Thus

py op ! is continuous since f is continuous by hypothesis. Thorefore p~! is con-

tinuous which proves that p is a horn..2omorphism of G( f) onto X.
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APPENDIX C

CONTINUITY OF THE EVALUATION MAP WITH RESPECT TO THE

UNIFORM CONVERGENCE AND THE SUP METRIC TOPOLOGIES

' Although the two theorems of this appendix do not involve the graph to~-
nology, the fact that they are of interest in connection with the evaluation map

justifies their appearence here.

THEOREM 1. I 3 is a set of continuous functions from a topological space X

to a metric space (Y, d) then the sup metric topology on J "~ admissible.

Proof. Let (f, x) € 3x¥ andlet V, (f(x)) be an open ball of radius € >0 about
f(x)in Y., Since f is continuous, there is an open set O in X with x € 0 and
f(0)cV,,, (f(x)). LetN, ,, (f) be a p-ball of radius /3 about f, then (f. x)

€ N_ ,, (f)x0an open subset of 3x X,

Suppose (g, y) € Ne/3 (f) xO then g sNE/s (f)and y €0, However g€N€/3(f)
. implies that o(f, g) = §\.€1§d(f(x), g(x)) < €/3. Thus d(f(x), g(x)) < ¢/3 for

each x ¢ X and in particular, d(f(y), &(y)) < /3.

Sincey €0, f(y)e f(O)CV_, (f(x))'
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By the triangle inequality,
4(£(x), &y)) < A{E), &y)) + d{fx). £(y))

< €/3 +€/3<¢€.

Then since d (f(x), g(y)) <€, g(y) €V, (£¢x)). Thus e(g, y) = g(y)e Vv, (f(x))
which implies that e[N_,; (£)x0] cV, (£(x)) since (g, y)was an arbitrary point
of N, ,, (f)x O, Therefore the open neighboraocod N, ,; (f)x Oof (f, x) is map-
ped into V, (f(x)) by e. This implies that e is continuous on & x X since (f, x)

was an arbitrary point of 3 x X,

THEOREM II, If dis a set of continuous functions from the topolcgical space
X to the uniform space (Y, U) then the topology of uniform convergence on 9 is

admissible,

Proof. Let (f, x) e 3x X and let V{f(x)] be any open neighborhood of f(x) in
Y where Ve U, Choose Ue U such that U is open, symmetric and U «U CV then
U[f(x)] is also a neighborhood of f(x) in Y, Since f is continuous, f"(U [f(xj})

is a neighborhood of x in X.

Algo W(U) [f) = {g €3] (£(x), g(x)) € U for every x ¢ x} is a neighbor-
hood of f in the u.c. topology on 3.

Therefore W(U) [f] x £ 1 (U [f(x)]) is a neighborhood o (f, x) in 3x X,
Claiia that e(W(U) HETE (u [f(x)])) cv[f(x)]. Let (g.y) be any point of
W(U) [f) x £71 (U [f(x)]). Then g € W(U) [f] which implies that (f(x), g(x)) €U

for each x € X, Thus in particular, (f.(y), g(y)) €U, Alsoye 1(U [f(x)])

SRR e i

iinplies that f(y) EU[f(x)] or that (f(x), f(y)) ey,
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Thus (f(y). g(7)) and (f(x), £(y)) €U which implies that (f(x), g(y))
€UoUCV or that g(y) € V[f(x)].
Howaver e(g, y) -~ g(y). Therefore e(W(U) (f] x 71 (U [f(x)]))CV[f(x)]

and e is continuous at (f, x).




et G e e
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