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A NOTE ON THE PLASMA MOMENT

EQUATIONS IN A DIPOLE FIELD

J. M. Grebowsky

ABSTRACT

A coordinate system is discussed which is defined with respect

to a magnetic dipole field by unit vectors in the direction of the field,

in the azimuthal direction and in a direction along the dipole equipo-

tential lines. The velocity terms of the continuity and momentum

equations pertinent to plasma motion are expressed in terms of vari-

ations in these directions.
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A NOTE ON THE PLASMA MOMENT

EQUATIONS IN A DIPOLE FIELD

1. Introduction

The magnetic dipole field plays an important role in determining the prop-

erties of the plasma distribution and the nature of the waves propagating within

the plasmasphere since the magnetic field in the region is approximately dipolar.

Therefore coordinates should be used which reflect the geometry of the field

keeping in mind that an investigation of the plasma moment equations is simpli-

fled by expressing vector quantities in terms of components along the directions

in which the principal processes take place.

Gothard (1967) has summarized the different descriptions of the dipole field

and has investigated the mathematical form of the differential distances along

and across the field lines. This paper will develop the mathematical forms of

the continuity and momentum equations in a curvilinear coordinate system de-

fined at every point by unit vectors in the direction of the field (i ii ), in the

direction perpendicular to the field direction but lying in the plane of the field

line (i i ), and in the azimuthal direction about the dipole axis (i,,). The orienta-

tions of these vectors are depicted in Figure 1.

The distance along a field line is the coordinate with respect to which the

thermal plasmaa moment equations are frequently expressed in studies of
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ionosphere-protonosphere coupling (see for example Angerami and Thomas,

1964, and Tamao, 1966). The azimuthal direction will correspond to the direc-

tion of the plasma velocity for corotation about the earth's dipole axis. The

direction it , which is identical to the radial direction in the equatorial plane,

will be useful in studies of diffusion across field lines. Although many of the

terms to be investigated have previously been used in ionospheric and magneto-

spheric computations, their complete expression in terms of these coordinates

has not been previously developed.

2. The Coordinate System

In terms of spherical coordinates (r, 0, cp ) where r is the geocentric dis-

tance, 6 is the colatitude and y is the azimuthal angle, the dipole magnetic field

is:

B =2acos6 = + a sin 6 e
r 3	r3

or

B - grad C 
a 

cos 61
r 2	JJ

where a is the dipole moment.

The unit vectors along and perpendicular to the field direction (Gothard,

1967) are

2cos 6r + sin es
1 +3 cos t 6
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-2 cos &6+ sin 0rij =
(1 + 3 cost 8)1/2

i1P

These unit vectors form an orthogonal system and are related to one another by

11 = I II x i1.

The relative orientation between the direction ij and the direction of the

dipole gradient ip is given as a function of colatitude by

- sin 6 (1 + cos B)
1Q 11	

2	 2	 2	 2	 1/2	 2	 1/2[(1 + 3 cos 8) +cos B sin B]	 [4 - 3 su; B]

The length coordinates corresponding to these unit vectors are easily de-

termined. Measured from the center of the dipole axis, the distances along

these coordinate directions are in terms of the dipole latitude '\. and the geo-

centric distance r:

SfI =	 r	 ^n	 V3+2	 _^ sin X 3'+3sine^+2 3 3
2 3 3 cos t ^	 V'3 sin ^ + 1 +

S=	 r	 1 im 
fx

 

1+ 3 sine X 
1/2 d X

1 2 in1/2 X E—p	 sin XS 

and along the azimuthal direction

S1,=ry sin 0.
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The distance Sr i is the distance along a field line (i.e., along the curve r =

constant 0 cos t X) whereas Sl is the distance along an equipotential line of the

dipole (r 2 = constant o sin X). The reference level for S T is taken as cp = 0.

The expression for S., contains an integral which has not been evaluated

analytically. However, near the equator where sin X — X the integral can be

evaluated approximately to yield

S.L C 1 + 0 X2]

It should be noted that near the poles (X = t .n 12) the differential distance

d SL approximates to r d cp just as near the equator dS I — r dy. However, these

coordinates should be applied with caution near the poles since i t is a zero vector

at the pole and the divergence of this unit vector has a singularity at the pole.

In a dipole meridian plane, the contours of it as defined are mirror reflections

about the dipole axis and it is di-%ected in the polar regions towards the pole.

Hence the vectors in the perpendicular direction converge at the pole forming

the singularity.

3. Continuity Equation

The continuity equation has the general form

3 t +divj =S
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where ,D is the density, J is the flux density and S represents source and sink

terms. Only the divergence term is to be considered since the other terms do

not explicitly involve particular spatial directions.

Expressed in terms of the three previously discussed coordinates, the

divergence terra is

div J = div (JII i ll + J1 il+ Jcp icp)

or using the relationship i s - g r 
a d f= a s

a il,	 a il	 _	 aJ1P
div J= as + a1 +ill div i ll +J. div il+a

s1PII

where use has been made of div i,, =' 	 In terms of spherical coordinates the

differentiation operators are

a	 2 cos 9	 a	 sin 0	 a

a5113 cos t B ar r 1+ 3 cos t 6 a8

a	 sin 0	 a	 2cos 9

asl 1 + 3 cos t 8 Br	 -r 3 1 + 3 cos t 0 ae

and

a	 1	 a
'as 1P =r sin 0 ay

The divergence quantities in terms of spherical coordinates are:
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div III = 3 cos 6 (3 + 5 cos t 8)

	

r	 (1 + 3 cost 9)3/2

div i1 =	
2 sin ©	 1 + sin 2 B - cos y B - 3 cos 4 8

	r VI+ 3 cos t a	 (1 + 3 cos t B) 

Sin  

6

The first quantity can also be writter.:n the familiar form:

div III
_ 1 aB_ 

so that
a JI A

div (jet ill)	 B aSii

It is interesting to speculate as to what function F is required in order to

have a similar expression for the divergence of the perpendicular vector. That

is

div it = 1 aF

F asI

Such a fun&ional form would be an aid in exploring plasma phenomena in which

the perpendicular flux is important. In terms of spherical coordinates the dif-

ferential equation for F can be written

aF _ 2 cos B aF _ - 2 1 +	 1	 - COO © 1 F.
7rr sin 8 a6	 r	 1+ 3 cos t 9	 I

Solving this equation by separation of variables yields
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F
=Krm (1 + 3 Cost

Siff a (COS 0)1/2n+2

where K is an arbitrary constant and m is determined by the geometry.

Interpreting F as the inverse of the cross sectional area of a tube defined

by equipotential lines (i.e., lines parallel to it ), in analogy to the concept of a

magnetic flux tube, the constant m must be -4 in order to have a non-vanishing

area at the equator. This value can also be obtained by considering the geometry

of an equipotential tube of infinitesimal cross section at the equatorial plane — a

procedure which illuminates some properties of this coordinate system.

In a meridian plane the equipotential lines are of the general form as shown

in Figure 2. In the equatorial plane the equipotential lines are radial (see

Figure lb). Therefore the differential cross sectional area of a potential tube

at the equator is

(rdy) (rd IXI)

where I X I is the angle between the equator and the wall of the flux tube in a

meridian plane. But along an orthogonal line (i.e., an equipotential)

r =Msin" ICI
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%tiere M is a constant. Therefore near the equator

I X I _r2 .
M2

The differential area is then

r4—dcp
M2

and hence the value of m is -4. For this value the function F is

F _ KB
r sin 0

and the divergence of J can be put into the particularly simple form

Jl r sin B )
a

div J= B a(Jii ^B>
+ 	 B	

B	 +aJ`^.a SI i	 r sin B	 a SL	 ash

Near the equator in the approximation sin X ti X and cos X ti 1 the divergence

becomes in spherical coordinates

	

aJi- 1 aJll aJi _ 2X aJ1 4_	 9^	 1 aJ
divJ=2X ar 

+ r a^ + ar	 r aX + r Jl+ r J^^ + r acp

At the equator (A = 0) this expression reduces to a form which is similar to that

of the corresponding divergence in a spherically symmetric system. That is,

at X = 0,

I 
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I

div (il l J„ , Jcp) - aJr 
+ 4 Jl 

+ r '3 + r 
a ̂̂ P

whereas in a spherical coordinate system

div (i t' JB , J^p) 
=ate 

+ r Jr + r a ye + r a

4. Momentum Equation

The momentum equation for one component of a thermal plasma has the

general form

d v 
= - 

grad P
at	

F

+-P	 P

where P is the pressure, p the density and F denotes forces due to gravity,

electric and magnetic fields and collisional interactions. The time derivative

is the convective acceleration.

In terms of the length coordinates discussed in ;'ie previous sections the

gradient operator is

grad =illa
s 

+1
1 1

asG. +iYTa
-4' .SI ^ 

This form of the operator is needed to express the convective derivative

dv_ a v

at	
+v grad 

W .	 - at

in the desired form.

Y
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The local variation of the velocity with time can be written

av„ _ avl _ a VY
at = 1 " at + 11 at + i^ at

The spatial derivative is evaluated by a straightforward expansion of the vector

components along the i ii , it and iq, directions. The three orthogonal com-

ponents are

a vl IV I	 a V II	 2	 3 cos 6[(v grad) v) -v	 +v	 +v	 -vII	
II a^l	 1 asl 	 ^P aSC	 r A + 3 cos t 6

3v
1 (

V I 
1 

_ 2v cos

1 sinB J

6 ) sin 0 (1 + cos 2 6)

r (1 + 3 cos2 6)3/2

	

[(v grad) v] - v avl + v avl + v avl - v2	 (1 - 3 cos 2 6)
1	 it as„	 l 6s L 	 ^PaS^	 ^r sin 6(1+3cos20)

+ 3 vII 
(v,, _ 2 v cos 0 sin B (1 + cos 2 B)

1 sin 0 J r (1 + 3 cos2 0)3/2

	

av	 av	 av
[(v • grad) v]^ = vll a SY + vl aS + v^ aS^

II	 1

(
v	 1-3cos26

+

	

	 Y	
vi1 3 cos 6 + vL	 sin 6	

) 1
r 1 + 3 cos 2 6

The terms quadratic in v„ , vl or v,, correspond to centripetal acceleration

r.	
components whereas those terms which consist of the product of two different

velocity components correspond to components of the coriolis acceleration.
a

10

t


