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ABSTRACT 

The energy and momentum equations a r e  solved analytically to predict the heat-
transfer coefficient of small  submerged spheres  in film boiling. The analysis i s  based 
on the postulate that the rate  of entropy production i s  maximized. In addition, the small-
sphere theory is matched with the film-boiling correlation for flat plates to give a heat-
t ransfer  correlation which applies for large, a s  well a s  small, spheres. 

Technical Film Supplement C -263 available on request. 
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FILM BOILING FROM SUBMERGED SPHERES 

by Robert C. Hendriclts and Kenneth J. Baumeister 

Lewis Research Center 

SUMMARY 

The heat-transfer coefficient fo r  pool film boiling from submerged spheres  was 
analyzed. The model developed assumed a vapor dome on top of the sphere into which 
vapor flows f rom the thin-film vapor region which exists on the lower portion of the 
sphere. 

In addition, the theoretical result  for  boiling from small  spheres  w a s  matched with 
the heat-transfer coefficient f rom a flat plate to give a heat-transfer correlation that 
applies to both small  and large spheres. 

INTRODUCTION 

Film boiling is one of the major mechanisms by which heat is t ransferred in cryo
genic systems or wherever extremely high temperature differences a r e  involved, as in 
quenching o r  spray cooling. Fundamental investigations into the phenomenon of film 
boiling have considered Leidenfrost boiling of liquid drops and film boiling f rom flat 
plates, wires, and spheres. This report  is concerned with film boiling from submerged 
spheres  of relatively smal l  diameter and some of the similari t ies to film boiling from 
submerged cylinders. 

Film boiling f rom horizontal wi res  (cylinders) has  been analyzed theoretically and 
checked experimentally by Bromley (ref. 1). His analysis gave the following expression 
f o r  the heat-transfer coefficient: 



where Fo is the property group 

F =
0 


and A* is the modified latent heat of vaporization 

* 
(3) 

(All symbols a r e  defined in appendix A. ) To model the phenomenon, Bromley assumed 
that the generated vapor flowed laminarly in a thin vapor annulus surrounding the heated 
cylinder. This model fit the experimental data fo r  a range in diameters  f rom 1/4 to 
1inch (0.635 to 1 .91 cm), fo r  many common fluids. 

In 1953, Banchero, et  al. , (ref. 2 )  furthered the understanding of film boiling. Using 
liquid oxygen as a pr imary test  fluid, they assessed  the effects of wire size and pressure  
on the film-boiling process. They pointed out that Bromley's equation is valid over a 
narrow range of wire  s izes  and recommended an empirical modification: 

h = a  - + C  F (4)(A ) O 

Here a is nearly constant and C is a constant for  each fluid tested, D is the diameter, 
and Fo is the property group of Bromley's equation. 

In 1961, Berenson (ref. 3) used a critical wavelength parameter,  

hC = 2iT F( P ,  - P k  

to correlate f i lm boiling f rom a horizontal surface: 

1/4 
~hXc - 0.672 
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Figure 1. - Heat-transfer coefficient in f i lm boiling from horizontal cylinders as function of characteristic diameter ratio. Data from Breen and Westwater (ref. 4). Each type 
of data point represents a set of test conditions wi th in  the following ranges: Fluids, water, helium, oxygen, pentane, nitrogen, ethanol, benzene, Freon-113, isopropanol, 
or  carbon tetrachloride; temperature, 72" to  2600" F (301 to 1703 K); heat-transfer rate, 17 to 2120 Btu per hou r  per square foot per "F (97 to 12 200 Wl(m2)(K)); cylinder 
diameter, 0.00053 to 4.6 centimeters; cr i t ical  wavelength, 0.068 to 0.660 inch  (0.173 to 1.67 cm); length-diameter ratio, 0.135 to 50. 



(a) Fluid, liquid nitrogen; wire diameter, 1. 75 inches (4.76 cm); ratio of critical wavelength to diameter, 0.1435. 

(b) Fluid, ethyl alcohol; wire diameter, 0.02 inch (0.0507 cm); ratio of critical wavelength to diameter, 20. 

Figure 2. - Effect of diameter on film boiling from horizontal wires. 
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A year later, in 1962, Breen and Westwater (ref. 4) made another significant contri
bution to the understanding of fi lm boiling. Introducing the cri t ical  wavelength kc, 

they correlated all available film-boiling heat-transfer data fo r  horizontal cylinders by 
means of a simple empirical  equation. The correlation is illustrated in figure 1. This 
again demonstrates the Bromley equation to be valid over a narrow range of wire  sizes. 

Baumeister and Hamill (ref. 5) developed a theoretical model fo r  film boiling from 
small-diameter wires  which followed the trend in the experimental data and gave ex
cellent agreement with the Breen and Westwater correlation. 

As seen in figure 1, below an 1 /D of 0.1 the heat-transfer data are independent of 
wire size, whereas Bromley's equation predicts ever decreasing values of the heat-
transfer coefficient. The heat- transfer coefficient in this regime was correlated by 
Breen and Westwater (ref. 4)using Berenson's results (ref. 3) fo r  film boiling off an 
upward-facing flat  plate. This correlation appears as a horizontal line in figure 1. 

Above an 1/D of 2, the heat-transfer data rise at a much quicker rate than the 
Bromley equation would predict. The increase in the data slope fo r  small  wires  
(large 1/D) resul ts  primarily f rom a change in the flow profiles around the wire, as 
displayed in the photographs in figure 2. For large-diameter wires  (fig. 2(a)), the flow 
is circumferential and pseudoturbulent in nature. The flow follows a vertical  pattern 
upward and leaves the wire  in a large dispersed vapor column. However, f o r  small-
diameter wires,  as shown in figure 2(b), the flow is axial into vapor domes that are peri
odically distributed along the wire. These domes grow as additional vapor enters,  even
tually break away from the wire,  and escape as large vapor bubbles into the bulk liquid. 
The upper photographs of figure 3 illustrate how the vapor patterns change with i / D  for  
cylinders ranging from 0. 0508 to 4. 76 centimeters in diameter. Note the changes in 
vapor structure and wave patterns near the transition regime. 

Frederking, et al . ,  (refs. 6 and 7)performed an analysis s imilar  to Bromley's (ref. 1) 
f o r  relatively large-diameter spheres. The resul ts  of this analysis did not f i t  their data. 
They then suggested an empirical  correlation based upon the parameters  of turbulent free 
convection with the property group to the 1/3 power, which fit most of their data. 

Photographs of film boiling from spheres  in liquid nitrogen show a phenomenon simi
lar to that observed on wires  of corresponding diameter (see fig. 3). Here, the small-
diameter wires  and spheres  (large 1 /D) both exhibit the characterist ic vapor dome. As 
evidenced by the series of domes rising from the small-diameter spheres,  the process  
of vapor removal is periodic in nature. Motion pictures of the phenomenon (see appen
dix H and fi lm supplement) indicate that the flow around the spheres which supplies the 
growing vapor domes is laminar in nature with small  capillary waves moving upward 
along the liquid-vapor interface. For large-diameter wires  and spheres, however, the 
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flow appears turbulent and chaotic in nature at all positions surrounding both the wire  and 
the sphere, except near  the lower stagnation region. Because of this strong evidence for 
similarity between boiling on a wire  and a sphere, we felt  that the theoretical techniques 
used to analyze the wire  could be applied to film boiling off spheres. 

(b) Small-diameter spheres. 
Figure 4. - Film-boil ing models for  smal ld iameter  wires 

and spheres. 

The theoretical model fo r  small-diameter wi res  (ref. 5) was a modification of 
Berenson's original model introduced fo r  film boiling from flat surfaces. A schematic 
of the model is shown in figure 4(a). A fur ther  modification of the vapor dome model to 
the case of film boiling f rom small-diameter spheres  is depicted in figure 4(b). Here, 
the vapor is generated in the thin annular region at the bottom of the sphere. It then flows 
in a laminar manner into the escape dome. In the physical situation, the vapor domes 
grow as additional vapor enters, eventually breaking away f rom the sphere and escaping 
as large vapor bubbles into the bulk liquid. The proposed model, to be discussed in de
tail in the next section, assumes  the existence of a time-average configuration where all 
the velocity, pressure,  and temperature fields a r e  at steady state. 
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Heat-transfer expressions f o r  both large- and small-diameter spheres  a r e  developed 
herein. The data are shown to be bounded by the sl ip and nonslip boundary conditions; 
however, the shifts f rom one condition to another are unexplainable without fur ther  anal
ysis. For smal l  spheres, a theoretical expression based on the model depicted in  fig
u re  4(b) is derived and compared with the available film-boiling data. For large-diameter 

spheres, the film-boiling heat-transfer coefficient is correlated by matching the small-
sphere and flat-plate solutions; a s imi la r  technique is used f o r  film boiling off of a large 
cylinder. In this case, the heat-transfer coefficient is independent of geometry and de
pends only on a fluid property group raised to the 1/4 power. 

In addition, a motion-picture study of film boiling was undertaken to a s s e s s  the na
ture of the vapor flow f rom spheres, cylinders, and a vertical flat plate. A motion-
picture supplement C-263 has been prepared and is available on loan. A request card 

and a description of the film are included at the back of this report. 

BASIC MODEL AND EQUATl3NS 

Consider the single-dome model of a submerged sphere in film boiling, as illustrated 
in figure 5. The physical situation could be a solid metal  sphere supported on a wire  

Figure 5. - Schematic model of f i lm boi l ing off submerged sphere, 
s ing ledome case. 
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and immersed in liquid nitrogen - provided, of course, that the proper temperature dif
ference is maintained. The mater ia l  evaporated at the interface flows about the sphere 
towards the vapor reservoir .  The reservoi r  begins at the point designated as (Ro + 6, e*) 
in figure 5. 

The single-dome model appears  to represent  film boiling from smal l  spheres  (low 
Bond number, Bo) as shown in figure 3. However, f o r  large-diameter spheres  (large 
Bond numbers) the single dome appears  to give way to multiple domes, such as occur off 
a horizontal plate facing upward. Apparently, as with boiling off horizontal wires, as 
the s ize  of the sphere than the cri t ical  wavelength Xc, f rom hydrodynamic 
stability theory (Xc = single dome tends towards multiple domes. To 
maintain a tractable solution for the large-sphere case, the conduction a r e a  under the 
single dome is assumed to be replaced by multiple-dome film boiling. This multiple-
dome film-boiling regime, fo r  large spheres ,  is assumed to be s imi la r  to film boiling 
f rom an  upward-facing flat plate. 

There a re ,  of course, severa l  possible modes of heat transfer as the sphere tempera
tu re  tends toward the Leidenfrost temperature (ref. 8). These mechanisms (nucleate 
boiling, etc. ) are beyond the scope of our investigation; hence, our model is restricted 
to the developed film-boiling regime. 

The following assumptions a r e  made in developing the single- o r  multiple-dome 
models: 

(1)Rotational and vibration effects due to the sphere a r e  small. 
(2) Surface capillary waves, while influencing the boundary, do not significantly 

a l te r  the heat t ransfer  o r  the laminar nature of the flow. 
(3) The vapor gap thickness is constant. 
(4)The model has complete symmetry with respect  to the CD coordinate. 
(5) Because of the low Reynolds number, the flow of vapor is laminar and incom

pressible; and the inertia and body force t e rms  in the Navier-Stokes equations, as ap
plied to the vapor, a r e  neglected. Justification for  this assumption can be found in 
reference 9. 

(6) Radiation is negligible. 
(7)The velocity and temperature profiles a r e  in steady state. 
(8) At any instant of time, the sphere is at an  average temperature Fw,and the 

evaporating liquid is at the saturation temperature Ts. The properties of the flow field 
are evaluated at the film temperature 

and are constant (an assumption that has  worked quite well, ref. 10). 
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(9) The convective t e r m s  in the energy equation are neglected; however, the latent 
heat of vaporization is corrected to accommodate this assumption. The correction is 
usually of the form 

h * = h l + - c[ :( p 3 ]  

Such assumptions are apparently valid, based on the work in references 8 to 11. These 
authors indicate the major mode of heat t ransport  to be conduction; when the convection 
t e rm is retained, the solution yields a factor analogous to the effective latent heat of 
vaporization A*. Thus, it is assumed that, in the energy equation, 

Ve aT-_ 
r a e  ar 2 arr 

The surrounding liquid is at the saturation temperature.  Thus, all the heat reaching 
the liquid produces vapor. 

The governing equations a r e  as follows (ref. 12): 

(1)Momentum: 

r 
P ar r 

o = - - - - + v  2 avr& 1 ap v v  +- - 
p r a e  ( 2 e  r '0 r2 sin2 e ) 

where 

1 
r2 ar r sin 6 -

a (sin 6 
a e  :e) 
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(2) Energy: 

(3) Continuity: 

iO = - - ( r  a 2V ) +  i -a (Ve sin e )
2 ar I- r s in  e aer 

The boundary conditions a r e  separated into two categories, which represent  the 
single-vapor -dome and multiple-vapor-dome regimes,  respectively. 

Regime Surface Single-dome model Multiple-dome model Equatior1 - ..-
number 

Thin film r = R
0 

Vr=O,  Ve = 0 ,  T = TW 

r = R  + 6
0 

6 < 6* 

e = o  v6= o  

. - ~ _ _ _  

Ro 5 r 5 Ro + 6 
. 

e = e* P =  Pd 
r = R  + 6

0 

Vapor dome 9 * 5 8 < 1 1  Heat transfer by conduction I k CY (Rat s)1’4
~-

where 0* is defined (fig. 4) as the transition f r o m  the thin film to the vapor dome, 6 
is the vapor gap thickness, and Pd is the dome pressure.  

The boundary conditions a r e  incomplete a t  this point since 6, 8*,  and Vr(5) a r e  
unknowns. Hence, three additional mathematical constraints a r e  necessary to make the 
problem tractable. 

(4) Static pressure  balance: 

One additional constraint requires  the sphere to be in static equilibrium. Small 
vibrations of the sphere a r e  neglected. The static equilibrium condition requires  that 

-
the average pressure  P in the vapor at the liquid-vapor interface resulting from the 

11 




weight of the supported liquid, surface tension, and atmospheric pressure  balance the 
average pressure  due to flow (see  appendix C). Summing the forces  acting at the inter
face gives 

+ 6)2 sin 0 de dQ,= f2T fe* -
P(Ro + 6)2 sin Q de dQ, (19)

0 0 

The total p ressure  in the vapor gap P can be calculated f rom the momentum equations, 
and is established in appendix B, along with a solution to the momentum equations. 

(5) Interface energy balance: 

The second additional constraint is the interface energy balance. Because the sup
porting fluid is assumed to be a t  the saturation temperature (assumption 8), all the heat 
reaching the interface produces evaporation of the fluid material. Mathematically, this 
constraint is expressed as 

-pXVr(Ro + 6, e) = -k -

where h is the latent heat of vaporization and 

is the conduction heat f lux  of the boundary of the surrounding liquid. 

(6) Entropy production: 

The third constraint is that the rate of entropy production be a maximum. As e* 
is the parameter which controls the ra te  of exchange of energy (maximization of entropy 
production), 

ah 0-= 
ae* 

a2h < 0 

12 



Equation (21) will  lead to the determination of 6* as a function of Bond number Bo. 
For a constant area, h represents  the rate of exchange of energy per  degree change in 
temperature, which in a loose thermodynamic sence, "quasi-equilibrium, '' describes 
entropy production. 

This optimization technique has  been used successfully in predicting the heat-transfer 
r a t e s  in film boiling f rom flat plates (ref. 13) and wi re s  (refs. 5 and 14). 

(7) Slip and nonslip boundary condition: 

The analysis herein depends on the nonslip boundary condition, = 0 ,  equa

tion (15) .  However, the analysis using a n  apparent o r  virtual sl ip boundary condition 

is carried out in appendix F. In subsequent material  unless otherwise specified, the 
nonslip analysis is used. 

A NALYT ICA L R ES ULTS 

The governing equations, along with the appropriate boundary conditions and con
straints,  are solved in appendixes B, C, D, and E. Only the resul ts  are presented in 
the main text. 

Normally, the experimental data represent an average of more than one mode of heat 
transfer from the sphere. Thus, the theoretical heat-transfer coefficient is formulated 
as the sum of the two major modes of heat transport, film boiling and conduction through 
the vapor dome. With this formulation, theory and data can be compared. For a given 
fluid, the t e r m s  small  Bond number and small  sphere a r e  used interchangeably, although 
the precise meaning of each is distinct. 

S mal I-Bond-Number Case 

For a small-diameter sphere, such as shown in the lower far right photograph of 
figure 3, the model shown in figure 5 applies. The heat-transfer coefficient may be 
written as 

13 
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Film-boiling Conduction 
= (transport ac ross  + (transport through 

thin vapor film vapor dome) 

( 0  < e*>) 
where AI is the lower surface a r e a  of the sphere (0 < e*) ,  and h 1 is the associated 
film-boiling heat-transfer coefficient for  this area. In the second term,  A2 represents  
the surface area beneath the dome, and h 2 represents  the conduction heat-transfer 
coefficient associated with this area. 

In order  to compare theoretical and experimental results,  hsmall represents a n  
area-weighted average heat-transfer coefficient f rom the sphere. Here, At represents  
the total surface a r e a  of the sphere, the sum of A1 and A2. 

The solution for hsmall is given by equation (B65) of appendix B as 

Nu' = 1/4 [-2Ra'G(Bo) ]1/4f y-+1 f cos B*)csc B* 

where 

Ra' = 
kpAT 

and Nu' and Ra' are modified Nusselt and Rayleigh numbers; respectively. The 
function G(Bo) (fig. 6(a)) depends on the Bond number, 

2 
BO = 

( P ,  - PkR0  - Buoyancy forces  
Surface -tension fo r  ces 

For a fluid at its normal boiling point, Bond number varies,  essentially, as the 
square of sphere radius (i.e. , as the size of the sphere). Other conditions, such as 
approaching the cri t ical  point o r  large variations in g, would effect a variation in Bond 
number f o r  a fixed radius. 

14 
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In addition, the angle 8" in equations (15), (17),and (18) is a function of Bond 
number. The functional relation is shown in figure 6(b). As shown in this figure, the 
analysis predicts an  upper bound in the value of 8* to be 377/4, as illustrated in fig
ure 6(b). The limit appears  to agree  with physical observations on boiling f rom small  
spheres  (see fig. 3); however, it is a lso  apparent f rom the other spheres  of figure 3 
that the magnitude of Bo is quite a significant factor. 

Bond Number Range fo r  Small-Sphere Model 

Considering the expression fo r  the heat-transfer coefficient for  smal l  spheres, 
there remains one intriguing question. Over what range of Bond numbers can this analy
sis be applied? As the Bond number increases ,  experiments have demonstrated that a 
single dome no longer appears, ra ther  multiple domes appear (lower photographs, 
fig. 3). 

From hydrodynamic stability theory, the most dangerous wavelength hmd is de
fined as 

For  the case of a heavy liquid over a lighter fluid, the most dangerous wavelength r ep re 
sents the wavelength of a smal l  sinusodial unstable disturbance, which has the fastest  
amplitude growth rate of all possible unstable disturbances. For the purpose of this 
analysis, i t  is assumed that if the circumference is l e s s  than the most dangerous wave
length, that is, if 

ROO*5 hmd 

the model and heat-transfer equation (24) would apply. Noting that 

Z K  


it follows that for 

- I 
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the analysis is valid. (emz can be found f rom fig. 6(b). ) This Bond number Bo* pre
dicts with reasonable accuracy the transition from single-dome film boiling to multiple -
dome film boiling, as shown in figure 3. Consequently, to determine the heat transfer 
fo r  Bo > BO*, the analytic model must be modified. 

Large- Bond-N umber (Large Sphere) Modi f  icat i o n  

When the Bond number is grea te r  than that given by equation (31), multiple domes 
replace the single domes (see figs. 7 and 3). Of course, for  these la rger  Bond numbers, 

the expression for  the heat-transfer coefficient given by equation (24) would no longer 
apply. 

Since, at the present time, all available experimental data exist fo r  Bond numbers 
near and outside the range of equation (24), the small-sphere analysis cannot be readily 
compared with data. It is desirable for practical use, however, to modify the theoretical 
analysis so  that data can be correlated over a more complete spectrum of Bond numbers. 

The solution determined to within a constant (Y is found in appendix E. The solution 
for  the large -Bond-number case (large spheres) becomes 
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General Solution 

The solutions to the large- and small-Bond-number regimes (large and smal l  
spheres) in essence represent  two asymptotic cases. In appendix E, the two solutions 
a r e  matched at RoB*/Xc = 1, and a linear combination of the two solutions produces a 
general solution applicable to both the small- and the large -Bond-number regimes 

where BoD is Bond number based on sphere diameter to facilitate comparison to data. 
The functions G(Bo) and 6* a r e  extended to the large Bo regime and plotted in 

figures 8(a) and (b). 
As shown in equation (33), if  BoD << 1, the first term dominates, and the expres

sion for the Nusselt number reduces to equation (24), the expression for  the heat-transfer 
coefficient fo r  smal l  spheres. For large Bond numbers, equation (33) approaches 

Nu' = 0. 177 (Ra1*D)1/4 ( 1  + cos e*) + -1 -2G(Bo)Rat] (34)
4 [ 3 

The f i r s t  t e rm of this expression is the classical expression of film boiling from a flat 
plate facing upward t imes an a r e a  correction factor, while the second t e rm represents  
film boiling from the lower portion of the sphere. 

The constant coefficients of equation (34) depend not only on the physical process but 
a l so  on the boundary conditions. The slip and nonslip conditions a r e  the most commonly 
considered variation in boundary conditions for this type of problem and a r e  discussed 
in the next section. 

S Iip Modification 

In the analysis presented in appendix F, it is assumed that the nonslip boundary con
dition V, = 0 (eq. (15)) occurs at the liquid-vapor interface. Bromley (ref. l), 

(6=V
however, showed that the sl ip boundary condition, along with the nonslip boundary condi
tion, bracketed the experimental data. For this particular problem, the sl ip boundary 
condition (eq. (15)) becomes 

19 
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avgl = o  

The details of the .modification are given in appendix F. The resul ts  of this modifi -
cation are as follows: 

(1)Small-diameter sphere: Equation (24) becomes 

(2) Large -diameter sphere: Equation (32) becomes 

Nu' + 0.21(1 + COS 

3 6 0  

(3) Combined solution: Equation (33) becomes 

f 

In the next section, the resul ts  fo r  both the s l ip  and nonslip cases  (refs. 7, 15, 
and 16) a r e  compared with available experimental data. 

DISC US S ION 

In reference 7, a transient cooldown technique was used to determine the fi lm-
boiling heat-transfer coefficient. The data were obtained f rom two spheres  submerged 
in two fluids. The sphere diameters were 1/4 and 3/8 inch (0.635 and 0.95 cm) and 
the fluids were nitrogen and helium. The resul ts  of these tests are replotted in figure 9 
in t e rms  of Nusselt number Nu and modified Rayleigh number Rat . The helium data and 
the nitrogen data fo r  the 1/4-inch (0. 635-cm-) diameter sphere follow the 1/4-power 
rule; however, note that the helium data are near the theoretical 'TsliplTline given by 
equation (35), while the nitrogen data (1/4-in. - (0. 635-cm-) diam sphere) a r e  near the 
theoretical line given by equation (24). Note that the nitrogen data fo r  the 3/8-inch
(0.95-cm-) diameter sphere tend to follow a 1/3-power rule, on the average. 
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Figure 10. - Variat ion in Nusselt number wi th  modified Rayleigh number for t rans ient  
cooldown of l - i n c h - (2.54-cm-) diameter sphere in l iqu id  n i t rogen (ref. 8). 

More recently, transient cooldown data were obtained in reference 8 fo r  liquid nitro
gen with 1/2-, 3/4-, and l-inch- (1.27-, 1.90-, and 2. 54-cm-) diameter submerged 
spheres. These data indicate that several  power rules  may apply, depending on the mode 
of heat transfer. This is illustrated for  the l-inch- (2. 54-cm-) diameter sphere in 
figure 10. The circular symbols appear to follow the theoretical "slip" line (eq. (35)). 
However, much of the data tend to follow a 0. 515 o r  square-root power rule, followed 
by the usual large increase in heat transfer at nucleate boiling. In a private communi
cation, Lyle Gordon Rhea indicated that the shift to the 0. 515-power rule was a result  
of nucleate boiling on the s tem which supported the sphere. 

With these limitations in mind (cf. large temperature differences and film boiling 
only) the data of reference 2 were replotted in figure 11along with data f rom figure 10. 
These data represent temperature differences greater  than 210' F (-117 K) and no 
change to the square-root rule. These data follow the 1/4-power rule; however, they 
tend to shift between the sl ip and nonslip theoretical lines predicted by equations (35) 
and (24), indicating a change in the model. 

Results similar to those reported in references 7 and 15 were obtained earlier in 
reference 16 (analyzed in ref. 6) fo r  a l-inch- (2. 54-cm-) diameter sphere submerged 
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Figure 11. -T rans ien t  f i lm-boi l ing data for UZ-, 3/4-, and l - i n c h - (1.27-, 1.91-, 
and 2.54-cm-) diameter spheres submerged in l iquid nitrogen. Selected data 
from reference 15; temperature dif ference between heater wall  and saturation, 
>210" R and Drior to - in t h e  data of reference 15. 

in liquid nitrogen. From the resul ts  of that analysis, it would appear that the data again 
follow the 1/3-power rule; however, these data might also follow the 1/4-power rule if 
s imilar  temperature limitations were applied. 

The data of figure 9 appear to be bounded by the slip and nonslip equations (eqs. (35) 
and (24)). Would these data be bounded fo r  larger  or smaller  sphe res?  And what is the 
mechanism which causes the transition from one curve to the other? The answers to 
these questions appear to be based on geometry and fluid properties, which suggests 
that some critical dome size  is involved. As indicated earlier, the Bond number equa
tion (eq. (27)) constitutes a parameter which incorporates these effects. 

Bond number is a natural parameter  of this analysis and has  been successfully ap
plied to fi lm boiling from a wire  (ref. 5); it is also natural to assume that film boiling 
f r o m  a sphere should show similar  trends. The photographs of reference 7 and this re
port  seem to agree with such a classification. The crit ical  wavelengths fo r  nitrogen, 
helium, water, and ethyl alcohol are tabulated in the following table (from ref. 17): 
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Fluid Critical wavelength, 
h = 2rrlC 

in. cm 
. ... -

Nitrogen 0.269 0.674 

Helium .068 .173 

Water .660 1.68 

Ethyl alcohol .379 .962 

Figure 3 and the film supplement C-263 available on loan and described at the back 
of this report  and in appendix H illustrate how the vapor flow patterns change as a func
tion of diameter. Sphere size is one of the parameters  comprising Bond number 

Thus, f o r  a given fluid, an increase in sphere size increases  Bond number. It is evident 
f rom the motion picture (film supplement), and also figure 3, that as Bond number is 
increased beyond h

C
/D = 1, surface capillary waves appear, signaling the onset of tran

sition. In the transition region, the flow is pseudolaminar (see appendix G). As the 
waves become undamped, multiple domes appear over the surface (fig. 3, /D = 0. 19). 
It is clear that the single-dome boundary condition breaks down and the single-dome 
conduction region is replaced by a multidome film-boiling regime. This change leads to 
the large-Bond-number o r  multiple-dome model as sketched in figure 7 .  Because of the 
randomness of the bubbles in this regime and the magnitude of the Rayleigh number, the 
heat transfer may be considered turbulent; however, as shown in appendix D, Bond num
ber enters  as a parameter,  and thus the laminar equations can be used to predict heat 
transfer (see also refs. 4 and 5). 

The data of figure 5 are replotted as a function of l/BoD in figure 12. The theore
tical line of equation (33) encompasses the helium data and par t  of the nitrogen data. The 
nitrogen data for  l-inch- (2. 54-cm-) diameter spheres (ref. 16) lies between 7 and 
28 percent above the theoretical line. However, major data trends apparently follow, as 
predicted by equation (33), and it would seem that Bo is a valid parameter.  

The data, other than that for  helium, also tend to follow the empirical  1/3-power 
rule, which may o r  may not be valid f o r  larger- o r  smaller-diameter spheres than tested. 
The arguments which lead to the 1/3-power rule were based on the lack of a n  effect of 
geometry on the data (ref. 6). At large Bond numbers, the effect of geometry should be 
small, as predicted by equation (33); moreover, the data of figure 11 indicate that the 
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Figure 12. - Experimental and predicted resul ts  for f i lm boi l ing off submerged spheres. 

1/4-power rule is valid fo r  high-temperature-difference film boiling. Thus, equation (33) 
should be valid over a wide range of submerged-sphere film boiling. 

CONCLUSIONS 

Laminar film-boiling heat t ransfer  on a sphere has  been analyzed subject to the optimum 
entropy production constraint f o r  a large range of Bond numbers. The following resul ts  
were obtained: 

1. The heat-transfer coefficients for  film boiling f r o m  submerged spheres, as p re 
dicted by equation (33), a r e  in fair agreement with the experimental data. Equation (33) 
represents a linear combination of the low-Bond-number case (single vapor domes) and 
the high-Bond-number case (multiple vapor domes). For  a specific fluid a t  its normal 
boiling point, Bond number var ies  as the square of the sphere radius. 

2. No comparison of theory and experiment could be made a t  very low Bond numbers 
because of the lack of data. Thus, more experimental data, particularly in the low-
Bond-number regime (small  spheres) are required before a conclusion can be  made as 
to the validity of the models leading to equation (33). Experimental data a t  elevated p res 
s u r e s  near the cri t ical  point and/or at high- o r  low-gravity conditions would also prove 
useful. 

3. The nonperiodic nature of the interface at the higher Bond numbers is clearly 
evident in the film supplement. This randomness raised the question as to whether the 
interface was turbulent o r  laminar. As the heat-transfer coefficient can be calculated by 
equation (33), heat transport  by the vapor is apparently laminar. Thus, in a turbulent-
looking process, the governing mode of heat transport  may still be laminar in nature. 
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4. In view of the interface motion a t  the higher Bond numbers, the interface velocity 
boundary condition was changed f rom nonslip to slip. The data appeared to be bounded 
between the theoretical nonslip and slip lines; however, the shifts in level within these 
bounds were unexplainable except through the models leading to equation (33). 

5. A motion-picture supplement is offered which compares film boiling from plates, 
vertical and horizontal, cylinders and spheres. 

Before a conclusion can be made as to the validity of the analysis a t  very smal l  Bond 
numbers, much more  film-boiling data on spheres  is required. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, February 11, 1969, 
129-01 -05-17-22. 
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APPENDIX A 

SYMBOLS 

A surface area 


a constant (see eq. (4)) 


Bo Bond number based on radius, g(p 1 - p)Ri/ugc 


Bond number based on diameter, 4 Bo 

C constant, eq. (4) 

3c constant defined by eq. (Cd) 

cP 
specific heat of vapor 

c 1 , 2 , 3 , 4  constants 

co integration constant, eq. (B62) 

coopt 
optimization constant 

D diameter 

E 2  operator defined by eq. (B15) 

F function defined by eq. (B32) 

function defined by eq. (4) 


function defined by eq. (B65) 


function defined by eq. (B18) 


optimization function, eq. (B64) 


function defined by eq. (B34), p(p, - p)gD3/,,2 


acceleration of local gravity 


gravitational constant in Newton's law of motion 


H* modified latent heat of vaporization, X (1 + 34rpAT)B, s e e  fig. 1 

h heat-transfer 'coefficient 

I1 nondimensional component of force 

k thermal conductivity 

transition length 
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1 

Nu 

Nu7 

P 

'd 

Pr 

P 

Rd 

RO 

Ra 

Ra' 

Re 

Re* 

r 

S 

T 

AT 

TS 

U* 

+
U 

'r 

'9 


dome s ize  parameter ,  
(P ,  - P k  

Nusselt number 


Nusselt number based on radius of sphere 


modified Nusselt number, eq. (B56), 2 ( K R  -1) 

0 

total p re s su re  


pressure  in vapor dome 


environmental p ressure  


Prandtl number 


dimensionless pressure  


radius of vapor dome 


radius of sphere 


Rayleigh number, GRPr  


modified Rayleigh number, Ra ~ 

A" 
C A T

P 

Reynolds number 

Reynolds number (appendix G), Y*u+P~ 

P 

radial coordinate 

property group defined by eq. (B45) 

temperature 

temperature difference between heater wall and saturation 

sphere temperature 

film temperature, (Fw+ Ts)/2 

saturation temperature of liquid 

dimensionless velocity defined by eq. (B4) 

velocity a t  transition, laminar to turbulent 

radial velocity component 

theta velocity component 
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V dimensionless velocity 

W factor defined by eq. (B36) 

W* nondimensionalizing factor defined by eq. (B37) 

Y* length parameter  

CY matching parameter  

P parameter  defined by eq. (D11) 

Y coefficient of dome size, see  fig. 5 and eq. (B50) 

A dimensionless gap thickness defined by eq. (B25) 

6 gap thickness 

5 dimensionless radial  coordinate, s ee  eq. (B1) 

0 dimensionless temperature defined by eq. (B39) 

e angular coordinate, s ee  fig. 4 

e* angular coordinate a t  vapor dome, see  fig. 4 

K thermal  diffusivity 

A latent heat of vaporization 

A* modified latent heat of vaporization (A + 0. 5CPAT) 

modified latent heat of vaporization (A + 0.4C PAT) 

crit ical  wavelength, 2i7 

EL vis cosity 

V kinematic viscosity, p / p  

P density of vapor 

density of liquid 

0- surface tension 

angular coordinate, s e e  fig. 5 

cp dimensionless function defined by eq. (B29) 

rc/ s t ream function 

Subscripts: 

cond conduction 
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D 

d 

eXP 

fb 


fP 

1 

max 

md 

opt 

r 

t 

8 

1 

2 

diameter 


dome 


experimental 


film boiling 


f l a t  plate 


liquid 


maximum -


most dangerous 


optimum 


radial direction 


total 


0 direction 


film boiling 


film boiling from a flat plate 


Superscripts: 

-	 average value 

derivative with respect  to independent variable 
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APPENDfX B 

METHOD OF SOLUTlON 

In this appendix, the analytical solutions for  the thickness of the thin vapor film and 
the temperatures, velocity, and pressure  profiles within this film are determined. 
These parameters  govern the heat t ransfer  ac ross  the thin vapor film. A flow chart of 
the solution appears  as figure 13, and frequent reference to this figure will prove f ru i t 
ful. 

equations Interface 
I energy . 

Simi lar i ty  Static balance 
t ransforms Pressure d is t r ibut ion force 

balance t 
[Energy e q u a m l  4 

[Nondimensional izat ion I 

[ Area-weighted conduction1 
t 'Modified Nusselt number 

Sing ledome optimization (small sphere) 

Multidome optimization k
llarae sohere) 

I 

Area-weighted mu l t i 
dome f i l m  boi l ing 

Figure 13. - Solut ion flow chart. 

Momentum Equations 

The governing equations (eqs. (9) to (13)) a r e  made nondimensional to generalize the 
solution by selecting the following parameters:  



'r 
v5 = 

' 6
V8 = -

U* 

u* = -V 

RO 


Pp = 
2 

P U +  

gC 

Substituting these parameters  into the momentum equations (eqs. (9) and (10)) gives 

where 

Introducing the s t ream function f o r  spherical coordinates (ref. 12, p. 131) gives 
fo r  the velocity distribution 

v = - 1 
r 

r2 s in  0 ae 
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v =  1 
e r sin e ar 

or, in t e r m s  of the dimensionless velocities, 

Substituting equations (B12) and (B13) into the momentum equations (eqs. (B8) 
and (B7)) and combining to eliminate the pressure t e r m s  gives 

E4(+) = 0 

where 

The similarity transform 

is used to convert equation (B14) into an ordinary differential equation. This type of 
transformation has  been used f o r  solving fo r  flow around a sphere (ref. 17, p. 217). 
Substituting equation (B16) into equation (B14) yields 

This is a linear homogeneous equation of fourth order,  the solution of which is 
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- -  

Therefor e, 

v c =  c2 

The constants in the previous equations must be determined from the boundary con
ditions (eqs. (14) and (15)). In t e r m s  of the dimensionless variables, these boundary 
conditions become 

vc(1  + A , e )  = vA 0324) 

where 

Applying these conditions to  equations (B19) and (B20) allows the four constants to be 
expressed in t e r m s  of one constant of integration. 

c4c = - ( 1  - 3p)
1 2 

c2= 3 c 4 p  

3c4 (1 + p)
c 3 =  -2 
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- - 

where 

The dimensionless gap thickness A is assumed at this time to be an unknown con
stant. However, as is shown later in this appendix, this requires  that the interface 
energy balance be satisfied on an average over the heating surface ra ther  than at every 
point. 

The constant C4 can be found by satisfying the static force balance constraint. 
First, however, the pressure  distribution in the vapor gap must be found. Substituting 
equations (B19) and (B20) into equations (B7) and (B8) and solving for  the pressure  dis
tribution gives 

P ( W  = 2c3 6C4 In < + 12C4 In 
< 

where C3 is related to C4 by equation (B28). 
The constants C4 and 3C a r e  determined from the static pressure  balance in 

appendix C in t e rms  of the parameters  e* and Bo; thus, for  cp = 1, 

GRF(O*, Bo) 
L4 = 

3X26 

F(O*,Bo) = Bo s in  e* (COS e* - 1) 
In cos2 e* sin2 e*-+ 

2 2 

3 
c = p  + -

8 Bo s i n e *  
+-

p1 - p  
- 2C3 + 6C4 In cp - 12C4 In 

where 
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-((p w = 4rr - p ) R : g  

3 2 gC 

Therefore, substituting the constant C4 in C1,C2, and C3, the velocity and p res 
s u r e  distributions are known relations in cp and e*,  with Bo as a parameter,  where 
c p =  I + A .  

Next, the energy equation is considered. Afterwards, the solutions to the energy and 
momentum equations are combined in the interface energy balance to obtain a solution fo r  
the heat-transfer coefficient in t e r m s  of 6*, with Bo as a parameter.  

Energy Equation 

The nondimensional form of the energy equation (eq. 12)becomes 

a 2 aoz(s z)=O 

where 

T - Tw o =  -
T - T w

S 

Equation (B39)can be solved directly and, when the boundary conditions (eqs. (14) 
and (15)) are used, yields 

A (1 -3 
The temperature gradient a t  each surface becomes 
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- c p  _ -
A 

Interface Energy Balance 

The velocity and temperature distributions have been expressed, up to this point, 
in t e r m s  of a n  unknown parameter,  the dimensionless vapor gap thickness A. The 
interface energy balance (eq. (20)) is now used to determine the value of this parameter. 

First, the radial  velocity at the interface must be determined. Substituting the 
values of the constants C1 to C3 into equation (B19) and evaluating the velocity at the 
interface (< = 1 + A) gives 

where C4 is a function of ,9* and the parameter Bo (see eq. (B31)). 
Nondimensionalizing equation (20) resul ts  in the interface energy balance 

v A =  < = l + A  

where 

and h has been replaced by A* (see assumption 9 and eq. (3)). 
Substituting the expression fo r  vA from equation (B43) into equation (B44) along 

with the expression for the gradient (eq. (B42) and solving for A with y 1, gives 
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.The problem has been reduced to one of determining 8*. 
Now the analytical solution for  the total heat t ransfer  through the thin vapor film and 

the single vapor dome is developed. The heat transport through the vapor dome and the 
thin vapor f i l m  (film boiling) will  be  area-weighted, and the maximization principle will 
provide 8* as a function of Bond number for the low-Bond-number case. 

The heat-transfer coefficient and Nusselt number can be constructed from the mo
mentum and energy solutions with 8* as a parameter.  

The heat-transfer coefficient to the sphere is defined as 

-
h(Tw - T S) = -k -

or, in nondimensional form,  

Substituting equation (B41) into equation (B48) gives 

This equation represents  the Nusselt number for  heat conduction in the thin vapor layer 
beneath the sphere (0 < e*) .  

Approximation for  Heat Conduction Through Upper Sphere 

The vapor dome may be roughly approximated by concentric spheres  of radius Ro 
and (R

0 
+ y R

0 
cp sin e* ) ,  as shown in figure 5. The approximation for  a, shown by the 

dashed line in figure 5, is 

where y is a constant to be discussed in detail in appendix E. Substituting equation (B50) 
into the right side of equation (B49) gives 
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= 1 +  RO 

cond yRoq s in  6* 

The average Nusselt number fo r  the sphere follows as the linear sum of the area-weighted 
film -boiling and conduction Nusselt numbers. 
" 

0 

- A(6 5 6*) A(8 > 6*) 
NuR0 = P o At ['N'R 

J c o n d  At 1cond 

The fraction of the surface area in film boiling for  a given 6* can be  found directly by 
integration: 

2 
J2"J 

The conduction area then is, of course, 

When equations (B49), (B51), and (B53) a r e  substituted into equation (B52), the average 
Nusselt number becomes 

Rearranging yields 

Nu'= 2(= - 1) = 1 - COS e* + (1+ COS e*)csc e* 0356) 
RO A (PY 

Substituting the value of A f rom equation (B46) and assuming cp M 1 yields the following 
form of equation (B56): 
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NU' = 1 - cos e* [ .-2Ra' F(B*,Bo)] 1'4 + (1+ cos .O*)y-l c s c  e* 
4 

This expression is a function of e* and Bo. As Bo is dependent on the type of evapora
tive fluid and geometry, in any given experiment, the unknowns are reduced to 8" alone. 

To determine e*, we apply the optimization cri terion to Nu'. For the case of a 
fixed geometry and constant properties, this cri terion may be written as 

De* NU' = 0 

D:.+ Nu' < 0 

Differentiating Nu' and equating to zero gives the differential equation 

Note that the last  t e rm in equation (B59) may be rewritten by using equation (B46) as 

A 

(1 - COS e*)2Y 


However, we have assumed A to be small, so equation (B59) reduces to 

De, In (-F(e*,Bo)l + 4 s in  e* ~ 

1 - COS e* 

where e* is not equal to or  greater  than TT. Rather than complete the above differentia
tion, equation (B61) can be  integrated directly to give 

F( l  - COS e*) 4 = CO 

which gives a value f o r  8" that maximizes the Nusselt number according to equa
tion (B58). Here Co is a constant of integration which represents  the locus of boundary 
conditions determined by the interrelation of e* and Bo. 

Substituting equation (B62) back into equation (B57) gives 
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The optimum (or maximum) Nusselt number now depends on Co, e*,  and Ra'. The 
maximum values of Co can be determined by'/solving equation (B62) and plotting Co as 

0 
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0 
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Angular  coordinate, 6, deg 

Bond number, 

(pz -
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BOD _ _  
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10-1 
100 
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102 
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l o 4  

Locus of maximums 

Figure 14. - Families of solut ions to FI1 - cos = Co for various bond 
numbers and angular  coordinate El:% values. 

a function of e* fo r  various Bond numbers Bo at a given Rat.  This is illustrated in 
figure 14, with the dashed line denoting the locus of Co maximums for  various Bond 
numbers a t  some Ra7. The optimum integration constant Co

opt 
and e* values for  

various Bond numbers a r e  given in figure 6. The locus of Co 
opt 

is labeled G(Bo) and 
is required in the solution of Nu'. 

Co
opt 

= G(Bo) 

Based on these results,  the average Nusselt number for the single-dome case becomes 

Nu' = -1 [-2Ra'G(Bo) ]1/4 + F1(Bo)
4 

where G(Bo) and F1(Bo) = (1+ cos e*) y-l csc e* are determined f rom figure 6 for  a 
given Bo. The effect of y is discussed in appendix E. 
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APPENDIX C 

STATIC PRESSURE BALANCE 

The pressure distribution within the vapor gap is obtained directly f rom the solu
tion to the momentum equations and is repeated he re  fo r  convenience. 

2c3P(5, e )  = -- 6C4 In 5 + 12C4 In 
r 

where 

3c4 (1+ cp)
c 3 =  -2 

and 3C and C4 are, as of this point, undetermined constants. In this appendix these 
constants are determined, using the boundary condition (eq. (17)) and the force balance 
(eq. (19)), with e* and cp as parameters. Figure 15 i l lustrates the contributing p res 
s u r e  terms. 

Figure 15. - Schematic of pressure forces acting on sphere. 
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+-(Po+ 

The pressure in the vapor dome at the exit surface e* is, in dimensional terms,  

20P
d -

- P  +-+-RdPg
o 

Rd gc 

where 

The dome pressure Pd represents the sum of the static p re s su re  Po, the surface-
tension pressure difference (2a/R0), and the vapor head. Therefore, the constant 3C 
in equation (B30)may be  evaluated as follows: 

o r  

3c =  (P o +  2u +-PRRocp + 6C4 In cp - 12C4 In 
Rocp s i n e *  gc 2 c p  

And substituting equation (C4) into equation (B30)yields 

gC 20 + E Rcp 
pu*2 Rocp s i n e *  gc 0 

As one of the constraints, the average pressures  a c r o s s  the interface must be bal
anced. Therefore, to evaluate equation (19), we need to establish P, the average pres
s u r e  exerted by the liquid upon the interface. The pressure at any point (<,e)  becomes 
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P = P  +-'zRdg + (Ro + - L (cos e - cos e*) + -2 0  
0 gC g C  

Ro + 6 

Total pressure  P represents  the static head Po, the liquid head to the base of the 
vapor dome p R g/gc, the difference in liquid and vapor head to any point below (p, e*) ,

1 d  
and the pressure  drop due to surface tension, which must be balanced by the pressure  
within the vapor gap. Thus, equation (C6) can be integrated over the sphere to obtain 

- fPdA 
'= f d A  

. .le*(Ro + 6)2 sin 9 dB 

(C8) 
For  a constant gap thickness and a fixed fluid, equation (C7) becomes 

Integrating the pressure  (eq. (C5)) over the sphere gives 

I1 = 2 n q 2  {x4f. e* 
2 e *  1(,os 2 T )  - cos 	 - +  1 

2 
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But by equation (19) 

cp 2 s in  0 de d% = I1 

JA gc  

Substituting equations (C9) and (C11) into equation (C12) and integrating gives 

2 e* COS e* - 1 (1 - sin e*)1 
g C  

Introducing the Bond number Bo 

2 
BO= 

( P ,  - PkR, 

the weight of the displaced fluid (sphere alone) 

into equation (C13) and solving for  C4 yields 
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2 GRF(O*, Boqo2) 
c4= 32nw* 

F ( B O ~,e*) = 
3X26 

Thus, C4 remains a function of Bo, e*, and the gap thickness q = 1+ A to be determined 
by other conditions. 
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APPENDIX D 

LARGE- S PHERE MODlFlCAT10 N 

In this appendix, the large-Bond-number (large sphere) case is considered. The 
single dome is replaced by a multiple-dome region, and the basic assumptions are de
lineated. Then, the overall heat transfer through the thin film and the multiple-dome 
region is determined. The two regions are area-weighted, and the maximization princi
ple is applied to  give e* as a function of Bond number and a matching parameter. An 
equation for  heat transfer f rom large-Bond-number spheres  is presented in the form 

A2 
1hlarge 

-
-

h -A1 + a hfP  -
At At 

Film boiling Film boiling from upward-
= (transport ac ross  + facing flat  plate (transport 

thin vapor film, through multiple -dome 
part  1) reg ion) 

where cy is a n  eigenvalue o r  matching parameter. 
Film boiling from a large sphe re , i s  modeled in figure 7.  In solving the large-sphere 

regime for the optimum heat-transfer coefficient (or, equivalently, for  the Nusselt num 
ber),  the following assumptions are made: 

(1) Flow from the lower stagnation region to the multiple-dome region is described 
as in the single-dome regime. The solutions of the momentum and energy equations are 
assumed to be valid to the point of optimization of the heat-transfer coefficient which 
determines e* = O*(Bo). 

(2) The conduction region of the single-dome model is replaced by a multiple-dome 
film -boiling regime. The heat-transfer coefficient in this region is proportional to that 
f o r  a flat plate facing upward; the determination of the constant of proportionality in 
optimizing the heat-transfer coefficient leads to an eigenvalue problem. 

(3) The heat transfer may be expressed as a area-weighted sum of the heat transfer 
in the lower film-boiling region ( 0  < e* in fig. 7) and film boiling off the upper portion 
of the sphere ( e  > e* as described in assumptions (1)and (4)): 

Nu' - NU,, -+ A2A1 N U ~
2 At *t 

47 




-- 

where the Nusselt number f o r  boiling off the lower portion of the sphere is 

NU' = NU - 2 

with 

NU = -cp 
' A 

and 

A1 - 1 - cos ff* 
At 2 

For the top of the sphere, 

and 

and cy represents a n  eigenvalue o r  matching parameter,  to be determined in matching 
the small- and large-sphere regions, as (Re*/X,)-l. Note, a factor of 1/2 was intro
duced in the left side of equation (D2) so that the Nusselt number would be  based on 
diameter (see eqs. (B55) and (B56)). 

(4) The ratio of vapor gap thickness to sphere radius A is assumed to be sufficiently 
small  that cp = 1+ A = 1. At this point, it is helpful to consult figure 13 to determine 
the cause of subsequent events. Equation (D2) may be rewritten as 

Q 
A 
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The dimensionless gap thickness A may be written as (see eq. (B46)) 

1= (2)1/4 = E W F ( ~ * ~ B O ) ] ' / ~  (Rat G ) ~ / ~= 1 [23(8*, J 3 0 j I l ~ ~  

A 2s  2xsx32nw* 3 6 

Substituting equation (D9)into equation (D8) and factoring out (Ra' 6)1/4 gives 

where the modified matching parameter p is defined as 

p = 4 (y4a, 

7r 1/4 

Equation (D10) will now be  optimized with respect to 0* to give the optimum large-
sphere heat-transfer coefficient (equivalently Nusselt number). Differentiating equa
tion (D10) with respect to e* yields the characterist ic differential equation: 

D,, In(-F(e*, BO)/ + 4 s in  e* 
1 - COS e* 

(D12) 

In appendix E, the matching parameter is shown to be 

- N  - 0.21 
7r 1/4 

Applying equations (E4) and (D11) to equation (D10) gives an equation applicable to the 
large -Bond-number case (large sphere) 
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APPENDIX E 

COMBINED SOLUTION 

In appendix B, a n  analytical solution for  film boiling f rom spheres was found fo r  the 
low -Bond-number case. In essence it represents a n  asymptotic case applicable only 
where the single vapor dome forms over par t  of the sphere. In appendix D, a semi-
analytic solution f o r  film boiling f rom spheres was  determined to within a constant f o r  
the large-Bond-number case. 

Small-bond -numb er case: 

Large -bond-number case: 

1 -2G(Bo) 

= 1 ~ J + 

(1 + cos e*) 

where a is a parameter to be determined. 
To determine a Nusselt number applicable to both the large- and small-sphere re

gimes (large and small  Bo), a must be determined such that the solutions match in the 
transition regime (film supplement and appendix G). Now the matching parameter a is 
determined by requiring the large- and small-Bond-number solutions to match at ROB*/ 
x = 1. Superimposing the small-sphere solution f o r  8" as a function of Bo (fig. 7) 
onto figure 16 indicates that the two solutions a r e  compatible; that is, 

Roe * 
-_ - 1  

when the modified matching parameter 	 p becomes 

p = 0.93 

and from equation (D11) 

(,)(;)1/4 = 0.21L= 
IT 1/4 
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1% - Parameter defined 
byeq. (Dll), 

140 

130 

\J 

Bond number, BoD/4 

Figure 16. - Large-sphere optimization solution. Locus of angular coordinate 8;’ as function of Bond number for several eigenvalues. 



A single equation fo r  film boiling off spheres  is obtained by forming a linear combi
nation of the large- and small-Bond-number cases  (large and small  spheres). Linearly 
combining equations (B65) and (E l )  and substituting equation (E4) for  c ~ / a l / ~gives a n  
equation applicable to both large and sma l l  Bond numbers 

where G(Bo) and 8* = O*(Bo) are determined as functions of Bo from figure 8 .  
In order  to compare the resul ts  of this analysis to that of the cylinder and experi

mental data, i t  is most expedient to convert equation (E5), in part, to Bond number 
based on diameter ra ther  than on radius. 

BO = 
4 

Substituting equation (E6) into equation (E5), except f o r  the function G(Bo), resul ts  in 

The expressions fo r  the Nusselt numbers require the evaluation of the constant y 

for  both the small  and large spheres  (eq. (B65)) and implicitly for  the large sphere (see 
fig. 7 fo r  single-dome equivalent and fig. 5 for  a>. The parameter y ,  in effect, de
termines the average thickness of the vapor dome through which heat is transferred by 
conduction. This parameter ( ~ - ~ / 4 l ' ~ )which appears in equation (E7) was assumed to 
be 1, in agreement with the very large single vapor domes shown in figure 3. With this 
assumption, equations (B65), (E5), and (E7) become equations (24), (32), and (33), re
spectively. 
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APPENDIX F 

SLIP CASE 

When fluid motion at the interface is present, the problem becomes quite complex; 
however, when the problem is limited to the single-dome model with slip at the inter
face, a tractable model results. The boundary conditions are modified as follows: 

ave(vy 0) 

a c  

ve( l , e )  = 0 

v c( 1 , e )  = 0 

As the solution of the governing equations is the same, only the values of the constants, 
C1, C2, C3, and C4 change. Substituting equation ( F l )  into equation (B18) and solving 
f o r  the constants in t e rms  of C4 yields 

c4 - 3 q )C 1 = - ( l  2 
2 

c 2 =3 q2c4 

c3= 	
3 C4( l  + q 2)
2 

Using these constants to solve fo r  the interface velocity gives 

c4A 3  
(3v + 1) 

This, of course, alters the magnitude of the interface energy balance over that p re 
viously determined for  the nonslip case. Using equations (F5) and (B44), the interface 
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energy balance f o r  the s l ip  case is 



- - - 

I 	 I I II I  II. III I I I11111 1 1 1 1 1 1 1 1 1 1 1 1 1111- 111 I, .I ..1..1.. I. ..I----. ...- 7 

VA = s - S 

P A  

= r$)(,+ 1) 

Solving equations (F6) and (F7) for A 

A4 = -6;: 1) (e) 
For  the situation where cp is approximately 1, 

A4 
1--

S 

2c4 

where C4 is identical with the previous definition of C4 (eq. (B31)). A comparison of 
equations (F9) and (B46) lead to a Nusselt number ratio f o r  the sl ip and nonslip cases: 

Nunonslip \ *slip ) 

Therefore, the slip condition (eq. (B65)) may be  written as 

] 1'4 + F1(Bo) 
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APPENDIX G 

SURFACE WAVES 

Hsu (ref. 18) studied film boiling off a vertical flat plate. In order  to predict local 
heat-transfer data, a transition length Lo had to  be determined. Hsu assumed that the 
transition from laminar to turbulent flow occurred at a characteristic Reynolds number 
of Re* = 100. Knowing Re*, the transition length Lo may be  calculated as 

where 

1/4 

y* = [ 2p2Re*- P)1 
The variation of Lo with temperature difference is illustrated in figure 17 for two fluids, 
water and nitrogen. While both fluids may possess  minimums, that of nitrogen is quite 
pronounced near 200 K. This a l so  suggests that the surface becomes more stable near 

30 

Fluid 
Water 
Nitrogen 

.u 

1000 800 600 400 200 0 

Temperature difference, Tw - T,, K 
Figure 17. - Cr i t i ca l  height for t rans i t ion to tu rbu len t  flow. 

Theory f rom reference 3; pressure, 1 atmosphere. 
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Wave amplitude growth uIIuû -v. 

and bubble domes in Liquid n i t r o g e n E  
t u r b u l e n t  region -, 

I 
---

(a) On surface of vertical f lat plate. 

- 
_y__ _____ Vapor domes-, -Heater element 

v --I 
rr__ 
vIII -
Iuy-_^N- 
__x_ - Surface capi l lary waves = 

(b) On surface of cylinder. 

(C) On surface of sphere. 

Figure 18. - I l lus t ra t ion  of flow profiles. 

the Leidenfrost temperature, an observation verified by experiment. Flow on a vertical 
plate is illustrated in figure 18(a). Note the capillary waves in the laminar region which 
ro l l  off the bottom of the plate. These waves are most easily demonstrated by the film 
supplement (available on request). 

Some more recent observations of thin fi lms (ref. 19) indicate the existence of 
several  regimes - laminar, pseudolaminar, transition, pseudoturbulent, and turbulent. 
F rom these observations, i t  is evident that Re* = 300 could represent an upper bound 
to the transition regime or  an increase in Lo by 34/3 . 

Thus, f o r  film boiling of nitrogen off a vertical flat plate a t  a temperature difference 
of 480 K, Lo would fall in the range 1. 02 5 Lo 5 4 . 4  cm (see fig. 17). Within this 
length and for  some distance beyond, the surface capillary waves and disturbances will 
not strongly affect the heat transfer (i.e. , i t  remains laminar in nature). 

Analogous resul ts  are found in film boiling off cylinders, as seen in figure 18(b) and 
the fi lm supplement. In this case, the heat transfer is predicted in reference 5 with a 
laminar analysis and by optimizing the heat transfer with respect to a critical wavelength. 
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!-Transition 

pseudolaminar 

(a) Sphere diameter, 3/8 i n c h  (0.95 cm). 

92’ 

pseudolaminar 

(b) Sphere diameter, 1/2 i n c h  (1.27 cm). 

Figure 19. -Laminar,  pseudolaminar, and 
t rans i t ion  regimes for spheres submerged 
in nitrogen. 

Even though the surface appears to be quite turbulent (fig. 2), the heat transport is gov
erned by the laminar equations and the Bond number. 

The sphere is no exception. Capillary waves travel over the surface (see fig. 18(c) 
and the film supplement). At large Bond numbers, the surface appears to be quite turbu
lent (fig. 3) .  Pursuing the concept that ROO and Lo are directly related, we can pos
tulate the laminar, pseudolaminar, and transition regimes f o r  spheres submerged in 
nitrogen (fig. 19). 

A comparison of figure 19 and figure 3 indicates some capillary wave activity in the 
pseudolaminar region, but the waves do not appear to grow. In the transition regimes, 
however, these waves appear to be growing, and vapor is sometimes sheared off , which 
forms bubbles. 

It is to be concluded that while a process may appear turbulent, the governing charac
ter of the heat transport may s t i l l  be laminar. 
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APPENDfX H 

MOTION-PICTURE SUPPLEMENT - A DESCRIPTION 

The motion-picture supplement ,resents visual observations on film boiling of liquid 
,nitrogen from three different geometries: the flat  plate, oriented in the horizontal and 
vertical positions, a series of horizontal cylinders of different diameters,  and a series of 
spheres of various diameters. The diameters of the cylinders and the spheres are 
similar to permit comparison of the boiling phenomenon f rom large and small  diameters. 
The interaction of diameter and interface stability, Bond number, is discussed and il
lustrated. By changing the s ize  of the cylinder and the sphere,  the viewer can visualize 
the effects of Bond number, see also figure 3. For a more complete discussion of the 
stability effects, see appendix G. 

Effect of Surface Disturbances 

F o r  each of these geometries, the relation between sma l l  disturbances and a critical 
wavelength is discussed to determine if the disturbances grow o r  decay (fig. 20). A s ta 
bility map which summarizes  some essential resul ts  of hydrodynamic stability theory is 
presented as figure 21. If the disturbance wavelength is less than the cri t ical  wavelength, 
the disturbance will decay; however, if the disturbance wavelength is greater  than the 
critical wavelength, i t  will grow, and an unstable interface results. The wavelength 
f o r  maximum -growth is predicted and labeled the most dangerous wavelength Xm d; how
ever,  experimental data tend to fall to the right of Xmd, as seen on figure 21. 

Stable region I Unstable region 
(surface tension ’I (body forces dominate, h > h,)
dominates, h<AJ 

I 

hexp 
(experimental 
measurements) 

Figure 20. - Surface disturbances related to c r i t i ca l  
wavelength h,: h < h,, disturbance i s  damped; 

h >  h,, disturbance grows; where hc= 

Cell  wavelength, h 

Figure 21. - Stability map. 
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Figure 22. - Gaussian curva ture  
of typical surface element. 

Vert ical  Flat Plate 

A surface with no curvature (fig. 22), where R1 - 00 and R2 - 03, is placed in liquid 
nitrogen, and the ensuing flow phenomena a r e  photographed. A thin vapor layer quickly 
forms  over the surface and begins to grow. At the first transition point, some instabi
lities are noted, while at the second transition point, Hsu (ref. 18) notes a significant 
change in heat-transfer coefficient. This signifies a change to turbulent heat transfer. 
The observation is quite important because even though the interface is unstable, the 
heat transport can sti l l  be governed by the laminar equations; however, the significant 
shift in the coefficient at the second transition is irrevocable evidence of a change in 
me chanis m  . 

Unfortunately, the plate was not instrumented and only the observations of film 
boiling are available. 

Horizontal FIat PIate 

While this surface has no curvature, i t s  orientation with respect to the gravity vec
tor changes, which affects the interface geometry. In this case, the interface may be  con
sidered to be composed of many vapor domes, as depicted in figure 23. The heat vapor
izes  the liquid at the interface, and it flows into the vapor domes. These vapor domes, in 
reality, grow and are released into the fluid reservoir.  This action is seen in the motion 
picture. The multiple domes reach a n  optimum spacing according to the critical wave
length for the fluid (ref. 13). A periodicity of the vapor domes can be  seen in the film. 

Figure 23. -Model of f i lm boi l ing from 
hor izontal  surface. 
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Horizontal  Cyl inder 

Here R1 is finite, however R2 - 03. This represents  a significant change in geo
metry. A secondary geometric change is invoked as R1 -c Xc/2; in this regime the 
basic  flow about the cylinder is altered. 

Small cylinder. - When R1<< Xc/2,  the vapor flows parallel to the axis of the 
cylinder and escapes in a regular periodic manner through vapor domes, as seen in 
figure 24(a). 

Wavelength, h, 7A !,-Vapor domes 

Vapor flow pat= 

2RO 


(a) Small. 

Wavelength, A, 

A 

(b) Large. 

Figure 24. -Vapor  flow patterns for large and  


small heating cylinders. 

Large cylinder. - When R 1 > hc/2, the vapor flows around the cylinder and escapes 
in a chaotic manner near the upper portion of the cylinder (see fig. 24(b)). 

As  shown in the main text, the t e r m s  large and smal l  a r e  relative to a given fluid; 
i t  is the Bond number that determines the regime. 

To illustrate the changes in vapor patterns, several  different size cylinders were 
placed in liquid nitrogen and photographed. 

Sphere 

For this geometry, R 1 = R2. This represents  another significant change in geometry. 
It is apparent f rom the motion picture and the models presented in this report  that there  
exist large and small  sphere regimes analogous to that found for  the cylinder. Again, 
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large and small  are relative terms,  and it is the Bond number which determines the 
regime. 

Small spheres. - This regime is characterized by a single vapor dome, R1 << Xc/2, 
forming and departing in a periodic manner. The phenomenon is modeled in figure 5. 
The motion picture indicates some surface capillary waves even fo r  the single-dome 
cases,  which, for the larger  spheres, grow and lead to the multiple-dome regime. 

Large spheres.  - Many vapor domes appear on the upper portion of the sphere, and 
the periodicity is dubious (R1> Xc/2); however, the model (fig. 7) assumes some regu
lari ty to form a tractable problem. This was also done fo r  the large cylinder. 

To illustrate how the flow patterns change, several  different-size spheres were 
placed in liquid nitrogen and photographed. No heat-transfer data were taken. 

In the closing sequence of the f i l m ,  the flow patterns encompassing the "large" 
sphere and cylinder are compared; at the same time, the patterns about the ''small1' 
sphere and cylinders are compared. Cross  comparisons and comparisons between the 
geometries can also be  made. 
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