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DESIGN OF AN ELECTRONICALLY SCANNED STAR SENSOR 

WITH DIGITAL OUTPUT 

By Aaron J. Ostroff  and K. C. Romanczyk 
Langley Research  Center 

SUMMARY 

A technique  for  detecting  the  change  in  position of a s t a r  on  the  focal  plane of a 
telescope is described. In this  technique  an  image  dissector is used  to  scan  the  focal 
plane  and  to  generate  position  information.  Both  theoretical  and  experimental  data are 
presented. 

The  theoretical  analysis  contains  information on signal-to-noise  ratio  and  relation- 
ships  between  star  magnitude,  system  stability,  and  sweep  frequency.  Statistical  methods 
are included  for  determining  the  standard  deviation  for  detecting  any  signal  pulse,  and  for 
calculating  the  error  involved  for  one  or  for  several  measuring  periods. 

The  experimental  data  contain  information  on  the  variation of system  stability with 
s t a r  magnitude as functions of sweep  frequency,  threshold  level,  and  averaged  data.  All 
testing is for a simulated  3-meter-diameter  telescope  operating at f/100. Results  show 
that  for a triangular  sweep  frequency of 100 hertz  and a s t a r  magnitude of +lo, the  system 
is stable  to  within *26.4 nanoradians.  This  represents a system  signal-to-noise  ratio of 
370. Other  results  indicate  that  the  system is linear  within rt0.6 percent of best  straight 
line  over a total  field of view of rt9.76 milliradians. 

INTRODUCTION 

The NASA is currently  investigating  the  feasibility of operating a large  orbiting 
astronomical  telescope.  This  class of telescope will require  the  use of s t a r s  within  the 
main  optics  field of view  for  guidance. A recently  completed  study  (ref. 1) of a 3-meter- 
diameter  (120-inch),  diffraction-limited  telescope  concluded  that a fine-pointing  control 
system  will  be  needed  to  stabilize  the  telescope  within *48.5 nanoradians (kO.01 a r c   s ec ) .  
The  system would also  be  required  to  guide on s t a r s  of +10 magnitude or  fainter.  

As a resul t  of this  study,  the  question  arose as to  the  type of transducer  and  mea- 
suring  technique  that  might  be  used.  Most  available  sensors  work  on  some  variation of 
the  principle of physically  dividing  the  focal  plane  in  the  vicinity of a star  image  into 
quadrants. When the  s tar   image is exactly  centered  in  this  region, all quadrants will 



have  equal  intensities. Any angular  motion of the  optical  system  will  result  in  unequal 
intensities which provides  the  basis  for a highly  sensitive  analog  nulling  device. An 
obvious  penalty is a very  small   l inear  range. A technique  was  desired  that is basically 
digital  for ease of processing, is capable of measuring  errors   rapidly,   has  a wide  field 
of view which is easily  adjustable,  and is linear  over  the  complete  range.  Furthermore, 
the  measuring  technique  should  be  simple. 

In  order  to  meet  these  requirements, a scanning  technique  using  an  image  dissector 
tube as the  transducer  has  been  investigated.  Results of the  various  experiments are 
discussed  and  include  several  graphs  showing  system  accuracy as a function of star  mag- 
nitude,  scanning  frequency,  number of measurements  averaged,  and  signal-pulse  detec- 
tion  level. 

A 

Al 

AP 

AS 

At 

E 

E r  

e 

F 

Fr 

HAOF 

Hss 

2 

Linearity  and  range  are  also  included. 

SYMBOLS 

image area seen by transducer,  normalized to  unity 

area of lens 

area of pr imary 

area obscured by secondary 

usable area of telescope Ap 

system-stabil i ty  error 

( -As) 

ratio of system-stabi l i ty   error   for  any two s t a r s  

electron  charge 1.6 X coulomb) 

incoming  light  intensity 

( 

ratio of light  intensity  for  any two s t a r s  

absolute  spectral  irradiance  from  zero-magnitude AOV s t a r   a t  10 700' K 
without  atmospheric  filtering  effects 

absolute  spectral  irradiance of star  simulator  at  objective of transducer 
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s ignal   current ,   amperes  

number of samples 

statistical  value  due to electron  multiplication 

s t a r  magnitude as seen by  transducer when star simulator is at a specified 
distance 

magnitude of star number 1 

magnitude of star number 2 

digital  output  number 

sample  number 

number of counting  periods 

number of signal  pulse  in  measurement  (also  used as subscript) 

scale  factor 

resistance of load 

relative  spectral   response of transducer 

signal-to-noise  ratio 

time  required  for  image  to  move  from  just  outside of slit to  completely  within 
s l i t  

any  time  between  zero  and T, 

arithmetic  average  time 

time  from  center of signal  pulse  to  leading  edge at detection  time (fig. 5) 

time  for  measured  signal-pulse  center 
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' time  for  any  sample  number 

t ime  from  center of signal  pulse to trailing  edge at detection  time (fig. 5) 

time  between first two pulses  in  train 

time  between  second two pulses  in  train 

difference  between  measured  signal-pulse  center  and  actual  signal-pulse 
center 

noise  bandwidth,  hertz 

incremental  star magnitude 

deviation  from  arithmetic  average  tn - ( 9 
deviation  from  arithmetic  average  for  leading-edge  time 

deviation  from  arithmetic  average for trailing-edge  time 

wavelength of light,  micrometer 

current  amplification 

correlation  coefficient 

standard  deviation 

standard  deviation  from a number of samples  

PRINCIPLES OF OPERATION 

Description of Star  Sensor 

This  section  contains a description of the  transducer  operating  principles  and  the 
measuring  techniques  used  to  measure  star  position. 

The  transducer is an  image  dissector,  which is a specialized  photomultiplier  tube. 
(See  fig. 1.) The  photocathode  emits  electrons at a rate  proportional  to  the  incident  light 
intensity.  The  electrons are accelerated  through a drift  tube  and are focused  onto a plane 
containing  the  defining  aperture.  The  electron  image of a star can be moved across  the 
aperture  by passing  an electrical signal  through  the  magnetic  deflection  coil. Although 
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the star image  physically  remains  in  one  spot  on  the face of the  tube,  an  electrical  sweep 
signal creates the  impression  that  the  image is in  constant  motion by oscillating  the  elec- 
tron.image of the  star.  The  path of the  electron  image is defined by the  sweep  signal. 
When the  electrons  pass  through  the  aperture, a slit in  this case,  they  impinge  on a series 
of dynodes  causing  electron  multiplication.  The  resulting  signal  pulse is measured 
across  the  anode  load  resistor  and  the  amplitude is proportional  to  the  incident  light 
intensity. 

Measuring  Technique 

The basic principle of the  measuring  technique  can  be  seen  from  figure 2. A tri- 
angular  sweep  signal is shown  in  the  upper half of this  figure  with  the  dotted  horizontal 
line  indicating  the  position of the slit relative  to  the  electron  image.  The  idealized elec- 
trical  pulses  in  the  lower half of the  figure  occur when the  image  crosses  the slit. The 
time  interval  between  successive  pulses is measured.  The  difference  in  the two times 
(tl  and tz) is proportional  to  the  distance  between  the  projection of the  s tar   image at 
the  anode  and  the  slit.  The  slit is a perforation  in  the  anode.  The  sign of the  resulting 
number  indicates  direction. 

The  pulse  train is processed as shown  in  figure 3. The  signal  pulses  are  f irst  
amplified  and  then  filtered.  The  principal  effect of this  f i l ter  is to  lower  the  noise  band- 
width Af of the  system.  The  leading  and  trailing  edges of the  resulting  pulses are then 
detected by a Schmitt  trigger,  producing a squared  pulse. Both edges  are  detected  since 
this  tends  to  subtract  out  errors  due  to  noise.  There is a sufficiently  high  correlation 
between  the  leading-  and  trailing-edge  detection  times  such  that  the  location of the  signal- 
pulse  center  tends  to  be  unaffected by the  filtered  noise.  Therefore,  the  center of the 
squared  logic  pulse is assumed to be  the  center of the  star  image.  A  theoretical  discus- 
sion of this is presented  in  the  next  section. 

The  output of the  Schmitt  trigger,  in  conjunction  with  the  sweep  frequency  signal, 
controls  logic  gates which determine  the  direction of an up-down  counter.  These  gates 
also  provide a passage  for  the  clock  pulses going to  the  counter.  The up-down counter 
operates  in  the  up  mode  during  time t l  and  in  the down mode  during  time  t2. At  the 
end of the  complete  counting  period,  the  resulting digital number  (ti - t2) is shifted  to  the 
output register  for  either  display o r  recording  purposes, o r  both. 

THEORETICAL DISCUSSION 

Signal-to-Noise  Ratio 

Since  the  basic  noise  mechanism is the  same  in  a photomultiplier  and  an  image 
dissector  tube,  the  signal-to-noise  ratio is calculated  in  the  same  manner.  (See ref. 2..) 
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The  noise  in  the  signal is the only source  being  considered;  other  sources are negligible. 
The  signal-to-noise  ratio S/N is given by the  following  relation: 

S Ia 
,e 

N 
- 

(2epIa Af k) 1/2 

where I, is the  signal  current, e is the  electron  charge, p is the  current  amplifi- 
cation, Af is the  noise  bandwidth,  and  k is a statistical  value  due  to  electron 
multiplication. 

Since  time  between  signal  pulses is being  measured,  the  amplitude  variations  in  the 
pulse  determined by  equation (1) must  be  converted  to  time  variations.  In  order  to  make 
this  conversion,  the  shape of the  signal  pulse  must  be known. 

A circular  star  image  has  been  used  for all calculations  and  experiments  in  this 
report.  The  normalized  pulse  shape A for a circular   image  crossing a slit  can  be  cal- 
culated  from  the  following  equation,  since  the  signal  current I, is proportional  to  the 
area of the  image  that is seen by the  transducer: 

This  equation is good for  one  edge of the  signal  pulse,  the  other  edge  being  symmetrical. 
The  equation  will  hold i f  the  image  diameter is equal  to  the  slit width. The  time t is 
any  time  between 0 and  Ts,  and  Ts  represents  the  time  for  the  image  to  move  from 
just  outside of the  slit  to  completely  within  the  slit. 

In  figure 4, a nominal  signal  pulse  and  the  predicted  noise  envelope (10) have  been 
calculated by using  equations (1) and (2). A nominal  pulse is defined  to  be  noise free. 
These  calculations  were  made  for a +11.5-magnitude star  and a triangular  sweep  fre- 
quency of 50 h e r t z   t l  + t2 = 0.02 sec). The  middle  curve is the  nominal  signal  pulse 
normalized  to a scale  of 1. The  sl i t  width was  selected to be  the  same  size as the  diam- 
eter of the  star  image,  for  maximum  electrical  signal.  Therefore,  an  amplitude of 1 
indicates  that  the  image is completely  within  the  slit of the  transducer.  However, 
because of the  noise,  the  signal  will  vary  from  nominal.  The  upper  and  lower  curves 
represent  the  calculated  root-mean-square  noise  envelope  for  the  11.5-magnitude star. 
Notice  that  the  largest  amplitude  variation is at  the  peak of the  signal  pulse  where  the 
signal-to-noise  ratio is maximum.  The  signal-to-noise  ratio  decreases at the  lower 
levels of the  pulse.  However,  the  actual  noise  amplitude  has also decreased,  since  the 
nominal  signal  amplitude is getting  smaller. It can  be  seen  from  the  curve  that   the 

( 
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actual  time  variation  for  any  pulse is less at the  lower  threshold  levels of the  Schmitt 
trigger. 

System-Stability  Error 

Statistical  techniques  can be used  to  determine the system-stability  error.  This 
technique is demonstrated by use  of figure 5, which  contains a nominal  signal  pulse, a 
typical  signal  pulse  containing  noise,  and a logic  pulse  from  the  Schmitt  trigger.  These 
signals are referenced  to  an  orthogonal  coordinate  system,  the axes being  amplitude  and 
time. 

The  center of the  nominal  signal  pulse,  which is also  the  center of the star image, 
is located  on  the  vertical axis. By definition,  the  center of the star image  will  have a 
value of zero  time.  The  basic  assumption  used is that  the  measured  signal-pulse  center 
tmc is always  halfway  between the leading-edge  and  trailing-edge  detection  times. 
Without  noise  the  measured  and  actual  signal-pulse  centers will be  identical.  However, 
because of the  noise  described  previously,  there is a difference  between  the two. The 
e r r o r  is defined as t, and  can  be  calculated by 

where  n  represents  the  sample  number  and K 

The  deviation  from the arithmetic  average 

is the  number of samples. 

6tn can  be found by 

- 
t 
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and  the  arithmetic  average  time t is 

As mentioned  previously,  there is a high correlation  between  the  leading-  and 
trailing-edge  detection  times.  The  actual  correlation  coefficient  p  can  be found  by 

K 

The  standard  deviation  for  the  time  error  in  the  measured  signal-pulse  center at, 
is calculated  for  the  definition of  t, given  in  equation (3), as follows: 

Equations (4) to (8) can  be found in   reference 3. 

It can  be  seen  that i f  the  correlation  coefficient is unity  (perfect  correlation),  the 
standard  deviation will reduce  to 

at - -(Jtt 1 - utz) 
€ - 2  

since 

Therefore, if  the  standard  deviation for  both the  leading  and  trailing  signal  edges are 
equal  and  remain  equal  for  any  threshold  level,  the  detected  pulse  center will have  zero 
variation  for p = 1. 

Data-Averaging  Effects 

The  next  step is to  calculate  the  total  system-stability  error E for a complete 
cycle.  Refer  to  the  pulse  train  in  figure  2  and  let t, , tE2,  and t, represent   the  error  

1 3 
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between  the  measured  and  actual  signal-pulse  centers  for  the first, second,  and  third 
pulses,  respectively. 

There are two basic  measurements - one  for  the  up  count  and  one  for  the down 
count: 

Up count = t l  f tEl * tE2 

Down count = t2 f t f tE3 
'2 

Both measurements are dependent  upon t If this e r r o r  is in a direction  to  increase 
t l ,  then  t2  will  be  smaller by the  same  amount.  Therefore,  t  will be weighted  twice 
in  the  final  system  computation. 

€2' 
€2 

The  output  number N can  be  computed as follows: 

The  system-stability  error E can  be  calculated by the  same  method as equa- 
tion (8) with p = 0: 

E = UN = zti( + + ( ot,3)2 

If ut, = atEl = ot,2 = 

When signal  pulses of two or more  measuring  periods are averaged, all of them  will 
have a weighting of 2  except  the first and  last  pulses.  The  formula  can be extended for an 
average of P measurements,  as follows: 

where  p = 2P + 1 and  p  represents  the  pulse  number. For ot, = at, = 
1 - - - = OtEP7 

v2(4P - 1) 
E = *  

P at, 



As P increases,   the  system-stabil i ty  error will become  inversely  proportional  to  the 
square  root of P. For P = 1, equation (11) reduces  to  equation (10). 

Derivation of System-Stability Error as a Function of Star Magnitude 

If the  system-stability  error is known for one star magnitude m l ,  then it can  be 
determined for any  other star magnitude  m2 as follows: 

From  the stellar magnitude  equation, 

m l  - m2 = 2.51  log Fr 

or  

Fr = 10 2.51 

where Fr is the  ratio of light  intensity  for  stars 2 and 1, respectively. 

The  transducer  output I, varies  directly with the  incoming  light  intensity F, 
namely, 

From  equation (1) it  has  been  shown that the  square of the  signal-to-noise  ratio  varies 
directly  with  the  signal  current - that is, 

2 (a) Ia 

and  causes  the  noise  envelope  in  figure 4 to  vary. 

The  standard  deviation  for both the  leading-  and  trailing-edge  times  decreases as 
the  signal-to-noise  ratio  increases 

This relationship is maintained  for  threshold  levels of interest  (30 to 70 percent). Beyond 
these  limits,  nonlinearities  become  evident. 
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According  to  equations (7) and (8), the  standard  deviation  in  the  measured  signal- 
pulse  center  varies  directly with  the  standard  deviation of each edge. This  type of var i -  
ation  assumes a symmetrical  pulse, as follows: 

Equation (11) shows  that  the  system-stability  error  varies  directly as the  t ime 
variation  in  the  measured  signal-pulse  center, or 

From the proportionalities  given,  it  has  been  shown  that  the  system-stability  error 
varies  inversely with the  signal-to-noise  ratio: 

Therefore, 

where E, is the  ratio of system-stabi l i ty   error   for  stars 1 and 2. 

TRANSDUCER EXPERIMENTS AND RESULTS 

General 

Experiments  have  been  conducted  with  an  image  dissector  tube,  the  operation of 
which is discussed  previously  in  the  section  entitled  "Description of Star  Sensor."  This 
transducer is extremely  flexible.  The  sweep  frequency,  amplitude,  and  type of sweep 
(i.e., triangular,  sinusoidal, o r  other)  may be changed  very  easily.  The  sweep  amplitude 
was  kept  constant at *28 image  diameters  ( -0,  +7 percent)  for all testing.  This  amplitude 
is equivalent  to a field of view of *2 arc seconds  for the 3-meter f / l O O  telescope 
configuration. 

The  experiments  reported  herein  have  been  made for a single-axis  system. How- 
ever,  both the theory  and  experimental  data are applicable  to a two-axis  system.  The 
sweep  signal  and  defining  aperture would  change,  but  the  basic  approach would remain  the 
same. 
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In  the  sections  that  follow,  the  experimental  apparatus is first   described,  and  the 
resul ts  of experiments  to  determine  system  errors are then  presented.  The  system 
e r r o r s  are discussed  in  terms of image  diameters which relate directly  to  angular 
e r r o r s  (0.01 a r c  sec = 0.14 image  diameters).  The  total  variation as given  in  terms of 
two standard  deviations (*2u). Approximately 75 samples  are used  for all the  experi- 
ments.  Furthermore, all magnitudes  given  are-referenced  to  an  AOT star at a color 
temperature of 10 700° K. In  addition, a 10.9-percent  reduction  in  intensity is us.ed to 
account  for  central  obscuration.  Further  discussion of star-magnitude  calibration is 
presented  in  appendix  A  and  reference 4. 

- 

Experimental  Apparatus 

The  laboratory  configuration  consists of a source which simulates  the star, a col- 
lecting  lens,  an  image  dissector,  and  digital  electronics  which  process  the  transducer 
signals.  A  schematic of the  laboratory  configuration is shown  in  figure 6. The  oscillo- 
scope  and  camera are used  to  obtain  time  histories of star crossings.  

The  optical  system is chosen  to  project  an  image of a circular  aperture  onto  the 
focal  plane of a simulated  diffraction-limited7  3-meter f / l O O  telescope;  the  diameter of 
the image is equal  to  the  diameter of the first dark  r ing of the  airy  disk. For conve- 
nience of testing, the angular  motion  per  linear  displacement of the  image  on  the  focal 
plane was increased by a factor of 1000 over  that   for  an f / l O O  telescope.  Parameters 
for  this  laboratory  experiment are shown in  table I. 

TABLE I.-  OPTICAL  PARAMETERS 

Focal  length of lens . . . . . . . . . . . . . . . . . . . . . . . .  26.7 c m  
Source  diameter.  . . . . . . . . . . . . . . . . . . . . . . . . .  762 p m  
Image  diameter . . . . . . . . . . . . . . . . . . . . . . . . . .  106.7 p m  
Image  distance . . . . . . . . . . . . . . . . . . . . . . . . . .  30.5 cm 
Object  distance . . . . . . . . . . . . . . . . . . . . . . . . . .  218 c m  
Lens  diameter . . . . . . . . . . . . . . . . . . . . . . . . . .  3.81 cm 
Scale  factor . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1000 

A  photograph of the  physical  layout of a part  of this  system is shown in  f igure 7. 
The  lens is contained  in  the  vertical  holder  at  the  right.  The  image  dissector is located 
in the cylindrical  tube  and is mounted  on a movable,  two-axis  calibrated  base.  The  front 
face of  the  image  dissector is located  at  the  focal  plane  just  behind a shutter.  Some of 
the  electronics  can  be  seen  mounted  on  the rear of the  base. 
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Variation of Frequency 

A  parametric  study  relating  system  stability,  sweep  frequency,  and star magnitude 
was  made.  A  triangular  sweep  at  frequencies of 12.5,  25,  50,  100, and 200 hertz  was 
used.  A  plot of the sys tem  e r ror  as a function of star magnitude  for  these  frequencies is 
shown in  f igure 8. A  12.4-magnitude star is the  dimmest  source  that   can  be  observed at 
a frequency of 12.5 hertz. At a frequency .of 100 hertz,   an 11.1-magnitude star can  be 
seen; at  a frequency of 200 hertz,  a 10.7-magnitude star can  be  seen.  The  logarithm of 
the  system  stability is shown  to be proportional  to  the star magnitude. As expected,  the 
system  stabil i ty  decreases as the star magnitude  increases,  for  any  sweep  frequency. 
Also,  the  system  stability  decreases as the  frequency  increases. It should be noted  that 
the  noise filter bandpass Af was  changed  in direct relationship  with  the  sweep fre- 
quency.  A  bandpass of 5.8 kilohertz  was  used  for a sweep  frequency of 100  hertz. From 
the  12.5-hertz  curve,  the data indicate  that a change of 5 star  magnitudes will cause  the 
sys tem  e r ror  to  change  by a factor of 10. These  results  agree with  equation (12). 

The  curves  in  figure  8  have  been  drawn  parallel  to  each  other  and  spaced  in  propor- 
tion  to  the  square  root of the  frequency, as evidenced by equations (1) and  (2).  Although 
the  data  points  seem  to  be  spread  out  for  the  brightest stars, they a r e  within  the  counting 
resolution  for  the  system.  The  basic  counting  rate of 160 kilohertz is the  same  for all 
sweep  frequencies.  Therefore, as the  sweep  frequency  increases,  each  clock  pulse 
represents  a greater  distance  on  the  focal  plane.  For  example,  at a sweep  frequency of 
12.5  hertz,  the  clock  pulse  can  divide  the  image  into 16 times  the  number of parts  that  
would be  obtained  at a frequency of 200 hertz.  The  resolution of one  counting  pulse  for 
each  sweep  frequency is shown in  table 11. 

TABLE II.- SWEEP FREQUENCY  RESOLUTION 

_ _ _ ~  .. ~ ~ _ _  ~ 

Frequency, Hz 1 Resolution,  image  diameters 
" ~" 

~ ~. ". ~~ " ___ 
12.5 0.00223 
25 .00446 
50 .00893 

100  .0178 
200  .03 57 

____. . - _ _ _ ~ _ _  

The  basic  system  clock-pulse  'error  for  any  measurement is *2 pulses, which is due 
to  separate  forward  and  backward  time  measurements.  Since  this  count  variation is 
independent of star  magnitude,  i t   represents a large  percentage of the  total  error  for  the 

. brightest   stars.  For this  reason, all the data  points  for  the  brighter  stars  have  errors 
that are greater  than  that  shown by the  curves of figure 8. For s t a r s  of higher  magnitude, 
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the  count  variation.becomes  masked,  and  hence  the  errors  in the data points are both 
above  and  below  the  curves. 

Variation of Threshold 

Two separate   tes ts   were  made  to   determine how the  system  stability  varies with 
the  threshold  level.  Threshold  level is defined as the  level at which  the  signal  pulse is 
detected.  (See  fig. 3.) The  resul ts  are shown  in  figures 9 and 10. 

In  the first test  (fig, 9), a triangular  sweep  frequency of 12.5  hertz  was  used,  and 
the  threshold  level  was  varied  from  10  to 70 percent of the  nominal  pulse  amplitude.  In 
the  second  test  (fig. lo), a sweep  frequency of 100 hertz  was  used;  however,  the  data  were 
averaged  over two cycles,  yielding a simulated  frequency of 50 hertz.   I t  will be shown  in 
the  next  section  that  this  simulation  was  valid.  In  this  test  the  threshold  was  varied  from 
20 to 80 percent of the  nominal  amplitude.  In both cases the  threshold  level  has  little 
effect on  system  stability.  However,  to  minimize  stray  noise  pulses at low threshold 
levels  and  the  possibility of missing  signal  pulses  at  high  threshold  levels,  the  best  oper- 
ating  level  was found to  be 30 to 50 percent. 

The  larger  variations  in  f igure 10 are caused by the  low  resolution of the  counting 
pulse.  This  value is 1/4 of the  sweep  frequency of 12.5  hertz.  The  data  compare  well 
with  the resul ts  of the 50- and  12.5-hertz  curves  in figure 8. In  figure 9 the  dashed  lines 
indicate  that a poor  experimental  data  point  has  been  omitted. 

Four  photographs  containing a squared  logic  pulse  and  signal  pulse  out of the  band- 
pass   f i l t e r   a re  shown in  f igure 11. They are for an  11.5-magnitude star at a sweep  fre- 
quency of 50 hertz.  The  center of the star image is at  the  peak  signal-pulse  amplitude. 
I t   can be seen  that both  the times  tt  and  tl  tend to increase o r  decrease  for  any  given 
pulse.  Since  the  time  variations  tend to subtract,  threshold  level  has  little  effect.  These 
photographs  also  establish  the  validity of the  assumptions  previously  made  in  the  analysis. 

I t  is preferable  to  measure tl and  tt with respect  to a reference  pulse  generated 
by the  synchronization  signal.  The  reference  signal  always  occurs  at  the  same  time with 
respect to the  center of the star  image.  This  method  eliminates  the  uncertainty  involved 
in  determining  the  center of the  time axis in  f igure 5. 

Data  Averaging 

A test was  made  to  observe  the  effect of averaging  on  system  stability.  A  sine 
wave  frequency of 100 hertz  was  used as the  basic  reference  frequency.  Data were f i r s t  
taken  for  every  cycle,  and  then  averages  over  2,  4,  and 8 cycles  were  used. 

In  figure 12 the  system-stabil i ty  error is presented as a function of star magnitude 
for  the  number of cycles  averaged.  All  data  points are within  the  basic  system  counting 
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accuracy  except  those  for a 10.5-magnitude star at averages of 2,  4,  and 8. A  possible 
explanation is that  the  guide  star  simulator  was  brighter  than that measured. 

As  expected,  the  stability  improves as the  number of pulses  averaged  increases,  
the  error  being  proportional  to’the  square  root of the  system  average.  For  the  measure- 
ments  taken,  the  system  average is equivalent  to  the  frequencies  listed  in  table III: 

TABLE II1.- EQUIVALENT  FREQUENCIES DUE TO AVERAGING 

Average 

1 
2 
4 
8 

”. ~ ~ 

Equivalent  frequency, Hz 

100 
50 
25 
12.5 

From  these  data  and  from  the  theory  presented,  the  system-stability  error  can  be 
determined  for  any  combination of sweep wave form,  sweep  frequency,  system  average, 
and  star magnitude. 

Linearity  and  Field of View 

A test  was  made to record  the  measured output  number as a function of image dis- 
placement,  using a triangular  sweep.  The  transducer, which was  mounted  on a calibrated 
micrometer  base,  was  physically  moved so  as to simulate  the  effect of image  displace- 
ment.  A  digital  output  number  was  recorded for each  position of the  transducer. 

A  graph  plotting  the  percentage  deviation  from  the  best  straight  line as a function 
of image  displacement is shown in  f igure 13. The  system is shown  to  be  linear  within 
*0.6 percent of best  straight  line  over  the  entire  range.  Since  the  electrical  source  used 
to  supply  the  reference  sweep  signal  has a specification of 1 percent  over  the  entire  range, 
the  transducer  may  have  much  better  linearity  than  shown.  The  total  field of view is 
60 image  diameters (6.35  mm),  which is a large  dynamic  range  for  this  type of sensor. 

A  design  technique  was  included  in  the  digital  electronics  to  get  maximum  use of the 
total  field of view.  Assume  that  the  dotted  line  in  figure  2  representing  star-image  posi- 
tion  approaches  the  maximum  extreme of the  triangular  sweep. Two of the  three output 
pulses  will  approach  each  other. At some  finite  position  near  the  end of the  sweep,  the 
two signal  pulses  become  one  pulse.  The  digital  electronics  detects  this  condition  and 
divides  them  into  two  squared  pulses  with a preset  t ime  interval as shown in  f igure 14. 

Trace  A  in  f igure 14 is the  sync  pulse which represents  a change in  sweep direc- 
tion. Trace B is the  signal  pulse,  and  traces  C  and D are logic  pulses.  The first three 
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photographs  (parts (a), (b),  and  (c))  show two distinct  signal  pulses.  In figure 14(d),  the 
pulses  have  essentially  collided.  The  digital  logic  has  separated  the  one  squared  pulse D 
into two parts.  This  separation is shown  by  the two breaks,  which are flagged, of 4-psec 
duration  each on t race  C. The  field  could  have  been  extended  further  had  the  sync 
pulse  A  been  delayed by  130 psec  to  compensate  for  the  phase  shift  of the  signal  pulses 
caused by  the  signal  conditioning  electronics. 

CONCLUSIONS 

An investigation  has  been  made  to  design  and  test a fine-pointing star  sensor  that  
could  detect  star-image  motion  on  the  focal  plane of a telescope  and  generate  position 
information.  This  result  was  successfully  accomplished.  The  measuring  technique 
employed  has  proven  to  be  very  practical.  Pulses  from  the  image  dissector are inher- 
ently  digital  and  with a little  signal  conditioning  (amplification,  filtering,  and  squaring) 
can  be  ready  for digital processing.  The  versatility of the  image  dissector  allows  great 
flexibility  to  the  user.  The  sweep  frequency,  amplitude,  and  the  type of sweep  (triangular, 
sinusoidal, or other)  can  be  easily  changed. 

Experimental  results  show  that  the  transducer is capable of measuring  s tars  within 
the  accuracy  desired. When guiding on a +lo-magnitude  s tar ,   the   system-stabi l i ty   error  
is 0.08 image  diameter  for a triangular  sweep  frequency of 100 hertz.  The  system- 
stabil i ty  error  has  been  measured  for  several   different star magnitudes  and  sweep fre- 
quencies.  The  results  have  shown  that if  the  stability is known for  one  star  magnitude 
and  sweep  frequency,  then  it  can  be  determined  for  any  other  magnitude  and  frequency. 
Both the data  and  theory  have  shown  that  the  logarithm of the  system-stabil i ty  error is 
proportional to  the star magnitude.  Other  test  results  have  shown  that  the  system- 
s tabi l i ty   error   improves as the  number of counting  periods  averaged  increases,   the  error 
being  inversely  proportional to  the  square  root of the  number of counting  periods.  This 
result  was  also  predicted  in  the  theoretical  section. 

When the  signal  pulses are detected  on  both  the  leading  and  trailing  edges,  the  effect 
of threshold  level  becomes  negligible.  This  effect is not  negligible  for  single-edge  detec- 
tion. Furthermore,   the  t ime  variations  for both edges  tend  to  subtract out. The  system 
has  been  shown  to  be  linear  within 0.6 percent of best  straight  line  over  the  complete 
range of 60 image  diameters,  which is a large  dynamic  range  for this type of sensor.  

Langley  Research  Center , 
National  Aeronautics  and  Space  Administration, 

Langley  Station,  Harnpton,  Va.,  March  25,  1969, 
125-19-03-12-23. 
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APPENDIX  A 

CALCULATION OF STAR MAGNITUDE 

In  the  laboratory  experiments a small   aper ture  (3.81 cm) is used  to  collect  light 
from  the star simulator.  Since  this  configuration  must  simulate  the  effect of a 3-meter- 
diameter  Cassegrain  telescope, a scale factor  must  take  into  account  the  different  col- 
lecting areas. This   scale   factor  is proportional  to  the  ratio of the areas, as shown by the 
following  equation: 

For  the  transducer  to see an  equivalent star magnitude, a much  brighter  star  must 
be used  for  the  simulation. The increased  star  magnitude Am can  be  calculated as 
follows: 

For a scale factor of 5700 the  star  simulator  should be 9.4 magnitudes  brighter 
than a s t a r  viewed by a 3-meter  telescope. The transducer  will see the  same  s tar  
brightness  for  either  case. 

A  reference  must  be  used  for  any  discussion of s t a r  magnitude.  In  the  present 
study, all star  magnitudes are referenced  to  an  AOT - s ta r   a t  a color  temperature of 
10 700° K when seen by the S-20 transducer  used  in the experiment. 

The  method  used  to  measure  star  intensity is similar  to  that  used  on  the OAO 
(Orbiting  Astronomical  Observatory)  project.  The  calibration  method (ref. 4) includes a 
star simulator  for which  the  absolute  spectral  irradiance  produced  at the objective of the 
receiver  being  evaluated is known. The  equivalent  star  magnitude of the  simulator as 
seen by the, transducer  can  be  calculated by 

m = 2..51 log 

the  following  equation for stellar magnitude: 

During  the  experiment  calibration,  the  transducer  signal  current  was  measured, as the 
distance  between the star simulator  and  collecting  aperture  was  varied.  Several  data 
points  were  measured with the  use of two different  light  sources  in  the star simulator. 
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APPENDIX A 

These  data are plotted  in  figure 15 and  show  that  the  logarithm of the  signal  current is a 
linear  function of star magnitude.  The  increased star magnitude Am of 9.4 has  been 
taken  into  account  in this figure. 

Once  the  relationship  between  star  magnitude  and  signal  current is known,  any 
source  can  be  used  to  simulate  the star. The  measured  signal  current  can  be  related  to 
an  equivalent star magnitude by using the calibration  curve. 
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Figure 2.- Schematic  representation of typical sweep signal  and output pulses. 
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Figure 3.- Schematic  representation  and  typical  waveforms of signal-processing  system, 
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Figure 4.- Typical  signal  pulse  with  noise  envelope. 
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Figure 5.- idealized  signal  pulse,  typical  signal  pulse  containing  noise,  and  logic  pulse from Schmitt  tr igger. 
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Figure 8.- Var iat ion of system-stabi l i ty  error  with  star  magnitude  for  several sweep frequencies. 
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Figure 9.- Change in system-stability error as a function of threshold  level  for  several  star  magnitudes 
and triangular sweep frequency of 12.5 hertz. 
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triangular sweep frequency of 100 hertz. 
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Figure 11.- Photographs of image-dissector pulse showing variation in signal pulse due to noise after filtering. Star magnitude, 11.5; sweep frequency, 50 hertz. 
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Figure 13.- Error in system linearity. 



_ _ ___ . __ .--..I'-~--~~----~ 

(al 200 ~ sec/div . 
(bl 100 ~sec/div . 

(c) 50 ~ sec/ div. 
(dl 50 ~ sec/ div . 
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