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HEAT  TRANSFER  TO  THE WINDWARD  SLDE 

OF A FINENESS-RATIO-2.9  CYLINDER WITH NEARLY 

SPHERICAL ENDS AT A MACH  NUMBER OF 6 AND 

ANGLES OF ATTACK OF 50°, 70°, AND 90° 

By James  L.  Hunt 
Langley  Research  Center 

SUMMARY 

An investigation was conducted  in  the  Langley  20-inch  Mach 6 tunnel  to  define  the 
heat  transfer  to a fineness-ratio-2.9  cylinder  with  nearly  spherical  ends  -scale  model 
of the  graphite  lunar  module  fuel  cask  (GLFC) . Heat-transfer  data  and  schlieren photo- 
graphs  were  obtained at a nominal  Reynolds  number,  based  on  model  diameter, of 1 X lo6 
at sweep  angles of Oo, 20°, and 40°. 
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Beckwith's  laminar  swept  infinite-cylinder  theory,  small-cross-flow  theory,  and 
local  similarity  theory  with  Libby's  three-dimensional  stagnation-point  theory  were  used 
piecewise  to  predict  the  laminar  heat  transfer  with  acceptable  accuracy.  Local  flat-plate 
approximations  for  turbulent  heat  transfer,  calculated by the  method of Spalding  and  Chi, 
agreed  with  the  data  obtained  in  the  turbulent flow regions. 

INTRODUCTION 

An investigation  was  conducted  in  the  Langley  20-inch  Mach 6 tunnel  to  define  the 
heat  transfer  to a fineness-ratio-2.9  cylinder  with  nearly  spherical  ends.  The  configura- 
tion is a --scale  model of the  graphite  lunar  module  fuel  cask  (GLFC),  the  heat-shield  cask 
for  the  radioisotope  fuel  capsule of the SNAP-27 power  system  (ref. 1). A  major unknown 
at the  time of this  investigation  was  the  effect of the  nearly  spherical  ends on the  heat- 
transfer  distribution  along  the  cylinder at large  angles of attack (flow nearly  normal  to 
cylinder).  The  accurate  prediction of heating  distribution  and  level is important  because 
of safety  problems  concerning  the possible reentry of the  cask  from  aborted Apollo mis- 
sions. Should an  abort  occur,  the  GLFC  must  be  capable of returning  the  nuclear  fuel 
capsule to the  earth  intact (ref. 2). 
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The  phase-change  coating  technique,  which  was  developed at the  Langley  Research 
Center  for  determining  aerodynamic  heat-transfer  data on complex  configurations, was 
utilized in this  investigation.  Heat-transfer  data  and  schlieren  photographs  were  obtained . 



at a nominal  Reynolds  number,  based  on  model  diameter, of 1 X lo6 at angles of attack of 
500, 70°, and 90' corresponding  to  sweep  angles of 40°, 20°, and Oo. Heat-transfer  pre- 
dictions  from  reference 3 for  swept  infinite  cylinders  and  from  reference 4 for  three- 
dimensional  small  cross  flows  were  compared  with  the  measured  heat  transfer  to  the 
cylindrical  section.  The  three-dimensional  stagnation-point  theory of reference 5 and  the 
local  similarity  theory of reference  6  were  used  for  similar  comparisons  for  the wind- 
ward  side of the  nearly  spherical  end. One purpose of this  paper is to  determine  whether 
reasonable  heat-transfer  predictions  for a low-fineness-ratio  cylinder  can  be  obtained 
from  the  piecewise  application of these  theories  for  simple  shapes. 
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specific  heat of model 

diameter of cylindrical  section of model 

heat-transfer  coefficient 

stagnation-line  heat-transfer  coefficient of an  infinite  cylinder at angle of 
sweep 

three-dimensional  stagnation-point  heat-transfer  coefficient 

thermal conductivity of air 

thermal  conductivity of model 

Mach  number 

Mach  number  normal  to  cylinder  axis 

Prandtl  number 

pressure 

free-stream Reynolds  number  based  on  cylinder  diameter 

spherical  radius 
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blending  radius  (fig. 1) 

radius of cylindrical  section (fig. 1) 

radius of nearly  spherical  end (fig. 1) 

radius of curvature  perpendicular  to  plane of blending  radius at Newtonian 
stagnation  point s rc = 1.41) for  20° sweep (1 

radius of curvature  perpendicular  to  plane of blending  radius at Newtonian 
stagnation  point s rc = 1.008) for  40' sweep (1 

distance  along  surface of model 

temperature 

ratio of wall  temperature  (temperature at which  coating  changes  phase)  to 
total  temperature of s t ream 

shock  standoff'distance 

inverse  density  ratio, p,,/p2 

recovery  factor, Taw - "e 
Tt - Te 

sweep  angle  with  respect  to  cylinder axis (see  figs. 6, 11, and 14) 

viscosity 

density 

density of wall  material 

roll  angle,  measured  from  windward  ray 

Subscripts : 

aw adiabatic  wall 

e local  value  external  to  boundary  layer 
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S value at stagnation  line 

t total  conditions 

03 free-stream  conditions  ahead of bow shock 

2 static condition  behind  shock 

TEST METHOD 

Heat-transfer  coefficients  were  obtained by using a phase-change  coating  technique 
(ref.  7) which has  been  developed  at  the  Langley  Research  Center  to  determine  the  heat 
transfer  to  complex  shapes.  This  technique  employs a thin  surface  coating of material 
that  undergoes a visible  phase  change at a known temperature.  The  times  required  for 
visible  phase  changes  to  occur at various  locations  on  the  model are determined  from. 
motion  pictures.  The  patterns so obtained  represent  lines of constant  surface  tempera- 
ture.  The  heat-transfer  coefficient at each  point  along  these  recorded  isotherms  can  be 
calculated  exactly  from  the  general  heat-conduction  equations  with  the  measured  surface 
temperature as a boundary  condition  provided  the  adiabatic  wall  temperature at each point 
is available  and  the  thermophysical  properties of the  model  material  are known. An exact 
solution of the  heat-conduction  equation  for  the  specific  geometry is not always  practical; 
therefore,  the  local  heat-transfer  coefficient  for  the body is determined  from  the  solution 
for a semi-infinite  slab.  The  results  obtained  from  the  semi-infinite-slab  assumption are 
a good approximation  to  the  solution  for  the  actual body geometry when the  depth of heat 
penetration is small  compared  with  pertinent  model  dimensions.  Detailed  discussions 
of the  limits of the  semi-infinite-slab  assumption as affected by heat  penetration  depth 
and as affected by model  geometry  discontinuities  are  presented  in  references 7 and 8, 
respectively. 

FACILITY 

The  test  program was conducted  in  the  Langley  20-inch  Mach 6 tunnel.  This  facil- 
ity, which operates  with air as the  test  medium, is the  intermittent  type and  exhausts  to 
the  atmosphere  through a diffuser  augmented by an air ejector.  Tests  were  conducted 
at a stagnation  pressure  and a stagnation  temperature of approximately 251.8 N/cm2  and 
533.5O K, respectively;  these  conditions  give a nominal  Reynolds  number of 1 X lo6 based 
on  model  diameter.  A  detailed  description of the  tunnel is given  in  reference 9. 
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MODELS 

Pertinent  dimensions of the --scale GLFC  model  used  in  this  investigation are given 1 
4 

in  figure 1. This  model  was  made  entirely of plastic  for  which'the  value of the  square 
root of the  product of the  thermophysical  properties (c), p ck  which is essential  to  the 

heat-transfer  technique  utilized  herein,  was 1.31 X lo3 W@SE/m2-'K (ref. 8 ) .  This  value 
was  determined  from  measurements of the  three  thermophysical  properties at the  average 
model  temperature of the  present tests. The  technique  utilizes a grid  moderfor  the  pur- 
pose of locating  phase-change  patterns.  This  grid  model (fig. 2) is photographed  in  the 
exact  position  occupied by the  plastic  model  during tests in  order  to  provide a superpos- 
able  grid  that is used  to  locate  the  phase-change  patterns on the test model. 

THEORIES USED IN HEAT-TRANSFER ANALYSIS 

No well-established  analytical  method is available  for  predicting  the flow field,  and 
thus the boundary-layer  properties,  around  an  arbitrary  blunt body at large  angles of 
attack.  The  usual  method is to  approximate  the  actual body piecewise,  that is, by seg- 
ments of bodies of similar  shapes, for which  analytic  solutions are  available;  however, 
the  accuracy of this  piecemeal  application of theory  needs  to  be  established  for  each  par- 
ticular  problem. 

In an attempt  to  predict  the  heat  transfer  to  the  windward  side of the  GLFC at large 
angles of attack,  the  following  theories  were  employed: 

Cylindrical  section (1.41 5 s/rc 5 5.56) 

(1) The  laminar  infinite-cylinder  theory of reference 3 was used  in  conjunction  with 
a Newtonian pressure  distribution on an  infinite  cylinder.  The  reference  value of 
hIC,*=Oo (infinite-cylinder  stagnation-line  heat-transfer  coefficient  for 0' sweep)  was 
calculated by the  following  equation  from  reference 3: 

which  applies  only  for N p r  = 0.7 and MN,, > 1.5. The  reference  value of the 
stagnation-line  heat-transfer  coefficient at 20° and 40° sweep  was  also  obtained  from 
reference 3 where 
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(2) The  laminar  small-cross-flow  theory of reference  4  was  employed  on a 
hemisphere-cylinder  configuration  using a Newtonian  stagnation-point pressure  and a 
modified  Newtonian pressure  distribution.  The  streamlines  used  in  conjunction  with  this 
theory  were  calculated  according  to  the  method of reference 10. 

(3) The  turbulent  infinite-cylinder  stagnation-line  theory of reference 3 was  used  to 
predict  the  windward-ray  heating  where  turbulent flow appeared  to  exist. 

(4) The  method of Spalding  and  Chi (ref. l l ) ,  with  local  Mach  and  Reynolds  numbers 
calculated  from a modified  Newtonian pressure  distribution  on a hemisphere-cylinder, 
was  utilized  to  obtain  the  local flat-p1ate.approximations for  turbulent  heat  transfer.  The 
Reynolds  number  was  based  on  streamline  distance  calculated  for a hemisphere-cylinder 
according  to  reference 10. 

Windward  nearly  spherical  end (0 2 s/rC 5 1.41) 

(1) The  three-dimensional  stagnation-point  theory of reference 5 was  used  to  obtain 
the  stagnation-point  heating  rate. 

(2) The  locally  similar,  blunt-cylinder,  cold-wall  theory of reference 6 was  used  to 
determine  the  heat-transfer  distribution  along  the  windward  ray of the  nearly  spherical 
end.  The  Newtonian pressure  distribution  along  the  windward  ray is independent of the 
remaining body; therefore,  in  obtaining  the  heat-transfer  distribution  the  windward ray 
was treated as the  chord of an  infinite  two-dimensional body. This  treatment  neglects 
the  transverse  velocity  gradients. 

RESULTS AND  DISCUSSION 

Shock Shapes 

Schlieren  photographs of the flow about  the  GLFC  model at sweep  angles of Oo, 20°, 
and 40° are  presented as figure 3. The  shock  standoff  distance A / r c  is shown as a 
function of s/rc for  each of these  sweep  angles  in  figure 4.  

At Oo sweep (fig. 4(a)), the  shock  standoff  distance  along  the  midportion of the  cylin- 
drical  section of the  model (2.8 5 sPc  5 4.1) is within 10 percent of that  given  for an infi- 
nite  cylinder  in  reference 12. Because  the  standoff  distance is constant  along  the  cylinder, 
the flow in  this  region is believed  to  be  essentially  two-dimensional.  Therefore,  the  heat- 
transfer  distribution  should  be  similar  to  that of an  infinite  cylinder. 

At 20° sweep (fig. 4(b)), the  shock standoff distance is relatively  close  to  infinite- 
cylinder standoff distance  (ref. 12 with  normal  Mach  number)  only  for 4.7 5 s/rc S 5.2. 
Near the Newtonian  stagnation  point s rc = 1.188) where  the  shock is closer  to  the body, 
an empirical  curve fit 

(1 
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A = r(0.76)~ (3) 

to the  theories of references 13,  14, and  15  for a sphere  was  used  in  conjunction  with. rsp 
(radius of nearly  spherical  end), r120 (radius of curvature  perpendicular  to  plane of 
blending  radius),  and r b  (blending  radius) of the  GLFC  model  with  the  Mach 6 normal- 
shock  density  ratio  in  an  attempt  to  predict  the  shock standoff distance.  These  three 
shock  standoff  distances  (nondimensionalized by rC) are also  shown  in  figure 4(b). The 
minimum  (stagnation  point)  shock  standoff  distance is best  predicted by using  the  radius 
of the  nearly  spherical  end. 

For  40' sweep (fig. 4(c)),  the  shock  standoff  distance  does not reach a constant  level 
or  approach as close  to  that of an infinite cylinder as do  the  shock standoff distances  for 
the  other two sweep  angles.  The  shock  standoff  distance at the Newtonian  stagnation  point 
(s/rc = 1.008) is very  near  to  that  predicted  for a sphere (eq. (3)) with a radius  equal  to 
the  radius of the  cylindrical  section. 

Heat  Transfer at A = Oo 

The  heat-transfer  data at A = Oo are presented  in  terms of contour  sketches  and 
circumferential  distributions of the  nondimensional  heat-transfer-coefficient  ratio 
h/hIC,A,Oo at various  cylinder  locations s/rc. Nominal  heat-transfer-coefficient  con- 
tours  are  presented only because of their  pictorial  representation of the  overall  heat  trans- 
f e r  to the  GLFC; no discussion is given for these  contours  at A = 0' or for  the  contours 
at A = 20' and 40°. 

Phase-change  patterns.- A sample  sequence of photographs of the  GLFC  model  taken 
during  the  test at A = Oo and t = 0.74 (ratio of temperature at which  coating  changes 
phase  to  total  temperature of s t ream) and  showing  the  phase-change  patterns  observed at 
various  times is presented  in  figure 5. The  light  areas on the  model  in  these  figures  indi- 
cate  areas  in which the  coating  phase  change  has  already  occurred  and  represent  regions 
of higher  heat-transfer  rate.  The  interface of the  light  and  dark  areas are lines of con- 
stant  temperature  along  which  the  heat-transfer  coefficient  may  be  computed by the  method 
discussed  in  the  section  entitled  "Test Method." 

The  photographs show a distorted view of the  surface  because of the  angle  between 
the  camera  and  model.  The  camera view  and the  orientation of the  grid  model  relative  to 
the  s t ream  are  shown  in  figure 6. 

In  figure  7  the  isotherms  (obtained  from  the  same  test as the  photographs of fig. 5) 
for  various  values of at Vrc = 3.475 (center of cylinder)  are  superimposed 

on  the  camera view of the  grid  model.  The  grid  lines  can  be  identified by referring  to 
figures  2  and 6. Similar  isotherms  for t = 0.61 are  superimposed on the grid  model 
in  figure 8. If the  adiabatic  wall  temperature  were  constant  along  an  isotherm,  the 

h~~ ,R=OO 
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heat-transfer-coefficient ratio would.also  be  constant.  Since  this  condition is approxi- 
mately  correct  for  the  isotherms of figures 7 and 8, the  value of  h/hIc,A-oo shown  may 
be  taken  to  be  the  nominal  value  for  the  entire  isotherm. All data  represented by symbols 
in   the rest of the  figures are reduced  with  respect to ,a local  adiabatic  wall  temperature 
calculated at each  location  on  the  basis of expansion  from  the  total  pressure  behind a nor- 
mal  shock  to a local Newtonian pressure with a recovery  factor r] of 0.715. 

- 

In  the  discussion  and  in  the  summary of results,  only  comparisons of heat-transfer 
calculations  and  data  taken  from  contour  sketches  and  cor.rected  to  correspond  with  local 
rather  than  nominal  adiabatic  wall  temperature are used. 

Heat-transfer  distribution.-  The  circumferential  heat-transfer-coefficient  distribu- 
tions at one  value of s/rc fo r  t = 0.74 and at four  values of s/rc for  t = 0.61 are 
given  in  figure 9. The  distribution  on both sides of the  stagnation  line is shown  in  order 
to give  the  reader  some  indication of the  accuracy  and  repeatability of the  data. At the 
center of the  cylindrical  section of the  model (s/rc = 3.475), the  data  for t = 0.74 a r e  
slightly  higher  than  those  for t = 0.61. Whether  this  difference is a wall-temperature 
effect   or  an  error  due  to  using two  different  temperature-sensitive  paints  or  an  accumu- 
lation of both is not known. 

For  t = 0.61, the  heat-transfer  data at s/rc = 3.475 agree with  the  infinite- 
cylinder  theoretical  distribution  calculated  from  reference 4 for  approximately 50° around 
the  cylinder  and,  then,  the  data  begin  to  exceed  the  theory.  The h/hIc,A,oo distribu- 
tions at s/rc = 2.325 and 1.875 are progressively  lower  than  the  theoretical  distribution 
up  to  approximately I @ 1 = 50° where  they  approach  the  theoretical  distribution and then 
exceed it by the  same  amount as the  distribution at s/rc = 3.475. The  distribution  at 
s/rc.= 1.39 just  inside  the  periphery (s/rc = 1.41 of the  nearly  spherical  end is very 
similar  to  the  one at s/rc = 2.325, both of which a r e  above  the s/rc = 1.875 distribution 
with a slight  increase  in  heating  being  indicated  in  moving  from  the  cylindrical  section 
onto the  blending-radius  portion of the  nearly  spherical  end. 

) 

These  observations  indicate  that  for R 5 1 X 106, t 5 0.61, and @ 5 50°, the  heat 
transfer  to  the  midportion of the  cylindrical  section (2.8 5 s/rc 5 4.1) (see  section  entitled 
"Shock Shapes") at A = 0' can  be  predicted by laminar  infinite-cylinder  theory.  For 
the  region  between  the  midportion of the  cylindrical  section and the  nearly  spherical  end 
(1.41 5 s/rc 2 2.8), infinite-cylinder  theory  gives a conservative  estimate by about 10 per- 
cent.  For @ > 50° the  data  are above  the  laminar  theory.  This  same  trend  was 
observed  in  the  data of reference 3 for @ 2 60° where  the  higher  heating  was  attributed 
partly  to  the  nonisothermal  wall  temperature.  For  the  present tests, the  wall was also 
nonisothermal. 
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I Heat  Transfer at A = 20' and 40° 

The  heat-transfer  data at A = 20° and 40° are presented in te rms  of contour 
sketches  and  circumferential  distributions of the  nondimensional  heat-transfer-coefficient 
ratios  h/h1~,~,200  and h/hIc ~ = 4 0 0  at various  cylinder  locations s/rc. For  both 
these  sweep  angles  the  heat-transfer-coefficient  ratios are also  given  in  terms of s/rc 
distributions  along  various  longitudinal  lines. 

The  heat  transfer  along  the  windward  ray of the  windward  side of the  nearly  spheri- 
cal  end for A = 20° is given  in  terms of an s/rc distribution of the  heat-transfer- 
coefficient  ratio  h/h3~  where h 3 ~  is the  three-dimensional Newtonian  stagnation- 
point  heat-transfer  coefficient  calculated  according  to  the  method of reference 5. 

"~ Phase-change  patterns "~-  at A = 20°.- The  phase-change  patterns,  orientation of 
model  relative  to  stream,  and  superimposed  nominal  heat-transfer-coefficient  contours 
for  the  GLFC  model at A = 20' and t = 0.72 are  presented  in  figures 10, 11, and 12, 
respectively.  For  these  conditions  the  cylindrical  section of the  GLFC  was  the  area of 
primary  concern.  The  patterns,  orientation, and  contours  for  the  GLFC  model at A = 20° 
and t = 0.75  with  the  windward  side of the  nearly  spherical  end as the  region of interest 
a r e  shown  in  figures 13, 14, and 15, respectively. Again, these  figures  are  presented only 
for  the  qualitative  picture of the  overall  heat  transfer  to  the  GLFC  which  they  display. 

Heat-transfer  distribution on cylindrical  section at A = 20°.- The  circumferential 
heat-transfer-coefficient  distributions at three  cylinder  locations s/rc for t = 0.72 are 
given  in  figure 16. The  distributions at these  three  locations  are  very  close  to  the  same 
level,  all of which are considerably  higher  than  that  calculated by use of the  swept  infinite- 
cylinder  laminar  theory of reference 3.  

The two theoretical  heat-transfer  distributions  shown by dashed  lines  in  figure 16 
were  obtained  from  the  small-cross-flow  theory of Beckwith (ref. 4) as programed by 
Bushnell  and  used  extensively  in  reference 16 to  predict  the  heat-transfer  distributions 
on  spherically  blunted  cones at angle of attack.  These two distributions are in good 
agreement  with  the  data  for I I 5 40' and  were  obtained by applying  the  small-cross- 
flow  theory  to a configuration  that was modified  slightly  from  the  GLFC  model.  Bushnell's 
program  restricts  bodies  to  sphere-cones  and  sphere-cylinders  because of the  method 
used  to  determine  the body streamlines  (ref. 10). Therefore,  2.54-cm-radius  spherical 
ends  rather  than  the  actual  nearly  spherical  ends  shown  in  figure 1 were  used  with a 
2.54-cm-radius  cylinder  to  provide  the  theoretical  model  to  which a Newtonian  stagnation 
point  and  modified  Newtonian pressure  distribution were applied.  The  tangency  point of 
the  spherical  end  and  cylinder  on  the  theoretical  model  was  taken  to  be  the  same as that 
on  the  actual  GLFC  model. 
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The  distribution  from  small-cross-flow  theory is not shown  in  the  vicinity of @ = Oo 
because of an  incorrect  theoretical  trend  in  this  region.  Beckwith  (ref. 4)  shows  that  the 
small-cross-flow  theory  predicts a heating  level  near  the  stagnation  line of a yawed  cylin- 
der  which varies  with  distance  along a streamline  in  essentially  the  same  way as the  vari- 
ation  on a flat plate. He concludes  that  this  variation is incorrect  from  physical  consid- 
erations as well as from  the  exact  solution  for a swept  cylinder  and  shows  that  the  heating 
rates predicted  in  this  region by the  small-cross-flow  theory are low by 10 to 50 percent 
depending  directly  on  the  sweep  angle  and  the  wall-to-total  temperature  ratio. 

Starting at I $ 1  = 400 the  experimental  heating  becomes  increasingly  larger  than 
the  heating  calculated  from  laminar  small-cross-flow  theory.  To  determine  whether  this 
increase  in  heating  was  caused by transition  from  laminar  to  turbulent  flow, a turbulent 
heat-transfer  distribution  was  calculated by the  method of Spalding  and  Chi  (ref. ll), 
applied  along  the  same  streamlines  used  in  the  calculations  with  the  laminar  small-cross- 
flow  theory.  The good agreement  between  this  calculation  and  the  data  for I @I > 50° 
indicates  that  the  increase  in  heating  may  have  been  caused by transition.  Since  the  data 
are laminar  on  the  leading  edge and  may  be  turbulent  for 1 $ I > 50°, the  transition is 
probably of the  type  caused by cross-flow  instability  which is examined  extensively  in 
reference  17. 

The  measured  spanwise  heat-transfer  distribution is shown  in  figure  17(a)  for 
$ = Oo, 15O, and 30' and in  figure  17(b)  for $ = 45O and 60'. Also  shown are  distribu- 
tions  obtained  from  the  laminar  small-cross-flow  theory and  turbulent-flow  method  pre- 
viously  discussed.  The  small-cross-flow  distribution  should only  be compared  with  the 
data  for s/rc 2 1.41  because of the  difference  in  the  ends of the  theoretical  and  actual 
models.  For 1.41 5 s/rC 5 4.0, the  heat  transfer  predicted by this  theory at $ = 15O 
and 30' is in good agreement  with  experimental  data  (fig.  17(a)).  The  decrease  in  the 
theoretical  distributions  for s/rc > 4 is probably, as indicated  in  reference  16,  due  to 
a breakdown  in  the  streamline  calculation  procedure  rather  than  due  to  shortcomings of 
the  small-cross-flow  theory. At @ = 45' (fig. 17(b))  the  heat-transfer  data  appear  to 
be  transitional  for s/rc 2 1.41,  since  they  are  above  the  laminar  theory  and  approach  the 
turbulent  level  (Spalding  and  Chi) at large  values of s/rc. At $ = 60°, a comparison of 
the  data and  calculations  indicates  that  the  heating  probably is transitional  for 
1.41 5 s/rc 5 3.6 and  turbulent  for s/rc 2 3.6. 

The  local  Reynolds  numbers  used  in  calculating  the  turbulent  heating by the  method 
of Spalding  and Chi were  based on the  distance  from  the Newtonian  stagnation  point  along 
the  streamlines  to  which  the  small-cross-flow  theory was  applied.  This  method  Seems 
to  give good results beyond the point at which  the  decrease  in  the  laminar  heat-transfer 
theory  was  believed  to  be  caused by errors  in  the  streamline  calculations.  Apparently 
these  errors  in  the  streamline  calculations do not have  any  effect  on  the  method of pre- 
dicting  turbulent  heat  transfer. 
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Heat-transfer  distribution  along  windward ~ ray of windward  nearly  spherical  end at 
A = 20°.- The  measured  heat-transfer  distribution  on  the  windward  ray of the  nearly 
spherical end at A = 20° and t = 0.75 is shown in figure 18 in   t e rms  of h / h 3 ~  where 
h 3 ~  is the  three-dimensional Newtonian  stagnation-point  heat-transfer  coefficient  calcu- 
lated  according  to  the  method of reference 5 using  the  nearly  spherical  end  blending  radius 
rb and  the  radius of curvature  perpendicular  to  the  plane of the  blending  radius at the 
Newtonian  stagnation  point r (see  fig. l(b)). The  accuracy  in  locating  the  locations 
s/rc of the  data  points (fig. 15) for  1.2 5 s/rc 5 1.6 leaves  much  to  be  desired  even 
with  careful  study of the  original  film;  nevertheless,  the  theoretical  distribution  (solid- 
line  curve)  calculated by the  method of reference 6 (treating  the  windward  ray as the  chord 
of an  infinite  cylinder)  with  the  cold-wall  approximation  and a Newtonian pressure  distri-  
bution  gives good agreement  with  the  data  for 0.2 5 s/rc 5 1.45. Note that  peak  heating 
occurs  approximately at the Newtonian  stagnation  point (s/rc = 1.188) and is predicted 
within 5 percent by the  method of Libby (ref. 5) .  Good agreement  with  theory  for  the 
windward  streamline is shown  over  most of the  nearly  spherical  end. 

~. . . ~ -  

1 2 0  

Phase-change  patterns at A = 40°.- The  phase-change  patterns,  orientation of 
model  relative  to  stream,  and  superimposed  nominal heat-transfer-coefficient contours 
for  the GLFC model at A = 40' and  t = 0.69 are  presented  in  figures 19,  20, and 21, 
respectively. 

Heat-transfer  distribution at A = 40°.- In  figure 22, the  circumferential  heat- 
transfer  distributions at three  spanwise  locations s/rc are  compared  with  those  calcu- 
lated by the  infinite-swept-cylinder  and  small-cross-flow  theories of Beckwith  (refs. 3 
and 4, respectively)  and  with a turbulent  distribution  based  on  the  method of Spalding  and 
Chi  (ref. 11). Also  shown  in  the  figure is the  turbulent  heating  along  the  stagnation  line 
of an  infinite  cylinder  from  reference 3.  

Comparison of the  heating  data  along  the  stagnation  line with laminar  and  turbulent 
swept-cylinder  calculations  strongly  suggests  that  the  flow is transitional  for  these  condi- 
tions.  This  result would have  been  expected on the  basis of the  transition  criteria  for 
leading  edges void of boundary-layer  contamination  from  adjacent  surfaces  established 
by Bushnell  in  reference 18. For @I > 40° the heating  data  approach  the  predicted  turbu- 
lent  distribution as s/rc increases,  probably  because of the  change  from  transitional  to 
fully  developed  turbulent  flow. An orthogonal view of this  phenomenon is shown  in  the 
s/rc distributions of figure 23. Here,  the  experimental  distributions at @I = 15O, 30°, 
and 45O approach  calculated  turbulent  levels at s/rC = 5.4,  5.1, and 4.2, respectively. 
The  local  Reynolds  numbers  (based on the  streamlines  used  in  the  small-cross-flow 
theory) at these  respective  locations  are 6.2 X lo5,   5.9 X l o 5 ,  and 5.0 X lo5. Again the 
transition is probably of the  type  caused by cross-flow  instability as examined  extensively 
in  reference 17. 
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SUMMARY OF RESULTS 

A summary of the  results  obtained  from an investigation of the  heat  transfer to the 
windward  side of a --scale  model of the  graphite  lunar  module  fuel  cask is presented  for 
a nominal  Reynolds  number of 1 X 106, a Mach  number of 6,  and  sweep  angles of Oo, 20°, 
and 40°. 

1 
4 

Sweep  Angle of 0' 

1. For 16 I 5 50' (approximate)  the  heat  transfer  to  the  midportion of the  cylindri- 
cal  section  (2.8 5 s/rc 5 4.1) can  be  predicted by laminar  infinite-cylinder  theory. 

2. For  I 6 1 2 50° (approximate),  the  infinite-cylinder  laminar  theory  gives a con- 
servative  estimate of the  heat  transfer  to  the  region  between  the  midportion of the  cylin- 
drical  section  and  the  nearly  spherical end (1.41 5 s/rc 5 2.8). 

3. A  slight  increase  in  heating  was  observed  on a narrow  peripheral  segment  on  the 
blending-radius  portion of the  nearly  spherical  end  just  downstream of the  tangency  point 
of the  cylinder  and  nearly  spherical  end. 

Sweep  Angle of 20' 

Cylindrical  section 

1. For  15' 5 I@ I 5 40' (approximate),  the  heat  transfer  predicted by laminar  small- 
cross-flow  theory is. in  good agreement  with  the  data. 

2. For  40° 5 I @ I 5 50° (approximate),  the  heating  data  are  higher  than  heat  trans- 
fer calculated  from  the  small-cross-flow  theory. 

3. For 161 2 50° (approximate),  the  heat-transfer  data  follow a turbulent  distribu- 
tion  calculated  according  to  the  method of Spalding  and  Chi. 

Windward nearly  spherical end 

1. Peak  heating  occurs  approximately at the Newtonian  stagnation  point (s/rc = 1.188) 
with  the  peak  value  being  predicted  within  5  percent by the  three-dimensional  method of 
Libby. 

2. For 0.2 5 s/rc 5 1.45, the  laminar,  locally  similar,  blunt-cylinder,  cold-wall 
distribution of Beckwith  and  Cohen  gives  acceptable  results. 

Sweep  Angle of 40° 

1. The  heating  on  the  cylindrical  section  only is transitional  along  the  stagnation 
line  (bracketed below and  above by laminar  and  turbulent  infinite-swept-cylinder  theory) 
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as predicted by the  cri teria of Bushnell  for  transition  on  leading  edges void of boundary- 
layer  contamination  from  adjacent  surfaces. 

2. For  I @ I 2 40°, as s/rc increases  the  heating  data  approach  the  turbulent dis- 
tribution  calculated by the  method of Spalding  and Chi. 

Langley  Research  Center, 
National  Aeronautics  and  Space  Administration, 

Langley  Station,  Hampton, Va., April 7, 1969, 
124-07-02-60-23. 
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(a) Entire model. 

Figure 1.- One-quarter-scale model  of graphite LM fuel  cask (GLFC). All l inear  dimensions  are in centimeters. 
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(b) Details of intersection of nearly spherical end and cylinder. 

Figure 1.- Concluded. 
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270' - 90' 

,475 

Figure 2.- Grid model. 

18 



(a) A = 0'. (b) A = 20'. (c) A = 40'. 

Figure 3.- Schlieren  photographs of $-scale model of LM fuel cask. &,= 6.0. L-69-1318 
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(a) A = oO. 

Figure 4.- Shock-standoff-distance  distribution. M, = 6.0; R = 1.0 X lo6. 
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(b) A = MO. 

Figure 4.- Continued. 
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(c )  A = 40°. 

Figure 4.- Concluded. 
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(a) Camera  view. 
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Figure 6.- Model orientat ion  at A = Oo. 

24 



h 

h ~ ~ , ~  = 

0.86 
.87 
.90 
.92 
.99 

.9 5 

1.05 

1.02 

.95 

O0 

-\ 

r s/rc = 3.475 

'/ 
Figure 7.- Nominal  heat-transfer-coefficient  contours  superimposed on camera view of g r i d  model for A = Oo, t = 0.74, R = 0.96 X 106, and 

hl,-A=oo = 3.70 X 102 W/;nz-OK. 
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Figure 8.- Nominal  heat-transfer-coefficient  contours  superimposed  on  camera  view of gr id  model for  A = 0'. t = 0.61, R = 0.96 X lo6, and 
h,C,A=OO = 3.68 X lo2 W/mZ-OK. 
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Figure 9.- Circumferential  heat-transfer-coefficient  distribution  for A = Oo, R = 0.96 X 106, and  h,C,h=Oo = 3.70 X 102 W/mz-OK. 
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L-69-1320 
Figure 10.- Photographs of phase-change  patterns  at A = 20'. 
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(a)  Camera  view. 

\ 

Mm = 6.0 

(b) Profile  view  perpendicular to stream. 

Figure 11.- Model or ientat ion  at  A = 20'. 
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(a) Contours  superimposed  on  camera  view of gr id  model. 

Figure 12.- Nominal  heat-transfer-coefficient  contours  for A = ZOO, t = 0.72, R = 0.99 X 106, and hlC,A=200 = 3.49 X 102 W/mZ-OK. 
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Figure 13.- Photographs of phase-change  patterns  on  windward  side of nearly  spherical  end  at A = 2@. 
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Figure 16.- Circumferential  heat-transfer  distribution  for A = 20°, t = 0.72, R = 0.99 x 106, and  hlC,,=@ = 3.50 x 102 W,&’-OK. 
Turbulent  hlC,A=200 = 6.54 x 102 W/m2-OK. 
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Figure 17.- Spanwise heat-transfer distribution for A = 200, t = 0.72, R = 0.99 X 106, and hlC,A=200 = 3.5 x 102 W/mZ-OK. 
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Figure 17.- Concluded. 
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Figure 18.- Heat-transfer  distribution  along  windward  ray of nearly  spherical  end  for A = 200, t = 0.75, R = 0.97 X 106, and h 3 ~  = 5.94 X 102 W/mZ-OK. 
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(a) Camera view. 

(b) Profile view perpendicular to stream. 

Figure 20.- Model orientation at A = 400. 
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Figure 23.- Spanwise heat-transfer  distribution for A = 40°, t = 0.69, R = 0.96 x 106, and h,c,A=4p = 2.76 x 102 w / ~ - O K .  
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Figure 23.- Concluded. 
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