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,Abstract

During late December 1966 and January 1967 the elliptically orbiting

satellite OGO-III entered the magnetosphere within 30 0 of the smbsolar point

and within 10 0 of the geomagnetic equator. This permits the measurement

of rb, the distance to the magnetosphere boundary, which is ia necessary

parameter for the Mead model magnetic field calculations. The electron

fluxes measured by an electron spectrometer and an ion chamber on OGO-III

are correlated with electron fluxes on the geostationary satellite ATS-1

at the exact tame when both satellites are on the same drift shells as

calculated from the Mead model magnetic field with separations in local time

up to 180°. During quiet times an absolute comparison of the fluxes from

50-1000 keV gives a linear relationship indicating agreement: of the measure-

ments over a three order of magnitude range of intensities. During substorm

increases the ATS-1 measurements have similar profiles but are delayed in

time with respect to each other. The observed delays are smaller for

higher energy electrons and larger for greater separations in local time.

As an example, the measured delays for 50, 150 and 400 keV electrons on

January 11, 1967 when the local time separations was ,, 110° are 26, 13-17

and 5 minutes, respectively. The observed delays are consistent with

newly created electrons being produced in a region near local midnight.

These newly produced electrons then gradient drift: past the two satellites.

The production region is shown to be 30 0 - 600 in width and about 4 earth

radii in depth.

T	 ^:
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1. Introduction

The work described in the following grew out of an attempt to understand

the complex variations in the energetic electron intensities in the outer

Van Allen belt. That large variations in outer zone electron intensities

occur during magnetic storms has been known for more than a decade, and studied

by numerous investigators (e.g., see Hess, 1968, Chapters 6 and 10). These

variations were clearly evident in the electron spectrometer and ion chamber

measurements on the OGO-I and OGO-III satellites (50 keV to 4 meV range

(Pfitzer, 1968; Pfitzer and Winkler, 1968; Kane, 1967)) beginning with the

last solar minimum in 1964 and extending to the present. However, the

infrequent traversals of the belts by the 000 spacecraft (orbital periods

of the order of two days) created insurmountable problems for outer zone

studies, as important time variations of the electron flux occur in hours

or minutes. The geostationary orbit of ATS-1, on the o+,.her hand, permits an

excellent detailed examination of time variations in the fractional second

up to seasonal time scales (Lezniak et al., 1968; Lezniak and Winkler, 1968;

Parks and Winkler, 1969), but the orbit covers a very limited region of the

magnetosphere. Since both the ATS-1 and the OGO-III satellites have been

instrumented with very similar energetic (50-1000 keV) electron spectrometers,

the correlation of the two satellites in the outer zone provides the

possibility of gaining insight into the space-time distribution of the radiation.

Part 2 below is an exercise designed to test the applicability of

known models of the distorted magnetosphere during quiet conditions, and

to build confidence that under these known conditions, the spectrometers

could be brought into simultaneous agreement at various points on camnon

drift shells ki'the very slowly changing outer zone. In Part 3 the ccmparisor4

is extended to cases of large electron flux increases during magnetospheric
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substorms typified by cTa oral zone bay events (Parks et al., 1968; Jelly and

Brice, 1967). The time variation of these events and evidence that they

represent freshly accelerated particles has been given by ATS -1 results

(Lezniak et al., 1968; Park. and Winkler, 1968) as well as by lower

altitude polar orbiting vehicles (MODianmid, 1969; Jelly and Brice, 1967).

Recently, Arnoldy (1969) has presented evidence that the characteristic

50 keV electron flux increases of about one hour's duration seen by the ATS-1

spectraneter at all local times are delayed from midnight bays by an amount

roughly proportional to the local time, and of the correct magnitude to

be interpreted as drift effects. In what follows we have brought the two-

satellite technique to bear on this problem and although with fewer cases,

have b(%,,6 hble -to confirm Arroldy's ideas and to examine the energy dispersion

and timing of the. events in some detail.

2. Quiet Day Correlations

The ATS-1 satellite which is in geostztionary orbit at 6.6 Re

slowly with respect to the radiation belts. Since the electron drift shells

are approximately circular even in the distorted magnetosphere the satellite

moves approximately along a given drift shell while increasing its location

in local time 15° per hour.

Since the satellite remains on a given drift shell for an extended

period of time it is possible to correlate easily the ATS-1 data with all

the passes of the elliptically orbiting satellite (OCA-III) which crosses

the drift shells more rapidly. A time can always be found when both ATS-1.

and the elliptically orbiting satellite are on the saute drift shell and

thus a study of the azimuthal depandence of the fluxes on drift shells

intersecting the ATS-1 orbit can be made. One must, however, be able to

cal:.Uate the electron drift shells before a study of the azimuthal
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dependence can be successful. Although the Mcllwain L parameter as generally

used provides a first , approximation, it is not very effective for distances

greater than s RQ . In this paper we have used the Mead model description

of the magnetic field (Mead, 1964) for calculating the drift shells. This

earlier Mead model uses only the location of the boundary at the subsolar

point whereas a later version (Williams and Me;4, 1965) depends on both the

location of the boundary and the strength of the tail field. We halve no data

available at present which will give us the strength of the tail field during

our period of comparison. We are, however, able to measure the location

of the boundary at the subsolar point and therefore the earlier Mead, model

is used in this analysis.

During late December 1966 and during January 1967, the OGO-III satellite

entered the magnetosphere within 30 0 longitude of the subsolar point and

within 100 of the magnetic equator. It was therefore possible to measure

the location of the magnetopause within a few hours of the OGO-III and

ATS-1 correlation. The boundary crossing as determined by the 50 keV electron

flux cutoff is used to determine the input parameter r b (the distance to the

boundary in earth radii) for the Mead model magnetic field calculations.

Assuming constancy of the first adiabatic invariant and using the Mead

model magnetic field, the drift shell passing through a specified location

of ATS-1 is determined for electrons having a pitch angle a = 90 0 . The

following procedure is used for determining the time when both ATS-1 and

OG -III are on the same drift shell.

1. A drift shell is determined which passes through the position of

the ATS-1 satellite (at local time LT and distance 6.6 
e) at the time

of the OGO-III 6.6 Re
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2. The exact tom'- is at which OGA-2II passes through the above calculated

drift shell is then noted. This time may differ from the initial time in

step 1 by as much as 45 minutes. However, ATS-1 changes its local time

by only 12 0 during 45 minutes, and moves almost parallel to the calculated

drift shell and hence a second iteration and calculation of a new drift

shell is, in general, not necessary.

3. The time is at which OGO-III crosses the calculated drift shell is

then also the time when ATS-1 cro3c-as this same drift shell and is the time

at which an absolute comparison of fluxes can be made. Figure 1 shows the

ATS-1 and OGO-III orbits as well as a sample drift shell for January 3 1.9, 1967

whers rb is measured to be 10.5.

The A35-1 electron spectrometer F,.nd the OG+O-III electron spectrometer

and ion chanter have been calibrated, in the laboratory to give absolute

intensity measurements. The following earparisons of the instrurwnts in

spam will not only study the azimuthal electron distribution but also check

the accuracy of the laboratory calibrations. Four separate comparisons are

possible and will be described below.

The first is the comparison of the 50-120 keV OGO-III electron spectro6eter

chw=-xl and the 50-150 keV ATS-1 electron spectroniater channel. The energy

intervals in general overlap but are not the same width and hence a

spectrally dependent correction must be made to tYe measurements. For typical

outer zone spectra this correction is less than 10% for the 50-120 keV

channel. The ATS-1 and OGO-III fluxes are plotted versus tine and the

comparison is made at the time is when both instrments are on the same

drift she'll. Figure 2 shows the ATS-1 and OGO-III comparison on a typical

quiet day. The OGO-III fluxes show the distribution observed by OGO-111

as it moves tiv. ough the radiation belts !A 	 almost radial direction

(see Figure 1). The gradient is very flat for 50-120 keV electrons when

IMF
R
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compared with the higher energy cha= els. The time is is .indicated by the

line labeled "S" in Figure 2. We note in the example that this is the

precise tire at which the fluxes an OGU-III and AW-1 are in best agreement.

Thirteen such passes were available wh--n OGO-III entered the radiation belt

U	 near the subsolar point, near the geanagnetic equator and when the pitch

angle of the electrons measured by OGO-III and ATS-1 were almost the same

(60 < a < 85). For each of these cases the rates at the time %: were compared

and a correlation plot was generated in which OGO-III fluxes are plotted

versus the ATS-1 fluxes (Figure 3). We note the excellent correlation for

the 50-150 keV electrons. A best fit straight line has been drawn through

the quiet time points (solid circles) which is at the same tim, the line of

exact absolute agreement of the two instruments. No correction has been

made to bring these fluxes into agreement since the snectrally delvndent

correction is smaller than the uncertainty in drawing the best fit curve.

The triangles represent canq=isons made during substorms and lead to important

results which will be discussed in the next section of the paper.

The second comparison is between the sum of the 120-290 keV and the

290-690 keV channel of the OGO-III spectrometer and the 150-500 ke pi channel

of the ATS-1 spectrometer. For this comparison we find that the difference

in the two energy intervals is substantial and therefore the spectxal

correction is more important. One can estimate the correction by calculating

the difference from the typical measured spectrum which has the form

f(E) = E Y where Y is generally between 2.5 and 3.0.

	

690	 690

f (E) dE	 E Y dE

_	 120	 120

	

D - 500	 = 5^0

f (E) dE	 E Y dE

	

150	 150

The ratio D is
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D = 1.55 when 'y = 2.5

D=1.66 when #y3.0

As in the case of the 50-150 keV fluxes ! the Wk-111 120-690 keV fluxes

are plotted versus the ATS-1 150--500 keV fluxes without applying any

corrections to bring the flues into agrf.^ement. In Figure 4 one finds that

as in Figure 3 most of the points fall, along a well ;defined straight line.

One finds that there is a systematic discrepancy D' which is

D' = J(120-690 keV) , 1.9
J(i50-500 keV

D' is somewhat larger than the calculated correction; however, the agreement

between the two instruments after accounting for the correction is better

than 15%. In what follows we have used D' = 1.9. Once again in Fiqure 4

points during substorms are indicated by triangles.

The third comparison is between the OGO-III 690-1700 x+J electron channel

and the ATS-1 500-1004 keV electron channel. This canparison suffers

because of poor statistics in the OGO-111 measurerent and also because of

a discrepancy in the energy coverage of the two channels. The correction,

D, can again be estimated, and we find D = .59 for y = 2.5 and D = .53 for

y = 3.0. The correlation plot of Figure 5 shows the discrepancy D' to be 1.2.

The scatter of the points makes a comparison of better than 50% impossible.

Because .^f the poor statistics of the OGO-III 690-1700 keV channel on

this shell a fourth ccnparisor, has been made. The ion chamber on OGO-III

has been shown to be sensitive to electrons above 600 keV (Kane, 1967).

This ion chamber, however, is an omnidirectional instrument -thereas the

ATS-1 spectrcmeter is directional. a sst the flukes near the subsolar point

during quiet times at 6.6 Re have been shown by ATS-1 to be almost isotropic,

and therefore dividing the ion chamber rates by 47r will give the approximate
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directional flux. Although the absolute electron flux as calculated from

the ion chamber is given an Figure 6 it is important to note that one may

expect an error of up to a factor of 5 in the electron calibration of the

ion chamber when ccampared with Vh sl electron spectrometer on OGO--111

(Kane et al., 1967). However, the most important result. shown by Figure 6

as well as Figures 3 to 5 is t.nat in all cases the correlaton is linear as

one wcrald expect unless one of the instrwents were to saturate at the highest

fluxes, or unless the real magnetic field departs from the Mead model due to

distortions which also change the particle fluxes. Figures 3 to 6 show that

the electron fluxes at the two satellites are proportional over a three order

of magnitude range of intensities, a large range of magnetopause locations

(9.0 < rb < 12.5) as well as a range in local time separations of up to 167".

All the data plotted in Figures 3-6 are contained for refaizmce in Table I.

It was found initially that the comparison of the ATS-1 and OGO-III

flux values usirxf the McIlwain L parameter was quite unsuccessful as the

scatter of points was large and the intensities measured bt the two alatellites

we ,e not linearly related. This is perhaps as should be expected since

the higher fluxes generally correspond to a more distorted magnetosphere and

hence a greater error in the McIlwain L parameter. we mmwit conclude that

the Mead, model gives a good representation of the act al electron drift

shells in the quiet-day magnetosphere. This substantiates the result of

a somewhat more crucial test described in an accompanying paper (Pfitzer

et al., 1969).

3. Substorm Correlations

Since the scatter of points, especially in Figures 3 and 4, is small,

the tuna points (labeled 1 and 30D corresponding to January 1, 1967 and

December 30, 1966) which deviate so markedly from the curve aroused consfierable

- __
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interest. it was found that these two points occurred during substorms as

indicated by the presence of a magnetic bay at local midnight. A search of

the remainder of the data revealed two other cases in which the correlation
tame is occurred during a substorm. These are on January 11, 1967 and

January 15, 1967. Another substorm, event was also found on February 8, 1957,

but the data was not used for the correlation plots because the OGO-111

spectrometer pitch angle is very low Ca = 250 ) and differs frcJra the ATS-i

pitch angle (a = 80 0 ) by a large amount.

The comparison of both the 50-150 keV and the 150-500 keV channels on
these disturbed days are plotted in detail in Figures 7-11. In these tagures

the OGO-111 120--690 keV fluxes are divided by 1.9, the ratio determined

experimentally by the quiet tine correlations. Thus, the effect of the
different energy window widths is reimved. One should probably at this point
refer again to Figure 2, against which the substorm fluctuations in

Figures 7-11 can be cagpared. All of the cases in Figures 7-11 occur during

considerable 4..UL= Va—..adonis au" although in sortie  cases the fluxes agreed-

at time ts, we will shunt below that this was fortuitous. In fact, during

disturbed tunes the Mead model may be only a crude approximation to the

actual magnetic field and locating the time is becomes very uncertain.

We begin the discussion with Figure 7 which shows the highest flux and

the best correlated tune variation of the substorm events and occurred on

January 11, 1967. If one were to observe the OGO-111 spectrometer fluxes

without the aid of the ATS-1 correlation, one would probably arrive at the

conclusion that CGO-111 was observing a storm-time radial distribution.

Ham, the fact that appargntly identical distributions are seen by

t1u geostationary ATS-1 satellite which moves very slowly with respect to

the radiation belts, suggests that these apparent spatial prof les are
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instead explicit time fluctuations. The following observations about the

January ll, 1967 event. will serve to make clear the exact nature of the

time-space relationship of electron fluxes observed by the two spacecraft.

1. The iraase in the rates is preceded by a large magnetic bay near

local midnight (College) with onset at 1252 UT.

2. The ATS-1 and OGO-III measurements in both channels show a remarkable

similarity in their time history although there is a well defined time lag

in the OGO-III measurements.

3. During the substorm event observed by ATS-1 at 6.6 e, the OGO-III

satellite moved from 8.3 a to 5 Re, approximately 3 earth radii; but in

spite of this radial motion the prof? les were similar.

4. The increase for the 50-150 keV channel is first observed by ATS-1

(LT = 55°) at 1254 UT and by OGO-III (LT = 165°) at 1307 iTI', a time lag

of 13 minutes.

S. The increase for the 150 -500 keV channel is first 'observed by ATS-1

at 1253 and by OGO-III at 1258, a time lag of 5 minutes.

6. The peak flux for the 50-150 keV channel is observed at 1301 In

by ATS-1 and 1327 UT by OGO-III, a time delay of 26 minutes.

7. The peak. flux for the 150-500 keV channel is observed at 1256 UT

by ATS-1 and at 1313 UT by OGO-III, a delay of 17 minutes.

Thus:

8. The time lag of the onset and of the fl= maxima  are energy dependent.

9. The rise time of the event is more rapid for ATS-1 than for OGO-111.

Using the above observations we arrive at the following conclusions:

Coincident with a magnetic bay observed at local midnight electrons of energy

in the range 50-500 keV appear in the radiation belts in a region near local

midnight. This production region is at least 3-4 earth radii in depth

_:tea
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. I Iand33 1-60' -.-, w" I th and continues to produce electrons for about
one hour. These- newly craated electrons begin to gradient drift in the earth's

magnetic field and are --first observed by the A II-S-1 satellite close to midnight.
Since the gradient drift speed is dependent on energy, the higher energy

electrons which have a higher drift velocity will arrive first at a specified

local time. This energy dispersion gives rise to the energy dependent laq

times and to the different rise times observed by satellites located at

different local times.

At this point, in order to obtain a clearer understanding of the drift

pherzoena a computer study was employed. A tWical substorm obsez-ved on the

ground as a negative bay ard at ATS-1 as a large increase in eie 50-500 keV

electron flux near local midnight was assumed to ):;b a source of new ).:)C-Xtic'L'es.

The prestorm spec 	 was assumed to remin fixed and the increases 3:n -&,e rate

of the three energy channels were assured to be due to the additi.or, of these

newly accelerated electrons. Figure 12 indicates the initial pre-substorm

spectrum, the final spectrum at the substorm maximum and the dif'ference

between the two spectra at local midnight. The substorm lasts about an hour,,

the fluxes rapidly rise to a maximmi in about 5-10 minutes, have a rather

broad peak art then decay to zero. The computer program traces the drift

of each electron on its drift shell, at the drift speed consistent with its

energy., in a dipole field, free of electric fields or time variations.	 The

Program then calculates the count Late of a given detector having a speci•ikek'Al

energy response situated at some local t:Uw. Figure 13 shows the cmputar

calculated rate versus tiTm history of the 50-150 keV and 150-500 keV electron

channels at local t:Lues cf- LT = 0 0 , 90* and 180*. Prior to the time necessary

nor one cwnqplete revolution around the earth,, the time profile at IPL = 01

is the profile of the source. About 60 minutes after onset, the 150 keV

electrons which were injected at times t = 0 will have been able to complete



-12-

one circuit around the earth and will start to contribute to the count rate

of the 50-150 keV channel (the dashed line in Figure 13 continues to show the

input: profile). The higher energy electrons in the 150-500 keV channel have

a much greater drift speed and electrons which have made one or more
0	

revolutions contribute to the count rate at. LT = 0 0 long before the source

decays. The input pulse shape is thus not observable in this energy channel

(although the dashed curve indicates the input pulse shape in the figure).

At LT = 90° and LT = 180° there is an initial delay before the increase is

observed. The increase is first seen in the 150-500 keV channel and then

in the 50-150 keV channel. Furthermore, for greater local times the slope

of the initial rise is less because of the larger energy dispersion. Because

of the steep injection spectrum the 400-500 keV electrons do not contribute

significantly to the count rate of the 150-500:keV energy channel and thus

the first noticeable increase in the 150-500 keV energy channel corresponds

to the arrival of approximately 400 keV electrons, i.e. below the upper edge

of the window. This admittedly over-simplified representation of the real

dynamic magnetosphere has neglected electric fields, time fluctuatYons of

the magnetic field, all non-dipole effects, various tyy^-.,s of diffusion and

loss mechanisms, the finite spatial extent of the source, and undoubtedly

numerous other complications.

Using the above conmputer study we now propose that when the 150-500 keV

electron channel on ATS-1 and OGO-III first shorts an increase it corresponds

to the arri-val of the 400 keV electrons, and when the peak is reached 'the

150 keV electrons finally arrive. Similarly for the 50-150 keV energy

channel the initial increase corresponds to the arrival of .the 150 keV electrons

and the maximum corresponds to the arrival of the 50 keV electrons. The

theoretical times required for the electrc.- to drift 110 0 (the separation of



ATS-3 and OGC - Ix in local	 is 6, 15 and 34 minutes, respectively for

400, 150 and 50 keV electrons which agrees ap.-aximately with the delays

between the OGO-111 ar4,1 ATS--1 measure is or Se 1:3-17 and 26 mi.nt,ttes .

Furthermore, if the onset of the magnetic bay indicates the start of the

event, an c%trapolation backwards in time shows that the source inist be

located at a,:.pproximately 0100 hours local ti`s.

Having discussed the azimuthal drift we nm study the other four

substorm associated events. Figures 7-11 represent all of the currently

available events for the period Decetioex 1966 to August 1967 observed by both

satellites. Fine events in Figures 8-11 are not nearly as large or as

well defined, as the January 11, 1967 event (Figure 7) however, their

general behavior will tend to reinforce our conclusions. The December. 30th

event (Fide 8) shows a smll substorm at A^"S-1 in the 50-150 keV energy

channel at 1030 Ur and OGO-17.x; slows a statistically significant peak at

1130 UT. The observed separation in time is about 1 hour, which is the

approximate drift time for 50 keV electrons corresponding to the actual
.:it

diff(arence in lr-cal titre of the satellites of 167°. The higher energy channel

shows an increase at ATS--1 but nothing for OGO-711.

The January 1, 1967 event (Figure 9) is quite crmplex; however there

is an indication that the dip as seen by ATS-1 at 1030 UT Vnv.ch is followed

by a sharp rise is reflected by the dip at 1055 UT ald the not quite so sharp

rise seen by OGO-111. Once again the delay tims, are approximately consistent

with drift period.

The January 15, 1967 event (Figure 10) is quite small in anVlitude

and not very well defined by OGO-III; nevertheless, we suggest 	 the peak

seen by ATS-1 at 1410 UT is reflected in the rather flat peak observed by

060-111 at 1450 UT.
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The February 8 1 1967 event (Figure 11) is very complex in structure

showing several bays near the shell crossing tune. It is, however, the only

event when OGO-111 is closer to the source than ATS-1. OGO-111 (LT = 141 0 ) shows

a rather well defined increase starting at 2216 Ur and ATS-1 (LT = 1860)

shows a rather broad slow increase starting at about 2230 UT. Thus, an this

case although the relative position of the two satellites in local t=ie

was reversed, the spacecraft closer to midnight detected the event first.

We must keep in mind, that for this event the OGO-111 pitch angle is 25'11;

whereas, the ATS-1 pitch angle is 80° and hence the fluxes cannot be compared

on an absolute level. We show on Figures 7 -11 the time is for quiet day draft

shell coincidence of the two satellites. One can see that agreerreut of flues

at is in a given channel may be entirely due to chance during these disturbed

times (e.g. Figure 7) .

Figure 14 has been prepared as a summary of the substorm increases. the

flux value prior to the initial increase is used as the base line and a

straight line is drawn from the apprcacimate onset to the maximum. We note

that whenever both ATS-1 and OGO-III data are available the slope of the measure-

ment having the larger local time is always less and the amplitude always

smaller. We also note the general trend of a smaller slope for the larger

local times and larger delay times for greater separations in local time.

The above observed delays and changes in slope cannot be due to the

relative radial separation or the relative motion of ATS-1 and OGO-III because

during two of the events (January 1, 1967 and January 11, 1967) OGO-III was

outside the ATS-1 drift shell and moving inwards toward it and during two of

the events (December 30, 1966 and January 11, 1967) OGO-III was inside the

drift shell and moving inwards away from it.

The only conclusion consistent with the above observations (delays

which are dependent on energy and local time separation) is that the measured

increases are due to newly accelerated electrons produced in a localized



0- t ,:	 wtieh th2r. qreidient drift past the location of
i.the two	 since all of the events are associated with

r	 ected,r agIn&zic buys, since, *,.t as well known that electrons are in.1	 coincident

the bays (Lezniak et al., 1968; McDiarmid et al. 0 1969; Parks and

Wanckler, 1968) and since the t.Lve lag between the onset of the bay and the

a=ival of the electrons tends to zero when the measurement is made closer to

local midniq: tC, we muses conclude that the observed electrons are injected

near local midnight. Arnnoldy (1969) has also observed that the delays between

r,agnetic bays near local	 and ATS-1 electron fluxes are a function of

Ilocal ti ►  and indicate that -6ne del ays go to zero near local midnight.

Since the observed delays with respect to the onset of the bay goes to

zero as the local time approaches local midnight the source must be located

near local midnight. FurtheL-mre, in the substarm comparisons the OGO-111

location while observing the sLfbstorm fluctuationsions varied from abotr'C- 8.5

to 5.2 Re .  Therefore, wa conclude that the radial extent of the Source region

must be at least fran 5.2 Re to 8.5 R e

4. Discussion

The application of the two-satellite technique to the outer radiation belt
studies of electrons has certain clear advantages. This is particularly trite

in the present case where both satellites are close to the equatorial plane,

are moving rather slowly and measure the same type of particles in the same

pitch angle range with calibrated spectrarre-ters giving reasonably energy

select-ion. it is thus not necessary to use associated geophysical phenomena
such as bays or ricmeter absorotion events whose exact temporal connection

with the trapped radiation is often difficult to establish.

The conclusions that all of the subst-orm events studied herein show evi-

dence for drifting clouds of electrons starting near the midnight sector differ
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fran those of other recent investigators including Jelly and Brice (1967),

Parks and Winkler (1968) and McDiarmid et al. (1969). In all of these

three papers a very extended .source was inferred particularly in the paper

of McDiarmad in which the source is shown diagramatically stretching from

midnight to noon during a substorm. We first make the observation that the

presence of precipitation at a given local time, ,although indicative of

a strong perturbation mechanism which is depleting the trapped, electrons,

is nevertheless not in contradiction to the major source of these trapped

particles beirng near the midnight sector. We know of no reason why a drifting

cloud containing a relatively high intensity flux of newly produced electrons

should not precipitate continuously as it moves around in local time. one

has thus the concept of a "drifting rain cloud" rather than a "leaky bucket"

or "splash catcher" model of the radiation. Precipitation from a drifting

cloud was suggested and searched for by Jelly and Brice (1967) but with

inconclusive results. The loss of electrons from a drifting cloud is quite

consistent with a decrease of intensity observed in this paper as local

time increases which was also shown earlier in the paper of Lezniak et al.

(1968). Such precipitation may be initiated by the wave-particle instability

mechanism of Kennel and Petschek (1966) or by fluctuations inherent in the

rnagnetosphere at least throughout the horning hours.

The recent conclusions, about the source size of McDiaxmid et al. (1969)

were based on time eamparisons of bay associated electron increases detected

by the low altitude polar orbiting satellite, Alouette. It is our opinion

that the effects described in the present paper would have escaped notice

in the Alouette measurements because of the limited ability of such a satellite:

to measure accurately the initial time profile of the bay associated increases.



-17_

Alt-iough it is possible that the "drifting rain cloud" concept may be

an important mechanism by which energetic electrons are produced and dis-

tributed into the outer zone, certainly the electrons in the outer radiation

belt are affected and perhaps owe their origin to a wide variety of processes,

acme of stochastic nature,, others associated with all of the complex sudden

changes associated with the solar wind, etc. The substorm 3.ncreases seem

more distinct than other changes because of their association with the auroral

bay and electrojet phenanena, and because the effects are large: enough and

sudden enough to make the injected cloud detectable on its first circuit

around the magnetosphere. Details of the substorm-associated magnetospherac

motions and a possible generation mechanism for these drifting clouds are

discussed in a related paper (Lezniak and Winkler, 1969).

Finally, the definition of the "source size" as given in this paper is

certainly only a crude estimate based on a few events. The computer model

which was used to help visualize the drift process is much oversbTplified

c aired ,,". 	 the r0ral Iiagnetospher c . ThuS the ct be aida""y of the. warC:v

in the region of increasing local times away from midnight may be difficult

to define and may depend on the degree of the disturbance of the magnetosphere

and other factors.
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1' figure Captions

Fig ure .-	 A s=pole of a drift shall calculated using the Ind model magnetic

field ark the ATS-1 and CG O-111 orbits shox ring the s;tmmltancous

crossing of the drift shell. The CCO-111 orbit is pr:o3eeted

into the ec atorial plane.

Figure 2	 Snple mi.et tirre fluxes for ATS -1. and OC-0-III showing typicalical

OGO-111 radial, distributions. Ve line marked "S" indicates the

time is when the two satellites are on a can drift shell.

Figure 3	 Absolute canparison of the 50--120 keV OGO-111 electron channel
and the 50-150 ke',7 ATS-1 electron channel. The solid circles

indicate ca par:isons made during quiet times and the triangles

represent corparisons made during substorms. The numbers next

to the data points indicate the day in January, 1967 when the

data was obtained. 30D refers to 30 December, 1966. (Refer to

'fable 1.)

Figure 4:	 Absolute caniparison of Gr ,.: 120-690 keV OGQ-III electron clhaimel,

and the 150-500 keV AT.	 Aectron channel. The sol.rd circles

indicate carparisons made during quiet times and the triangles
represent ccmparisons made during substorms. The numbers neat

to the data points indicate the day in January, 1967 when the

data was obtained. 30D refers to 30 December, 1966.

(Refer to Table I.)

Figure 5:	 Absolute comparison of the 690-1700 keV OGO-ZIT electron channel

and the 500-1000 keV ATS-1 electron channel. The solid circles

indicate comparisons made during quiet times and the trr.ancTle

represent comparisons made duri.nq substorms. The numbers next

to the data points indicate the day in January, 1967 when the
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data was obtained. 30D refers to 30 Decwbea:, 1966.

(Refer to Table 1.)

Figure 6:	 Absolute: omrparison of the electron fluxes cal,culatod from

the OGO-°1l1 ionization chamber (sensitive to electrons abovo

600 keV) with the 500-1000 keV ATS-1 electron channel. The

solid circles indicate omr.arisons made (luring crui.et times and

the, triangles indicate comparisons di= rK substorms. The

numbers next to the data points indicate: 44.he day in January, 1967

when the data was obtained. 30D refers to 30 Decem er, 1966.

(Refer to Table x.)

Figure 7:	 ATS-1 and Oct}-Ill 50-150 keV and 150-500 keV electron fluxes

for the January 11, 1967 substorm. The line labeled ►► S" represents

the tirnve is when the two satellites are on the same drift shell..

The small insert represents the relative positions of ATS-1

and OGO-III.

Figure 8:	 ATS-1 and OGO-III 50-1:50 kel1 and 150-500 keV electron fluxes

for the December 30, 1966 substorm. The line labeled "S"

represents the time is when the two satellites are on the same

drift shell. The small insert represents the relative positions

of ATS-1 and WO-M.

Figure 9:	 AT-9-1 and OGA-III 50-150 keV and 150-500 keV electron fluxes

for the January 1, 1967 substorm. The line labeled `'
I
S" represents

the time is when the two satellites are on the same drift shell.
The small insert represents the relative positions of ATS-1

and OGO--III.

Figure 10: ATS-1 and OGO--III 50-150 keV electron fluxes for the

January 15, 1967 substorm. The line labeled ►►S" represents
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the tum is when the two satellites are on the same draft shell.

The small insert represents the relative positions of ATS-1

and OGG -111.

Ficpx e 11: ATS-1 and OGO-III 50-150 keV and 150-500 keV electron fluxes

for thr February 8, 3.967 substorm. The line labeled "S ► `

represents the time when bath satellites are on the same

drift shell. The small insert represents the relative position

of ATS,^l and 0G4-' II. For this event the c-IIT Hitch angle

is 25 0 and the ATS-1 pitch angle is 800.

Figure 12: Typical assr n differ%ntial spectrum at local midnight prior

to the start of a substorm, at substorm maximum and the

differeme in the spec r= between the substorm and prestorm.

Figure 12: Computer calculated rate at local time of 0 0 , 90 0 and 180 0 due

to the injection of fresh electrons at local midnight. The

dashed curves give the input pulse shape at LT = 0.

Figure 14 s Coraposite diagram showing the magnetic nays, the onset times,

slopes and amplitudes of the five substorm events.
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