General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)

Interim Scientific Report 2

TECHNIQUES FOR THE REALIZATION
OF ULTRARELIABLE SPATEBORNE COMPUTERS

By: J. GOLDBERG M. W. GREEN K, N. LEVITT H. S. STONE

Frepared for:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

ELECTRONICS RESEARCH CENTER

575 TECHNOLCGY SQUARE

CAMBRIDGE, MASSACHUSETTS 02139 CONTRACT NAS12-33

"STANFORDSRESEARCH

MENLO PARK, C.A'LIFOYH\HA
v I " . p :

\

EE i
N69-29962

(27 5 |

(PAGES)

Ch 2056 e

INASA CR OR TMX OR AD NUMBER) iEATMRV

FACILITY FORM 802

. -

S'I‘A.\'FOR.D'RESEARCH INSTITUTE

R el

October 1967

Interim Scientific Report 2

TECHNIQUES FOR THE REALIZATION
OF ULTRARELIABLE SPACEBORNE COMPUTERS

Prepared for:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

ELECTRONICS RESEARCH CENTER

575 TECHNOLOGY SQUARE

CAMBRIDGE, MASSACHUSETTS 02139 CONTRACT NAS12-33

By: J. GOLDBERG M. W. GREEN K. N. LEVITT H. S. STONE

SRI Project 5580

Approved: D. R. BROWN, MANAGER

COMPUTER 1ECHNIQUES LAEBEORATORY

J.D.NOE, EXECUTIVE DIRECTOR

INFORMATION SCIENCE AND ENGINEERING

PRECEDING PAGE BLANK NOT FILMBR.

ABSTRACT

This is the second scientific report of a study of the development
techniques for the reelization of ultrareliable, high-performance, space-
borne computers. The techniques developed are in support of computer
structures in which reliability is achieved through autonomously con-
trolled logical rgconfiguration and fault masking. A multiprocessor
model is described that is particularly appropriate to the attainment
of ultrareliability. Local design techniques, which facilitate recon-
figuration, are discussed for various computer functions, including
memory and microprogram control. Design techniques are presented for
economical, fault-tolerant, data commutation networks. An initial
effort is being directed toward a formal description of program-design

techniques that will facilitate hardware diagnosis and, hopefully, yield

mistake-free programs.

PRECEDING PAGE BLANK NOT FILMED.

FOREWORD

- This is an interim report, summarizing work accomplished during the

first six months of the second phase of a two year program, the goal of

which is the development of techniques for the realization of ultra-

reliable space computers. This study has been conducted in the Computer
Techniques Laboratory of Stanford Research Institute, under the sponsor-
ship of the Elect}onics Research Center of the National Aeronautics and

Space Administration.

The goals of the first phase were to survey the state of the art of

design for achieving ultrareliable spaceborne computers, and to form a

basis for research which would advance that art. The final report, which
resulted from the first phase of the program, was concerned with the

following:

AL s M 0 AT Gl i w.mmunn.mﬁaﬁt;,aa‘ammmmzﬁm&umwmummmmm:z:ﬂiulﬁﬁ&\ﬁ%ﬂ%ﬂﬂi&ikmrﬁu;};}mma;uw

(1) The basic characteristics of an advanced spaceborne
computer

(2) A description of fault-masking techniques for general
logic functions

(3) A survey of codes for storage and arithmetic operations
g (4) Problems of system organization for dynamic error control
(5) Tests for diagnosis of fault conditions

(6) Some initial descriptions of network designs for a recon-
figurable computer, including commutation or interconnec-
tion networks, programmable processing modules and pro-
grammable control units

(7) Error-control techniques for memory systems
(8) Distributed power supply systems
(9) The application of magnetic logic

(10) A survey of the published literature on the attainment of
reliable systems through the use of redundancy.
-+

The goal of the sccond phase is to develop detailed techniques for
the logical design of an advanced, ultrareliable spaceborne computer.
The techniques to be developed are to be used in support of computer
structures in which reliability is achieved through autonomously-
controlled logical reconfiguration and fault masking. In particular,
those techniques have been developed by following a certain method of
approach, which entails certain steps. The first step in the approach
involves the development of a system organization that facilitates

dynamic maintenance processes. On the basis of the selected system

'organization, a detailed logical design is then performed of networks

that are uniquely appropriate for a reconfigurable computer, Thirdly,
diagnostic procedﬁres, reliability enhancement techniques and reliability
analysis measures are developed for these networks, where the require-
ment exists., The next step in the approach requires that software tech-
niques be developed to aid in the diagnosis and detection of failures.
Also, techniques must be developed for designing reliable programs,
Finally, reliability analysis techniques are developed for the overall

systenm,

The report is organized into six chapters and one Appendix. The
first chapter which serves as an overall introduction to the report,
contains the statement of the problem; the goals, methods, and assumptions
of the study; and a brief review of prior work on pertinent aspects of

reliability enhancement; in addition to the organization of the report.

Chapter II is concerned with the principles of multiprocessor sys-
tem design that are particularly appropriate to the attainment of ultra-
reliability, Chapter III contains logical design techniques for networks
identified with the memory, control, and microprogram control functions.
Chapter IV contains design details for commutation networks that are to
perform the important function of data switching in a multiprocessor
computer, Chapter V contains a formal description of program-design
techniques, which will facilitate hardware diagnosis and which will,
hopefully, yield mistake-free programs, Chapter VI contains a brief

vi

g

£
£
i
=

description of other topics considered in the study, namely network
diagnosis, and a survey of the pertinent literature, and also the con-

clusions and a summary of our plans for the remainder of the program.

The report is self-contained at least as far as the statement of
principles is concerned. Detailed mathematical proofs and the descrip-
tion of some hardware designs, varticularly concerning commutation net-
works and arithmetic processing elements have been deferred until publi-

cation of the tinal report. The reader is referred to the first phase

. final report for detailed background information,

The technical studies reported herein are the work of the following

members of the Computer Techniques Laboratory:

Mr, J. Goldberg
Mr. M. W. Green

Professor E, L, Lawler (University of Michigan-Summer
employee of SRI)

Dr. K. N, Levitt
Dr., R. A. Short
Dr. H. S. Stone
Dr. J. B. Turner

All of the individuals contributed to the writing of the various sections
of the report. Mr. Goldberg who serves as Project Supervisor and
Dr. K. N. Levitt who serves as Project Leader are responsible for the

organization and editing of the report.

vii

rnECEDING PAGE BLANK NOQT FILMEL.

CONTENTS

Wil ‘m;fi‘u;u:vi'

ABSTRACT .
FOREWORD .

LIST OF ILLUSTRATIONS &« & 4 o ¢ o + s o o o o o o & s s o
LIST OF TABLES . L] * L] L] . L] . L] . . L . L] . L]

I INTRODUCTION : + o ¢ ¢ ¢ o o o ¢ o o o o o s o o o

A, Statement of the problem . « « « ¢« o ¢ o o « o =«

1.
2.
3.
4.

5.
6.

7.
8'

Multiple-Problem Sets . « & ¢« & ¢ o o s o« =
Highly~Varied and Complex Computations . . .
Computations with a Range of Priorities , .
Variable Capacity of the Earth-Vehicle
Communication Link « « ¢« ¢ ¢ ¢ o ¢ « o ¢ o« &
Failures Which May Be Transient or Permanent
Failures Which May Not Be Independent

or May Not Embrace Single Components
Severe Constraints on Weight and Power . . .
Failures in Most Components . . « « ¢ ¢ ¢ &

B, Statement of Program Goals . . « « & o s s & o &

Brief Review of Prior Work . .« « « ¢ ¢ ¢« ¢ o o+ &

D, Brief Summary of Report . . . « &+ o« ¢ o o ¢ s .

II PRINCIPLES OF MULTIPROCESSOR SYSTEM DESIGN . + . « .

A, Introduction « « ¢ o ¢ o o o o s o +s ¢ o o o o o

B. Multiprocessor System Organization . + « « « .

C. Description of Error-Control Policies . . « . .

D. logical Design, Strategy, and Software Problems
Associated with Multiprocessor-System Design . .

ITII TECHNIQUES OF LOGICAL DESIGN . « &« ¢ o s ¢ o o s & &

A, Introduction . . + « ¢ ¢ & ¢ o o s o o o s s o o

B. The Organization of a Reliable Memory Module , .

1.
2.
3.

Introduction L] . . L] . . * L . L) L L] . & * .
System Description e ¢ 8 o & ® o 8 o & 8 s o
Coordination of Error-Control Modes

ix

iii

xiii

Xv

[N

NN

o b W WWN

]

10
13

20

23
23
23

23
24
27

BB B i i

UL

v

c.

CONTENTS (Continued)

Design Techniques for a Modular, Microprogrammed
Control Unit o « & » &« o & ¢ o ¢ v + ¢ o o o o« &

1. Introduction . « ¢« ¢« & ¢ ¢ o o o ¢ o o o o

2. Schemes for Selection of the Next p-Instruction

a., Composition of the Address Code , . . .
b. Generation of Test Functions
for Branching-Type p-Instructions . . .

3. Schemes for Programmable Selections
4, Schemes foi* Programmable Generation

of Boolean Implicants . « + o & ¢« ¢ o o ¢ o
5, Hierarchy Schemes . . ¢« & & o o« o« o ¢ & o o
6. Conclusions . . « o &+ o o« o o o o o o o o« &

An Improved Realization for Switched-Adaptive Voting

1. Intrbduction * . [] . L] L] * [] L] . * L]
2, Description of a New Scheme . . + + & « o o«

PRINCIPLES OF COMMUTATION NETWORK DESIGN

Al

B.

Introduction . . ¢« o ¢ o« o ¢ o o ¢ s s o o & o s

1, Commutation Requirements . « « + o« « o » « &

2. Prior Solutions to the Commutation-Network
Design Problem « o o o & o o o o s o o s o &

3. The Primitive Building Block of Commutation
Networks « o o o ¢ o ¢ o o o o o ¢ o o o o &

Commutation Networks for Complete Permutation--
Complete Utilization . . + « &+ &« ¢ ¢ &« ¢ o o o &

1. Nonredundant Networks . ¢« ¢« o o ¢ « o « o &
2, Byte-Sliced Commutation Networks . . « « .« .
3. CPCU Networks Insensitive to Cell Failures ,

a. The Stuck-Function Fault

b. An Alternative Single Stuck-Function
Correcting Construction« . «

c. Correction of Bad-Output Fault Types . .

Commutation Networks for Complete Permutation--
Incomplete Utilization . + + ¢« ¢« ¢ ¢ o ¢ o o o« &

Commutation Networks for Incomplete Permutation--
Nonorder Preserving . . ¢ + o « ¢ o o o s s o «

Commutation Networks for Incomplete Permutation--
Order Preserving . +« « ¢ ¢ o ¢ o o o 5 s o o o o

Commutation Networks for "Shorting”

summary L] . . * * . L] . Ld L) . L] . L] L] . L] L] - .

28

28
29

29

30
31
32

34
36

37
37
37
41
41
41

44

45

47

47
50
51

51

55
56

58

64

67
71
74

[P

I e

CONTENTS (Concluded)

V ULTRARELIABLE PROGRAMMING . . + « . & ¢ ¢ ¢ ¢ ¢ s o &

A.
B.

E,

Classification of Program Faults « « «
Faults Arising From Numerical Analysis

1, The Need for Analysis . . + + ¢ v + ¢ o o o
2, Design of Floating-Point Hardware

to Aid Numerical Analysis . « + v &+ 4+ « & + &
3. Detection of Failures Arising

from Numnerical Analysis . . + + + ¢« & o o + o
4. Recovery from De. :ted Numerical

Computation Failuics . o & o o s & o o o o o

Failures Arising From Program Faults
1, Prevention of Programming Faults .,

a, High-Level Languages . . o « o« + o s &
b. Independent Chec.. Calculations
¢. Software Maintenance and Modification . .

2, SUMMATY . . ¢ v . 4 4 4 s s e e e e e e e e
Techniques for Detecting Software Failures . . .

1. Protection Against Incorrect Memory Accesses
2. If and Only If Programming
3. Recovery From Detected Faults

Summary and Conclusions . . « « « & o o s o o & &

VI CONCLUSIONS AND SUMMARY OF OTHER STUDIES IN PROGRESS

Ao
Bo

APPENDIX .

Conclusions . . v v ¢ o ¢ o o o 5 o o s 8o & o o s

Summary of Other Work in Progress . . « o« « ¢ o »

o s e « &+ 8 2 & ¢ o 2 e 0 ¢ o s & s e s & 3

REFERENCES * & = 8 & & ¢ 8 6 e ¢ 8 e A e = 9 s+ & 3+ @+

DD Form 1473

xi

75
75
77
77

79

82

84
85
86

86
89
92

98
99

99
102
105

107

109
109
110

113

115

it

F
=
£
£
z
=
=
=
=
E
=

L e

sl

I

=

PRECEDING PAGE BLANK NOT FILMED.

ILLUSTRATIONS

Fig,
Fig.
Fig.
Tig.
Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig,

Fig.
Fig.

Fig.

Fig.
Fig.

Fig.
Fig.
Fig,
Fig.

I1-1

I11-1
I11-2
II1-3
I11-1
I13-5
I1i-6

Iiz-7
Iv-1
Iv-2
Iv-3
Iv-4

Iv-5
Iv-6

Iv-7

Iv-8
Iv-9

IV-10
Iv-11
Iv-12
Iv-13

Multiprocessor Computer System Block Design . .
Redundant Memory Module . . « . « ¢ « « &« ¢ & &
Fixed-Structure Selection Network . . . « . .+
Reconfigurable Selection Network .,
Programmable Loolean-Implicant Function Network
Twu-Level Microprogram Scheme (After Graselli)

Fixed Program Vauviable Translation Microprogram
Scheme . & 4 v v v L e et e e e e e e e e e

Switched-Adaptive Voting . « ¢ &« &+ ¢ ¢ ¢ o o &
Classification of Data Commutation Requirements
"Crossbar' Rualization of Commutation Function
Bas.ic Cell for Commutation Networks

Network for Complete Permutation--
Complete Utilization ., . . . + « & 4o o & ¢ ¢ &

Byte-Sliced Permutation Network . . . + « + « .

Permutation Networks Insensitive to Single
"Stuck-Function” Fault . . . +« & . + o o o o

Non-Minimal Redundant 4-Permuter, Single
"Stuck-Function' Correcting . . « « o o o « + &

Network for Correcting Bad-Output Faults . ., .

Schematic Representation of Decomposition of a
Complete Permutation--Incomplete Utilization
Network . . [L] . . . L] . * L . . L] L] . * * [] L]

Basic Cell with Augmented Set of Inputs
An N, m Combination Network , . . . « ¢ ¢ o o o
Recursive Approach to m-N Combination Network .

4-8 Combination Network LI ¢ o o . L] o o LI

xiil

11
25
31
32
32
35

36
39
42
44
46

49
50

53

56
57

58
59
61
62
63

sttt itz

bet i AR LREM T OE R s

el

il

0 R O R

it

At

e —

Fig.

rig.

Fig.

Fig.

Fig.
Fig.

IV-14

IV-15

IV-16

Iv-17

IV-18
Iv-19

Redundant 4-8 Combination Network for Correction
of Single "Stuck-Function' Failures « . .

Recursive Approach to Incomplete Permutation--

ILLUSTRATIONS (Concluded)

Nonorder-Preserving Network . . .

An Incomplete Permutation--Order Preserving

Network . .

Recursive Approach to Incomplete Permutation--

.

Order Preserving Network

"Shorting” Network . . . « « o &

Redundant Shorting Network . . .

xiv

.

64

66

68

69
72
73

TABLES

Table
Table

Table
Table
Table

II-1
I1-2

I1-3
Iv-1
Iv-2

Flow Description of Multiprocessor

Functional Requirements of Supervisory

Control Unit . . . &+ « ¢ ¢ « ¢ o &

Functional Requirements of Executive .

Failure Conditions ror Basic Cel .

Number of Cells in Single Stuck-Function

Correcting CPCU Networks

Xv

14

19

19
45

54

I INTRODUCTION

In this chapter we discuss briefly and in general terms, the problem
of realizing ultrareliabie spaceborne computers. Specifically, the chap-
ter contains a discussion of the problem of designing computers that are
appropriate to the characteristics of space missions, the statement of
the program goals, a brief review of prior work on the attainment of ultra-

reliability, and a brief summary of this report.

A, Statement of the Problem

In this section we consider the basic characteristics of space mis-
sion computation, which impose severe constraints on the spaceborne
computer design; and the conclvsions, concerning the design, that are a
consequence of these constraints.* The advanced spaceborne computer must

recpond to the following.

1. Multiple-Problem Sets

Several problems must be accommodated simultaneously, implying that

a multiprocessing and/or a multiprogramming capability is required.

2, Highly-Varied and Complex Computations

It is anticipated that the scope of the mission will require a
general scientific-type computer that will accommodate to a wide variety

of sensors and output devices,

3. Computations with a Range of Priorities

It is convenient to assign to each mission computation three priority
measures. The first of these is a critical value, which indicates the
relative need for the existence of a particular computation, compared with

the other computations at the moment. For example, certain launch

o

References are listed at the end of the report.

Lo e o vl

computations are probably essential compared with certain ion-density
computations. The second such measure is an accuracy value, reflecting
the value attached to varying degrees of accuracy in the particular
computation, For example, although a Z2000-mile pass may be desired, a
20,000-mile pass may still be tolerable if the closer pass simply cannot
be attained. The third measure is an urgency value, which reflects the
required speed with which a certain computation must be performed and
hence, the amount of equipment that must be devoted to its execution,
These characteristics imply one attractive approach. A computer may be
designed which is capable of altering the logical interconnections among
the computer components and, the tasks may be scheduled to match the
available performahce capability. Such an organization is, colloquially,

said to embody reconfiguration with graceful degradation.

4. Variable Capacity of the Earth-Vehicle
Communication Link

During certain phases of the mission, communication to the vehicle
will not be possiblz, although ‘here will be many instances when high
speed communication--of a rate possibly exceeding 1 megabit/sec--will be
quite feasible, Hence, the computer must be capable of autonomously
carrying out diagnosis and repair routines during part of the mission,
and conversely must be capable of responding to (and indeed taking ad-

vantage of) external control information during other times. %

5. Failures Which May Be Transient or Permanent

This fact is, of course, obvious, but the optimum technique, which
will distinguish between these two fault types, is not at all obvious.
One approach is to treat all failures as transient and effect a try-again
procedure in response to all failures.

6, Failures Which May Not Be Indepencdent or May Not
Embrace Single Components

It is clear that the potentially high-stress space environment can
result in a failure that will not be confined to a single component.

For example, a radiation pulse could affect a sizable portion of the

system, and a sudden unexpected acceleration could result in a fractured

chip. It has been convenient in the past to assume that failures (possibly
embracing many elements as described above) occur one at a time. This
assumption might be tenable if each failed subsystem is repaired immediately
following the fault occurrence. One possible counterexample is the case
wherein a system relies upon the switching of standby units to achieve ultra-
reliability. It is required that such standby units either possess fault
detection capabilities, or that they are diagnosed immediately prior to

insertion in the systemn,

7. Severe Constraints on Weight and Power

Although the constraints on the weight and power of spaceborne equip-
ment have been relaxed in recent years, it remains imperative to achieve
a design which provides the maximum ratio of ccmputing power per total
equipment. This observation provides additional evidence for a
mul tiprocessing-graceful degradation system, with a minimum amount of

pure standby redundancy.

8. Failures in Most Components

Statistical reliability measures, comprehending various risk policies,
have been shown to provide useful estimates of system performance. How-
ever, since the variance of most semiconductor failure distributions is
quite large, it is important to minimize the number of blocks for which
a single component failure would disable the entire system. Essentially,
it is important to incorporate redundancy into as much of the system as
possible, even though, on a statistical basis, not much improvement is

3#
realized by the inclusion of such redundancy.

B. Statement of Program Goals

In recognition oi the severe problem of designing ultrareliable
spaceborne computers, NASA Electronics Research Center has set up the

following study goals, the first three of which relate to the completed

#*
It is apparent that the design philosophy should reflect Murphy's Law,

first phase, and the latter four of which relate to the half-completed

second phase:

(1) To survey the state of the art of logical design of space-
borne computers as it pertains to the enhancement of reli-
ability

(2) To conceive and evaluate new schemes of system design and
; operation that offer promise of advancing the state of
’ the art

(3) To recommend further directions of research that will aid
in the improvement of present techniques

(4) To investigate the organization of aernspace computers
having high computational performance in which autonomously
controlled logical reconfiguration of equipment and fault
masking are employed for the purpose of achieving ultra-
reliable operation, Derive specifications for classes of
networks and processes that are appropriate to the realiza-
tion of such organizations

(5) To investigate the design of networks that realize the func-
tions of general logic and commutation for reconfiguration
for the systems derived in Item 4., These networks will
incorporate various features of error control including
fault masking, diagnosability, and reconfigurability. The
design will employ criteria appropriate to advanced
integrated-semiconductor array technology. Develop logical
designs and techniques of analysis and synthesis appropriate
to the particular networks designed. Develop criteria for
the evaluation of the reliability of such networks.

(6) To investigat.. the design of programs that facilitate the
reconfiguration processes in systems of the type developed
in Item 4 and that facilitate the flexible variation of
computational performance with amount of available equip-
ment, Propose the specification of requirements on
executive programs that consider reconfiguration. Develop
schemes for re-addressing and replacement of hardware con-
trol by software subroutines,

(7) To investigate techniques for the evaluation of the recon-
figurable computers propcsed in Item 4. Develop approaches
to the construction of theoretical reliability models for
such computers.

C. Brief Review of Prior Work

A significant effort has been devoted in the past decade toward

solving various facets of the problem of realizing ultrareliable digital

systems, This work, summarized in detail in the Phase I~--Final Report,1

ranges from investigations of fault-masking techniques for various com-
puter sub-blocks, such as arithmetic processor and memory units, to studies
of reliability-enhancement policies for large systems, It is felt that
most of the problems pertaining to enhancing the reliability of isolated
digital sub-blocks are now understood, at least from the standpoint of
making sound engineering judgments concerning the use of the various
techniques.* Strictly passive redundancy techniques have been applied to
the control and arithmetic processing sections of the Saturn IVb guidance
computer, and it has been concluded? that the application of such tech-
lniques, exclusively, cannot economically satisfy the computation and

reliability requirements of future spaceborne computers,

The anticipation of this conclusion prompted an increased effort on
the part of many organizations in the investigation of dynamic error-
control mechanisms, in which the logical interconnections among the
components of the computer may be altered. Theoretically this approach
enables more efficient utilization of redundancy than the passive approach.
In an attempt to substantiate this supposition, Avizienis,3’% et al, have
been working on the construction of the JPL~STAR reconfigurable guidance
computer, which embodies probably the simplest form of reconfiguration.
This computer consists of a set of identical processing units, each with
self-contained error-detection control by means of an arithmetic code,
and a reliable magnetic power stepping switch,T which can connect power
to any one of the units, IBM® is presently building a reconfigurable
version of the Saturn IVb guidance computer. In these systems the recon-
figuration is employed only at very high functional levels but it is
well-known that there is potentially greater gain to be achieved by

employing the reconfiguration at lower system levels.

3*
Three of the most promising so-called passive techniques discussed in
Ref, 1 are the use of replicated-voting logic, error-correcting codes,
and adaptive voting logic.

tIna forthcoming SRI report the operation of this power switch will be
described,

:
i

Graceful-Degradation Systems which enable more efficient utilization
of available equipment have been conceived and supposedly evaluated.
Among the many references on this approach, in Ref, 6 a single processor
structure is assumed, and in Refs, 7 and 8 a multiprocessor structure is
postulated. In these studies as well as many others, several important

items are not treated in depth, namely those relating to the following:

(1) Diagnostic and replacement policies

(2) Logical design techniques for memory, control, and
processing units so that diagnosis and repair are facil-
itated (or indeed feasible)

(3) Reliable commutation (or data switching) required for the
execution of subsystem replacement

(4) The specification of software for the control of diagnosis

and repair.,

When the new sources of failure that are introduced by the mechaniza-
tion of the four items are included in the reliability analysis, it is not
clear that the systems will perform as promised., This is an especially
intrical problem when reconfigurability is extended to low=-system levels,

or when the capability for graceful degradation is provided,

D. Brief Summary of Report

The succeeding chapters represent an attempt to study in depth many

of the detailed problems which must be investigated before a design for

a reconfigurable spaceborne computer vith graceful degradation can be
specified, or indeed even before an intelligent estimate of the feasibility

of designing such a system can be formulated.

In Chapter II, the system organization of a multiprocessing structure
is discussed along with the particular characteristics of such a structure
which facilitate reconfiguration and graceful degradation and the unique
logical design problems attendant to the achievement of an ultrareliable
multiprocessor. Maintenance policies, which reflect the computation and
design constraints defined in Sec. I-A, are discussed and a flow descrip-

tion is given, which points out the system response to various error,

input and interrupt conditions.

ERL A

[P

SR SITAT S

A MM) O b

In Chapter III, we summarize an initial effort to perform a detailed

logical design of the various functions associated with the selected com-
puter organization., It appears that the reliability will be enhanced if
some capability for repair is incorporated into the memory, processing,

and control units. Concerning the processing units and possibly a portion
of the control and memory units, the most attractive repair scheme is one
for which the logical realization is a one-dimensional cascade of identical
elements, whence the repair operation requires only the routing to a suc-
ceeding element in the cascade of the signals destined for a faulty element
We call such a logical realization a byte-sliced realization since it is
natural to assign a byte (containing at present an undetermined number of
bits) of each of the registers, adders, decoders, etc., to each element or
slice in the cascade. A design of a byte-sliced microprogram control unit
is described, and a memory module, which embraces byte slicing in addition
to such reliability enhancement techniques as data channel coding and
access switch-failure detection is described. A novel digital realization
is given,which relates to the voting-switchover scheme described in de-

tail in Ref. 1.

Chapter IV is concerned with the design of commutation networks for
the various data switching functions associated with a byte-sliced multi-
processor, In particular, we consider permutation networks that, for
example, route data from a selected memory to a selected control unit,
and order-preserving networks that route data between the working (i.e.,
failure-free) byte slices of memory and control units. An important
feature incorporated in the designs is the capability to accommodate for
hardware failures in the commutation neiworks without requiring the dis-
carding of the entire memory and processing units or even the byte slices

served by the network,

Chapter V is concerned with what seems to be an initial attempt to
specify formal rules for the synthesis of programs in an ultrareliable

computer, The description is in a general framework so as to embrace

two important problems. The firstof these is the synthesis of programs

A TP I R Rt < oo -

which are mistake-free, wherein a mistake is assumed to be the result of
human frailty, or of programs for which mistakes are readily detected and
recovery to correct execution is possible, The second is the synthesis
of programs that will facilitate the detection of hardware failures. We
also consider the interrelationship between hardware and software, in

particular, the ancillary hardware that will facilitate the specification

of reliable software.

-y

IT PRINCIPLES OF MULTIPROCESSOR SYSTEM DESIGN

A, Introduction

In Sec., I-A a brief list was presented of the characteristics of
advanced spaceborne computation and the constraints on a computer design
that are a cons2quence of these characteristics, It is observed--although
clearly the observation is not original--that the multiprocessor organiza-
tion provides an excellent match to the severe spaceborne computer design
constraints, The basis for this conclusion is that in a multiprocessor

structure:

(1) The facility exists for simultaneous execution of several
programs

(2) 1t is possible to satisfy a wide range of computation
time requirements by assigning a varying number of
processors to a given task

2#
(3) It is possible to satisfy a wide range of accuracy
requirements for the same reason as in (2)

(4) Reconfiguration, to enhance reliability, is easily
accommodated, at least at the processor level

(5) Accommodation to different urgency* levels is easily
achieved by assigning a varying number of processors
to a given task, although in this case each processor
will operate with the sare set of data

(6) The data switching does not appear to be significantly
more complex than would be expected for a single
processor structure with extensive reconfiguration
capability,
Reference 1 concluded that the key problems of system design in
achieving a reliable reconfigurable computer are flexibility of struc-

ture, modularity, simplicity of diagnosis, and reliability of control.

* These terms were informally defined in Sec. I-A.

It is implied that a sev of processors are operating in the replicated
mode, and the data outputs are in some way compared.

il AR A A R

ot i o i

AR A A o S A

The first two problems, at least at the processor level, are clearly
solved by the multiprocessor organization; the solution to the latter
two problems must await the detailed study of maintenance policies and

of the logical design of the processors.,

Many descriptions of multiprocessor systems have appeared in the

8,9,10 11

literature, and several contemporary computer systems rely upon
multiprocessing. Most of these previous descriptions have been concerned
with (1) gross estimates of system reliability, assuming for example,
that diagnosis and switchover are always executed correctly; (2) schedul-
ing analyses and simulations to facilitate the determination of system
responses to various inputs; and (3) the specification of software that
will enable the opfimum utilization of the hardware. Our intention in
this program is to study maintenance policies and logical designs that
will maximize the system reliability,* and then to formulate a realistic
estimate of system reliability, which will, hopefully, compare favorably

with the previous gross estimates,

In this chapter we discuss a possible multiprocessing system organiza-
tion, considering those policies which apply particularly to error control

and the functional requirements of the var.ous blocks,

B. Multiprocessor System Organization

The multiprocessor model with which we are concerned, is depicted in
Fig., II-1. This system consists of a set of M high-speed working memories
(WM); a set of N simple processor and control units (SP); a set of Q
arithmetic logic units (ALU); a set of & back-up memories (BAM); an input-
output device controller (I/0) for which we provide sets of spare registers,

cuunters, buffers, and real-time clocks; two commutation networks (CN); a

At present the "'reliability of a multiprocessor" has not been formally
defined, but we will temporarily assume on a qualitative basis that

the reliability measure reflects the capability of the unit to carry
out the set of mission computation tusks weighted according to priority,
urgency, and accuracy.

B Ll e e B

NOIS3IA Y0078 WILSAS ¥ILNAWOD ¥OSSIDONLILINW L-1I o

Su-09¢s - Q1

ANIT NOILVIINNWWOD ONNOY9D

¥315193y IYNOILDINIQIG 3¥V STINNYHD vivd v
o4 \ dni3s L -
H eoe JO¥LNGD
\ | [1 ¥3dns
H315193y
dnias
: _ eoe _ —
Ywve :
N o o w
H ds H : Wa
[]
(o]
[
'wvg . . .
[] ° e
‘ t
WIOMLIN
NOILVLAWNOD . . NJOMLIN .
ds H NOILYLNWWOD H Coim
SIIHOWIW
°nv $ ONINHOM
[
.
4 .
. : 'ds : : Ly
[]
! :
nv :

HBEE 11450 bt

supervisory control unit (SCU); and two registers for setting up the
commutation networks (it is convenient to view these registers as form-

ing a component of the SCU).

In operation a given set of WM's, SP's, and ALU's will be in com-
munication by means of links established in the two commutation networks,
In addition, the commutation networks* perform the function of directing
data to the failure-free byte slices, thus, effectively ''repairing” the

units.

It is envisioned that each SP unit will have the capability of
executing comparatively simple decision and arithmetic algorithms, the
capability of controlling program flow, and the capability of controlling
processor allocation and scheduling.* An ALU will be used for the execu-
tion of complex algorithms requiring extensive processing hardware. The
SCU will function as a referee in all error-control processes, and,
essentially, represents the system hard-core, although it can be super-
ceded by a command from the ground, The BAM's will store the task pro-
grams, diagnosti:z programs, and the setup programs for the commutation

networks.,

In addition to the inter-unit communication links provided by the
commutation networks, a single data channel (probably serial), shown as
bold-faced lines in Fig. II-1, is provided. This data channei links the
SP and WM units with the supervisory control unit, It was noted by
Alonso'® that a complete multiprocessing system could be designed, con-
taining only this single data-channel communication link, although in
practice it is doubtful that this link would be serial. However, we have
included the possibility of multiple-simultaneous communication between
SP and WM blocks because of the additional flexibility thus provided, and

because it seems appropriate, at this stage, to work with a general model.

Detailed logical designs of commutation networks are presented in
Chapter IV.

f It is implied here that each processor can function as an executive.
This "'floating-executive" technique, whkich is developed with greatei
detail in Sec, II-C, is also discussed in Ref, 12,

12

0 0, A 1 S O 0

One important feature of the system, which is not shown explicitly
in the figure, is that each defined hlock of the system will have at
least one distinct power supply associated with it.* Furthermore, it is
assumed that the power can be disconnected from a faulty block without
resulting in the propagation of errors into connecting blocks due to

excessive loading on the part of the disconnected unit.

C. Description of Error-Control Policies

In this section we will describe a possible set of error-control
policies by indicating in flow-form the system response to various input
and error conditions. It should be recognized that the system will not
function exactly according to this description, but, by reference to this
description, we are provided with a reasorably complete set of functional

requirements for the various blocks,

In Table II-1 we present the flow description, and in Tables 1I-2,
and 1I-3 respectively, we summarize the functional requirements of the
supervisory control unit and the simple processor and control unit per-
forming the role of the executive. At the conclusion of Table II-1, a
set of comments are presented to clarify anomalies in the flow descrip-
tion and to point out some instances where there is some doubt concerning

the optimality of the strategy selected.

3#
It was shown in Ref, 1 that the distribution of power supplies does
not appreciably increase the weight or raw power requirements beyond
that associated with the use of a single power supply.

13

Table II-1
FLOW DESCRIPTION OF MULTIPROCESSOR

10,

11,

SCU selects an SP (say SPE)’ which is listed in the table of
available SP's, to function as executive.
SCU instructs SP_ to access an available BAM.

E
2.1 If accessing capability of SP_ has failed, SCU selects

E
another executive, and SPE is removed from the table of
available SP's, and Step 2 is repeated,

SPE selects an available WM to serve as the executive working

memory, WME'

SPE retrieves from a small store, possibly associated with the

SCU, the setup data so that SPE can access WME'

Setup data is transferred to the setup register ol CNl'

A WM and SP diagnostic program is directed from BAM through

SPE to WME'

6.1 If the diagnostic program indicates SPE cannot function as
an executive, another SP is chosen and Step 2 is repeated.

6.2 1If diagnosis of WME fails and WME cannot be repaired,
another executive memory is selected, and WME is removed
from the available table.

6,3 If WME is repairable, SPE perforrs the task.

The executive program is transferred from BAM through SP_

E
to WM ..

SPE sgpervises diagnosis of the remaining set of SP's.

SPE selects a set of WM's, SP's and ALU's to communicate with
each other,

SPE computes the setup data to effect this communication and
transfers setup data to the two setup registers.

Each SP diagnoses its associated ALU and WM.

11,1 If diagnosis fails and associated WM's and ALU's are not

repairable, a different assignment is effected,

14

—————

Table II-1 (Continued)

11,2 If the WM's and ALU's are repairable, the associated SP
performs the task.
12, SPE responds to an input device requesting service.
12,1 Assume urgency value of input is 1 (simplex):

12.1,1 SP_ selects SP_ , WM , ALU_ to handle program,
E Sj Sy S,

% 12,1,2 Pertinent program is transferred from BAM through

H SP_ to WM_ .

z 51 53

z 12,1,3 Input data is transferred to WMS and also to WME.
1

12.1.3.1 Results of intermediate calculations
might be stored in WME (as well as in
WMSI) to provide a convenient roll-back
point in the event of a failure.
12,1,4 Assume SPsl detects a computational error:
12,1.4.1 The computation is repeated, using the

data and results stored in WME, to de-

T e

termine if failure is transient or
permanent,
12,1.4.2 If error continues, the problem, data,

and intermediate results are transferred

to another set of SP, WM and ALU units

- for continuation of computation,

12.1,4.2.1 SPSl is diagnosed and either
retained or discarded.

12,1.4.2.2 WMs and ALU51 are either

1
diagnosed by SP_ (if it does
1

i

Wit

not contain the failure) or
retained for other tasks.
12,1.4.3 1I{ computation error continues with the
replacement set ol SP, WM, and ALU units,
the error resides in the program or

input data.

15

Table II-1 (Continued)

12,2 Assume urgency value of input is 2 (duplex):
12,2,1 SP_ selects the set of units (SP_ , WMy , ALU)
E 1 1 Dy
and (SPDZ’ WND2, WMDz, ALUD2) to handle program,
12,2,2 Pertinent program and input data are transferred
S L]
from BAM through SP .’ PD2 to WMDI’ WMD2
12,2.3 After each intermediate computation is completed,
a change-commutation network command is directed
to the SPE'
12,2.4 The assignment of CN, is altered so that SPD

1
and SP exchange working memories,

12,2,5 The regalts computed by the two sets of units are

compared.

12,2,5.1 The intermediate computation is repeated,
commencing at the latest point in the
program where the computations were in
agreement.

12,2,5,2 1If the discrepancy ceases, then the fail-
ure was transient.

12,2,5.3 1If the discrepancy continues, then the
failure is immediately attributed to one

of the sets of units (SP. , WM ALY,)
1 1

Dy’
(spnz, Wsz' ALsz).
12,2.5.4 The faulty set is disconnected, and CN,
is altered by SPE so that an available
set of blocks are connected,

12.2.5.5 The faulty units are then diagnosed,

12.3 Assume urgency value of input is 3 (triplicated):

12,3,1 SP_ selects three sets of units (sp X WMTl’ ALUT1)

(spTz, wu&z, ALUTz) and (spTa, WMTs, ALUTS) to
handle program,

12,3,2 Pertinent program and input data are transferred

to the three working memories,

R

IR T

R

=
=
:
£
£
£

LR e T e Gt

g
:
%
.
g
g
.

0 e

Table II-1 (Continued)

Comments

1.

12,3.3 After each intermediate computation is completed,
the results obtained by each of the three sets of
units are compared,

12,3.4 If a unit's results disagree with those computed by
the remaining two units, the dissenting set is dis-

connected and replaced by another set,

It is assumed throughout that thedecisions of the executive
are continuously checked by the SCU., For example, an exec-
utive that consistently requests the diagnosis of the other
SP's would be disconnected from service and subsequently
diagnosed.

The status of the SCU can be periodically monitored by, for
example, a ground station, whence the SCU can be discon-
nected from service if it appears to be faulty., The ground
station can then assume the 'veto' power previously assigned
to the SCU.

It has not been assumed for a general system that only a
single unit can fail during the period between the execution
of diagnostic routines, although a system which contained
only two SP units would probably be disabled by the occur-
rence of simultaneous faults in each SP.

In the description, it is implied that all units are diag-
nosed immediately prior to insertion in the system. Although
this policy would make a single~failure assumption seem more
tenable, it is not strictly required since the system can
accommodate a policy wherein diagnosis is deferred until a
failure is detected.

In Step 9 it is assumed that a sufficient quantity of WM's,
SP's and ALU's are available. If this is not the case, then

several tasks might be executed with the same equipment in a

Table II-1 (Concluded)

multiprogrammed mode, or an SP unit might execute a program
without recourse to an ALU, In addition, in order to satisfy
stringent accuracy requirements, several ALU's might be
assigned to function with a single SP in the execution of a
program,

We have assumed that each task could be assigned one of three

urgency values, corresponding to simplex, duplex and triplicated

modes of operation. The simplex mode, wherein a processor de-
tects its own faults, would be attractive for tasks that could
be interrupted and for which the data and program code permit
convenient roll-back to a known error-free state. The duplex
mode, wherein two sets of units function simultaneously, would
be used for interruptable tasks that require immediate error
detection, but for which convenient roll-back is not possible,
and for which an accurate record of all calculations must be
available, The triplicated mode, wherein three (or possibly
more) sets of units function simultaneously, would be used for
the most critical mission tasks,

The reliability status of the various SP, WM, and ALU blocks
is stored in a table of available equipment, which can be
conveniently considered to form a portion of the SCU, A fail-
ure of this table could be circumvented by assuming that all
units are faulty and whence each unit is diagnosed prior to

insertion in the systen.

18

Table I1I-2
FUNCTIONAL REQUIREMENTS OF SUPERVISORY CONTROL UNIT

1, Store a table of available equipment.

2, Select an SP to function as the executive, and direct
the chosen SP to access a diagnostic program.

3. Control the diagnosis of an SP that will function as
the executive,

4, Monitor all directives of the executive, but the SCU
can only ''veto'" the commands of the executive,

S. Respond toearth commands to disconnect itself from
service,

Table 1I-3
FUNCTIONAL REQUIREMENTS OF EXECUTIVE

1, Compute the set up data for the commutation networks.

2. Respond to all input and interrupt commands,

3. Select sets of SP's, WM's and ALU's for various tasks,

+ Organize the diagnosis and repair of units to be in-

serted in system,

5. Respond to the error and program status conditions of

the other SP units.

D. Logical Design, Strategy, and Software Pioblems

Associated with Multiprocessor-System Design

As indicated in Table II-1, many detailed problems of design and

analysis are critical to the functioning of the multiprocessor. Among

these are the following:

(1)

(2)

(4)

(5)

A study of the simultaneous data transfer capacity required
for the commutation networks. Of concern here are the
trade-offs between rate of program execution and the com-
plexity of both the commutation network and the setup
algorithm,

The design of commutation networks that offer economy of
design, ease of setup, ease of diagnosis, and a tolerance
to failures in the sense that a failure in a portion of
the commutation network should disable a minimum amount of
processor and memory capability. (See Chapter 1IV)

The design of memory and arithmetic logic modules that
offer combinations of fault masking and ease of reconfigura-
tion. A discussion of such ALU's is presented in Ref, 1,
and the techniques of microprogram control for such units

is discussed in Sec. III-C of this report. A description
of the organization of a reliable memory module is given in
Sec, III-B of this report.

The design of simple processor and control modules. It is
envisioned that these modules would be of minimal complexity
and would possess the capability of either controlling the
flow of program data between a WM and an ALU, or perform
the role of both controller and processor upon the occur-
rence of an insufficient quantity of available ALU units.

A convenient framework for such a module is contained in a
paper by Frankel,!? which discusses the minimum complexity
required for a digital computer. Some reliability enhance-
ment might be incorporated within the module, either in the
form of reconfiguration capability at the register and
adder-byte level, or in the form of fault masking for ir-
regularly structured control functions.

The incorporation of protection for the back-up memories.
If these memories are in the form of tapes, reasonably
simple error-correction coding techniques can be applied
for the protection of stored data.

1)

(6) The synthesis of programs that are amenable to simplex
type error detection, and the development of techniques
which permit the detection of, and the recovery from,
errors introduced by programming mistakes. (See
Chapter V.)

(7) A reliability analysis of the overall multiprocessor system
and an evaluation of the asg:umed maintenance policies in
order to uncover a possible "optimum' set of strategies.

21

e et e e s £ ST
[e R SR — - - =

)

‘flmw

i

i

ED.
PRECEDING PAGE BLANK NoT AL

111 TECHNIQUES OF LOGICAL DESIGN

gl L

A. Introduction

This portion of the report is concerned with schemes for the logical

design of networks that realize major functions appropriate to a recon~
figurable, reliable computer, The functions tc which we have given the
greatest attention thus far in the second phase of the study are memory,
microprogram control, and adaptive voting, The important case nf an
arithmetic-logicel processor was examined in the first phase, The approach
taken was to organize a processor as an iterative array of byte-oriented
modules, called byte-slices, This approach, which appears to be quite
powerful, is applicable to a number of special netvorks (e.g., in micro-
program control units). Further development of processor networks will

be examined in the coming period.

B. The Organization of a Reliable Memory Module

1, Introduction

The working memory of a computer comprises a natural organizational

RRHBENLITHE

unit for the application of error control, It is a vital unit, accounting
for a large fraction of the equipment of a modern computer, and its sim-
plicity permits a wide range of error-control approaches; hence, it is of

interest to develop effective and flexible design techniques appropriate

011 000 PR S R O

for memory systems,

In Appendix A of the Final Report--Phase I,! a number of techniques
for error control in conventional working memories were reviewed, As a
result, the following observations were made. First, it is generally

impractical tc apply fault masking at the circuit level ito the circuits

involved in memory selection and storage; hence, error-contrul techniques
must be applied at the logical level, Secondly, there are several signif-
icant sources of error, including data channels, word seleciion (access)

circuits, basic timing and power circuits, and the logical schemes most

g
£
£
i
£

effective for error control for each source are quite different from one

another, Furthermore, both transient and permanent errors are significant,

Ian this section we will describe the organization of a memory module
in which several kinds of error-control schemes, primarily logical, are
incorporated., Only the basic schemes are presented. Further analysis
is needed to determine the optimum allocation of redundancy in the several

schemes,

We assume a model that is a magnetic core memory, Thus, we include
a power-decoding-switch (access switch), for word selection, a passive,
destructive-read, recording medium, a set of power drivers for recording,
a set of sense amplifiers, and associated timing and power-supply circuits,
The techniques tc be described allow for other kinds of memory, such as
nondestructive-read, or active-element storage, or even some cyclic mem-

ories, but we shall not attempt to provide full generality,

Experience has indicated the need to consider the following error
types as very significant:
(1) Transient errors, primarily in the data-read channels, due

to external noise or to internal, data-sensitive signal
cross-coupling

(2) Permanent, single-element, independent component failures
(3) Permanent, multiple-element, nonindependent component
failures (e.g., a cracked integrated circuit device)
For the present we ignore the timing and power-supply circuits, since

their design problems do not seem to be unique t> memory systems,

2, System Description

The memory system, which we consider, is described with reference
to Fig. III-1, It is a memory system of W words, each containing B bytes
of data, where a byte contains D binary digits. In this system, the
following redundancy schemes are incorporated,
(1) The system is partitioned into B subsystems, each serving
all W words, Each subsystem is an independent memory,
containing its own access switch and drivers, store and

data sense and drive amplifiers (in a complete design,
separate subsystem power supplies and timing circuits

24

ADDRESS

|

MEMORY ACCESS REGISTER

o

i

L) :
= BYTE | BYTEB 3
¥ 3
ACCESS ACCESS ASSOCIATIVE 4
, REPLACEMENT
H BASE INDEX
g STORE STORE L ! 1
= [l
= SENSE SELECTION SENSE SELECTION
DRIVE CHECK DRIVE CHECK
= ERROR |CHECX ERROR
CORRECT CORRECT I
X X] '
y REPAIR NORMAL
CONTROL TIMING
COMMUTATOR .- DECODING AND CONTROL
DATA ERROR REPAIR MEMORY
DETECTION MODE MODE
COMMAND COMMAND
8- 8580 - 117

FIG. 11-1 REDUNDANT MEMORY MODULE

25

VTR MY E04r 0 00 B At Lo o e satasitss s spons oo e e

(2)

(3)

would also be appropriate). B is greater than the number
of bytes needed for a minimally acceptable word, By; hence,
an order-preserving commutator network is provided to
connect any subset of By out of the B bytes to the memory
system interface,

Incorporated in each store is a special circuit for deter-
mining the number of words selected at a given cycle,
quantized to the levels O, 1, and more than 1, Reliable
circuits for this determination are well known, For
example, one may provide one or two storage elements
(cores) per word, operated so as to switch on a standard
word selection excitation, with a common three-level sense
amplifier, This circuit is very useful in determining
whether or not the access circuits are faulty, since by
far the most common modes of failures within access
switches result in either no output or in multiple word
selection.

This circuit is not absolutely essential since the cases
of zero or multiple word selections could be inferred
from analysis of the data channels, For example, if
multiple parity-check redundancy is used (it is recom-
mended in the next paragraph), the code could be designed
to have a large error-detecting capability, and most
multiple selectiors would be detected, However, the
redundancy required for such error detection would be
better used for error correction,

The data of each subsystem are encoded with an error-
correcting code, The most attractive codes for this
purpose are those based on threshold decoding (see

Sec. II, part B-2a of Final Report--Phase I!) because
most single faults within the decoder network for such
codes are masked, and the codes are reasonably efficient,
Furthermore, as discussed in the Final Report--Phase I,
double-error correcting codes are far superior to single-
error correcting codes with respect to reliability-weight
tradeoffs, The disadvantage of the former lies in the
doubled cost (per data bit) of the decoding nevwork, but
with the new LSI technology, this is not a serious
disadvantage.

An important consideration here is the problem of multiple
transient errors due to environmental noise, The problenm
that arises is that if there are more than t + 1 errors

in a word in a 2t + 1 error-correcting system, the
resulting pattern may appear (falsely) as a valid symbol,
or as a symbol with t or fewer bits different from a

valid symbol, As discussed in the Appendix,! this

problem is reasonably well solved by using the error-
detecting capability of the code; thus, the error-
correction logic should provide an alarm when more than

1 bit errors are computed in a 2t + 1 error-correcting code,

26

E
Al

(4) An associative memory is employed to provide relocation
for words that become unusable, The primary failure source
for which this scheme is intended is the access switch
and its drivers, although it is also useful for the case
in which only a small number of storage locations suffer
more bit damage than can be accommodated by the error-
correcting codes on the data channels. In the scheme,
a block of words, say the last 22 words in a 2%-word
memory, are reserved for relocated data. An associative
memory with capacity for 28 entries is driven in parallel
with the main memory subsystems. If one of its entries
is excited, indicating that the external computer is
addressing a word that has been relocated, a substitute
location number, or alias, is emitted. For economy of
storage, only a bits are needed for the alias since the
high order digits may be provided by a constant (c - a)-bit
B number source; thus, the associative memory contains 22
: words, of ¢ + a bits each, The high- and low-order digits
are combined, and the resulting number replaces the
original address in the memory access register,

e

R

]

3. Coordination of Error-Control Modes

Mode 1, partitioning with switch-over replacement, would be uset
when the error-correcting capability of all lower-level schemes is ex-

ceeded. It requires external diagnosis and control. Mode 2, detection

of over- or under-selection, is important in preventing the data errors,
due to access switch failures, being falsely corrected by the error-
correcting logic in the data channels. Mode 3, error correction in the
data channels, is the primary means of masking transient error. Mode 4,
word-relocation, is important for accommodation of access-switch faults,
It appears to be a valuable sclome, because, in commonly used switches,
the average single fault results in the loss of only a small fraction of
the outputs. The value of the scheme would be increased further, if the
switch were designed so “hat the maximum fraction of outputs lost, due

to any single switch fault, was limited.

A reliability analysis of the total system is needed in order to

D A 40 R R

determine the optimum allocation of redundancy among the various error-

control modes.

T

i

27

N

C. Design Techniques for a Modular, Microprogrammed Control Unit

1, Introduction

The use of a microprogram (u-program) structure for the control
unit of a reliable computer is attractive because it simplifies the task

*

of modifying the behavior of the con 1.} unit in order to accommodate
system failures. 1In addition, the inh. =t modularity of the major part
of the structure potentially allows the use of highly efficient forms of

error control within the control unit itself,

In this section we shall examine techniques for improving existing
p-program schemes in two ways that are significant to reliable computers;
these are, increasing structural modularity, and increasing the effective-
ness of reprogramming for system reconfiguration, The important problem
of applying error control to the new schemes will be considered in sub-

sequent work,

In a p-program control unit, a control algorithm is represented by
data called p-instructions. These data are usually treated as words
stored in an addressable memory. 1In practice, this memory may be realized
as a matrix of logic elements (e.g., diodes), and frequently logic opera-
tions other than simple memory functions are employed within the matrix.
In this study we assume that only memory functions are allowed, This
assumption not only increases the generality of the results, but it per-
mits the use of the main working memory of a computer as a back up for

the p-program data store.
The basic components of a p-instruction are as follows:

(1) Specification of the active system data paths
(2) sSpecification of the operating modes of functional units
(3) Specification of the rules forselection of the next
p—-instruction,
The third component is the source of most of the nonmodularity of struc-
ture. In the next section we discuss various kinds of next-instruction

rules, and means for increasing modularity of implen.ntation,

28

=
=
=
=
£

S

ST

e

UL ST T

RESBUTILE o L IR

e

e

i iy

S Y

U v e

R bt

BRI

=
£
£

ST - i e i i R S e i e S e e

2, Schemes for Selection of the Next u-Iusiruction

There are two aspects to the selection of the next u-instruction,
These two aspects, the composition of the address code and the generation
of test functions for branching-type j~instructions, will be discussed

separately,

a, Composition of the Address Code

The address code may be composed, using data stored explicitly
in the p-instruction, or data stored in temporary data registers on coun-
ters, which may be considered to be implicit in the p-instruction, or by
some combination of explicit and implicit data, The explicit form has
the advantage of speed, since 1.0 time is needed for loading special reg-
isters, and the disadvantage of storage cost, There is a wide variety
of useful schemes, employing combinations of implicit or explicit

references,

It is convenient to distinguish four types of p-instructions,
nonbranching, unconditional branching, two-way branching, and multi-way

branching,

The explicit form is feasible and commonly used for the first
three of the four types, For two-way branching, providing memory space
in each p-instruction for two explicit next-location fields may be very
extravagant if only a small fraction of the p-instructions are of this

kind.

The implicit form is appropriate for the first type, non-
branching, p-instructions; the natural rule is to take the new location
as the previous location plus one. The second type, unconditional
branching, u-instructions require explicit data., In simple control units,
the fraction of unconditional branching type u-instructions may be low
enough to justify placing the next-address data in a separate memory word
so that a given word holds either external control information or next

H~instruction information.

29

For the third typ®, twe way branching, u-instructions, one of
the next-address codes riuy be implicit (present address plus one).
Another important scheme is to use two implicit addresses in a "skin"

manner, as follows:

first branch: next ad- ress = present address plus 2

second branch: next address = present address plus 1,

In the second case, the next p-instruction clearly must be an unconditional

branch, the second type, Th. 'present address' may also be explicit,

For the fourth type, multi-way branching, u-instructions, the

"skip" sequencing scheme may be generalized as follows:

next address = present address plus N,

where N is generated as a result of the test,

All but one of *the next p-instructions must, again, clearly be uncondi-

tional branches, Again, the "present address' may be explicit,

The foregoing descriptions illustrate the wide range of choices
that are present in the design of the address-composition function.
Inherently, all of them are consistent with a modular structure, since
they require only the operations of register transfer, counting and
addition, The particular choices require detailed examination of engi-
neering trade-offs of speed and equipment cost within the context of a

particular system,

b, Generation of Test Functions for Branching-Type u-Instructions

Let (xl, Xpp eees xn) be the set of system status indicators

(arithmetic overflow, input/output requests, program symbols, etc.)

There are several functions of these indicator variables that
are of practical importance in the testing of system status. For the case
of a binary test, i,e,, for a two-way conditional-branching p-instruction,
the test function is a single variable, say f. This function, f, may be
a general boolean function, but some functions are of special practical

importance, These are f = x, and f = Xy Xy eer Xy, where x, may L2 the
1 b

i i
true or complement form of a system status variable, Since f may be

30

tested to be true or false (and the x's may be complemented), the second

form is equivalent to the form f = xil + sz + eee * xib'

3. Schemes for Programmable Selections

In order to expand the power of the branch instruction, it is desir-

able to generate f under program control,!? This also has the obvious

b
AL M W il

advantage of enhancing reconfigurability for error control, This nay be

py e ™ e

accomplished by providing a function-selection vector, say
T= (tr t

Rlln

PYRREEY ts), asa subfield in a pu-instruction word, and a

logic network with inputs T and X = (xl, .e., X_), and output f.

n
A convenient network for this purpose may be built, ucing a decoder

with n < 2° outputs and a simple AND/OR network as shown in Fig, III-2,

An extension of this scheme, which provides for a programmable reassign-

ment of selection code, is shown in Fig, III-3. A I stage acts as a +1

adder, such that output Ti+1 = Ti + 1 (arithmetic sum) if r, o= 1, or
s

Ti+1 = Ti’ if r, = 0. An arithmetic overflow, Yy is produced if Ti =27,

Furthermore, only one y will be 1, The cascade of U stages serves to

select the x corresponding to the uniquely energized y, and to deliver

it to the output £, The logic for a U stage is u =u The

141 T M T Yi%ye
r variables serve to program the selection, since r, = 0 causes stage 1
to be bypassed. This way of reassigning T codes to X variables permits
reconfiguration without changing the T data in the u-program memory,

This may be advantageous, since it _ermits use of a read-only memory.

—

Decoding
T Switch

%

e = Ty - X7y ...»anﬂ

/
¢

TA-$580-110

FIG. 1lI-2 FIXED-STRUCTURE SELECTION NETWORK

PRt A

T

| Reconfiguration register]

'] emtiive]
) T, T, Ty = Ty« v (orith. sum, r, = 1or0)
T : 2 ¢ cmmfie k pu—bie < ¢ }_
Uy = u; +y;x (booisan)
"——‘
Yy Yi Yo
1 1] ses Vimm] b= Yisieeel y £
x, x. x

Ta -~ 8580-130
FiG. 111-3 RECONFIGURABLE SELECTION NETWORK

4, Schemes for Programmable Generation of Boolean Implicants

A high degree of modularity and programmability in the generation
of boolean implicants may be achieved by using a certain functional unit
that appears to have great utility in modular computers. As shown in
Fig, III-4, this unit consists of a single binary parallel adder and a
scratchpad memory. (Such memories will be widely available in LSI form,
and, in fact, the functional unit itself is a good candidate for LSI.)

ACCESS
SWITCH MEMORY

pd o, ‘Pz 2‘91'41

SPECIAL ADDER |=— 1

B T

L]
Xy "5 x, x{

MASK SELECTION s
CGDE Ta-8580-129

FIG. 11I-4 PROGRAMMABLE BOOLEAN-IMPLICANT FUNCTION NETWORK

PRECAREN

I e

In this application we employ the following carry function for

ear i state:

e = (ag+byleyy

instead of the usual arithmetic function,

=
b = (ai + bi)ci-l + aibi .

If a standard arithmetic unit is used, the term aibi must be suppressed

under separate control.

Let the set of system status variables be X = (xs, X _qr veer Xgo xl)'
We wish to evaluate boolean implicants, using any specified subset of the
input variables, For example, we may wish to determine if xsxs'x1 =1,

We apply both the variahles and their complements to one side of the adder,
4 4 [4 4 4
e.g., in the order (xs, Xgr Xg_qr Xgr eee Xgy Xgy Xy xl), with x, at the
least significant binary input, and we apply to the other side of the
adder a '"'mask' vector, obtained from the memory in response to an externally-

specified address code.

Let the elements of the stored mask vectors be M = (ps, agr Pyq»
I
ees Pyy Ay, Py ql), thus elements p,, q, correspond to the inputs x , X,

respectively, If x, appears in the implicant in true form, set (piqi)

i
to (01); if it appears in complement form set (piqi) to (10), and other-

wise, set (piqi) to (11).

To carry function at the 2ith stage is
4
a1 = (py +®)(ay + xp)egy 5 o
thus, depending on the values of Py and 9 we have

c ’ or 1'°21-2 .

4
21 = *i%24-2 XiC25-2

If the addition is carried out with o set to 1, the final carry

c s will be 1 if and only if the implicant is true,

2
!
5%3%2

The appropriate mask vector is M = (01, 11, 10, 01, 11). The boolean

As an example, let s = 5, and let the desired implicant be x

vector sum M + X 1s (1, 1, ..., 1) (necessary and sufficient for c, = 1)
7

if and only if x5x3x2 =1,
A similar operation may be used to obtain the boolean sum of an

arbitrary set of variables, each complemented or not. For example, in

order to determine if (x4 + X, + x{) =1, a test is made to determine if

3

xl;x:;x1 = 0, This is done by creating a mask for x x/x, as described

)

47371

previously, and observing if the final carry Cog is O (rather than .).
More complex expressions may be realized using a single flip-flop

to store the results of a succession of implicants, If the flip-flop is

initially set, and if a zero carry resets the flip-flop, a given sum of

products will be true if and only if the flip-flop remains set following
the last product test,

5, Hierarchy Schemes

The simplest structure for a p-program unit provides for the direct
application of the binary elements of the p-instruction word to the ex-
ternal control lines, This structure is used in practice, but there are

some advantages to be derived from the use of a hierarchical structure,

One form, proposed by Grasselli,!® is analogous to the so-called
interpretigs programming systems., 1In this form, illustrated in Fig. II1I-5,
the number ~f different p-instructions is limited, and a compact code is

established for their representation (each word is called a W-order),

A p=-program is recorded in a first memory as a string of u-orders, A
"dictionary' of p-instructions is held in a separate memory, and, in
operation, a selected u-order serves to address that memory, The merits

of this scheme are several, First, most of the data storage, i.e., the

dictionary, may be held in a fixed memory, while still preserving some

instruction

| p-=-==-=--1

A

: Access p=e i -Order # |2:ﬂr::::mn
4y L ogic MOmory mey

. Counter
L_}-‘ Selector System
l Counter H

Control

= TA-3880-12¢

FIG. 111-5 TWO-LEVEL MICROPROGRAM SCHEME (after Graselli)

flexibility in tne p-program sequence, Secondly, since the u-orders are

A A

in a compact code, several may be packed into a single word of a relatively

slow memory (e,g., the main working memory) without unduly slowing the

this translation would be to change the assignment of activation signals

% control sequences,

% Another form to which the authors know of no prior reference of

% special value in error control is to provide some kiad of modifiable

g translation on the components of the p-instruction word. The purpose of

to the external functional units, thus effectively reconfiguring the
system, This translation would be effected in a special network (a useful
form for such a network would be an associative memory). This scheme also
has the merit of allowing the main memory to use a fixed data store,

Another advantage is that for high degrees of redundancy, the capacity

I e

of the p-instruction store is minimized, since only the nonredundant

conirol codes need be recorded, Figure III-8 illustrates the application
of this method.

Both hierarchy schemes have attractive features, but further inves-

tigation is needed to determine the costs in speed and amount of logic
needed for their implementation,

51 AP R A TR e 0 o iR et il a2 e

B N A S w1t e e e

VMY R A I 150

-

Tronslation

Date
i
Data Path |
Translater | 1
Bperation | | System Control
Mode e
R Translator
p=Instruction ————
Memory Test :
Function
Translator !
Next)
Address
Transiator _l
Sequence Test fare—m Sstem Test
Function .
Control Selector | Variables
Instruction

Ta-5380-120

FIG. Hli-6 FIXED PROGRAM-VARIABLE TRANSLATION MICROPROGRAM SCHEME

6. Conclusions

Various alternatives in the design of p-program type control units
have been reviewed. A number of schemes have been developed for real-
izing major functions in modular and programmable forms and for permit-
ting a substandard use of fixed-data iype mewory stores, However, the
merits and costs of the various schemes need to be evaluated, It is also
necessary to investigate appropriate means for applying logical redundancy

for error control within the control unit,

D. An Improved Realization for Switched-Adaptive Voting

1., Introduction

In the von Neumann voting scheme, up t¢ m errors in the outputs of
2m + 1 nominally identical binary channels may be corrected by obtaining
the system output as the majority function of the channel outputs. Pierce

demonstrated the value of combining the outputs by a function that weights

36

g
3
%
=
g
£
£
£
i
z
S
]
£
s
E
£
§
.
=
s
E
%
s
=
=

the contribution of each channel according to its recent error rate, A
continuous weighting function is discussed on page 371 of the Phase I,
Final Report, As a special case, it may be seen that it is beneficial

to completely disconnect a permanently-failed channel,

Several logical realizations of the latter scheme are also described
in Sec, IIA, 2b of the final Report--Phase I. The simplest structure was
obtained by use of a linea--input logic element in which the 0 and 1 states
of the inputs were encoded as +1 and -1 signals with the output E if the
sum of the inputs is at least +1. Since linear input elements are diffi-
cult to realize in microelectronic lechnology, a realization was developed,
using only binary-valued logic elements, This scheme required rather
costly logic networks that effectively counted the number of active chan-
nels and also the number of channels displaying a 1 value, These counts
were needed because the scheme called for replacing the output of a dis-
connected channel by_g; hence, the number of inputs (to the combining
network) that constituted a majority depended upon the number of active

channels,

2, '‘Description of a New Scheme

The iollowing approach permits the use of a fixed majority network
as the entire combining element. Let only one channel be disconnected
at a time, then, as successive channels fail, replace their outputs by

constant O or 1 signals, alternately.

It is convenient to represent the inputs to the majority network as
CO’ Cl’ and x, representing, respectively, the constants, 0 and 1, and
the free variable x, As an example, for the case 2m + 1 = 7, the follow-
ing useful sets of inputs appear at the input to the me ority network:
(7x), (6x, 1), (5x, 1€y, 1cC,), (4x, 2Cy, 1C,), (3x, 2C,, 2C,), and

and (2x, 300, 201). Since the system output is 1 when four 1's are

(2x, 3CO,
the corresponding minimum ratios of free 1 inputs to to:cal free inputs
required for system output 1, are 4/7, 4/6, 3/5, 3/4, 2/3, and 2/2

201). Since the system output is 1 when four 1's are input,

respectively,

The overall structure of a realization of this approach is given in
Fig. III-7a. Each of N channels, xl, vees xn, is presented to a Majority
Net via en AND/OR cascade, whose other inputs are obtained from a control
unit. Thus, for example, the first input to the Majority Net is the func-

11
the input may be set to the values xl, 0, or 1, The Comparison and

tion (xl)(cll) + (012). By proper choice of the control signals, C . and
C12’
Control Unit determines when a channel is to be disconnected and also
generates the appropriate control signals, Inputs to the unit are ob-

tained from the channels and from the system data output,

A logical realization of the Comparison and Control Unit is illus-
trated in Fig, III-7b, The subnetworks corresponding to channels are
arranged vertically, between dashed lines. The control outputs for a
given channel are obtained from two flip-flops; thus, for channel 1,

€111 12 2° 1

produced by control outputs 011012 =1, CnC12 =1, and C1

tively. These outputs, in turn, correspond to the flip-flop states

FiaF12 = 1» FyyFyp =1, and F,

flops are cleared to the F state, thus, setting all Majority Net inputs

F 2 and C = F1 The Majority Net inputs x,, O and 1 are

2 = 1, respec-
= 1, respectively, Initially, all flip-

to the x state, In order to set the channel 1 Majority Net input to the
0 or the 1 state, either F11 or F12 is set to the F state, depending on
the parity of the number of previously disabled states. This parity is
recorded by a trigger flip-flop, Fp, the state of which is sampled by

the signal g;-

Signalgl, which is derived from signal f1 is gated by an output of
the STEPPER unit. Signal f1
the system data output differ, the difference being taken as indicative

is true whenever the channel data, xl, and

of a channel error. The STEPPER unit serves to scan the channels serially;
this is done to avoid ambiguity in the determination of the parity of
active channels, in the case that several channels may fail at the same

moment. The STEPPER is assumed to return to a rest state autonomously.

38

) & CONTROL
=
2
2
CHANNEL X, 5
. MAJORITY DATA =
. NET | oo OO TOUT 3
- CHANNEL Xy, |
T o DATA =
P OUTPUT E |
{ ©
s o* OR 0 :
' E
} z
A 3
1
® ¢ o <ifjwommm— OR 0 %
2
A)(a 5
F1I[F
Fri Frz
’ A
xN CNI CN2

18-3580 - 19

(b) DETAILS OF COMPARISON AND CONTROL UNIT

FIG. 11l-7 SWITCHED-ADAPTIVE VOTING

The presence of a difference in any channel is indicated by signal

¥y = f. +f,+ ... + £_, which, when true, starts the STEPPER, if per-

1 2 N
mitted by the external control signal TEST, For each channel, if a g

signal is produced, a Yo = 8y + By * ee. 8y signal is produced, which

2
triggers the parity flip-flop, Fp. The information in Fp is also avail-

able in the set of Fi status flip-flops.

1

In a system composed of a number of such voting stages, various

portions of the control unit may be centralized. For example, a single

39

STEPPER unit could serve all stages, and in the extreme, all the control

logic could be programmed, with the exception of the status flip-flops.

The minimum cost of the stage, assuming that, of the control unit,
only the status flip-flops and their input gates are realized in hardware,
is 2N flip-flops, 4N gates, and one majority network., The cost of the
latter is about eight three-input gates for N = 5, and about eighteen
three-input gates for N = 7, The total number is thus 10 flip-flops and
28 gates for N = 5, or 14 flip-flops and 46 gates for N-7. For comparison
(also excluding the comparison logic), the scheme described in the Phase 1
report (pp. 74 and 85) requires about 5 flip-flops and 50 gates for N = 5,
and 7 flip-flops and 95 gates for N = 7,

Assuming that a flip-fiop is equivalent to four gates, the equivalent
gate costs for five- and seven-input stages are &8 and 102, for the new
scheme, and 90 and 123, respectively, for the old scheme. The avail-

ability ¢f a three-state storage element would allow further economies,

40

A A

IV PRINCIPLES OF COMMUTATION NETWORK DESIGN

A

Adtias b

A. Introduction

1. Commutation Requirements

In Chapter III, a multiprocessor system was proposed for which a

at

set of simultaneous one-to-one connections could be established between
working memory modules (WM) and simple processor and control modules (SP),
and also betveen SP modules and arithmetic logic units (ALU) or back-up
memories (BAM) or input-output devices (1/0). Also di<cussed was the
possibility of "repairing” an SP, WM or ALU module wherein the module is

realized in a byte-sliced manner. In such a case, the repair operation

requires the routing of the data, previously destined for a faulty slice, 2
to a succeeding slice, The networks that perform the data switching,
which is inherent in the operations of module assignment and repair, are

called commutation networks.

We have classiiied two types of data commutation for the module
assignment, namely (1) complete permutation--complete utilization,
(2) complete permutation--incomplete utilization, and three types of
commutation for the repair operation, namely (3) incomplete permutation--
order preserving, (4) incomplete permutation--nonorder preserving, and
(5) "shorting." These five commutation functions are described schemati-
cally in Fig. IV-1, where the specific applications or each function are

also listed.

The assignments associated with the complete permutation--conplete
utilization [CPCU(N)] function is probably obvious. The commutation net-
work is to be capable of permuting, in an ' rbitrary manner, a set of
N input data lines, emerging, for example, from a set of memories to a
set of N output lines incident to, for example, a set of SP units. 1In
the illustration, a data transfer path represents a parallel set of

lines containing many bits {24-56). The assignments associated with

the complete permutation--incomplete utilization [CPIU(N,m)] function

COMMUTATION FUNCTION

SCHEMATIC

COMPLETE PERMUTATION

COMPLETE UTILIZATION

P

COMPLETE PERMUTATION
INCOMPLETE UTILIZATION

vl

UNIT

GOCD
UNIT

Goon
UNIT

Fhil

GOOD
INCOMPLETE PERMUTATION T —
NONORDER PRESERVING

GOOD k

GOOD
INCOMPLETE PERMUTATION BYTE =
ORDER PRESERVING GOOD =

| __ GooD
BYTE

SN

. APPLICATION

COMMUNICATION BETWEEN

WORKING MEMORY -SIMPLE PRCCESSOR

BACKUP MEMCKY - SIMPL. € PROCESSOR

»ND DATA IS ORDER SENSITIVE
L

(FULL CAPACITY OF
INTERCONMNECTION)

COMMUNICATION BETWEEN

{L1#Mi TED CAPACITY OF
INTERCONNECTION)

INT.RCONNECTION WKEN
SEDUNDANT UNITS EXIST

COMMUNICATION BETWEEN
SPARE REGISTERS

COMMUHCATION BETWEEN
ALU-SIMPL E PROCESSOR

INTERCONNECTION WHEN
RFDUNDANT UNITS EXIST

COMMUN: CATION BETWEEN

—. s BYTES OF WORKING
Y
BYTE 1 ™=\J._ G000 ,emORY-SIMPLE
BYTE PROCESSOR
SHORTING ; ROUTING OF DATA
AROUND FAULTY
BYTE BYTE BYTE _ BYTE SLICES
1 2 3 1
TA-5380-1i6

FIG. 1V-1 CLASSIFICATION OF DATA COMMUTATION REQUIREMENTS

differ from those associated with the CPCU function in that for the former
only a subset containing m inputs of the total of N inputs and outputs*
needs to be interconnected at a given time, For the incomplete permutation--
order preserving [IPOP(r,m)] function a subset containing m inputs of the

r inputs, say for example associated with the working byte slices of a
simple processor and control unit, is to be connected to a subset of the
outputs, say associated with the working byte slices of an arithmetic
logic unit, but with the restriction that spatial ordering of the input
signals is to be preserved at the output., The preservation of order is
clearly required since the data to be commutated is a binary number. The
assignments associated with the incomplete permutation--nonorder-
preserving [IPNOP(r,m)] function differ from those of the IPOP case in
that, for the former, precervation of order is not a requirement. For
the shorting function the outputs of a given byte slice are either to be
connected to the succeeding stage (slice) or "shorted" around that suc-

ceeding slice.

For any commutation function it is desirable to synthesize networks

for which the following are true:

(1)
(2)
(3)

{4)

(5)

The design is economical
The network setup is not difficult
The data transfer is rapid

TFailures in the commutation network do not disable
either the commutation neiwork or the modules served
by the network. This tolerance to CN failures should
be achieved with minimal increase of network com-
plexity.

If the commutation network is "repairable,"” the diagnos-
tic routines should be easy to specify and of minimal
length.T

¥ We are assuming
number of input
restriction and

t The "length" of
of sequences of

that for all commutation requirements there are an equal
and output terminals; this is clearly not a necessary
it is only postulated for convenience in description.

a diagnostic routine is defined to be the maximum number
input data required to diagnose the network.

43

2. Prior Solutions to the Commutation-Network Design Problem

The cbvious solution to the commutation-network design problem relies
upon the use of a single-level crossbhar switch, similar to the type com-
monly found in central teleyhone exchanges. Figure IV-2 represents,
schematically, a crossbar switch serving a set of WM's and SP's. Here
the ¢ vossbar, where each single-pole single-throw switch represents a

: crosspoint, fulfills the requirements of both the CPCU(N) and IPOP(r,m).
Clearly a crossbar with N2r2 crosspoints would pe sufficient, but it was
shown! that actually Nz(r2 - mz) crosspoints are sufficient. In any event,
it is seen that 28-104 crosspoints are required to serve 25(=N) processors
and memories, 32(=r) total bytes, and 24(=m) bytes are required for com-
putation. Although a multiprocessor of this complexity might appear un-
reasonable, there is considerable motivation to seek more economical

commutation network designs.

Goldberg!»1® described a serial transfer network for the IPOP func-

tion which exhibited a complexity proportional to 2N, but, even with the

Wi, SP,
WM, P,
WM P

N

Ta~-35%080-122

FIG. IV-2 ‘"CROSSBAR' REALIZATION OF COMMUTATION FUNCTION

g

=
§
3

use of speed-independent iogic, the data-transfer rate is probably not

adequate for our application,

3., The Primitive BuildingiBlock of Commutation Networks

Most of the commutation networks described in following sections
will be composed of interconnections of the "cell" shown in Fig., IV-3.
The cell, which is very simple, behaves as a reversing switch, under the

cO:.trol of a single memory flip-flop.

In essence, it is a doulle-pole, double-throw reversing switch,
controlled by a storage element (e.g., a flip-flop). In addition some
means is provided by which the storage element is set to the desired
state, Figure IV-3(a) shows a relay-contact version, analogous to cir-
cuits in the MOS technology, and Fig. IV-3(b) represents a NOR gate-
realization of the cell in question, The two mcZ2s consist of a crossing
Fig.I1V-3(c) and a bending Fig. IV-3(d) of the pair of input leads to the
pair of output leads. Figure IV—3(e) represents a redundant flip-flop
version of the cell, for which any single component failure will result
in one of two possible failure conditions. In the first failure condition,
which we will call the "stuck function” condition, the cell can realize
only one of the two possible modes, i.e., the bend or the cross. 1In the
second such condition, which we shall call the "bad-output” condition, one
output lead zontains a faulty signal. Table IV-1 summarizes the failure
conditions resulting from various component failures of the cell of
Fig. IV-3(e).

Table IV-1
FAILURE CONDITIONS FOR BASIC CELL
Component Fault Failure Condition

Faulty OR ga:e Bad-Output
Faulty 2-input AND gate Bad-Output
Faulty 3-input AND gate Stuck-Function
Flip~flop stuck in a mode Stuck-Function
Same logic value on two outprts Bad-Output

of a flip~-flop

45

Gl 0ot AR AT

recsecsecsensfec e wcween

B e L

-y

1
X

X

B

| SR PR AU

(a)

| i
| 1
4 4
i |
1 '
rll%flu
=TT
1

_ * "
3 A_v i
i i
Leeedend

TA-8380-i3

(d)

TA-3680-128

(o)

FIG. IV-3 BASIC CELL FOR COMMUTATION NETWORXS

46

%

e A O S A s e e e

B. Commutation Networks for Complete Permutation--Complete Utilization

1. Nonredundant Networks*

It is easy to see that a CPCU(N) network must contain enough two-
state cells’ to specify all N! possible permutations; thus, Nl(N), the

number of celis in the network, is given by:

Nl(N) 2 log, (N1)

or, asymptotically (from Stirling's formule),

NI(N) 2 N log, N - 1.443N + 0.5 log, N .

In Fig. IV-4(a) we depict a CPCU network. The subnetworks PA and PB are

themselves complete interconnection networks, each with half of the number
of inputs of the total network. This arrangement requires a number, Nl(N)’

of cells which satisfies:

Nl(N) = NIE(N/z)] + Nl[N - (N2))+N=-1
Solution of this recursion for N = 2r, [using N1(2) = 1], gives

N1(2r) = 2"(r- 1) +1 ,
or

NI(N) = N 1og2(N) -N+1 |,

The nonredundant networks for the case N = 2k described below were dis-
covered under another contract, and are described in two forthcoming
papers. 17,18 All of the other resultr were obtained under this present
contract, as well as the generalization of the nonredundant network to
cover the case where N # 2k.

¥ For the CPCU applications of interest to us, the cell is actually an
r-pole, double-throw, reversing switch, where r is the numoer cf output
lines contained in, for example, a WM, It is shown in Sec, IV-B-3 that
it is convenient for reliability enhancement purposes to byte slice the
CPCU network so that the aumber of "poles" each cell contains is con-
siderably less than r.

It can be shown that the same value of NI(N) is obtained for arbitrary N,

[Ze]

47

et

R

-A coustructive proof that this network is capable of performing an

arbitrary pernﬂtntion is as follows. As previously, let the inputs and

_outputs be labelled xl. xn, cea XN and Yl' Yz, cen Yx. sespectively, in
‘order as shown in Fig. IV-4(a). Wec start by building a path backwards

from Yl through PA, and through whichever inpu’. cell is connccted to the
input that is supposed to be connected to Yl’ (The routing of signals

within P, and P, will be determined in later steps. ! A furward path is

now iformed from the other imput Xy,i: sharing the _me input cell with ‘Yl'

1=

B
connected to the desjred destination (YJ. say) of thic input line. In

through this input cell, through P_, and through whichever output cell is
like manncr, the mate to this new output is traced back through PA to its
associated input, and the matc of this new input is connected in a forward
path through P to its intended output. This path-building process is con-
tinued, alternnting use of P and PB’ until output Y is vcached. If not
all input -output connections have yet been conpleted then start with any
unconnccted output line anud coutinue the process, going through the cycle
as many times as necessary, until all input and output cells are set in

cither the "bending” or “crossing” mode.

The entire procedures are now repeated separately feor each of the
interconnection arrays PA and PB, etc., until the entire array has been
set up. The procedure will never be forced to stop because of the lack
of connection, since PA and P are each counected to every input and output

cell--cxcept Yl for PB and Y‘ for PA’ and these connections are avoided by
starting as indicated. The array for N = 8 (with some of the coanections

straightened and the outputs renumbered) is shown in Fig. Iv-1(b).

It is of interest to investigate efficient techniques for sctting up
the network cclls to reali~e the necessary mode for a particular permuta-
tion. Cousider, for example, the network of Fig. IV-4(b) rcdrawn in
Fig. IV-1(c), and assume that we require the setting <f the cells as shown.
Referring to Fig. IV-3 we sec that each cell is in the crossing mode upon
resetting the flip-flop. The cell is set to the bending mode by the co-
incidence of logic-one vilues on the data inputs and the P input. Clearly,
then, by applying a logic-one value to tne P input of all .ells in a given

level of the network--in Fig. IV-4(c) a sct of values, X, = Xg = Pl =1,

18

te) i

To-0000 -4

(X}

. FIG.Iv:4 NETWORK FOR COMPLETE PERMUTATION — COMPLETE UTILIZATION

19

will xet the cell serving 'x5 and xe—-und appropriately setting the N (nput
sigbale, the network can be set up in a period proportional to the number

of levelxs in the network,

2. Byte-Sliced Commutation Mertworks

In this section we are conceried with the behavior of the CPCU net-
vworks under cell fault cenditions and a simple technique of accommodating

to these faults,

It i3 clear that for the casze wherein the basic cells are double-pole,
double-throw, reverzing switchesz, each bad-output cell failure results in
an error only on a single output of the netvork., Similarly, each stuck-
function failure results in an crror on a maximum of two outputs. In the
latrer case, it is sometimes possible to accommodate to thiz failure type
by appropriately setting the working cells of thce network. This accom-
modation technique is discuzssed in detail in Sec. IV-B-3. Unfortunately,
for the case of r-pole ceclls, a single fajlure could result in the fnability

cf the CPCU network to realize several of the SM-SP assignments.

This state of affairs is significautly improved by byte slicing the

CPCU network as shown in Fig., IV-5. 1In this case, the bytes (where each

b bits byte

S——
N —pPElMJTER 1 | mee——e TO OROLCR PRESERVING
.. b - POLES CELL | . NETWORK AND %P UNIT

~:

'-}-Fi
", ™, :
—

TA-9000- 28

FIG. 1v.§ BYTE-SLICED PERMUTATION NETWORK

ot}

.ﬁ«mn!Mm-n*mmmlumlﬂll'ﬂ'lll!lﬂ“W:"‘“l'im"mmlﬂwjl

LR R

T EMEAN R NI VR Gy, MR B Y 1 o g

byto 19 nsaumed to contain b-bitl) of the Wu's are permuted in separato
“networks. That is, the first CPCU hl!, as inputs, the first byte of
each WM, the second CPCU has, as inputs, tne second byte of each WM, ste.
The outjuts of tho tirst CPCU are ultimately directed to first byte of '
each 8P, etc. xt s thus seea that for this byte-sliced renlizntion.
which} of course, - requires tho distrihution of the cell menory flip=‘*lops
among each of the CP(Y's, a cell failurs disables a single byte. These
commutation network byte failures can be accommodated for in the 1den-
tical manner proposed for other byte failures, i.e., by the us? of the
incomplete permutation--order-preserving networke descrihed -in Sec. I1V-D,

3. CPCU Networks Insensitive to Cell Failures

a. The Stuck-Function Fault

_For the momeat, consider only the case in which the network
1s fault-free or has precisely one bad switch (cell). Figure IV-6{a)
illustrates a straightforward solution to the single error-correction
problem, 1If P, and P2 are both full permutation networks, then a fault
occursing in one of them (such a fault being of the stuck-function type
that dous not disturb lead continuity) has no effect on the operations
of thlie other network. Obviously, this is a rathe: wasteful approach
since all of the remaining switches in the network containing the fault
contribute nothing toward rforming the desired permutation. Instead, let
P, of Fig. 1v-8(a) represent a permutation (CPCV) network, and P, be a
network specifically designed to undo the damage caused by a fault in Pz'

Then {f & fault occurs in Pz. 1t can be repaired by Pl, while a fault

in Pl causes no trouble because P2 is a full permuter. W%hat is required

of the network Pi? A single fault in P2 causes a simple interchange of

some perticular pair of leads at scme cell within the network,

This can
only become manifest as a spurious reversal of exactly two leads at the

output. Of course, the possibility exists that the switch might fail in

the correct position and no trouble would occur.
be sufficient that the network P

In any event it would
3 be capable of effecting the interchange

of an arbitrary pair of input leads without changing the relative assign-
wments of the other input leads,

1

The géggle-tree'(nuT) network of Fig., IV-6(b) can do this job.

_ Any pair of input leads can be directed to some switch on the left of
_ the center switch, At this switch (to the left of the center switech),

- the leads may be 16terchnng@d. Whatever switch settings are required to
do this interchanging, wu. copy by reflection in the (1mnginnry) center=-
line to the right-hand part of the network with the exception of the
switch that actually effects the interchange. The corresponding switch
ih the right-hand part of the network is set in the opposite state,

The scheme is illustrated in Fig. I1V-8(b) for the particular case of

| g+ Here the switch

settings to the right and left of the center line are identical and the

N = 8 in which we wish to interchange inputs x2 and X

center switch effects the desired interchange. Similar networks exist
for all values of N, and are obtained by pruning the corresponding tree

networks for the next largest power of two greater than N,

When one of these double-tree networks is placed in tandem with
a full permutation network, we are able to correct the effect of one
switch failure wherever it may occur in the composite total network formed
by P1
already considered, it will be fouund that the input peripheral switches

and P,. If P, is one of the CPCU type commutation networks we have

of Pz_and the output peripheral switches of the D-T network match up into
tandem pairs of individual switches, Note, for example, the pairing of
leads at the input of the network of Fig. IV-4(b) and the similar pairing
of output leads in Fig. Iv-68(b). Vhenever such a pairing occurs, we may
omit one of the two switches if we have provided for the possible failure
of ohe or the other of them, We may therefore omit the entire column of
. peripheral output switches from any of the D-T networks whenever we ad-
Join them to one of the CPCU networks. The single-error correcting capa-
bility is not affected by this pruning operation. Call the network that
results from the removal of the output switches from the double-tree net-
work the TDT(N) network (for truncated double-tree of N leads). Then
single-error correction of any CPCU(N) network can be obtained by the
tandem addition of one TDT(N) network. Furthermore, if the possible ef-
fect at the output of the CPCU(N) of the multiple failure of switches is
cousidered, it turns out that the addition of p TDT(N) networks in tandem

52

AN T A A A PTR

P‘ ’ i 2 ‘ i '2) g

I m

TA-0800 =188
T (a)

TWO PERMUTATION NETWORKS IN TANDEM

X5
7,
X;
S<.

ta-3840- 12}
(b)
A “DOUBLE=TPEE' NETWORK
X, - A
X, Y,
Xy Y,
X, Y,
TA-3080-133

te)

MINIMAL REDUNDANT 4-PERMUTER —
SINGLE STUCK -FUNCTION CORRECTING

FIG. IVv6 PERMUTATION NETWORKS INSENSITIVE TO SINGLE ''STUCK-FUNCTION" FAULT

53

to-any CPCU(N) network will suffice to correct as many @s p switech failures

in the total network. The argument, which {s much the same as the fore-
going one, depands on the possibility o. uecomposing n11 such multiple
failures 1nto ‘separate pairwiae lead in*erchanges.

To estiqate the cost of error protection according to the fore-
going scheme, we nove that the TDT(N) networks contain épproximately '
(3/2)N switches. To correct p errors then takes about 3/2 (pN) mwitches.,
Thus, 1 N is very large, we can correct a "few" errors at a cost that
is small compared with the total number of switches in the network
(N log, N)., On the other hand, correction of multiple errors with
TDT(N) networks does not furnish a recipe for creating arbitrarily rel.-
able networks (in the Shannon sense) while sti11 meeting the asymptotic
cell count, i.,e., ~N log2 N. We have not yet diecovered how to resolve
thie problem although a soiution seems possible, If anything can be con=-
cluded from results obtained for small values of N, it seems that single
fault correction should be obtainable at a cost of (Jog2 " extra switches
in excess of the CPCU(N) count. In particular we can exhibit specific
networks that correct one fault and have switch counts as indicated in
Table IV-2, In each case the number of switches shown in Table IV=2 is

Table IV-2

NUMBER OF CELLS IN SINGLE STUCK=-FUNCTION
CORRECTING CPCU NETWORKS

SBwitches in
Lends Redundant CPCU (N)
Network

2 1
5 3
5
8

7
11
14 11

A L A W N

*
The < x > 18 the next integer larger than x,

54

exactly (1og, N) larger than the corresponding valus of CPCU(N), In the
cases N =2, 3 and 4, 1t is reasonably certain that these realizations
are the minimal ones that exhibit the single-fault correcting property.
~An exémple{of a ninglc-xnult;éorrocting network for N = 4 is 1llustrated
in Pig. Iv-8(c). ' ’

A considerable number of network forms and iterative combining
rules were studied during attempts to establish the minimum cost of fault
correction, BSeveral time-shared computer programs were written that allow

heuristic tinkering with networks, i.é., the progi.w. BAD-ONE that verifies
whéther a proposed network is-indeed a full permuter if one cell has a
stuck-function fault. As & result of all this experimentation, one feels
impelled to make the following conjecture:
i The cost of protection against (correction of)

p faults in a CPCU{Y) network is no more than

the difference in cost between CPCU(N) network

and a CPCU(N + p) network., ‘That is, the cost

of correcting each additional fault, say fault 1,

is smaller than (logz(N + 1.

If this conjecture is indeed true, then there would exist per-
nutatiot. notworks of arbitrarily high degree of reliability whose cell-
count would not exceed K'NJ(N), where K 18 a constant related to the

probability of a switch failure,

b, An Alternative Single Stuck-Function Correcting Construction

A Jdifferent and slightly more economical [than the TDT(N) device]
method of providing single-feult protection in CPCU(N) networks stems from
the observation that the construction of Fig. 1V-4(b) can tolerate one
cell failure in any peripheral cell if an extra cell, serving outputs Y1
and Yﬁ column, 1s retained rather than deleted. The reason for deleting
this cell in the first place was that exactly one peripheral cell is un-
necessary in the nonredundant case, 8ince all of the peripheral switches
are exactly equivalent in function, it makes no difference which one we
delete. Hence, by retaining all of them we can ignnre exactly one failure
in any of them. If each of the 'internal' permutation networks that im=

plement the construction of Fig. IV-4(b) are augmented in the same way

55

by rcplaeing the'de

Lrthan wu obtain & network, cal
failure anywhero. An examplb o£~ ue atwork
in Fig. Iv-7. We notice’ first thatp he umbe of cell
the network is not minimal [see Fig. IVha(c) + - He ;
redundant colls required when N =23, wo- iind,thatgthe ewﬁra cel;;;_ﬂ;w o
exactly N - 1 in number. This means that 1n the special case N= 2" the
hetworks SI(N) are more econom@cal than those produced by annexing 8
TDT(N) network to a CPCU(N) network, Recall that this required about

3N/2 extra switches,

TA-9800-137

FIG. IV-7 NON<MINIMAL REDUNDANT 4-PERMUTER, SINGLE STUCK-FUNCTION
CORRECTING

c. Correction of Bad-Output Fault Types

Considering the effect of a single fault of this type on an
otherwise full permutation netvork, it becomes apparent that exactly one
output lead will receive an incorrect signal in response to the upplied
inputs., The situation can be remedied by adding one extra lead to the
N-permutation network if we can also be certain that the input signals
are applied to, and the output signals derived from, the correct subsct
of N leads, One way of accomplishing this is 1llustrated in Fig. IV—S.*
The figur~ is drawn for the case N = 4, but the method is perfectly

* Clearly a bad-output failure on a cell immediately preceding a network
can never be accommodated for. In this case the appropriate byte is
disabled,

56

i

T -9880-12¢

¢ =
=

A 1 - |

X] Y' E—;—
.§§

B 7 5

X, - Y2 "gr
¢ NON=-REDUNDANT =

~ =

X, = L] 5 -PERMUTER |y Y, Z
E

1 2

Xy e 2 }-4—' L——Y4 §
TN /]
2

FIG. V-8 NETWORK FOR CORRECTING BAD-OUTPUT FAULTS

Ly

general., To permute N leads, we employ a nonredundant N + 1 permuter
flanked on input and output with a ladder network having N switches. If

the N + 1 permuter has a bad cell lead, this will show up as a failure

skl R i

of one of the signals on leads A, B, C, D or E of the internal N + 1 per-
muter to arrive at its specified output. By setting the switches of the
iladder network in the obvious manner, the fault can be corrected, as

illustrateu in Fig. IV~8 for thne case wherein input C does not arrive

correctly at internal output 4.

The cost of correcting one failure by the method of Fig, IV-8
is 2N switches for the ladder networks plus (1og2 (N + 1)) extra switches
lassuming the CPCU(N) construction of Fig. IV-4(b)] to implement the
N + 1 permuter rather than the N permuter. This cost, ~2N + log2 N, is {
asymptoticslly negligible compared with the cost of a CPCU(N) network

for large N. It is obvious that the foregoing construction can be extended

i b 0

to correct multiple faults cof the bad-output type.

TR T, R

it e

57

B
=

C. Commutation Networks for Complete Permutation--Incomplete Utilization

We are assuming here that the commutation network is to serve N in-
puts and N outputs [similar to the function of the CPCU(N) network], but
in this case it is only necessary to provide simultaneocus connections
between m{m < N) inputs and outnuts. Such a commutztion fi'nction, re-
ferred to as embodying complete permutation-~incomplete utilization,
is denoted as CPIU(N,m)o It is desired to specify a network that is more
economical in terms of cell-count and/or is easie: to set up than a CPCU(N)

network which, of course, also achieves the CPIU{N,m) function.

It is easy to see thag a CPIU(N.w) network must contain enough two-
x-‘
state celis to specify (m} (m!) possible permutations; thus, N2(N’m)’ the

nur.er of cells in the network, is given by

2
P N
X,{N,m} > log, [(m) (m-",]
or

e N
Nz(h,m\ 22 1og, () + Nl(m) .

2 'm
The above formulas suggest that the CPIU(N,m) function could b: realized,
as depicted in Fig. IV-9, by a network composed of a CPCU(m) block (m-

permuter) sandwiched between two combination networks.,

It is assumed that a combination network serving m inputs and N out-

puts, denoted as a OQOM(m,N} network, is to have the capability of connecting

X, -] X! X; — v,
X: N-M x: 1 M- x; M-N —

_ {COMBINATION j—= < {COMBINATION| _

P nETwork | P | PERMUTER} | \rrwork |
XN-w-{ Xop — p——— Y
TA-9580-138

FIG. IV-9 SCHEMATIC REPRESENTATION OF DECGOMPOSITION OF A COMPLETE
PERMUTATION INCOMPLETE UTILIZATION NETWORK

the set of m inputs onto any specified set of m output leads,* without
regard to the order of these signals on the ocutputs. A similar definition
applies to a COM(n,m) network where the number of inputs is assumed to

exceed the number of outpu*s.

The number of cells, NC(N,m), required for an m,N (or an N,m) com-

bination network is given by:

N N.
2 = mI(N - m):| °
\c(x,m) log, (m) log, [m: N-m .']

Asymptotically, from Stirling's formula, we find that a network composed

ol N - 1 cells should be sufficient to perform the combination function.

We have not found combination networks, composed of the 2-input basic
cell which approachk this N - 1 cell bound, as closely as the CPCU(X) net-
works approach the (10g9 N!) bound. However, it is not difficult to specify
a COM(N,m) network that requires ounly N two-state cells, but wherein each

cell contains m + 1 inputs,

Consider the two-state cell depicted in Fig. IV-10, with m horizoncal

inputs (m = 3 for the case shown), I, I,, ««s, I, m herizontal outputs

G., O cen, Or, cne vertical input, Xi, and one dummy {unused) vertical
[13
C,

1) 9
02

. J
& ‘ /
I3 0, '5“'”'F“//:::;‘P—"°s
|
xI
{b)

{q)
CROSS MODE BEND MODE

Ta - 3380 - 40

FIG. iV-10 BASIC CELL WITH AUGMENTED SET OF INPUTS

#* L : . . .
As indicated in Sec. IV-B-1, if a network is commuriating parallel data
channels, each call input is in reality a bundle of many wires.

59

output. In the "cross" mode, the three horizontal inputs are transterred

unaltered to the three horizontal outputs. In the bend mode we effect

the transformation Xi - Om’ Im — om-l' seny Io -0 An m,N combina-

2 1°
tion network is easily synthesized as a cascade, containing N of these

augmented input ceclls, as shown in Fig. IV-11 for the cascm = 3, N = 6,
The appropriate cell modes are shown for the case where it is desired to

and X_ to the threec outputs, Y Y Y which

1 5 1’ 3
are the horizontal outputs of the last cell in the cascade. It is noted

connect the inputs X, X 2
that the first cell in the cascade actually requires no horizontal inputs,
the second cell only 1 horizontal input, ..., the mth cell oniy m - 1 hori-
zontzl inputs. However, if we consider the approximate cost of a cell to
be proportional to the number of terminals served, then the cost of the
combinational realization of Fig. IV-11 is of the order of mN. We can

find realizations that require a number of cells in exce=s of XN, yet
exhibit a cost measure significantly less than the network previously

described.

We will recursively synthesize a OOM{m,N} network that is composed
of the basic two-input cell, using a procedurc suggestive of the one
describra in Sec. IV-B-1. Consider the COM(m,X} netvork represeuted by
Fig. IV-12, where it is assumed that 2]m and 2IX. The subnetworks, Q1
and Q,, are themselves combination networks, each with half of the number

of inputs of the total network., This arrangement requires a number,

N, {m,N}, of cells which satisfies:

- ’ -t - - 7 N
N, (m,X; = 2§ (mn/2, N/2) + -1 .

. . . . ,t I S . o\ i
Solution of this recursion for N = 2 , m = 2 y using No(l,l, = 1")
vields

2, r-1 r -1 r-1
No{(20 T,2Y =2 « (r - 2)2 + 1

* It is clear that a single two-input cecll, where one of the inputs is
AY

not used, is a COM(1,2) network.

60

Wi-0008 « v

MYOMLIN NOILVNIGWOD W 'N (L-Al '9Id

x

CH (g Wt G W y R
: R R A e T I N CE PRI L N R R S A G e Y e

s s AR AT

/
/.
/,

Tx
4

/
e

3

bk s i Ty st - .;Fr_,__ i.ﬁcriri‘_. Er,:_.. filt ksl .inég._ itkiidat b it acdt iy fdsitieaiin lusd fnt :
it diiligih, S T PR N PR R ek [N Ty PRI 1
. EROERt LB _;.a_ﬁﬂ.é.g..,:_;.,.:__E_A L 1

81

) G ———— . - Y
u,
md N Y
s N
. COMB KET
. ¥
& T S
Y
x x: ‘ s isin wime ccrmii se e mir omere: m s a———y
a.
s m o3 N
' LimB NET
Yo,
X el - YH
b I 11 L N

FIG. V12 REZURSIVE APPROACH TO m < N COMBINATION NETWORK

33
=1 Ly N N
N fat Ty w log, (NY - 3+1

A& munllur oxpreasion can be deerdved for the case wherefn v, N owroe md

powers of .

A cvottetructive proof that this network ix capable ol developiug u
patit from the moiaputs to ui arbitrarily selected set st o oatpuld 15 as

follows, Lot the inputs and outputs e labheled xi. Sv,

Yi’ Y1 vees 'St,‘{u as 1fdicated 13 Flg., IV-12, We will start by indicating

thie appropriate modes for the (N2) = 1 foutput) vells serving wut-

LN O 'S kﬂ{! u“d

puts Yﬁ, sy 'le, g0 thut for un arbttraly selcetion of mooutfiuts,
vxnctiy'm|2 of these ontputs ure connceted to q1 FHTT mﬁa Ty Qn‘ If un
owlput cell xerves two selectod outputs, it van be arbitrarily set to
vither mode. The output cells shiech sepve the remgining sot of selectoed
outpute are then seft to the appropriate mode so thut the t{ivxt of thorso
autputs (ineluding possibly Y1‘ 1= vonidected to Ql' the secohd connegted

10 Q2' cle,

The entire precedure i= now repeated for caeh of the networks qi

and Q,, ete., until the coitirve tnetwork hus been seot up. The petwork for

(s
L=
H e - = SSTTITIEY . ey A N i i kil TSP TR T e
Arirde m . v _-m.- e o by e e e v = P T ae - x

X - Y
Y
1 Y
Y
Y
] . T
Y
X Y
. L1] an
FIG. IV} 18 COMBINATION NE TWORK
i, N 8, Is shown in Fig., IV=13, where the cell functions are indi-
rted Tor the e lected output et Y., .3 Yas Yao
! } ¥ 1§]
It is interesting to investigate ted hinifques for incorporating re-
undancy Iinto these combination networks such that they can continue to

[fect o given assignment in the presence of cell failures, Considering
' tuck=tTunction failure, a simple technique can be specified, for
ngle fatlures of this type, similar to the method described in Sec-B- :l(h\‘.
ferving to Fig, V<12, we note that an output cell was not required to
rve output ‘.! il ‘\\, and a corresponding cell was omitted from each

rnal subnetwork, Il we insert this cell in each case, and in addi-
icate the cells serving the input leads, we will have added

i ¢cel] and produced a network that s tolerant to single stuck-
wtion fajlures, In Fig. IV=14 we display such a redundant 4 - 8 com=

wmtion network and indicate the appropriate cell modes, so as to connect

nputs to Y., 3% wherein cell S s assumed stuck in the cross mode,

] }
W the case of bad-=output faflures, a technique similar to that
o IV=B=3(¢ can be applied, The technique for a single

tlure in the combination network case would require a COM(m « 25 & + 1

S
X, Yy
Y2
X, Y
YJ
TA- 5500~ t44

FIG. IV-14 REDUNDANT 4-8 COMBINATION NETWORK FOR CORRECTION OF SINGLE
STUCK~FUNCTION FAILURES

network flanked by ladder containing m cells on the input and a ladder
containing N cells on the output. The technique generalizes easily to

accommedate to multiple failures.

D. Commutation Networks for Incomplete Permutatijon--Nonorder Preserving

It may be recalled that incomplete permutation--aonorder-preserving
networks are required to establish connection paths between a set of in-
puts aad outputs, where only a subset of the inputs and outputs are re-
quired for a particular task, and the spatial ordering of the signals at

the input does not have to be retained at the output. One application

of these networks, which has been described, is concerned with the trans
fer of data between registers where a redundant sct of registers is

specificd.*

We note, somewhat trivially, that a COM(m,{) network would function
as an incomplcte permutation--nonorder-preserving network serving a non-
redundant set of m inputs and a set of N outputs of which N-m are redun-
dant. In this section we will be concerned with networks for the incom-
plete permutation--nonorder-preserving function, IPNOP(r,m), wherein there

are r inputs and r outputs, and it is necessary to connect m input-output

* Note that this application is quite different from the case wherein

we are concerned with the transfer of information be.wveen registers
that have redundant bits. In the latter case we would require an in-
complete permutation--order-preserving network.

64

pairs together without regard for spatial order, For example, if r = 6,
m = 3 and we distinguish inputs xl, Xa, x4 and outputs Y,, Y4, YS’ then
the network is functioning properly {f it would establish one of the fol-

lowing assighment sets, [Kl - Y4, x3 - Yz, X, = YG],or[x1 - YB' X, Y
Xl1 —~ Y4], etc.

4 3 2’
It can be shown that a lower bound on the number of two-state celis

required for a IPNOP(r,m) network is between log, (;), and 2 log, (;).

In Section IV=E, which is c. wcerned with the order preserving case, we
will describe an incomplete permutation--order-preserving network com-
posed of 2r two-state cells that can, of course, function is a IPNOP net-
work. However, each cell in the network must serve up to m + 1 inputs,
providing an overall network cost that approaches 2r(m + 1). We will now

describe an IPNOP(r,m) network that requires more than 2r cells, yet ex-

Lhibits a cost measure significantly less than 2r{m + 1).

Consider the network shown in Fig. IV-15, which we will demonstrate
yields recursively an IPNOP(r,m) network, where R, and R, are each
IPNOP(r/2, m/2) netwvorks. This arrangement yields a number of two-state

cells, Ns(r,m), which satisfy

N3(r,m) = 2N3(r/2, m/2) +r -2 .
k ,k"l (+
Solution of this recursion for 4 = 2, m = 2 and, using N3\2:1) =1,
glves
N3(2k, 2% 1y o K- 1) -2l

#*
The proof of this beound is deferred until the final report under this
contract, It appears for this case that the lower value is the tighter
bound.

* It 1s clear that a single two-input, two-output cell is an IPNOP(2,1)

network. It is also a IPOP(2,1) network, a property which will be ex-
ploited in the succeeding section.

65

Xy Y,

Ry

Y;
IPNOP (r 2, m 2) Q
. Y

Y'-Z
R2 , W
L IPNOP (r 2,m 2) L Y.

TA-D380-143

FIG. IV-15 RECURSIVE APPROACH TO INCOMPLETE PERMUTATION —
NONORDER PRESERVING NETWORK

or

3
Ns(r, r/2) = r log, r - ,r+ 2,

k-1
Although we considered only thc case m = r/2 = 2 , the recursive tech-

nique is quite general and will yield a network corresponding to arbitrary

parameters, r, m.

A constructive proof that this network is capable of finding a mate
for each input and output contained in an arbitrary set of m inputs and
m outputs is quite similar to the proof provided in Sec. IV-C for the
combination network. For the network of Fig. IV-15 it i{s apparent that

the peripheral cells immediately serving inputs Xo' seey X and the

r-1’

cells serving outputs Y Yr can be set so that exactly half of

TUREEX’
m distinguished inputs are directed to Rl and half are directed to Rz;
an identical requirement is satisfied for the m distinguished output

lecads. The entire procedure is repeated for each of the networks R1

and RO, etc,, until the entire network has heen set up.

Procedures, similar to those described in Secs, IV-B-3(b) and IV-B-3(c),
can be applied to the IPNOP(r,m) network, so that the network is tolerant
to stuck-function and bad-output type faults., For the stuck-function case
we note, by referring to Fig. IV-15, that a single cell is missing on the
input and output portions of each subnetwork. The insertion of this cell
at each level in the network will yield a network tolerant to single stuck-

function cell failures,

E. Commutation Networks for Incomplete Permutation--Order Preserving

It may be recalled that the memory modules, arithmetic logic units,
and simple processor and control units can be realized as a cascade of
identical byte slices. These modules can continue to function, upon the
nccurrence of failures in slices, if several spare slices are provided,
and if a commutation network is provided to route the signals between
cperating slices. The function of such a commutation network, denoted
as an incomplete permutation--order-preserving network, IPOP(r,m), is to
set up connecting paths between an arbitrary set of m inputs and an ar-
bitrary set of m outputs, both sets of which are subsets of the r inputs
and r outputs, r > m, so that the signal order is the same at both input

and output.

Similar to the nonorder-preserving case, it can be shown that a
lower bound on the number of two-state cells required is log, (ﬁ) and
2 1og2 (ﬁ), although for the order-preserving case, the upper value ap-~
pears to be tighter. It is possible to realize the IPOP(r,m) function
in a network composed of 2r two-state cells, where each cell contains
m + 1 inputs. Tt is seen that this network approximately satisfies the

2 log, (ﬁ) bound for the case m = r/2 since

r
lim log, <[§]> = 2r -2

B AN =]

The basic cell is the type shown in Fig. IV-10, and the network is dis~
niayed in Fig. IV-16 for the case r = 6, m = 3: the modes of the cells

67

MHOMLIN ONIAYISIAd d3AYO0 — NOILVLNWYIL FLITIWOINI NV 9L-Al 014

68

051~ D”SS -8 9y Sy Vy Ey Iy Uy
| S I NN RN NN AU N SR R
Y / s /- /Z / — 7 7
— ~ — 7 . 7 < 7 ~ /n 7
7 e i 7 / - / Vi e -
1 ! ! { { f * ! ! 1 I
9 Sk VL Eg (4 15

are such as to realize order-preserving connections between inputs X
X

2'
3 X5 and outputs Y

inputs served by the first m - 1 cells in the cascade and the number of

4’ YS’ Y6' Even though the number of horizontal

horizontal outputs served by the last m - 1 cells in the cascade can both
be reduced, the cost of this network is of the order of 2mr, a corsider-
able cost, Similar to the situation involving the nther commutation
functions, thke cost of the realization is significaatly reduced if the

tvo-input cell is vsed as the basic primitive block.

A network composed of two-input cells, which realizes the IPOP(r,m)
function, is identical to the network (Fig. IV-15) for the nonorder-
preserving case. We have redrawn the network of Fig, IV-15 as Fig; Iv-17
for the case r = 8, m = 4, It may be recalled that for the nonorder-
preserving case the function of the (r - 1) output cells and the r - 1 in-

put cells was to connect the distinguished m input and m ontput leads to
the two subnetworks, R, and R

1 o+ Such that exactly m/2 distinguished inputs

1 and Rz. For

and m/2 sufﬁuté:were connected to each of the networks R
the nouorder-pfesecving'¢a§9 thé'ihﬁuf{éhd output cells could be set in-

depende»tiy; such is ﬁot,the~c§ée if iz network is to be used as an

order presurving network.

9 gt

$
1POP (r/2, m/2} Q :
X3
X, X
L 28? 3::/2)
X X ' Ys

X6 \f3 Yi3
5,
X, IPOP /2, m/2) | Y.

TA-5580~147

FIG. IV-17 RECURSIVE APPROACH TO INCOMPLETE PERMUTATION —
ORDER PRESERVING NETWORK

69

AR Pl i st S i el s A G i AR S Ao S ot e s il b et B

s A .

The following procedure, for the order-preserving case will indicate
the proper mode of each cell of the network of Fig. IV-17, for a given
set of m inputs and outputs; and, hence, will prove that the network can

function as an order-preserving network. Let the distinguished set of

m inputs b2 Xi,, Xiz, vy Xim, where i > i_ if & > &, and the m outputs
F

be le, sz, ceey ij, wvhere j} > jS if o >

Lo

Consider each of the

m inputs as residing in one of two disjoint groups. Group AI contains

‘those inputs that do not share an input cell with another distinguished

input, and group B contains those inputs that do share an input cell.

I
e will similarly define groups AO and B0 for the distinguished outputs.
The goal is to assign Xj, and Y;, to che same subnetwork (S1 or Sz),

Xi, and Yj to the same subnetwork, etc., and the procedure is as tollows.

Assign and Y;, to netvwork Sl, by appropriately sctting the per-

iy J1
tinent input and osutput cells [except fror the case where Xil = xl and/or
Yj; = iy, in which case the assignment to §, is automatic). Then assign
Xj, and Yj, to network Szj; if Xj; and xié are in group B, and/or Yj,
and Yj, are ia group B , the assignment to So is automatic. Next, assign

4

Xi3 and Yj3 to Sl, etc., until all of the m distinguished inputs and out-
puts have been set. This procedure is tnen applied to set the pertinent
output and input cells of the networks S1 and 52, etce. It is clear that
this assigrment procedure -~ always be carried out. 1In Fig. IV-17 we

show the setting of the inpuf and output cells for the case Xil = X

3 Mg = 85 X4y

2’

=X -‘—‘x._ and Yj1=Y =Y, YJ'4=Y7.

Sy 1 Vg = Yy Yig = T
The techniques for providing failure tolerant IPOP networks are not
discussed in this section since they are quite similar to the'techniques
describad in Secs. IV-B-3(b) and IV-8-3(c). We note that a celi failure
in the IPOP network (two-input cell type) can disable no more than two
byte slices each for the input and output. Since it is assumed that re-
dundant slices are provided, it is possible that a nonredundant netiwork

would be used, and when cell failures are detected, the slices that could

not be served by the network would be discarded,

F. Commutation Networks for "Shortiqu

In Sec. IV-E we described networks that, for a redundant byte-sliced
network, can serve to route external data between the operating slices
of distinct networks (e.g., between an SP and ALU). It was noted! that
internal data (e.g., control and carry information) must be routed between
the stages of the byte-sliced cascade. If a state (or slice) has failed,
then the internal data intended for that stage, which clearly comes from
its immediate predecessor or successor, must be shorted around that failed
stage. If this shorting process is not accomplished reliably, then the

entire network wvill be disabled.

The shorting function is quite naturally achieved with the two-input
basic cell, as illustrated in Fig., IV-18. For simplicity, only a signal
flow to the right has been indicated although it is clear that the network
could be modified to handle bi-directional flow. We have shown the appro-
priate cell modes so that byte slice 2 and byte slices 3 and 6 are shorted
out. We note that the network could recover from a single component fail-
ure within a cell, which results in either the stuck-function failure or
the bad-output failure. However, a more severe cell failure which results
in, for example, a permanent logical zero signal on both outputs of a celt

would clearly disable the network, i.e., interrupt the signal flow.

Such a failure, which could only result from two component failures
within a cell, could be accommodated for by the redundant shorting net-
work ot Fig. IV-19, Also indicated are the appropriate modes for cells Sl’

S{, So’ S; such that byte-slice 1 is shorted out, i.e., the output from

<

slice 0 is directed to the input terminal of slice 2., We have also shown

3? Sé, S4 such that the network con-

tinues to function although both outputs of S

the appropriate modes for cells S

7

4
byte-slice 3 cannot be used, but the signal flow is not interrupted.

are faulty. In this case

Similarly we have shown how the network accommodates to a double-output

failure in 55 in vhich case slice 5 is bypaised. This technique can be

clearly extended to handle failures of greater multiplicity.

b

Pt et il s

RO T B T

%

AYOML3N ONILYOHS,, 8l-A1OId

b1 - 085S - Vi

0
L 32178
321718 0L 9 S 14 € 4 t WOY 4

19178
_|.. 3149 &

6¥ -0966 - vy

<o

AYOMLIN ONILYOHS LNVANNQ3y 6L-Al 914

—

-

32178
31 A8

Ty
WO

73

G. Summary

In this chapter we have studied in detail the logical design of net-
wvorks that could perform the i -rious data switclhiing or commutation required
in a multiprocessor organization where the various modules are repairable.
1¢ is assumed that the uwemory, arithmetic logic, und possibly the simple
processor and control modules are realized in a bytue-sliced manner--a
realizatien that has been demonstrated to be praectical., It is felt that
the designs we have presented. based upon the primitive two-input, two-
output reversing cell represent adequate engincering solutions to all of
the commutation problems posed, although some theorctical minimization
problems still remain. These problems relate to minimum cost designs
for the complete- and incomplete-permutation functions considering both
the nonredundant realizations and the realizations that are tolcrant to

cell failures.

~1
-

V ULTRARELIABLE PROGRAMMING

In this section the problem of constructing ultrareliable computer
progranms is treated. The term "ultrareliable” in this context refers to
a program that not only operates completely flawlessly in normal circum-
stances, but one which is insensitive to faults that are introduced through
the input data stream or certain hardware failures. The approach used here
is to classify the common reasons for faulty programs, and discuss methods
for the prevention of these faults, the detection of failures arising
from such faults, and the recovery within the computer system from detected
failures. Although the principal interest of this section is computer
scftware, because of the intimate relation of computer software to computer
hardware, in many cases the appropriate means for attaining reliable pro-
grams will be hardware oriented or will be a combination of hardware and

software techniques.

In Sec. A the classification of common software faults is presented.
Each class is treated separately in Secs. B-D, and Sec. E contains a short
summary and a list of several unresolved problems that are identified in

the course of this discussion.

A. Classification of Program Faults

For purposes of exposition, we define a fault to be a program charac-
teristic that can cause a program tc execute improperly under some set
of cvonditions that may depend on program state, input data, or timing.
A instance in which a program executes improperly is said to be a failure.
In this section, ccmmon program faults are grcuped into one of three cate-
gories according to qualities that determine methods for eliminrating the
faults. The categories can be briefly described as faults due to problems
of dats analysis, program checkout, or the execution of a program in a

context that is outside oif the scope of its validation and definiticn.

These faults can be attributed to human mistakes in the composition of
the program or to hardware faults in, for example, a back-up memory
where a program is stored. Mor'e specifically the categories are:
Type 1. Program algorithm is essentially correct, but
program produces inaccurate results or fails

to terminate becausc of problems in numerical
analysis.,

Type 1I. Program contains bugs, i.e., has faults such
that it fails to perform processes according
to specifications.

Type I1I. Program is completely correct for its séope
of activities, but fails when operating out-
side its scope.
Because the statements above are stated rather broadly, the cate-

gorization immediately allows us to make some statements about a general

methodology for achieving reliable programs.

Type I faults are principally due to failure of an algcrithm to
account for cumulative effects of round-off and truncation errors, or
opsrates on a range o. data for which the algorithm is unstable.* The
methodology to be used for this class of faults is oriented to problems
in the representation and manipulation of numerical data in a computer.
Rather than attempt to address this section to the entire field of
numerical analysis, we shall merely call attention to the need for such
analysis and devote the greatest portion of the discussion to the design

of hardware that will alleviate many problems of numerical analysis.

The methodology to be used to eliminate Type 1I faults, the program-
ming bugs, is slanted to the use of redundancy in program specification
to permit software support programs to aid the creation and check-out of

reliable programs. Program bugs can arise from many sources and all are

*®

At initial observation numerical appears to be strictly a software
problem which is solved once, i.e., when tle problem is written, but
within the graceful degradation concept we are proposing, it is imper-
ative to detect instabilities in algorithms caused by an insufficient
quantity of equipment remaining available for program execution,

76

susceptible to some checks. Transcription errors can be caught by redun-
dancy in the language, logical errors by the use of aids like decision
tables, and blunders by consistency and completeness checks that are

programmed to be independent of the algorithm that they check.

Type III faults are intended as a cuatch-all category. Failures that
arise either from undetected Type I or II faults or from minor transient
hardware failures generally appear in programs that are otherwise error-
free., It is common practice tc validate programs by checking their behav-
ior with test data that lies in their scope of validation, i.e., for the
if conditions of hypothetical cases. Few programs are written to work
properly only if the data and the state of the program are confined to
the scope of validation. To¢ guard against Type III faults, we use the

methodology of if and only if programming. This is the practice of using

extensive checks, both software and hardware, to validate all input data
and, when possible internally generated data in order to guarantee that
they are in the range of definition and remain so during the course of

a computation.

B. Faults Arising from Numerical Analysis

1. The Need for Analveis

Most of the problems of numerical analysis that give rise to computa-
tion fallures are due to the finiteness of the representation of numbers
in a computer. If; in practice, numerical representations can be made
arbitrarily long, representation errors can be made arbitrarily small.
Nevertheless, for practical reasons, numerical data are fitted into fixed-
length fields that are deemed to be sufficiently long to give accurate
results in most cases. The length, which varies from machine to machine,
is typically between 24 and 56 bits long for floating-point mantissas.

A calculation, i.e., the implementation and execution of an algorithm on
a specific machine, nmust be subjected to thorough numerical analysis to

guarantee that it will produce results of sufficient accuracy.

77

To borrow an example from Ccdy,‘9 let us examine the computation of

the mean of two numbers and use the formula

M = (xl +x.)/2 .

2

If the representation of Xy and Xg is a floating point, and the base is

other than 2, then in a binary computer it is possible to compute a mean
M that is less than either xl or xz. For example, consider the computa-
tion using radix 10 arithmetic with two digit precision. Let Xy = 51,
Xy = 52, and note :hat 51'100 + 52'100 = 103°100, ghich, to two places
accuracy, is 10<10°., Division by two yields 50°*10°, which is less than

elither operand.

There are two serious effects of this type of fault. The most
obvious is in the introduction of a small error in the least significant
digit that is slightly greater than the apparent accuracy of the computa-
tion. A more subtle effect of the error is to place the result outside
the theoretical range of possible answers, The latter effect could lead

to instability of a computation.

A second example of the pitfalls of computation is given by Neely,2°
who illustrates several alternate computations for the mean, standard
deviation, and correlation coefficient calculation on typical statistical
data. Although the several alternatives are algebraically equivalent,
the computations give widely disparate results. In his example, the
most direct computations generate answers that are among the least
accurate, and the simple expedient of carrying out the calculation in

double precision resultfs in answers that are among the most accurate,.

The point of these examples is to demonstrate the need for numerical
analyvsis to aid in the development and analysis of computations for
particular computer systems. It is vital that the analysis be done in
the context of the computer on which the algorithm is to be executed,
of course, because it is precisely the idiosyncratic behavior of computer
arithmetic units that requires the detailed numerical analysis. The

grosser characteristics of numerical processing are inherently consistent

from machine to machine.

Because the numerical analysis is so broad a subject, we cannot be
more explicit than tc issue a caveat to the programmer to take into account
the problems of numerical analysis. However, there are other general guide-
lines that fall in the area of the computer design which we can explore
here. In particular, the hardware can be designed so as to minimize the
errors of numerical representations, and specific steps can be taken for
the detection of computational errors, and for the programmatic recovery
from errors when they are detected. We pursue these questions separately

in the following subsections.

2, Design of Floating-Point Hardware to Aid Numerical Analysis

Two differing viewpoints have come to be reflected in the design of
floating-point hardware, The first focuses on obtaining the greatest
possible precision of an operation and usually depends on normalized
arithmetic. The second viewpoint, which is somewhat opposed to the first,
is concerned primarily with obtaining results that are known to be sig-
nificant at the possible expense of precision. The latter is implemented
primarily in unnormalized arithmetic. Both viewpoints are compatible
with reliable computing, because the best estimate of the true value of
an answer can be obtained through the use of normalized operations,
wvhereas unnormalized coperations can be used to give an estimate of the
range of possible values that may contain the true answer. In this
section we discuss the design ot floating-point hardware for both ncrmalized

and unnormalized operations.

We first consider normalized floating-point operations. In the pre-
vious section, the calculation of a mean yields an erroneous result because
significant data is shifted off the right hand portion of an intermediate
result and replaced by significant O's. Even if the operation is normalized
floating-point addition, it is possible to lose significance as shown in
the example when the floating-point radix is greater than 2., When the radix
is not binary, then the representation of a normalized quantity in a binary
machine may have leading O bits (10°101 in the example) and the leading
0's are obtained at the expense of bits lost from the least significant
portion of an operand. Hence, in a binary computer, normalized floating-

point arithmetic in a radix other than 2 contributes to the inaccuracy of

79

computation., The number of bits of lost precision is.approximately one
half the base two logarithm of the floating-point radix. For radix 2,
this loss is 1/2 bit, which is equal to the intrinsic loss of precision
in the binary representation of re¢al quantities., For larger radices,
the loss of significance becomes greater and can become quite noticeable
because it introduces a biased error in the representation. Single
precision on System/360 computers, for example, is radix 16 with 24 bit
mantissas, yielding a significance loss of two bits in 24 (a precision
of one part in 6-106). This is very low for general purpose computation

and must be used with caution.

To obtain the most reliable results, it is clear that radix 2 yields
the greatest precision for a fixed mantissa length in a binary computer,
There is a trade-off involved in using radix 2 arithmetic because the
increased pruecision of mantissas comes at the cost of increased length
of exponent. Larger radices appear to be attractive because for each
bit of exponent that is saved, only 1/2 bit of significance of mantissa
is lost., However, because larger radices introduce a biased error, and .
because the apparent economy of representation, using large radices, is
only one or two bits for radices that are reasonable to implement, it is
recommended that radix 2 arithmetic be used for normalized floating-point

operations, especially where reliability is an important factor.

There are several details in the manipulation of numerical quantities
that require examination., It is straightforward to construct a repertoire
of normalized arithmetic operations that consistently yield the highest
possible precision. Nevertheless, the most important details are given
here because so few computers have incorporated all of these details into
their hardware. 1In the material that follows it will be assumed that the

floating-point operations are radix 2.

Floating-point addition and subtraction operations introduce signifi-
cance loss when an operand is shifted during exponent adjustment. If we
assume that operands are normalized, then the smaller of a pair of operands
must be right-shifted until its exponent is equal to that of the larger
operand. Hence, significant digits are shifted off the right of an operand

prior to forming a sum,

80

!

A single guard bit at the right-hand end of an adder can pe used to
ensure that the smaller operand is rounded rather than truncuted prior
to addition. Both truncation and rounding introduce errors in significance,

but rounding errors are preferable because they tend tn be unbiased.

Multiplication in floating-point representation can sometimes yie<ld
unnormalized products, even when both operands are normalized. Post-
normalization of the product involves a left shift of no more than one
bit, but that bit should be significant to ensure full precision. Hence,
the nuitiplication hardware must make provision for saving a guard bit
from the partial product in case a postnormalization left shift is
necessary. Rounding of the final product should occur after postnormaliza-
tion so that there must be provision for a second guard digit for rcunding

the product in case postnormalization is necessary.

Accumulators in computers can be constructed with several guard
digits so that several intermediate operations can use extended precision
operands, then round the numbers to single precision prior to restoring
in main memory. In actual practice, many algorithms méke use of double-
length accumulators for intermediate calculations, following the philosophy
that is suggested here. There is a trade-off to be considerec here because
the number of guard digits that should be kept in an accumulator depends
on the relative magnitude of the operands and the number of operations to
be performed rrior to restoration of data in memory. It may be possible,
for example, to obtain satisfactory pr.cision by extending the accumulator
by four to six bits, and, thereby, save a second full-length accumulator
for other purposes. When the nature of the calculations are known, their
characteristics should be taken into account to determine how extended

precision operations can best be implemented.

When single precision is inad.iuate for a computation, all arithmetic
operations can be made sufficiently accurate by using multiple precision
arithmetic and extended length numerical representations. Some multipie
precision operations might be included in the computer instruction reper-
toire, but provision should be made for performing extended precision

operations of arbitrary length by using appropriate software subroutines,

81

oy R R i v

FIgHE

TG 33 i e 160t At

3

To simplify the multiple precision software, it is essential that the
mantissa ovéfflow bit be programaccessible so that overflow bits can
be treated as carries from word to word in the extended precision
representatior 2f a number. It is also necessary that overflow be
signalled after the completion of an operation and thaf the single
nrecision result of an operation that produces an overflow condition
be significant except for the information that is heid in the overflow
bit. 1In practice, some computers treat overflow as an error condition
and place meaningless information in the mantissa of the result. This
places an undue burden on the task of programming the muitiple precision
operations. Overflow of exponent should be treated in the same manner

as overflow of mantissa.

The steps above are suggesticns for obtaining the greatest nossible
precision from floatipg-point hardware. An alternative viewpoint is to
obtain results that are guaranteed to be fully significant. For this
purpose the unnormalized mode of floating-point arithmetic has been

21 gynnormalized

recommended and is described in detail elsewhere.
arithmetic achieves its goal by controlling the postnormalization of
results to eliminate the introduction of insignificant data. For addi-
tion and subtraction, postnormalization is eliminated completely except
when overflow occurs. Multiplication and division use nore complex
formula to determine cthe amount of postaormalization. The discussion
on the dangers cf truncation as opposed to rounding and the need for

guard digits aphlies to unnormalized operations as well as to normalized

operations.

3. Detection of Failures Arising from Numerical Analysis

Analysis problems usually lead to one of two types of failures,
loss of numerical significance or algorithm iustabiiity. We deal with

each of these separately.

To detect loss of significance, several competitive methods might
be implemented in an ultrareliable system. We have already discussed
the use of unnormalized arithmetic briefly, 2~d note that this is attrac-

tive for guaranteeing the significance of the result. Calculations can

82

be performed in both normalized and unnormalized modes so that the best
estimate of the true result c¢an be obtained from the normalized answer
while the unnormalized answer can be used to indicate the precision of

the calcalation.

Another scheme is to perform a calculation in two modes in order
to define the endpoints of the interval of numbers that contains the
true answer.; One endpoint is calculated by using basic operations that
always truncate their results and by using algorithms that provide a
lowver bound for the true result. The second mode is identical to the
first except that results are always rounded upwards and the algorithm
is programmed to provide an upper bound for the true result. Inter-
mediate operands and final results are intervals on the real instead

of simple real numbers, hence the name interval arithmetic. A full

discussion appears in Sec. V-B-4.

Check algorithms can be used to reveal the accuracy of a result.
Linear problems, for example, usutally yield a set of residuals that should
sum to zero; The actual sum of the residuals provides an estimate on
the significance of the result. In many other cases, there is suf:iicient
data available at the end of a calculation that can be used for similar

check computations..

Another scheme that has been implemented in some commercial computers
is the use of a significance alarm to detect excessive prenormalization
or postnormalization shifts during floating-point addition operations.
One or more bits per operand can be allocated to store the significance of
the operand. A single significance bit can only differentiate between
significant and insignificant operands, whereas several significance bits
permit several levels of signiiicance to be represented. These bits can
be maintained automatically by the hardware. This is seen to %e another
form of unncrmalized . .presentation when the number of significance levels

equals the number of bits in the mantissa.

- A R,

The second topic for this section is that of the detectien of insta-
bility in numerical algorithms. The problem is to determine the rate of

convergence of calculations dynamically so that nonconvergent calculations

83

B ERRTE

can be discovered programmatically. Calculations that iterate to a
solution typically assume an initial transient phase characterized by
large fluctuations. After a number of iterations that depends on the
nature of the calculation, the transient fluctuations die away and the
calculation enters a phase in‘which it converges uniformly to a solution.
The difficulty in determihingithe rate of convergence lies in tbe problem
of differentiating the transient fluctuatiuns from divergence. When it
is possible to bound fﬁe number of iterations that are subject to tran-
sient fluctuations oi large magnitude, it becomes a simple matter of
computing the rate convergence after the transients are known to have
died away. Calculations that do not lend themselves to this method must
be treated in other ways. A simple expedient is to fix an absolute

upper bound on the number of iterations that can be performed.

4. Recovery from Detected Numerical Computation Failures

In this section it is assumed that the two types of detected failures
are loss of significance or excessively poor rate of convergence of a

calculation.

Failures involving the loss of significance can be elimihated by
recomputation of numerical quantities in multiple precision. Problems
for which double precision is insufficient can be eliminrated by triple
or quadruple precision calculations. Pathological cases do exist, however,
that require calculations of even greater precision, but precision require-
ments for these calculations can be reduced significantly by preconditioning
and scaling the data. Recovery from loss of significance should call for
recalculation using progressively greater precision until either a signif-
icant result is obtained, or the cost of continuing the recalculation
exceeds the potential usefulness of obtaining increased significance in

the result.

Since the recalculation with increased significance should be invoked
automatically by the programming system, we shall consider how this might

be effected. There are at least three different methods for accomplishing

v

this,

The first method is based on the control of precision through the
program instruction repertoire. Multiple precisions for calculations
of varying precision can be prewritten or compiled on the spot from a
stored high~level language destcription of the algorithm, In either cace,
increased precision is obtained by using multiple precision instructions
in the machine instruction repertoire or by making explicit calls on

multiple precision software routines.

A second method is to make the precision of the calculation data
dependent. Each datum is tagged with a field that indicates its pre-
cision. Upon execution of an arithmetic instruction, the lengths of
the operands and the lengths of the result of the operation is a function
of the tags of the'operands. (The Burroughs' B-6500 uses this mode of

operation.)

The third method is to make use of microprogrammed, primitive
sequences of instructions to implement arithmetic commands, and to use
a microprogram memory that is modifiable. ‘The precision of the arith-
metic operations can be altered by making changes in the microprogram

sequences for these instructions.

Each of these three methods requires further study in context to
determine how to handle problems of memory allocation of data so that
change of precision can occur with relative ease. fote that in each
of these systems, constants must be stored in the greatest precision

that might tzke part in a calculation.

C. Failures Arising from Program Faults

Programs can be extremely complex entities, sometimes far more
complex than the computer syvstem on which they are executed. In spite
of careful preparation and extensive checkout, rarely do complex pro-
gramming systems contain no faults. There are several reacons for this,
First, programming a complex system is a difficult task. Every contin-
gency must be foreseen and explicit instructions must be written to
handle each contingency. The larger systems require a cooperative

efifort of a large number of individuals, but the demands are such that

85

the output of cach individual must mesh perfectly into the programming
system, When systems are tested, their behavior depends not only on

the input data, but on the internal state of the system, and quite
frequently depends on random timing of events. Exhaustive testing of
programming systems over all possible internal state configurations,
representative input data, and typical timing conditions is not feasible.
For complex systems, even after several continuous months of testing,
only an infinitesimally small fraction of possible conditions can be

tested.

Hence, tu create fault-free programs, several techniques that do
not involve exhaustive testing must be used. In this section we describe
several techniques for the prevention, detection, and recovery from pro-

gram faults.

1. Prevention of Programming Faults

There is no panacea for preventing programming faults. It is the
nature of programming that every detail must be specified, either explic-
itly or implicitly. Any single incorrect detail in the program can lead
to its failure, and the total volume of detail easily exceeds the volume
that a normal human can comfortably focus attention tpon at one time.

In this section we explore a body of techniques that aid the human in
describing the details that constitute a program, checkingout the program,

and maintaining that program after checkout.

a, High-Level Languages

The wvalue of high-level languages is well known, They relieve
the programmer of a great deal of the burden of specification, and
thereby eliminate an important source of error. As the understanding of
application programs progresses, the compilers for application programs
likewise evolve to include greater power and flexibility. The original
TORTRAN compiler gave the programmer primarily the facility for alge-
braic manipulation, control of loops, definition of data arrays, and

formatted input/cutput. High-level processes have evolved so that

recent compilers include processes for memory management, file control

and manipulation, sorting and searching of data bases, and symbolic
manipulation of data structures. Languages will continue to evolve,
and as they include more complex processes as basic languags elements,
the problems of writing programs that duplicate these processes will

virivally disappear.

" The future is not as rosy as the previous paragraph may indi-
cate., The evolution of high-level languages has seen one level of
progranming errors disappear to be replaced by totally new programming
errors. Today's programmers need never write out the detnils [or an
addressing polynomial, but they must be capable of determining the
proper contirols for system executive, language compiler, linkage editoyr,
and relocating loader. Program checkout has actually increased in dif-
iiculty because high-level languages let the programmer create more
complex programs than might be attempted without their aid, thereby
greatly increasing the number of operations within the program thai
might be faulty. Evolution of programming languages will undoubtedly
continue in the current direction of increased facility and power of
expression, but the claim here is that languages rave tended to over-

look the need for improving their reliability.

FORTRAN illustrates the case in point. The language is so
defined that programmers need not declare variables. The first reference
to an otherwise undeclared variable constitutes a declaration by default.
This relieves the programmer of a small burden in return for increasing
the unreliability of the language. Every misspclled name of a variable
constitutes a default declaration of a new variable so that misspellings
cannot be detected by the compiler. On the other hand, the programmer
finds that he must declare a large fraction of his variables anyway
with DIMENSION, COMMON, and EQUIVALENCE statements so that the small

service of default declaration comes at a great cost of reliabilirty.

There are several means ifor incrzasing the reliability of a ¥

programming language. The most important is to incorporate redundancy

into the language so that compilers can perform consistency checks on

-

statements in the language. Declarations constitute one form of redundancy.
Given declarations, compilers can check such things as the type and pr:-
cision of all variables to determine if they satisfy the conditions imposed
by context, the numbev of dimensions on references to subscripted variables,
the agreement of actual and formal parameters of subprograms both in number
and type, etc. Formal languages have tended to avoid redundancy instead

of embracing it. Yet redundancy is a vital part of natural language, and
is essential for communication between humans. The problem than is to

investigate how programming languages can he made redundant to increase

their reliability without placing undue burden on ihe programmer.

One answer along this line of thought is to allow the programmer
to declare contexts for each variable name. The compiler could check each
executable statement to determine if the statement operands can appear in
the same local context. Another method is tc specify the processes that
can alter a variable or may read its value and program the compiler to
check references against this specification. These suggestions concern
primarily the detection of errors during compilation. Redundancy in the
language also gives facility for detecting errors at execution time that
cannot be detec:zed during compilation. One such error, for example, is
an out-of-~bounds index to an array. The remarks here are intended to
point out the problem and indicate a direction to take for its solution.

A deeper treatment is beyond the scope of this memo.

There are other features of a language that affect its reliability.
Some language constructis are error-prone and can be replaced by equivalent
constructs that do not lend themselves to error. An example of an error-
prone feature in FORTRAN is the specification of Hollerith data using the
"nH” format where the n preceding the "H" is a decimal digit that specifies
the number of literal characters in the Hollerith string. It has proved
to be difficult for programmers to count characters in a string accurately,
particularly if the string terminates in blank characters. Later FORTRAN

compilers have permitted strings to be delimited at both «nds by the 2"

symbol and have eliminated the need to count the number of cha acters in

the string. From this example it is suggested that a study be undertaken

to determine what general features of high-level languages are unneces-
sarily error-prone. What alternatives exist to replace these language
elements with equivalent but le¢ss error-prone features? An interesting
subject for this study is the role of default options of the language.
It is conjectured that ill-considered default options share a large
responsibility for the unreliability of languages. For example, PL/I
default options lead to the unusual side effect that execution of the

statement

I = 25+ 1/3

vields a value for I of 5.333333.

b. Independent Check Calculations

The reliability attained through the use of high-level languages
is achieved because the language processors can mechanically generate
correct sequences of instructions from terse statemernts in the language,
and because the processors can detect those blunlers and transcription
errors that lead to inconsistencies in the high-level program. Many
faults can escape detection by a compiler because there are elements of
processes that must be specified in part by the programmer, and the
faulty specification is internally consistent with grammatical and
semantic rules of the language. To detect this class of faults, it is

necessary to rely on other approaches.

One of the most useful methods of checking for faults is to
incorporate independent check calculations into n program. The nature
of the check calculations should be to check the functional behavior of
program modules in a mamner that is not dependent on the internal struc-
ture of the modules. For example, a matrix inversion can be checked by
matrix multiplication regardless of the particular algorithm that was
used to compute the inverse. Check calculations should be done so that
they do not merely check functional modules against module specifications

because the specifications may have suffered transcription errors. The

“imodules should be checked in their system to see if context meets the

performance requirements of the system, For example, consistency checks

on a guidance computer should not merely determine if the guidance computer
solves a set of trajectory equations, but rather if the guidance computer
solves the set of cquations that correctly model the behavior of the space
vehicle that carries the computer. Thus programmed consistency checks

for this example would compare measurements of the actual vehicle trajec-
tory to the calculated trajectory in order to determine the correctness

of the guidance computation,

Consistency checks can be performed at several levels within a
programming system. At the lowest level, checks can be performed for
many primitive machine operations such as arithmetic and iogical opera-
tions. When the operation is invertable, it can be checked exactly.
When not, it is possible to check if the results of the operation are
consistent., Check: at this level will not detect programming faults per
se, but rather detect hardware failures that effect particular primitive

operations,

Consistency checks of higher-level processes can be performed
in much the same way as tfor lower-level processes. When processes have
inverses, the consistency check can be the inverse process. For example,
root extraction from polynomial equations can be checked by evaluating
the polynomial with the extracted root as an argument. Processes without
inverses can be checked by determining if the output values are self-
consistent and consistent with the input values and initial state of the
process. As an example of a checkable process of this type, consider
the programmed model of a physical process undergoing a smootaly fluctuat-
ing change of state while under the influence of smoothly fluctuating
inputs. If a sharp discontinuity is discovered in the output of the
process, then it is likely that there is a fault in the program, or else
tle discontinuity is characteristic of the process, and its detection
could have been predicted before hand., Thus, monitoring the output of

the process for discontinuities is a satisfactory check.

90

To ensure ultrareliability of a program, all processes should
be checked at some level, possibly at several ditferent levels by several
different checks, Among th: factors that affect the placement and number
of consistency checks are:

(1) The cost of performing the check calculation in

terms of programming effort, execution time
relative to the execuiion time of the process

that it checks, and total system memory require-
ments.

(2) The cost of experiencing an undetected failure
in the module that is checked.

(3) The probability that a failure can escape detec-
tion if a check calculation is performed.

(4) The resolution of the check calculation in terms
of its capability of determining the location of
a failure,

(3) The probability that the check calculation contains
a fault.
Of course, during the initial phases of program checkout, a great many
checks should be performed in order to obtain high resolution of the
location of faults causing detected failures. This entire discussion
is directed to the final phases of checkout and full operational status
when it is desirable to execute without the overhead of elaborate check

calculations, yet maintain a certain level of reliability.

The problem of determining how many check calculations to per-

form and where to place them is the software equivalent of the classic
problem of designing redundant hardware. Software redundancy, like
hardware redundancy, has a definite place in an ultrareliable computer
system. It should be designed into system from the initial inception
of the system. The form and degree of redundancy that should be put
into software is a function of factors particular to the situation. As
this subject is studied further, perhaps there will emerge some general

methods for building redundant software as has happened for hardware.

¢. Software Maintenance and Modification

The inherent flexibility of software with respect co the fixed
structure of hardware usually results in system modifications being
thrust upon programming systems rather than upon the hardware that sup-
ports the programming system. The cost of these modifications is quite
high in terms of reliability because changes can cause new errors to
appear in systems that are otherwise error free, 2nd the new errors may
escape detection during system checkout. There are two problems to be
faced here. How the progri:ms are to be written to minimize the possibility
of iuntroducing new errors when they are modified, and how newly modified
systems are to be tested to determine if new errors have appeared. In

this section we consider several techniques for attacking these problems.

An important factor in the solution to the problem of software
modification is in the design of the software system. Software should be
designed to accommodate changes easily, as if changes are unavoidable.

In most cases, changes are truly unavoidable L-:cause it is difficult to
anticipate all of the required characteristics of a software system

until it has been constructed.

A good method for accommodating changes easily is to design
modular software systems. Subprograms should be organized functionally
so that they operate independently, communicating only through a minimum
set of parameters. System constants should be treated as parameters so
that the modification of a parameter in a single point in the program
causes all references to that parameter to be altered. A process that
is common to several subprograms should be factored into a module that
is called by the several subprograms. For languages like ALGOL and
FORTRAN, factoring is essentially equivalent to the construction of a

subroutine, block or overlay.

Factoring of processes may not require that the processes be
physically partitioned, as is the case when processes are factored into
subroutines., The modularity required for ease of program maintenance
is semantic modularity, and this is a by-product of physical modularity.

Physical partitioning produces a certain amount of program inefficiency

92

because of the overhead for establishing linkages during program execu-
tion, Semantic modularity can be attained without physical partitioning
and its attendant inefficiency, by using the programming device. known as

macro=-expansion. Macros have been available for many years in low-level

assembly languages and are only recently being used in high-level languages. %
To date, the implementation of macros in high-level languages has been
somewhat limited, but it appears that macros are a natural adjunct to
common algorithmic languages. U.doubtedly, further effort will be given
to increasing the power and utility of macros in high-level languages,
so that it will become increasingly easier to modularize programs with-

out loss of efficiency.

It is possible to carry the partitioning process too far so =
that the net result is a loss of reliabilit, rather than an increase.

This occurs when similar but nonidentical processes are grouped in a

common module. Usually this is done by including several tests to

differentiate among the various processes at appropriate points in the

module. The problem with this type of par*itioun.ng is that a modifi- %
cation to one process can affect all other processes that share the same »

module.

The problem then remains one of determining how and when to
modularize, Should the programmer use a macro or subrowtine? Should

two processes be placed in separate modules if they differ in only one

respect? If not, then how different should they be in order to be

separated? To answer these questicns, the programmer must apply his

EN

experience and judgement and consider the factors of th= particular
situation. That fact that only subjective characteristics are considered
here 1s indicative that program partitioning is still very much an art,
Its importance has been recognized to the extent that aids for parti-

tioning are common in high-level languages. These include block struc-

tures, multiple job-step programs, program segments, overlays, and
asynchronous tasking. There is still much to be done to aid modulariza-

tion =0 that standard software packages can be written, completely

checked, and debugged, then used in many systems. This requires that

standards be estabnshed to guarantee standa d program intcrfaces, file '

structures, and languages. L TR e

- A second 1nportant facfor affectlng- the maintenance of soft\'are sy E

is thv.. docmentation of t,he software systen. v A problem in develop:.ng

- Sta e both the 1ntent and the nethodology of. a program, andlito‘descnbe 7
the stmcmre an:l mean1ng of the progran data. i The pnmary document , _‘ =
t desx_nbes the methodolowy but not necessar:.ly the rntent' of the proéram, LA
'andwg:.ves the structt.re of the data but not necessanly 1ts meanmg.-_w e h

- T!ms, the przmar) docu:uent may not be suff1c1ent documentatxon, even R) '

, tliough it is ‘a eomple.,e descnpt: on of the executable program. o Do ETe

7 Through the use’ of symbohc programu.ng langnages, it is: ‘
i p0551b1e to enhanee _the descript:.ve quaht;,es of the source docxment to

'make clear the intent and meam.ng “of. a: program.

The programmer can n.ae

descn,pt:.ve names end phrases for. orogram ‘elements and data structures T _
- so that the source 'giociinent takes on the qualities of a narrat:.ve descri p-
Vtion.' Censider, for exan;pleﬂ, the mnemom.c content of the name INPUT as :

- ~. the name of a -ubroutine and how much more. descr:.pt:.ve that name is

:: 3 ' coupared to a name like QSIA, wtnch mght be equany acceptable as a

Y

o ek oo e

i b

:symbo:iic naine. v Pnrti*ionlug can also be used to enhance the descr:.ptive -
nature_ of the prmary docun-ent. ' Program details often tend to decrease

L the comprehens1b1lity of fhe program. \Vhen a set of steps -are ractored o

_1nto a progran module, and that module is given a descr;ptlve name, tbe. -

Vd they give weamng to; the data.l They fa11 t

co_r rol. Prog‘rans that make E—

e rjuse of recurs:.ve process;sor asynchronous tasks do not lend -themselves

;well to descriptlons by flowcharts. F;Lnally, because flowchart:.ng 1s sa

) seoondary aid,. the flowcharts must be mainta:.ned “and. updated a.s the pro-f, s
‘grams that they descnbe are. updated When ’the flowcharts are done by . .
haugi', the updatlng).s costly in terms of utlllzation of hl.nnan resom ces.rc, .
'Automatic flowcharting has become ava:.].able recently, thereby e11m1nat1ng B
some of the problems of flowchart maintenance, but it still does not '

‘hremedy “the - o'.her problems mentloned above.

To a large extent the hxgh-level languages have overoome tbe
difficulty in d1sp1ay1ng the flow of control in a- progran. By avoiding
- the "GO TO" construct ‘and making use of phrases ‘such ‘as IF...TI{EN .ELSE"

L ‘or one of ‘the common 1terat1ve control sfatements, the programmer can . -3

95

increase ‘the read;bilitv- of his source doe\meiit. Partitioning can also
_be used to keep the flow of control in a program in a nerrow context. -
) "l'hus, when properly used, high-level languages come tlose to flowcharts
'r; fﬁ:) 7 '. mth respect te . theit capability for displaying the flow of control.

L RE L -uaehine produced cross-*references are cOmonly '.:sed to document :

»the 1nteraction of dataﬂand program modules. QCross references often

- nan » Thei’n‘tifglif“ nﬂicate‘wlie"‘her Wwiatrle ‘:rs read or

: Usualiy the columns represent a set of. nutually exclusive conditions, and

P o nultiple entnes in a- single eohmn are assnmed to be executed sequentiany
‘ ‘ _from top .to bottom of the table.. The value of decisxon tables 1s that ‘
7[— ' they show the flov of control o,t lu.gh-order processes, and, hence, iend
- i1.1:51ght 1nto the 1ntent of the- progran. . l!eckanically generated ﬂowcharts
;7 ‘:tend to show more d.etail than ne Jessary, and tbereby tend -to hide the SRR

1ntentof theﬂprogran. LT S) ";: . ,:‘ ~ ‘

A novel aspect of decision tables is that it is possible to use
:them as a primary source-rather ‘than as a secondary source of documentation.
. :That is , the tables constitute a high—level programm.ng language that can
- ;' ‘be translated 1nto executable fom. Thus, decision taLies‘are a.torm of .

self-documenting program. - , . - to .

96

B

An intere'stihg‘prt blem that might be treated ir the future is
the problem of designing programmlng languages and techniquesthat extend

the notion of self—docunenting program. Certa:nly, one step is to pro-

evide~higher-1eve1 operat1ons in the source language. The—COBOL SORT

guaranteed that every branch of the program 1s execnted at least once,

An xnterest1ng problem assoclated thh thls technlque 1s the autonatxc SR

generation of test- data by the source Ianguage compller to test every

g Abranch completely. Another technlque that mlght prove valusble dhring |

checkout when the true behav1or _of the progran is not known, is to

. mark- program 1nstructions as . they are executed in order to 1dent1fy—

those 1nstructions'that bave not. been exercised. As checkout Pproceeds, -

the list of unexerc1sed instruetions can be used to guide:the latter

phases of checkout “and to ensure a checkout completion that every step

‘has been tested for ateleast one set of data.

Even.the type of test described in the previous paragraph is
insufficient, because the behavior of a program is 2 function of both »
the ‘input and the,state,of the progran. Hence, the program may accept

97 =

- ' a:set of data ;n¢ oporate correctly during one iteration and fail during] i

- thetsecqﬁd iteretion on thervery s;me set of data. Assuming that an o i N

s) exhahstive test of the program is not feasible, a good approach is to
' ,nesign a thorough test that takes 1nto con51deration the state of the
program. ‘To do this, the ‘input data 1= partitioned 1nto several p0551ble<'- : "it’gfj

';ﬁjyclasses and sxmllarly the possxble-program states °re ‘divided into sev-‘

eral d1fferent classes. leen both the classes of 1nput and the program L

:‘_ states,none then des1gns SR 4 of test data that w111 test the- behavior

The -;,,;3

oi the program for every pa_ 3f input data-program state classes.r

The problem here 1s that if an

T Ieads to undetected errors*infthe program.’
: r i 'trOduoedj’ntoithe sv3 tem, 1t can occur because of subtle 1nter-

:the system is checked onIy for those cases which are known te be affected

the subtle problems may not appear It is lmportant to recognlze, there— Bl

=" fore that ‘a change to ‘a programAproduces 2 completely new program that .

- _must be treated as if 1trwere vompletelv untested

)) 2. Sunimary :' L A: S o i : i _» S P

'in this sect ion we have considered a large number of problems related

-os H} : to writing and check1ng out programs. The single most prom131ng approach
| o for achieving ultra-reliable prugrams appears “to. be in the use of high-
“level languages. Througb high-ievel 1anguages, it may be possible

to mechanically generate the check calculations, test data, and program

documentation that have been described elsewhere in this chapter. In

effect, the computer is. the jdeal tool for aiding the programmer in

-

_developing a reliable prcgram. _

' D. Techniqués for’Defeéting Software Failures d': ; T

In thls section we assume that fa11ures mlght oceur in programming . o
systems in spite of careful program preparat1on and extensive system -“'

checkout Program faultSrmight escape~detection during checkout but

’f,"gccur durxng normal system operatxon 1f for - some reason the conditxons E

'under which the failure cax occur are satxsfled. Tnose transient hard—“i,ia,ﬂ' EZ[

b ARILDERTEEIOYS
)

’ "Tware failures that have eftects that are similar to software failures _:,] n:?f

S ———

also be detected’bf ultrareliable programming techniques.'"ﬁ”

Al

fﬁé‘iaiiﬁié(ltﬁé;siieés softWare

olat111ty of the memory. When a fa‘lure~causes 1nformat10n xndmemory

LA

"f'to be desfroyed» 1t may not be possible to recover the lost 1nformat10n, o b

-?;thus, the fallure 1s an_ 1rrevers1b1e actlon. _It is unfortunate that ‘a
acharacterlstze of program faults is that they.cause 1ncorrect memory Zt = Vi'f’z
Hoperat1ons to occur, with the attendant loss of : 1nformat10n. <A fanltyf ' } -) %7
memory operatlon may be one of two kxnds. Blther good,data 1s replaced - - 7

by 1ncorrect.data, or more seriously, the address of ‘a memory operat1on

is incorrectly computed thereby cau51ng tne storage of good data in : ',;'

the wrong place in memory. o

- A fault that causes Lnformation to be lost may or may not be a

serious one. in terms of the surv1vab111ty of the programmlng system.

Clearly some 1nformat1on.1s esséntial for the surv1vab1lity of the

jsystem.; Programs must not be altered by faults, for example,;nor can - o
_ data that holds linkages and status in-formation;i Therefore,uue’shall
assume that a ciass of critical. information can be identified avd) g
that this class can ve given special protectior.

99

;‘f that there must be some proteutlon agalnst faults ‘that successfully ‘ 2

The most serious tvpe of failure is the wr1te operation, because

1t is inherent]y destructive. However, for very little extra cost, it

_1s possxble to- prote"’r both’read and wr1tp operations and gain additional ST ii;

reliability.lf IREIREE si h - e~i9‘ T

When criti»al inkormat1on 1s constant, it can be placed in a read—
only memory to dssure 1t= nonvolatility. It mxght be w1red-1n, for,’ ‘i T

stored ‘in a memory thntfhas both a nondestructlve and destruct1ve read—"

AM'; e The protected memory is- most effect1ve-1n protectrng agalnst faults

e 1n nonprlvzleged programs. Pr1v11eged programs can ‘be faulty alvo, so :

penetrate the memory protectzon. The moet 1mportant aspect of assurlng
re11ab111ty in thrs case, 1s to be certaln that cr1t1ca1 data can be
restored if 1t 1s lost. One method for dolng thls is. to dump the
contents of critical memory perlodlcally, and restore the memory from
the last checkpoxnt when a fault is detected. Another method is to
‘retain the last few values for each item in critical - memory so that
‘values can be restored selectively. Care must be used in the 1mp1e— - -
mentation of the latter technique because data cannot,rin éenerell be

altered out of context. It is necessary to change sets of data so that

aii valuesrhaoe meaning as a gollection in the context of the programming

system. ‘ c o . s S PR

100 -

The technique ot using a real or sxmulated read-only memory is
valuable for protection of noncritical data, and for protection of the
programs that manipulate these data. Suppose that all of memory can be LT

partltloned 1nto blncks that are given either read-write. or read-only B CE e ;;

= status.. we shall ‘assume that the status can be altered dynamicqlly by - ‘
) some programming mechanism._ Then 1nva11d addresses that are generated S ;;5['

may be detectable when they 1ead~to atcempts to wrlte destructlvely 1n .

'Lhemselves.k

Data structures mlght be"capable of belng n- e1the

can'b:fextended furthel by co

fter1ze blocks of memory.“ Fbr example, execute—only 1s a state?that

the hardware and the softWare.4 The btaﬁe informatlon:mu_i be:held at~f

"some p01nt 1n memory from where 1t can be retr1eved qulckly durlng each
memory cycle. It mlght be held in a’ reglster or in a. specxa] memory - 1] -
rplane. it mlght be stored in'a tag field that is assoc1ated w1th every
word 1n memory so- that 1t is avallable for check1ng durlng any read h
operatlon or write follow1ng a destructlve read operat1on. In any case;1.
-it is clear that the status cf a memory block must be matcned agalnst ‘A« *::j
the type of memory request to determxne if an 111ega1 operat1on has o

occurred,

Several hardware features would be useful in support1ng the memory

protectlon technlques ment1oned above. Reentrant programs beneflt from

instruction sets that include special rnstrhctions for facilitating = -

reentrant coding. " For examoie, the,comﬁﬁn practice of depositing sub-
routine addresses at fixed'linkage.pointe?within the body of a program
violates the rule that reentrant programS'must be read-only. To aid

reentry, the return link sﬁould be stored in a register or in a data

area that is accessed indirectly through a 1inkage»address. To aid the

~>'protection of the critical data area, ultrareliable hardware designs

'should be ut1lized in the block of memory that holds critlcal data.

This lowers the probablllty that critlcal data will be lost because of

4_hardware faxlures. Memory aCcess c1rcuitry should be designed redun—'
‘_dantly to minxmize the probab1lity that vaild memory requests will be -7

honored at invalid addresses. Paging hardware nnd relocatlon reg:.sters;

'*i~:;—v~f~are~useful“atemsAiopvstorangestatusolniormatlon of memory blocks. Status

T *checking is a natural exten51on of the processing thateo,curs w1th pagxng

'fprotect1on xs p05s1bIe.becauser h

>f,the reglon of«memory that 1s addressable at any glven trme.: But 1t

- also def1nes the reglon of memory that is not addressable. Furthermore,
d1fferent port1ons of a: program may have dlfferent addressable and

vunaddressable reglons., THe protectlve measures generally compute for

each effectlve address whether 1t is°in a reglon that 1s accessxble or-

’unaccess1b1e by tne proccss requestxng a memory operatlon.

L

g T A AT A KON A

Thus a request for a memory access is honored'

(1) if a process issues the request .and

(2) only if the request is valid,- _ o

;7 Carrying this notion further, we postulate that programs should . o é

be analyzed to Qetefmine not'only,what combination of input data and 2

~“ internal states are valid, but to determine those combinations that
- are invalid. wheu,an invalid combination occurs, a failure has 7

occurred, which should trigger a uetection mechanism.

As. -another illustratlon of the notion of if and only 1f programmlng,
_'suppose that a program is tested thoroughly, and it 1s determined that
the program is completely correct. It may be the case, however, that
some varlable ranged only through the values between 0 and 10 durlng
“the cneckout phase, and it is known beforehand that no other values -
An. be encountered during normal operatlon. What happens to the program
if the variable in question takes on a negatlve value7 By assumption;

>thls cannoteoccur_1nvnormalﬁc11cumstances;vbutssuppOSe the negative .

L

tlue were 1ntroduced.by an undetected failure. The behev1or of the

. The use of 1f and only 1f px vrammlng in thls example would ueglnrf’

~-':--One class of 1tems that are ea511y checked are the class of*valiables
Wthat are~used as 1ndlces of elements of a data structure.a When a varlab‘e
‘ s an 1ndex 1nto ! partlcular data structure, then the xalld range of

h’values for that varlable is completely determrned by the data structure.

The variable Chould be checked before every instance: 1n whlch it is ~

HEHD

used to address an element -of the data“ structure. ThlS type of check-

in one sense is comparable to the memory checks: descrlbed in the prev1ous,;?

\f sect1on, but the follow1ng dlfference is observed.‘ The memory checks

descrlbed pretlously are made- after a memory request 1s 1ssued and are

made on the basis' of status of the memory at the effective address and

< the type of memory request.i The check of ‘the index varlable is made
. before a request is issued, and is made on the basis of ‘a variable that
is used to calculate an effective address, rather than on the nature of : ;:; s

the data found at the effective address. .

Indices to datarstructures can be checked by range checks to deter-
mine'if”the index is;within the actual bounds of the structure. In : e
commercial systems, bound checks of this type are common, and have been ;;;;
1mp1emented by both hardw re and software technlques. The technlques) {}'

'generally postulate that the bounds of a structure are associated with

103 '

" the base address of the structure, so0 that whenever the base address is
used to calculate the true address of an element of the structure, the

bounds are also available to be used in the calculation of range checks.

The technlque mentioned above is adequate for some types of data,, =

but ig not Suff1CIent to- protect physically large data structures when -

there is’a hlgh probaolllty that any incérreet address Iies withxn ;

v'boundsihﬁqheﬁclass of data that satlsfies~this cr1
Most of the data,w

11st data structure.

L operatlon then becomes rather lengthy and contr1butes system

A varlatlon of thzs technlque e11m1nates the problem of overhead. ;lnsteedii
>:v E ‘of a55001a+1ng classes with data, each 1tem is assoc1ated w1th a, randomly,
A selected tag. When p01nters to the 1tem are created, a copy of the tag
is placed in each p01nter. Whenever an 1nd1rect access 1s made chrough
a po1nter, the tag of the p01nter must agree with the tag found w1th the h

. 1tem addressed

» Indices and address linkagcs are just one class of veriebles that o
= are easily checked by the if and ohly if techhique. In general it is N
possible to periform a great varlety of checks on data, and p0551b1y on -
a large majority of the variables in arprogram. When a variable is
associated with a physicel process, then it is highly improbable that
the variable would take on values throuéhout the range of numbers within »
the range of representation. Hence, the varlablc can be tested perlodlcally '

"to see if it falls outside a realistic range of values.

iroughly tne same technique, Every,iterativetsegmenf“1s~g1veﬂ

Since these prob‘

;;‘ It is as.umed that there w111 be a hierarchy of programs in- the

. i programmlng system w1th at 1east two levels 1n the hlerarchy. The'i»

: vhlghest-level program is the syutem executlve, wh11e the appllcatlon [

programs occupy the lower levels. It is natural that detected errors
cause control to be reverted e1ther directly to the syetem executlve

or to the program ‘that is one level higher than the -level at which- “the
‘error occurred. Both types of error exits may - exist w1th1n one sys»em,
and the type of detected error could determlne the point at which control
is to resume. It is clear that every program that might be the target

- of an error exit should have a subsegment .defined that will be the point
of resumption of control, Furthermore, the address of the errorfentry

should be posted in a linkage area that is immediately available to the

-~ 105

- rbﬁfrdwa're in case an error Ai"s detected. In this wiy, a recovery proeedure

will be availab]n tor every possible deteceed errox.

A pv-oblem e:&.ists when Q detected error occurs for prograns at the
_ "::h:.ghest le.rel.r !here shoulc‘ control be- transrerred in this -case? . -
- Clearly, if the rrong trans‘er is taken, the error aay be- repeated and

- m the top level progr tbe rproble- re-ains one of d;agnosmg the)
o reason for the detected error. It is- essential that the oontext of the
pmeessor at. tbe tine 9 the error be saved and t nade avaxlable for j_i:

: dlagnostic purposes._ The context is tbe contents of all visible reglsters,

. status bits, the instructior counter, ‘the effective address of the last -
menory acoees, and otber pert.inent data. If the- data is to be returned]
“to a hunan ‘thea it should. be analyzed and translated into ter-s that will
ease the probler of interpreting the data.' Synoolic naues can be snpplied

fron symbol tables that might be stored in :mxilia.ry nenory fo- diagnostxc i
pnrposes.v Linkage traees can be used to de’ 2rmine the return linkages of -
subroutine calls. Arﬂments o) subroutines and the val.es of 1-portant)

' variables can ne posted to give further diagnostic aid.) S:moe progran
Jumps usually prevcnt progran steps from being traced ba kwards, it is

recomended that Junps leave a return address in a special register or

R S

detecuon, the rcgister or register stack will contain’ the source points
: of the last fa\v branches, L=

E_
=
o
: % ’) set of registers organizéd as a small stack, At the' point-of error: -
=
&=
E=
]
£

It fs racomended tb,at nomtter how severe the detected error, the
o system shouId maintain -ntegrity Ior a pnriod that is suf!iciently long e
o gather and outpnt diagnostics. The reason being ﬂthat the fault that ?;{' DELT

o

T

softvare Iacks a theos‘y of reliable ’cona fdtibd thai:'isenjoyed bg_ __;" o

o hardware. In tems of '\ractical designs. both hardware and software L

. _) share a black- art fo; e design of reliahle 3ystens, where the experlence SR

Cls and judgement ot the designer ultimtely determines tne reliability of -
- the syste. - ?,1 . - 71: I 2Tz a L

If a theory of reliable sottware is to eaerge, 11: is:nost ukely
to be predicated on the use of high-level 1anguages describe uanipu—r S
& lations in terms of thoroughly checked standard packagea. . Rednndancy -
= ‘of expressmn will be used to automate the insertion of. check calculations
: »and rezovery routines. Certain types of” errors win ‘be avoided, because
: i'.there will be no way of expressing then- i tne high-level languages. h

Several interesting problems have emerged from the preceding dis-
| cussion. These are collected here in the hopes of stimulating further
interest in the area. The problems are:
1. What methods for automatically changing the precision
of a calculation?

2. What features of languages are error-prone? How might
i they be eliminated in favor of equally powerful but
less error-prone features?

3. How can redundancy be utilized in programming languages
to protect pregrammers from errors?

4. 1Is it possible to develop an abstract model of a program
and use the model to determine the placement of check
calculations? Can the model be used to guide the
generations and placement of check calculations for
practical programs?

5. What is adequate program documentation? How can
languages alleviate the problem of documentation by
becoming more self-documentary?

6., Can updating be computer assisted to eliminate the
propensity for introducing new errors by updating’

7. How can programs be designed to be modular? What
standards are necessary to aid modularity?

8. How can tests be generated or built into the hardware
to give extensive protection for a small decrease of
efficiency?

9. How can recovery be made from errors detected in . he
"nard-core" software? What diagnostics should be
returned after any detected failure and how should they
be returned? Can special routines perform diagnosis?

VI CONCLUSIONS AND SUARARY OF OTHER STUDIES IN FPROGRESS

In this chapter we briefly presen. our conclusions on techniques for
the realiza‘ion of ultrareliable spaceborne computers., These are baced
upon both the research conducted during the secend phasz and prior related
work, and also recommendaticns for the future direction of research in
this area. We also summarize other studies that have either not yet
progressed to a state where reporting is appropriate or do not bear li-

rectly on the technical contents of this report.

A. Conclusions

(1) ™he computer reliability requirements of an cdvanced space-
borne mission cannot be satisfied without the use of redun-
dant logic structures.

(2) Practically any reliability constraint can be satisied by
the exclusive use of passive masking techniques. But,
with the exception of mission tasks of relatively minimal
complexity, the cost of such a computer would be excessive.
Significantly improved utilization of resources is
theoretically achieved with a reconfiguration technique
in which the logical interconnections can be altered so that
faulty units are disconnected from the system and moreover,
with a graceful degradation technique in which the schedul-
ing of tasks can be altered to match the available perfor-
mance capability,

(3) For advanc :d spaceborne missions there exists, in addition
to the severe reliability constraint, the requirement to
accommodate to simultancous introductio . of several problems
and to varying measures among the mission problems of
priority, accuracy, and urgency. The multiprocessor frame-
work appears to be the best match to these iequirements,.

(4) The reliability of the multiprocessor is significantly
enhanced if a limited degree of fault-masking and recon-
figuration (or repair) capability is incorporated within
the memory, control, and processor modules,

109 3

(8)

The major problems associated with this repairable multi-~
processor are the design of memory, control and processor
modules, which are either amenable to repair or fault mask-
ing; the design of commutation networks for the data
switchir_;; the specification of diagnostic techniques for
the detection and location of faults; and the overall
relizability analy:=:- ot the system.

Processor modules, which include microprogram control and
which are amenabie to repair, can be designed by organiz-
ing the logic associated with each byte or computation

into a slice or module of moderate complexity (i.e.,
approximately 1000 gates/module). The repair operation is
then the electrical shorting of data around a faulty slice.

Commutation networks can be designed which are suitable for
the routing of data between memory and processor modules

and also for the above defined repair operation. These net-
works can be easily set up and diagnused, and can be madz
insensitive to failures within the commutation network with
a moderate increase in complexity,

It appears feasible to synthesize programs that can detect,
utilizing combinations ef software and hardware redundancy,
the occurrence of many hardwai'e faults. These techniques
are also appropriate to the specification of formal rules
for the synthesis of programs that do not contain human
mistakes,

B. Summary of Other Work in Progress

(1)

\

Work is continuing on the description of logical design
techniques for the varicus module types of the multi-
processcr. During the next period, a2 substantial effort
will be deveted toward the design of the irregularly-
structured control module, and in particuiar, to the
investigation of the optiwum balancing of the various
reliability-enhancement scheres.

Work will be initiated on diagnostic techniques for
locating the block within a module that is suspected

of being faulty. We expect to consider the diagnosis

of byte-sliced processor modules, commutation networks,
associative memories of the type used for memory re-
addressing and the table of available equipment, and
general control logic, We have looked at the possibility
of inciuding auxtliary outputs tu facilitate diagnosis,
and formulated the problem of specifving the optimum set
of such outputs as a covering problem of the type similar
vo that described in Sec, 1II-B of Ref. 1,

110

(3) Work has begun on the analysis of the multiprocessor
system, and we are seeking models which are amenable to
» analysis.

(4) The survey of the literature pertinent to the problem
of improving reliabilsty by the use of reduadant struc-
tures has been completed, and a paper summarizing this

work wil. be submitted for publication to one of the
IEEE Transactions.

PRECEDING pAGE BLANK NOCT FALMER.

Appendix

USE OF CODES FOR CGRRECTION AND DETECT1ON

It is of interest to determine the probability of an undetected

error due to a2 coherent neoise siynal that affects sll channels,

The number cf detectable errors for a doukle-error correcting cs ¢

may be computed as follo.e:]

Jet

n = the number of Bits in the coce wvord

k = the puille~ of non-redundant ¢+.a bits:

then the combiued number of vrlid siid correctred patterns is

- ,m. n i, - k, = ey ; % 3
, e SR e e T e W

* 7“ - >
out of 2 tectql patferns, The [ruztion of error pa“terns that are only

detected is thuo

< Bk(n‘ + 0o 2)
f S ~ 3
d ANl
or approximately,
o
. n
1 2n—k+1 :

This fraction is spproximately 1/2 for the attiactive n = 16, k = 8 ccde,
and incresses rapidly for larrer word lengths, If I®@ bytes are used, and
if all channel errors are inacpendent, the probability of an undetected
error is fB; for example, for the 16,8 code, with B =3 (i,e,, 24 non-
redundant bits per word), fB is 1/8, 1In the casc¢ in which noise tran-

sient lasts for several memory cycles (very likely for noise due to

113

electrical arcing), this probability decreases by a factor of fB for

each cycle.

We conclude that the normal error detection capability of error
correcting codes provides reliable warning of the existence of massive

errors.

114

2

10,

1L

12,

REFERENCES

J. Goldberg, K. N. Levitt, and R. A. Short, "Techniques for the
Realization f Ultra-Reliable Spaceborne Computers,'" Final Report-
Phase I, Contract NAS 12-33, SRI Projcvct 5580, Stanford Research
Institute, Menlo Park, California (Sepiember 1966).

AES-EPO Staff, "AES-EPO Study Program'" Fiial Study Report, Volumes 1
and 2, IBM Electronics System Center, Owego, New York (December 1965),

A. Avizienis, "A Set of Algorithms for a Diagnosable Arithmetic Unit,"
Tech. Report No. 32-546, Jet Propulsion Laboratory, Pasadena,
California (1964).

A. Avizienis, "A Design of Fault-Tolerant Computers," Proc. Fall
Joint Computer Conference (AFIPS) (1967).

W. G. Bouricius, et. al, "Investigations in the Design of an Auto-
matically Repaired Computer,” Digest of the First Annual IEEE
Computer Conference, IEEE Publication 16C51 (September 1967).

P. W. Agnew, et. al, An Approach to Self-Repairing Computer,” Digest
of the First Annu:1 IEEE Computer Conference, IEEE Publicalion 16C51
(September 1967).

R. P, Hassett, and E. H, Miller, "Multithreading Design of a Reliable
Aerospace Computer," presented at 1966 Aerospace and Electronic
Systems Convention (3-5 October 1966),

L. J. Koczela, "Study of Spaceborne Multiprocessing," 2nd Quarterly
Report, Velume II, Contract NAS 12-108, Autonetics Division of North
American Aviation, Anaheim, California (October 1966).

E. C. Joseph, "Self Repair: Fault Detection and Automatic Reconfigu-
rabiiity," Proceedings of the Spaceborne Multiprocessing Seminar,
NASA Electronics Research Center, Boston, pp. 41-49 (31 October L9

R. L. Alonso, et. al, "A Multiprocessing Structure," Digest of the
First Annual IEEE Computer Conference, IEEE Publication 16C51
(September 1967).

& Laud

T

J. F. Keeley, et. al, "An Application-Orien.ed Multiprocessing System,' -
IBM Systems Journal, Volume 6, Nc. 2 (Entire Issue) (1967).

J. J. Pariser, "Multiprocessing with Floating Executive Control,"
IEEE International Conventicn Record (1965).

13.

14,

15.

16.

17.

18.

19,

21,

S. P. Frankel, "On the Minimum Logical Complexity Required for a
General Purpose Computer,” IRE Trans. on Electroric Computers,
Volume EC-7, No. 4, pp. 282-285 (December 1958).

H. Weber, "A Microprogrammed Implementation of EULER on IBM System,
360 Model 30," Communication of the ACM, Volume 10, No. 9, pp. 549-
558 (September 1967).

A. Grasselli, "The Design of Program-Modifiable Microprogrammed
Control Units," IEEE Trans. on Electronic Computers, June 1962,
pp. 336-339.

J. Goldberg, "Logical Design Techniques for Error Control," WESCON
paper 9/3, Session 9 (September 1966).

W. H. Kautz, K. N. Levitt, and A. Waksman, '"Cellular Intercornection
Networks," Acccpted for publication in IEEE Transactions on Electronic
Computers.

A. Waksman, "A Permutation Network," Accepted for publication in the
Journal of the ACM.

W. J. Cody, "The Influenc~ of Machine Design on Numerical Algorithms,"
AFIPS, Proceedings of the SJCC, Thompson Books, Washington, D.C.,
pp. 305-310 (1967).

Peter M. Neely, "Comparison of Several Algorithms for Computation of
Means, Standard Deviations and Correlation Coefficients," Communica-
tions of the ACM, Volume 9, No. 7, pp. 497-499 (July 1966).

N. Metropolis, and R. L. Ashenhurst, "Basic Operations in an Un-
normalized Arithmetic System,'" IEEETEC, Volume EC-12, No. 5, pp. 896-
904 (December 1963).

116

	GeneralDisclaimer.pdf
	1969020584.pdf
	0002B03.pdf
	0002B04.pdf
	0002B05.pdf
	0002B06.pdf
	0002B07.pdf
	0002B08.pdf
	0002B09.pdf
	0002B10.pdf
	0002B11.pdf
	0002B12.pdf
	0002C01.pdf
	0002C02.pdf
	0002C03.pdf
	0002C04.pdf
	0002C05.pdf
	0002C06.pdf
	0002C07.pdf
	0002C08.pdf
	0002C09.pdf
	0002C10.pdf
	0002C11.pdf
	0002C12.pdf
	0002D01.pdf
	0002D02.pdf
	0002D03.pdf
	0002D04.pdf
	0002D05.pdf
	0002D06.pdf
	0002D07.pdf
	0002D08.pdf
	0002D09.pdf
	0002D10.pdf
	0002D11.pdf
	0002D12.pdf
	0002E01.pdf
	0002E02.pdf
	0002E03.pdf
	0002E04.pdf
	0002E05.pdf
	0002E06.pdf
	0002E07.pdf
	0002E08.pdf
	0002E09.pdf
	0002E10.pdf
	0002E11.pdf
	0002E12.pdf
	0002F01.pdf
	0002F02.pdf
	0002F03.pdf
	0002F04.pdf
	0002F05.pdf
	0002F06.pdf
	0002F07.pdf
	0002F08.pdf
	0002F09.pdf
	0002F10.pdf
	0002F11.pdf
	0002F12.pdf
	0003A03.pdf
	0003A04.pdf
	0003A05.pdf
	0003A06.pdf
	0003A07.pdf
	0003A08.pdf
	0003A09.pdf
	0003A10.pdf
	0003A11.pdf
	0003A12.pdf
	0003B01.pdf
	0003B02.pdf
	0003B03.pdf
	0003B04.pdf
	0003B05.pdf
	0003B06.pdf
	0003B07.pdf
	0003B08.pdf
	0003B09.pdf
	0003B10.pdf
	0003B11.pdf
	0003B12.pdf
	0003C01.pdf
	0003C02.pdf
	0003C03.pdf
	0003C04.pdf
	0003C05.pdf
	0003C06.pdf
	0003C07.pdf
	0003C08.pdf
	0003C09.pdf
	0003C10.pdf
	0003C11.pdf
	0003C12.pdf
	0003D01.pdf
	0003D02.pdf
	0003D03.pdf
	0003D04.pdf
	0003D05.pdf
	0003D06.pdf
	0003D07.pdf
	0003D08.pdf
	0003D09.pdf
	0003D10.pdf
	0003D11.pdf
	0003D12.pdf
	0003E01.pdf
	0003E02.pdf
	0003E03.pdf
	0003E04.pdf
	0003E05.pdf
	0003E06.pdf
	0003E07.pdf
	0003E08.pdf
	0003E09.pdf
	0003E10.pdf
	0003E11.pdf
	0003E12.pdf
	0003F01.pdf
	0003F02.pdf
	0003F03.pdf
	0003F04.pdf
	0003F05.pdf
	0003F06.pdf
	0003F07.pdf
	0003F08.pdf
	0003F09.pdf
	0003F10.pdf

