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SUMMARY'

r

The purpose of post flight orbit and trajectory analysis is to establish those
parameters and procedures which contribute too the uncertainty in the computed
orbit.. The two main techniq ►,^es for post flight analyses are differential correc-
tion procedures and regression analyses.

The differential correction. procedure is a method by which an orbit is cor-
rected by interatively performing a least squares fit to the differences between
computed and measured observations. The actual measured quantitiES must be
corrected as a result of station location uncertainties, bias in the data, and so on.

Regression analysis is performed upon the residuals from the differential
correction procedure. Models of station and measurement errors are obtained
by means of a least squares fit to these residuals.

Inherent in both of. these procedures is the need. for inverting the matrix
associated with the least squares fit. In most applications these matrices tend
to be poorly conditioned and the resulting inversion process becomes prone to
computational erro^.^s. Thus an investigation of these errors is a prerequisite
to successful post flight analyses.

In order to determine the extent of errors introduced by computational pro-
cedures, various inversion and generalized inversion (pseudoinversion) methods
were applied in the determination of a least square polynomial fit to data gener-
ated by a polynomial. The use of the. generalized inverse and same of its com-
putational. advantages are. demonstrated. In particular it is shown that if the
formation of the normal equations is avoided one can obtain equivalent accuracy
using single precision arithmetic as one would obtain using double precision
arithmetic with convention^.l routines. An added advantage of the generalized
inversion routines over conventional techniques is that one always receives a.

^ positive indicate ^^:: of when computational difficulties are encountered. Using
.conventional techniques the identification of polynomial fits of order higher than
seven are doubtful for single precision. arithmetic. This order can be extended
to cloven with double precision methods. In contrast generalized inversions
routines. give meaningful . results :for orders as high. as the twentieth.
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LEAST SC^UARES AND FSEUDOINVERSION

xNTR ODUC TION

Inherent i^l most orbit determination and regression analyses. is the need for
inverting the matrix that is associated with the normal equations. In most appli-
cations, such matrices tend to be poorly conditioned, and the inversion process
becomes computationally difficult to perform with accuracy in limited precision
computers.. The soarce of this difficulty and. some of its effects are discussed
in this paper•.

NL^THE NIA.TICAL MODE L

The mathematical model for the problems to be discussed is given. by the
linear system

AX = Y^,
	

(11

where A, is an n x m matrix, Y 'is an n vector, and X is an m vector. In general,
the system is overdefined; th^.t is, n is much. greater than. m . It is G`:csired to ob-
tain a sc^luti.on, X = .;Ko , such. that the scalar function

is minimized over all choices of X. In this equation, W is an arbitrarily preas-
signed m x mpositive definite matrix of wei;hts. By means of t)ie calculus, a
necessary condition for an extr^mem of G (3^ is obtained. by requiring the vanishing

y

of the gradient of G with respect to X•. Thus:

0X G (X) ^ 2 AT W (AX - Y) = 0 .	 (3)

•	 'this gives rise to the no •̂mal equations

AT WAX = E1T W'Y ,	 {4)
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with a solution given by

XQ	 (AT WA)- I AT WY,	 (6)

providing that the indicated inversion can be performed.

In most practical applications, the vector Y represents a physical measure-
ment, % , corrupted by noise, 77. This noise is generally postulated to be charac-
terized by the statistical properties

Y	 + 71,

E {Y} =	 ,	 (6)

E{CY -} CY ' ^)T }	 E( n T } = Q,	 (7)

where Q is an m x m positive definite matrix, called the covariance matrix, as-
sociated. with observations. The covariance matrix associated with the solution
X o is given by P, where

E{XQ ) = E (AT WA)- 1 AT W(j3 + "^) r
4

(AT WA)-i AT W E {,̂8 + 77•)

( AT WA)- 1 AT Wei

and

P	 E (Xo - E{XQ)) (_X — E {X,o} ^ T

= E (AT WA) — ' AT W I77 ^T WA(AT WA)-1
i

L

JL
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t

( AT WA) -I AT  E {7-1 T) WA ( AT WA) -1

t	 (AT WA) -1
 AT WQWA(AT WA)- 1 .	 a

Two particular cases in practice are considered, In ono case, W is asstuned to
be the identity matrix, and the solution and covariance matrix are gi T.,en by

X0 	 (AT A)"1 AT Y ► 	 (9)

P	 (AT A)-1 ATQ A(ATA) -1 .	 (10)

This is the so called least squares solution, The second case is when W
In this case, the solution and covariance matrix are defined by

X0 = (AT Q- 1 A)- 1 AT Q-1 Y 	 (11)

P : (AT Q-1 A)-1.	 (12)

PROBLEM STATEMENT

It would appear that the problem is completely solved and that nothing further
need be considered. Unfortunately, this is not the case. In most practical appli-
cations, implementation of Equations (9) through (12) may lead to drastically poor
results.

As an example, consider the set of data y i , xi that is generated by the
quadratic 1

Y - 40 x + 10 x 2 	 (13)

We will assume that y is to be fitted by the polynomial

Y = a0 + a 1 X + ... + 'an Xn s

'Rice, W. and Lefferts, E., ''Interference Reduction Techniques for Nonlinear Devices," Quarterly
Progress Report No. 1„ Contract No. DA-36-039-AMC-02208 CEI, ER-13171, Martin-Marietta Corp.,
Baltimore, Maryland.
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where the coefficients are obtained by a least squares fit to noiseless data.
'sing a single precision routine (SHARE 7.0.027), we, obtain the results that are

listed in Table X.

As shown in the table, cv^ rt for this siniple. example, complete ro wvery of
the coefficients is steadily worsened as the number of terms is incroused. This
poor recovery for such small, dimension ma,tricea it y be surprising, and one
may be tempted to attribute the results to the inadequacy of the program. ern-
ployed. However, this is not the case: poor recovery is characteristic of roost
least squares programs. phis is amply demonstrated in 'a`'hble 2, where three
such programs are compared for a seventh degree fit to the above cluadratic,
:Equation (13).

The difficulties encountered in the above example could be eliminated by
employing a higher degree of precision in the computer. But the use of double
precision is not a panacea. Besides giving false confidence in the computer re-
sults, double precision only displaces the problem since it reappears as the
dimension of the vector to be recovered increases. In double precision using
conventional inversion routines, this limit is reached at about dimension fourteen.

MATRIX CONDITIONING

The main difficulty encountered in the solution of the normal equations for a
least squares fit lies in the poor conditioning of the associated matrix to be in-
verted. The concept of a poorly conditioned matrix is one that requires some
clarification. For nonsingular matrices, such a concept is developed by
Forsythe 2.

The norm of a vector, Y • , is given by

	

YI ( = (YTY)'% = (Y i + Y.= r 	 Yn )%.

For any square matrix, A, the spectral norm I IAI I is defined by

11 AI I-	
X

AX 1 I 1 AXI
iI	 1I

2 Forsythe, George E., "Today's Computational Methods of Linear Algebra" Siam Review, July
1967, Vol. 9, No. 3, pp 489-515.

}
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Table 2

Comparison of Seventh Order Fits to a Quadratic

Coefficient
True
Value

Recovery

by SHARE
Program
7.0,027

Recovery

by SHARE
Program
7,0,002

Recovery

by SHARE
Program
9.4.015

a o 0 3.75 x 10-4 2.98 x 10- 3 1.60 X 10-2

a l 40 40.02 39.85 +39.16

a 2 10 9.75 12.053 +22.10

a 3 0 11.55 -11.37 -36.00

a4 0 -4.24 30.99 +78.00

a 5 0 6.68 -44.20 -11.00

a6 0 -4.38 31.60 -42.00

a7 0 1.25 -8.94 26.00

For a nonsingular matrix, A, the condition of A is defined by

Cond. A=	 I IA l I- I I A` 1 I I .

One of the main results in using the concept of the condition of a matrix is that
it can be applied to reflect the variations in the solution that are due to pertur-
bations either in the matrix A or its nonhomogeneous aide. Let a system be
given by

1	 ._4

X = B.

If B is perturbed to B- + 8B, then X is perturbed to X + 8X. The relative change
in X is given by

r

2

F

f

f

Y

6



1 8 X I I < cond . A I Ib B

	

IIXII	 IIBII

If A is subjected to a change, M, then we have

	

11 8 XiII	 <cond. A 116 A I I .

I IX + bXJ I _	 I JAI

Unfortunately, the condition of a matrix is not easily determined, and one must
rely on other procedures to determine how good an inverse actually is. Such a
procedure has been given by D. Morrison 3 . His quick version, which may be
computed by hand, is given as follows. Let A = (a i j ) and A- 1 (a" JI ) . Let the
exponents of the diagonal terms of A be E 1 , E 2 .. ,, E and let the exponents of
the diagonal terms of A ^ 1 be F 1 , F2 ..., Fn.

Then if

MAX
L =	 i (Ei + Fi ) ,

the number of digits lost in inversion is L, and the number of good digits in single
precision is given by 8 - L.

PSEUDOINVERSION

For poorly conditioned matrices, many authors have suggested the use of a
pseudoinverse rather than a conventional inverse. Pseudoinversion has an added
advantage in that it works even when the matrix to be inverted if: singular.

The pseudoinverse, or generalized inverse, performs the same function for
singular matrices as an inverse performs for nonsingular ones. The generalized
inverse A + may be defined for all matrices, including rectangular ones, in terms
of two postulates.

Postulate 1: A+ AA+ = A+.

Postulate 2: AA+ A = A

3 Morrison, D. D., "How Bad is a Matrix," Space Technology Laboratories, Inc., Interoffice
Correspondence, May 19, 1965.

7
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Unfortunately, the generalized inverse is not uniquely defined by postulates 1
and 2. However, there are many ways of adding constraints to insure the
uniqueness. One such set of constraints defines the Penrose Pseudoinverse
(see Appendix A), which is the one used in this paper. These added constraints,
or restrictions, are given by two axioms.

	 a

^I	
Axiom 1: (AA+ )T = AA+ .

.

Axiom 2: (A+ A) T = A+A .

For the Penrose pseudoinverse, we will use the symbol A#

The main utility of the Penrose pseudoinverse lies in the following result.
Let the system of equations be given in the form

AX = B,

and I- et

Xo = A# B .

Then, for any X,

AX0 — BI 1 2 < I I AX^ — BI 1 2 .

If for some X the equality holds, then

IXoI I < I I XI

Thus, the solution given by the Penrose pseudoinverse is a least squares solu-
tion. If there exists more than one least squares solution, the Penrose pseudo-
inverse gives the shortest vector in norm which is a solution.

In terms of the generalized inverse, Equations (5), (8), (9), (10), (11), and
(12) may be rewritten as follows:

X 	 (AT WA) # AT WY	 (14)

„4a

fR

r

3
's

J

k.



P = (AT WA) # AT WQWA(AT WA) #	 (15)

Xo	
(AT A)# AT Y	 (16)

P = (AT A) # AT QA(AT A) # 	(17)

Xo = (AT Q- 1 A) # AT Q- 1 Y	 (18)

P = (AT Q-1 A) #	(19)

COMPUTATIONAL EXPERIMENTS

To determine whether there are computational advantages in using a pseudo-
inverse, a comparison was made between inverse derived by the Gauss-Jordon
technique and a pseudcinver: a derived with the use of an Andree algorithm. (A
description of the Andree algorithm appears in Appendices B and C.)

The symmetric and positive definite test matrix A was defined as follows:

A = B BT

where

B = (bi )

and



The comparison was performed on a Univac 1108 computer in double precision.
All elements of A were integers, so no round-off was generated upon their entry
into the computer. The results were then tabulated and summarized as repre-
sented in Table 3 and figures 1 and 2.	

A

The comparison of the two inverses shows that the Gauss-Jordon inverse
provides slightly better results than the pseudoinverse. At the point where there
was a computational loss of rank, the pseudoinverse bears no resemblance to
the conventional inverse. Tn general, the pseudoinverse is not a continuous func-
tion of its elements, and it changes considerably when its rank is reduced. For
example, consider:

1
	

1
A -

1
	

a

Then,

	

a	 -1

A# 
_	 -1	 1

1A1
= A- 1 for a	 1

and

1/4	 1/4 \
A# 	for a = 1.

1/4	 1/4 )

Therefore, rather than compare pseudoinverses to inverses, it is more fruitful
to compare recoverable solutions to a set of equations.

The second computational experiment was a comparison between the solutions
of a least squares polynomial fit to data generated by the equation

Y = 1+10X +X2•

The solutions were obtained using the Gauss-Jordon inverse and the Andree
algorithm pseudoinverse of the normal equations. The results are as follows.

10



n

Lost
Digits

Lost Digits	 Symmetry

Andree Andree

Predicted Gauss-Jordon Algorithm Gauss-Jordon AlgorithmMethod Method
Method Method

4 1 1 2 15 16

5 2 2 3 14 16

6 3 2 3 13 16

7 3 4 4	 ! 12 16

8 4 5 5 11 16

9 5 6 6 10 16

10 6 7 7 10 16

11 7 8 8 9 16

12 8 9 9 7 16

13 9 9 — 7 16

14 10 11 — 6 16

15 11 12 — 5 16

16 12 13 — 4 16

17 12 14 — 3 16

18 13 14 — 3 16

19 14 15 — 2 16

20 15 16 — 1 16

'f
t

f

i

^

i

t

^J

R

Table 3

Loss of Significant Digits and. Symmetry in Matrix Inversion
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I

The Gauss-Jordon fxt is slightly better for polynomials up to the tenth order.
For fits from the eleventh order to the twentieth, which is as far as the investiga-
tion was carried, the Gauss-Jordon recovery is markedly inferior. It is inter-
esting to note that from the eleventh order polynomial onward the computational
rank of the pseudoinverse is consistently less than maximal. Table 4 and Fig-
ure 3 list and chart the errors in the recovery for Loth procedures.

The loss of rank in the Andree solution may be caused by the loss of positive
definiteness in the formation of the matrix of the normal equations, or it could
be due directly to computational errors in the inversion algorithm. To investi-
gate which of these is the source of trouble, a second pseudoinverse algorithm.,
based upon a Gram-Schmidt orthogonalizati on procedure, was investigated.
(Appendices B and D provide a description of the Gram-Sciunidt algorithm.) The
Gram-Schmidt algorithm, computes the pseudoinverse of a matrix directly, with-
out the need of forming the normal equations. However, it can be applied to the
normal equations to enable comparison with other procedures.

When applied to the rectangular matrix, the Gram-Schmidt pseudoinverse
was found to be markedly superior to both the Gauss-Jordon inverse and the
Andree algorithm pseudoinverse. (See Table 4.) In fact it could do as well in
single precision as the other two inverses could do in double precision. When
the Gram-Schmidt method was applied to the normal equations, it was found to
be inferior to the Andree algorithm. Thus, it appears that the formation of the
normal equations is extremely critical in least squares solutions. 	 ;A

One of the main advantages in the pseudoinversion routines is the manner in
which the computational rank is controlled. In the Andree algorithm, a series of
congruent transformations is made. In each step, the reduction is forced to pivot
about the largest diagonal element. If at any step of the process the largest re-
maining diagonal element is less than the product of a preassigned constant, K,
and the first pivotal element, then it and all remaining diagonal elements are set
to zero. Thus, the rank is depressed. The constant K is chosen to provide n
significant figures in the ratio between the pivotal element under consideration
and the largest pivotal element. Even when K is set to zero, the rank is reduced
if any diagonal element becomes negative.

In the Gram-Schmidt orthogonalization process, the rankk is reduced by com-
paring the size of the angle between any column vector and its projection on the
independent column space already determined. This procedure does not preserve
the non-negativeness of the matrix when applied to the normal equations.

A comparison was made in which the rank controlling factor was varied.
The constant K was chosen as

j

Y
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I

K = 2-14 . ion

and n was varied from 0 to 15. For n = 0, the rank of the matrix of normal
equations was depressed by two in the Angree algroithm, while the Gram-Schmidt
method gave maximal rank. This is due probably to the fact that non-negativeness
of the matrix is forced as a constraint in the Angree aigorithm. As n was in-
creased, the computational rank was decreased.

As the rank is decreased, the recovery is improved and then worsened.
(See .Figure 4.) The initial improvement is due to the cancellation of computa,-
tional errors. The subsequent worsening is probably due to the rejection of
observable information.

In Figure 5 the computational i, ank is plotted against the parameter n . In
Figure 6 the norm of the error Li the recovery vector is plotted versus the
parameter n. Observe that the recovery given by the Andree algorithm corre-
sponding to a given rank is independent of n, while the recovery in the Gram-
Schmidt process is different even though the rank stays fixed. This is due to the
manner in which the Gram-Schmidt process was implemented. Procedures are
available to insure the uniqueness of the recovery for a given rank.

Observe from Figures 5 and 6 that for n = 0, 1, 2, and 3 the two Gram-
Schmidt recoveries are of maximum rank, but the ratio of error vectors is 108
This error difference can be due only to the formation of the normal equations.

CONCLUSIONS AND RECOMMENDATIONS

On the basis of the -ry.eliminary studies described in this report, practical
solutions to least squares problems are somewhat in doubt due to the poor con-
ditioning of the associated matrices. Even though these results were demon-
strated for the impractical problem of high degree polynomial fitting, the con-
clusions are valid for many other problems. For example, recovery of station
parameters based upon a regression analysis from one or t-l lo satellite passes
leads to matrices which are in many cases even more poorly conditioned.

The results of this investigation lead to the conclusion that the formation of
the normal equations is extremely critical and should be avoided where possible.
Unfortunately, due to the large number of data points which must be processed
in practical problems, this leads to very large matrices with the incumbent
storage limitations of modern computers. Thus, in practice, one is forced to
treat the normal systems of equations. Here, the pseudoinverse of Penrose leads

17
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to solutions of greater confidence. Inherent in the use of pseudoinversion
routines is that an indication of computational difficulty is provided. This is
evident in the reduction of computational rank from maximal.
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APPENDIX A

PENROSE PSEUDOZNVERSE

Let A°# be defined as the Penrose pseudoinverse of A, where A # satisfies the
four axioms:

Axiom 1: AA# A y A.

Axiom. 2: A#AA# = A#

Axiom 3: (AA# )T	A#TAT = AA#.

Axiom 4: (A# A) T = AT A#T = A# A,

We will show that the Penrose pseudoinverse always exists and is unique.
If the matrix A is non-singular, then the pseudoinverse is identical to the inverse.

THEOREM A-1: If A-1 exists, then A# = A--1.

Proof:

AA#A	 Al

A-'AA#AA-1 = (A- 1 A) A# (AA- 1 ) = A` 1 AA- 1 ,

IA# I = A-1 I = IA- 1 = A 1,

A# = A-1.

THEOREM A-2: A# is unique.
r

Proof: Assume X and Y are Penrose pseudoinverses of A. Then, both X
and Y satisfy axioms 1 through 4. Thus:

X = XAX = (XA)X = (XA) T X = AT XT X = (ATYTAT)XTX

I

A-1



^I

= (AT YT )AT XT X = (YA) T AT XT X r YAAT XT X = YA(ATXT)X

= YA(XA)T X = YA(XAX) = YAX = Y(AX) = Y(AX) T = YXTAT

= YXT AT YT AT = Y(XTAT ) (YT AT ) = Y(AX)T (AY)T

= YAXAY = Y (AXA)Y = YAY = Y.

THEOREM A-3: A#T = AT#.

Proof: Since (AT )4 is the unique Penrose pseudoinverse of AT , it is sufficient

to show that A#T satisfies axioms 1 through 4:

(1)	 AA#A = A.

Transposing,

AT A#TAT	 AT.

(2) A# A A# = A#.

Transposing,

	

A#T AT A#T = A#T .
	 t

(3) (AA#)T = AA# = A#TA.

Thus,



THEOREM A-4: (A# )" = A.

Proof: Since A# is the pseudoinverse of A, it follows that A is the pseudo-
inverse of (A# ), from the symmetry of the axioms. By definition (A # ) # is the
pseudoinverse of A 4, thus (A#) # = A by theorem A-2.

THEOREM A-5: Att exists.

Proof 1: Let A be a diagonal matrix:

A = diag (X 1 1 t\ 2 1 ... I /\ n ) -

Define A# to be the diagonal matrix:

A# = diag (IL 1, 112 1 - ' ' I µn ) I

where

4i	 0

	0, X	 0.

We now show that A # satisfies axioms 1 and 2:

(1) AA# A	 diag (X j ) diag (uj ) diag (Xj )	 diag (X .2 /.4i	 diag (X i )	 A.

(2) A# AA# 	 diag (/µi) diag(kj ) diag(/.L j )	 diag	 diag (4. ) = A#.

Since the product of diagonal matrices is diagonal, symmetry is preserved, thus
satisfying axioms 3 and 4.

Proof 2. Let A be symmetric; that is, let A AT .Then, A has the repre-
4.	 .

Se_JLIL2 + -I n

A	 STDS,

A-3

M"-

I



where D is a diagonal matrix [D = diag (X i )) and S is orthogonal, that is ST =
S" 1 . Define A# as:

^r

A#	 = ST D# S.

We now show that A# satisfies axioms 1 through 4:

(1) AA#A	 = ST DSST D# SST DS# =	 ST DD# DS =	 ST DS	 =	 A.
r

(2) A# AA#	= ST D# S ST D S ST D# S =	 ST D# DD# S =	 ST DR S	 =	 A#.

(3) (AA#)T	 = (ST DSST D# S) T	=	 (ST DD# S) T = ST (DD# )T S	 =	 STDDI#S

= ST DSST D# S = AA# .

(4) (A#A)T	 = (ST D# SST DS) T	=	 (ST D# DS)r	= F)T (D# D) T S	 =	 STD#DS

= ST D# SST DS	 =	 A#A.

Proof 3:	 Let A be arbitrary, then we define A# as either

A#	 _ (AT A) # AT

or

A#	 AT (AAT )# ,

d•

depending upon which resulting symmetric matrix, A TA or AAT , has the smaller
dimension.

We now show that A # satisfies axioms 1 through 4

(1)	 AA#A = A(Ar A) # AT A	 "



Let

C = A(AT A) # ATA - A,

^I	 then CT is given by
	 ^I

CT = AT A (AT A) # AT - AT

and CT C its given by

CT C = AT A(AT A) # AT - AT A(AT A) # AT A - A

= AT A(AT A) # ATA (AT A) 4 AT A - AT A(AT A) # ATA

- AT A(AT A) # AT A * ATA

= AT A - AT A -AT A + ATA

- 	 4.

Thus, C = d, or

A(ATA)# AT A = A.

(2) A# AA# _ (AT A) # AT A(AT A) # AT = (AT A) # AT = A#.

(3) ( A#A)T -
[(

ATA) # ATA T
	

B#B T - B#B. - (AT A) # ATA = A# A,

(4) (AA#) T - A(AT A) # AT T = AT (AT A) #T A = AT 	 A

AT (AT A) # A _ AA#.



The maid utility of the Penrose pseudoinverse is contained in the following result,
Let the system of equations

AX	 B

be given, and lot

X-0 	 A# I3 .

Then, for any X,

I I AX0 	BI I	 I I AX - BI I.

If for some X the equality holds, then

II XoII < IIX.II

Thus, the solution given by the Penrose pseudoinverse is the least squares solu-
tion. If there is more than one least squares solution, the solution given by the
Penrose pseudoinverse is the smallest solution in norm, 	 - n

THEOREM A-6 (Projection Lemma):

I I AK- - ^f I ^
MIN I I

AX - BI I
X•

if and only if

X'T AT (AXo - B) = 0

for all X.

Proof: Assume that

A-6	
}

M
b:v

x,



-i
for all X, and let Y be given by

.M	 N	 M

Y = XQ + Z

We then have

I JAY - BI ( 2	 ( IAX^ -^ B + AZ(!	 a ! (AXa - B1 1 2 22 T AT (AXo — B^	 I IAZI I .

since by assumption

ZTAT(AXo ^- S) 	 0.

Then,

11AY.- B11 2 = 1 IAXQ — B1 I
2 

+ I IA2112.

Thus,

AY- - R I < 11AXo - Bl 12

since

I{A71 12 ? 0.

We now assume that

I

I AXo	 BI I< I I AY - All 1

and wish to show that this implies that 	 1

	

XT AT (AXE B.) _ 0	 !'
r	 tr

t

for all X. Assume that

h

A-7



and

X XO

I

X T AT (AXo - B) = a0

V

for some X. Let V and Y be defined as

—ax
V - 

I IAxI 12

--/	 -4	 .H

Y	 Xo + V..

.

Then,

i l AY - BI 1 2 - I I AX'o - BI 1 2 = I I AXo - g _	 Axa 2 
11 2 - I I Axo - BI 12i AR-41

-2aXT AT (AXo - B)
2 I Ip 112

1 I AR* 1 2 	 + a I 
I AXI. 

14

2a 2 	+a2	 -a2

i I AXI 1 2 	 I I AXI 12 =
	

I 1 AxI 12

which is a contradiction.

THEOREM A-7: In the system of equations

AX = B,

where

Xo = A# B,



either

I I AX - B I I> I I A"X"* 0 - B I I

A

M/	

or

J JAR' - BI  = JjA 'RO - "B6 11 and 11'XI I > 11-R-611

Proof: First we must show that

-4

x TAT (AR0 - B) = 0

as follows:

	

XT AT (AA# 'B - 'B)	 X T AT A A# -B-1, - XT ATB

X, T AT (AA# ) B - XT AT B-

XTT ATAT (AA
#)T B X B

	

#T AT 	 TXT AT A	 B- X AT B

XT AT B- X T AT R

0.

Thus, from theorem A•6,

I JA - BI I	 I JAX0	I-4x

assume the equality holds:

	

A-X-* - - ^B	 A-Ro ^B



n ; 4	
y w	

a

If

x = X. + Y

then, by hypothesis,
a

I AX — B 11 2 — I I A1{o — B 112	 2Y.T AT (Axo — B> + I I A 1 12

AYYI 12 = 0.

i	 Now,

IXoI 
12 

= I Ix'	 (X — Xo>I 1 2 = 11X11 2 + I IX — XoI 1 2 — 2X T (X — Xo)

11X1 1 2 + I IY.11 2 — 2 
(Xo + Y.)T Y.

=
11`112

 1 2 + I lYl 1 2 -- 2 B.T "T A #T Y _ 2 1 lY,l 
12

=	 I I X1 
12 

— I LY 1 1 2 ,— 2B T A#T Y.

= I I XI 1 2 -- I I Y I 1 2 — 2 B T A#T AT A#T Y.

-	 I I X I1 2 — 1IY11 2 - 2BTA#T(A#A)TY

	

lXl 1 2 	11Y . 11 2 — 2B T A#T 
AT 

(AY) .

y
Since I I Ay"I 1 = 0, it follows that

11 -4. 112	 12
i

t

-f

fi

k4'

Ilk

0

i
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APPENDIX B

PSEUDOINVERSE ALGORITHMS

I

There exist many a lgorithms for the generation of the pseudoinverse,of
Penrose. Unfortunately, not much information is available in terms of theirr
efficiency and computer requirements. Such a comparison is presently being
made and will be the subject of a future report. In the interim, we will present
two such algorithms which have been used extensively by the author. These
algorithms possess the desirable property of allowing a limited control of the
computational rank.

In the first method, the pseudoinverse is formed by means of the Andree
algorithm. This routine computes the pseudoinverse by means of the equation

A# = ( AT A) # AT

Actually, the pseudoinverse of

B = (AT A)

is formed. This routine insures the symmetry of B# and also imposes the re-
quirement that B# be non-negative. Thus, if computational errors leading to the
loss of the positive definiteness of B exist, they are partially alleviated by this
scheme.

The second algorithm, which is basically a Gram-Schmidt orthogonalization
procedure, can operate directly on the rectangular matrix A. There is no need
to form the matrix associated with the normal equations, thus one major source
of computational errors is eliminated. The penalty paid for this lies in the larger
computer storage required to handle the rectangular matrix.

ANDREE ALGORITHM

The algorithm used in this paper is a modification r the Andree algorithm
by T. S. Englar 1 . The steps of this algorithm are as follows:

'Kalman, R. D. ;and Englar, T. S., "An Automatic Synthesis Fr gram for Optical Filters end Control
Systems," NASA, July 1963.

B-1
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r

t

1. Compute A T A or AAT, whichever has the smallest dimension. Call this
resulting matrix B. It will be sufficient to compute B # , since A# is
given by

A# _ (AT A) # AT or A# = AT(AAT)#,^I

2. Compute a non-singular matrix, S = (s i j ), such that

SBST = E,

where E _ (e i ^) is a diagonal matrix with elements either zero or one.
Y

3. If E = I then B is invertible, and

B- 1 = STS.

If E ^ I then we define the matrix U = ( u i ) by the following:

	

For i ^` j,	 ui j 	-	 s ib	 if	 e.,	 = 0,

	

= 0	 if	 e.	 = 1.ii

For i = j,	 uii 
= 0	 i f	 ei i = 0,

	

= 1	 if	 e.	 = 1.

4. Compute

C = UT BU.

Delete the rows and columns of C corresponding to Ci i 0, and call	 +
the resulting matrix D. Observe that D is a non-singular i°n.atrix of
rank m. Compute D- I by means of the Andree algorithm as in step 2.
Compute B # by means of

TA: B-2



a
w

D-1	 0

B# = U
	 UT,

0
	

0

5. Compute A# either by means of

A# = B# AT

or

A# = AT Wt.

In the computation of step 2, the generation of the matrix S is done in
at most 2n steps. The reduction is based upon pivoting in each step
about the largest of the remaining diagonal elements. If after any step
of iteration the largest of the remaining diagonal elements is less than
the product of a preassigned constant, K , and the first pivotal element,
then the rows and columns containing these elements are set to zero
thus reducing the rank of the matrix.

GRAM-SCHMIDT PROCEDURE

This algorithm2 permits one to pseudoinvert a rectangular matrix, A,
directly. The algorithm is based upon partitioning A in the form

A = (R , RU) ,

when e all columns of R are linearly independent. The pseudoinverse A # is given
by

(I + U UT) -1 R#

A#

UT (I + U UT ) -' R#

2 Rust, B., Burrus, W. R. and Schneeberger, C., "A Simple Algorithm for computing the Generalized
Inverse of a Matrix," Communications of the ACM, Vol. 9, No. 5, May 1966, pp 381-387.
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^y
1^

^^

This representation may be checked by substitution. into the axioms.

If (a^l , a2 , . , , an) is any set of linearly independent vec^drs, then it can be
replaced by an ort;^onormal set (y l , q 2 , ... q^; in the following manner:

a•

	

1	
T

qi -	 (I a I I	 c2 - a 2	 ( a 2 qi) q'1 .
1

-^

-'	 II c 2	 T	 T
q2 

= (1^ 2 ^ ^	
C3 

= a3 - 
Cog q• 1 ) q l - (a3 q2 ) q2 ,

-^

q3 _	
-,a I

^ICg^!
n-1

i=1

-^
^•

-^	 n

`^	 Il^nll

Observe that the resulting matrix Q is such that

QT Q = I .

Let us apply this transformation to A = (R, RU) and keep track of the trans-
formation by applying it simultaneously to the identity matrix partitioned as

I k	 0

I =

^	 I n -k

B-4

^.,_ _._	 ._.... _..a.^ .a._ ...^.^..^.

,.	 .. w^^	 _	 _	 w... enact	 .w



B-5

-	 ^	 w- -	 '^;

._,

A will tran:^form into

A = (R	 RU) -------^► (Q	 0 )
t

^r	 Ik 0	 ^ Z X

-►
0	 In -k	 0	 In -k

Thus, we must have

Z	 X

(R	 RU)	 = (RZ , RX + RU) = (Q , 0)

0	 I ^ -k

ar
,,

RZ - Q	 R ^ QZ- i

RX + RU ^ 0	 X = -U

and R# is given by

R# = Z QT

since

R## _ (RT R)-1 RT = ( Z-T QT QZ-i^ Z-iT Q^ = ZQT

Thus, the matrices R# :and U are generated. It is still necessary to compute the
matrices (I + UUT)_ 1 and UT (I ^- UU T )- ^ . The first of these expressions can be
written as

(I + UUT) 1 ^ j - U(UTIJ + Ij- 1 UT.



^-^

.	 ,

Tf both sides are post-multiplied by (I ^^ UU T ), thy; identity follows. The ^eeond
expression can ue written as

UT ^ j ^' UUT) "1 	 CU^U '^ 1)-lUT,	
^

SI.11C@

	

UT^j ^, UUT)-1 =	 UT _ UTU/UTU ^- j)-1U'^

	

-	 j ^. ^Ur U ,^. j) -i ^ C^TU 
+ j)-1 - UTU(LJTU .^ j)-^^ UT

J

j ^. (UT U ^• j) -i ^ ^I + UT U) ( I + UTU)- i UT

J

^^TU # j) -1 tJT .
,..

If the Gralxl -Schmidt orthogonali; ^ition process. is now applied to the matrix

-U

j n -k
.r
^^ .^^

this will transform to

-U	 -UI'	 a
t

P -

j n -k	 P	
^^'	 w

^ l



wlle^c we have

^^

-UP x	 --UP

•	 - PT UT UP ^ PT P ^ Z ,

,P	 P

P

or this becomes

PT (UT U + I)P = I

(UTU .^ Y) ^ pT-^ p-i

(UT U ^- I )'1 ^ P PT .

1^1so,

1 - U(UTU + I)' 1 UT	1 - U P PT tJT

I - (U P) (U P)T

and

(UTU + I)' l UT = P(UP1T .

Thus, A# takes the form

I - (UP) (UP)T R#.,	
A# _

P (UP) T R#
,^

B-7
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APP^N.DL^'. ^'

.AI^7nF^EE ALGORITHM SUBROUTINE

The .A.ndree algoritlun for calculating tha Penrose pseudonverse of a it atrix^^	 of equations leas been converted into a rOI^TRAN subroutine. The listing for tk^i,s
subroutine appears on the following pages.

r



^r

+eN 1V as L.E Ytal	 t r M(:k7 l	 AM()rrt f	 ^1A1 ^, ^• (,^ 4 k +i'	 ^ t,l.'. /^'t1

^,t,l^4t )t, T t hE; AN!'!It( ^: (V • n • h P+ • t^ 1^!, )

^?'Jlrl^11,E F^1t i> ^161 ►th Vrt^r7•N•X•l1•prlfit•k?'i^kT
yjtMt- N:^l(:h V( 5dv^5p )• ► ^(^^•Jp )• ►^(;SCI.1'( .Sp•.5'► I^N ( Sy• 5'I ► •x( SL'^'S°> ►
k1lNl; ty ((ilti l^(d p • 1p)
'! f 1. k. ^ ^ },^
Nr^ s ^^t,
I^aG ^

l. ^'F ^ C

iJ ^) .5.5..5 J ^ 1 • N
«3,53 11t 1.J) ^ Vf l •J)
€.ti^^ i)t1 ^^ i ^ 1 •N

R(1) s J.
t7t) V y J ^ 1.N

^7 Tt l •^J) ^ C•
4^ T(1•l1 s t•
3^ l.f:f, c k.FF"^1

1 F (l.f'r — h ! 77.77 • 7t°
7'7 N = p.

e( = p

^t1 2t 1 ^ 1 •N
IF (^tl)) 2r^r1^?kr«?

ES« I)U t3 q J ^ 1 •N

V(1.J) = G.
E54 V(J• ( 1 ^ P•

G^! Tf7 22

2l P s V([rl)
K = I
fF (1_^.ER+EG•1) DMAX = 1'

^2 C(7P11' IAUE
IF t1'"l0.*t(i(laL,tDMAX/ '̀.*fNk^l ^E;rPfi•7

7 42(K1 - K
P ^ p ^UC2T(VtK.K i l
D (J 19 I = t • N

V(K•K ► = 1.

CC!^'S L = l •N
IF II —K) ^6,12^•2b

IF (L — J ► 127•)ZESslc:7
1 27 WtI•JI ^ c.

GO TC! la'6

X(I.1) _ T(i•ll
12.5 Ci] NT 1NUE

GC TO ?5
2a nU LC J = 1•N

W([•J) = V(I^J1—V(I•K1^kV(K•J)
K(k•J) = Tli•J1—V(I•KI*T1K•J)

C-,2

^^^.^:.,: ,	 -

x

+

x

;i

+



^anr^ = 6alreo► N IV v LkVFI_ 1. MC)O l 	 ANI)r2CE'

Ia ^uNrlNUr
25 CUn T u,u^

OU 24 [ = t•N
DU ^4 J z I.N

UC) T(9 J5
2 t! ^) O 3 0 I= t. N

.f4 UU :33 J = t •N

3C CONTINUE
7b N[Ll = 0.

IF (IND) J^..i9.:lP.
3`J JUE = N

DCl 40 [ = l.N
lF (V(I.I)) 40.42.4C

4? JUE = JqF—1
•^	 40 C01.2TINUf=

[h (JC)F — N! 4,•44.43
44 UD 45 [ _ I.N

^	 D4^ 45 I1 = 1rNi
i	 RIl = 0.

D U 4 6 J *': 1. N
4b Rr2 = Itf2^T(J• [ !*T(J.I [ .

V(I.II! = f^R
4^ CONrSNUE

Gli TO 9b
4 d D q 47 I -+ I• N

j	 [F {R(I!) 4ds49.4d
'	 4'^ i^l^ 60 J = ! . N

U(IsI) - C.
GO TU 47

4d f,IJ Eel J = I •N

U(l.I! = 1.
41 CONTINUE

DQ 5C I = 1•N '^
UU 5C I I = l rPJ
^It = 0.
DU 51 J = l.N

51 rtit = kF2tU(J•[ ► +kli(J.II!

50 CUNT I fvUE
UU 5? I = l . N
DU 52 LI = 1.N
fl f: = 0•
D0 93 J = l.N

53 ^tr1 = kll+W([•J!*U(J•II)
V(l•[11 = RR

5^ CONTINUE
INU = 1
LtF = 0
GO TO bfif.
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3Li DD 5+9 I = l rN
DD 54 !l = l•N
kK = 0.
l)ll 55 J = 1 • N

55 rtN = Rt't*T(J•l1*T(J•Il!

54 CDNTIhUF
U q Ei (^ 1 = : • N

OU 5ti I ! m 1 .n
};H = v.
U p 57 J = i.N

57 :<k = RFC+U([.J1*W(J•ll)

Ulf 5P l = 1.N
D^7 SP [ 1 = 1 •N
{; f; _ 0 .
DU 59 J = [rN

5 y tl ►i = Ii F2+T(I.J! *U( ll•J!

58 Cf1tvT ► NUE
36 N^2 = JUC•'

HE3UkN
END

UATF = 6E3180
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APPENDIX D

GRAM-SCHMTDT PSEUDOINVERSIOZ41 SUBROUTINE

The Gram-Schmidt procedure for calculating the Penrose pseudoinverse of
a matrix of equa'cions has been converted into a FORTRAN subroutine. The
lictrag for this subroutine appears on the following pages.
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aN lV ^ L1.VCL 1. MCJf) I	 c^INV2	 ')ATF = aMIHJ

`iUE3E1()1,1'INFv1NV2(A.I,.AF"L.AG•AT^Mf^^Mr^ r •NR•NC..NIli •LPS)
t )t)U i iLE p F2t'C1S(..1N A(MF.,NC).U(NCrNC).AFLAG(NG).ATFM^(NC ►
r)JUE1 L1 Nt+kCIS[C1N I AC•CGT.U4;Tl.E)f:T,?.T^J1,.DSGf2T
UU 1 (` I = l . NC
'n	 a J = 1 • NC

^ U(1.J) = C.

IC ^J(I•I ► = 1.

I^AC = 1./^:5^rtT(FAC)

l5 A(i.l) = n(L•i)#FAC

Jl) 2 C l = 1 . NC
2;. U(l.l) = I,CI,I)*FAC

nI-LAC,I 1 1 = 1.
N = 5t^
yui = NC

')l) IOC J = ?•nC
UUT ► = I^LT(N+fi.Ni1.A.J•J)

JM1 = J—)

30 AfFMI'(K) = t)UT(M4.Nt.'rA•J.K)

U^) 3S [ = 1 ,NR
3^.i A(1.J) = A(I.J)-ATFMI'(K)*A(I•rC) *AF=LAy(K)

UU 9C^ [ = 1.NC
40 U([.J) ^^ U(I.JI—ATfF+f^(K)*U(I.K)
4^^ CtINT 1 NUr
50 CUnE1 nUr

x1112 = l)L1(^'IF2.Ni^2•A•J.J)
[F	 ((U^i.1T^/DUTI)-f+':L) ;;S.t,b.7C

55 UU ti^• ( = 1 • JMI
ATE MN(1) := ^.
1) U 6 L +^. = I. I

00 ATLM}'(1) = ATEMN([ ► Fl,(K.1)*U(K.J)
i)!) r,S i - l , Nk
A(I.J) = J.
C17 t,5 K = I . JM l

t, ti A(L.J) = A(1•JI—A(I.K)#ATEMN(K)#AFLAL(K)
AFL.AG (J) = C.

'vt11 = 'vk1-1
VU Trl 7°.,

%C nFLAGtJ) = 1.

FAC = 1./t^Si^hlT(Ul",1^)
7 ;, U .J ii C 1= 1. N k
^iU A(i.J) = A(I.J)*FAC

Ui; U5 I = 1' . NC
t3a U(1.J1 = l,(I.J)*FAC.

1+^0 C;JNT[NUE
Url 1 3C J = t . nC

FAC = 0.
i)f.i 1c0 K = J•NC

w^ w _
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