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ABSTRACT

A general resonant orbit and grt:,ivity constant determining program has been

developer accepting short arc mean Kepler elements as data. The evolution of

these elements is calculated by numerical integration of their long period and

secular variations.

With only slowly--changing mean element coordinates being integrated, a step

size of the order of an orbit revolution or more is achieved. Satellite ephemerides

over 5000 revolutions are calculated in about a minute on an IBM/360 computer.

Partial derivatives of the evolved mean elements with respect to initial values

and gravity constants are readily evaluated from numerically generated variant

trajectories.

To test the method, simulated and actual orbit data from long resonant

twelve-hour trajectories have been processed for gravity informationby a least-

''	 squares technique. The gravity recovery is in excellent agreement with the model



for the simulated data, and with previous analytic results from the actual data

on Cosmos 41.

Extensive data from many resonant 12 and 24 hour satellites is currently

being processed by the mean element program. Preliminary determinations

from this data are given. The final result should be definitive information on

more than a quarter of the longitude harmonics through 8, 8.
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RESONANT SATELLITE GEODESY BY HIGH SPEED

ANALYSIS OF MEAN KEPLER ELEMENTS

INTRODUCTION

Resonant, satellite geodesy has undergone considerable elaboration since

1961 when A. H. Cook of England wrote (to our knowledge) the first theoretical

treatise on the subject (1). At present we think the theoretical aspects are

understood for most orbit classes, although a general analytic theory of satellitE

orbital resonance is still an unsolved problem of celestial mechanics. However,

we have developed a general semi-analytic theory that should be adequate for

the purposes of resonant satellite geodesy. This theory and it's application to

the solution for the geopotential is the main subject of our paper.

Since 1965, there has been a startling increase of the database for resonant

satellite geodesy. What used to be regarded as a rather esoteric theoretical

subject with only a, few isolated examples has multiplied to such an extent that

we should now speak of the nonresonant orbit as the isolated exception rather

than the rule. In April 1968, 600 objects were being tracked in the United

States. Ninety seven of these objects had primary resonant beat periods greater

than 10 days (see fig. 1). The primary resonant orbits are those with nearly

repeating ground tracks in one day. Eighteen of these had beat periods greater

than one-hundred days.
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Most remarkably, six objects were found with nearly commensurate orbits

in two days (2). These also had greater than 100 day beat periods. When

analyzed, they should provide the first really good information from satellites

on many constants of odd order between m = 17 and 29.

Many orbits in shallow resonance (i.e., with less than about 10 day beat

period) have already been used by the Smithsonian Astrophysical Observatory

(SAO) and others for geodetic solutions (3,4,5,6). In addition to these, many

+	 deeply resonant orbits (7) should provide definitive solutions for a large number

of longitn.,le harmonics by analyses of mean elements similar to those of Kozai (8)

and King-Hele's group (9, 10) on the zonals.

Referring to fig. 1 there appears to be a sufficient number of existing orbits

resonant with terms of order i2 to 15 with a good distribution of inclinations and

eccentricities to allow the definitive determination of many of these constants.

For 8th to 12th order terms, there are fewer resonant orbits with a more re-

stricted distribution of elements, but possibly still enough to give definitive

determinations of a few constants of these orders. At the low frequency end of

the spectrum the situation is very favorable for definitive geodetic solutions

because of the large number of deliberately commensurate communications

satellites.

INTEGRATION OF RESONANT ORBITS

Previous analytic solutions for the evolution of resonant orbits have been

restricted in one or more ways which preclude universal application. This
{
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general problem includes not only all relevant resonance effects from rapidly

circulating to librating orbits, but also should not be restricted by orbit inclina-

tion or eccentricity. We achieve a uniform solution by numerically integrating

the coupled Lagrange planetary equations for the Keplerian elements (see ref.

11, p. 23), The Earth 's disturbing potential defined in terms of these elezr, ants

is a fourfold Fourier series due to W. M. Kaula (11)
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In this potential representation; a, e, i , m, 0, and w are the conventional

Kepler elements, semi-major axis, eccentricity, inclination, mean anomaly, night

ascension of the ascending node and argument of perigee. The constants 1,4, a ^

and 0 9 are the Earth's Gaussian gravity constant, mean equatorial radius, and

Greenwich hour angle,

This integration technique would offer no advantages over the straight

numerical integration of the equations of motion in cartesian coordinates except

that the Fourier analysis of the disturbing potential enables us to ignore the great

majority of terms which have only short period effects. Only the resonant tes-

seral and secular and long period zonal (oblateness) terms are calculated for

the geopotential effects. These terms are those for which:

t-2p+q=0, m=0 (zonal s)

and

2p q m/s, m ^ 0 (longitude terms),

x

where s is the resonant orbit ' s commensurability ratio expressed as it 's nearest

rational mean motion in revolutions per day.

It can be shown that integrating the long period and secular variations of

the elements is equivalent to a 1st order integration of canonical variables with-

out short period terms. These variables are exactly those which would be ob-
6
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The long period sun and moon effects of W. M. Kaula (14) are also

i

included in the integration. Drag is incorporated by inclusion of the long

period variations of the elements given by formulae similar to those of King-

ilele (15).

Integration of the slowly evolving mean element coordinates permits time

steps of about one day, in contrast to about 1/100 revolution when short period

effects are included.

DIFFERENTIAL CORRECTION PROGRAM

A differential correction program using independently determined mean.

Kepler elements as the data type has been built around the numerical integrator

described in the previous section. The great efficiency which can be achieved

by integrating mean elements permits us to solve numerically for the partials

of the Kepler element updates with respect to initial mean elements and gravity

constants in reasonable computing time from variant trajectory differencing.

Using these partials and the mean element residuals from a reference trajectory

we form and solve the normal equations for a least squares estimation (of the

corrections to the initial elements and gravity constants) in the usual way (11).

The differential correction process is iterated until the sum of the squared

r-esidual.s reaches a minimum.

5
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GRAVITY RECOVERY WITH COSMOS 41 DATA,

Figure i? shows the variation in a set of North American ,fir Defense Com-

mand (NORAD) mean semi-major axes for Cosmos 41 (1964-49D) in 1969.

Actually this data represents a conversion from tho NORAD mean-mean :notion

to a semi-major axis (5) averaged with respect to me= anomaly. This gives, a

semi-major axis compatible with the integration described previously. The

conversion his:

a3 J 2 
a.2

.-» 3 si,n 2 i (1 .e2)-312 2/3
n	 2 	 ( a) (2

where J 2 =- 1433 x 10-6 , and n is the mean-mean motion. This conversion

war, nAe_P F;ary beeauRA the NORAD semi-major axes were defined from n

according to Kozai (1959) (16) and do not represent mean elements averaged over

mean anomaly.

The variation in fig. 2 is almost entirely due to resonance with 2nd and 4th

order terms in the geopotential since other effects have been found to be very

small or negligible.

In the numerical analysis with the high speed program., we chose to fix the

(2, 2) harmonic and solve for (3, 2) and 14, 4) to try to duplicate the analytic

solution over the same data obtained by Wagner (1968) (17). Starting with (3, 2)

and (4, 4) values quite far from the final ones, the differential correction program

using this data converged to an improved initial semi-major axis, (3,2) and (4,4)

-....x,,,s : - --•... .-' ^'. ? W.`.. y.r°"^ '+^*6'°.°rs' - ^'.+#"^=	 - Y	 .,	 .sav::wye,}a^^.,',^„'_ ^' '_	 _
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constants in less than a minute of running time on an international Business

Machines (IB, M) 360/91 electronic computer. The trajectories were computed

in this run at about 5000 revolutions per minute. The final residuals after

convergence are shown in fig. 3 and appear to be quite random. The scatter is

typical of that seen for NORAD elements. The .root mean square residual is

slightljr lower than in the analytic solution.

Figure 4 shows a comparison of the corrected gravity constants with the

previous analytic results, and is also encouraging. However, the residuals in

mean anomaly from the corrected solution show small periodicities conl3istent

with 6th order resonant effects superimposed on a secular trend which is iaw)t

pzoobably due to a slight incompatibility remaining in the semi-major axis

definition.

Figure 5 shows the results of differential corrections of this orbit using

mean anomaly data as the observation type. The solution for (3, 2) and (4, 4) is

compatible with the previous results on the semi-major axis according to the

random variances allowed by the data for the constants. The solutions for (6, 6)

are intriguing when compared to the SAO-66 M1 (3) nonresonant solution. But they

(as well as (3, 2) and (4, 4)) arF not to be considered definitive because, as the

last corrected solution indicates, there is still a considerable influence on this

data from other resonant harmonics. Definitive determinations will require the

use of a number of resonant orbits.
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CONCLUSION

A high speed differential correction program acce f -ng mean elements as

observation data has been developed and checked out on both simulated (not

shown here) and actual data from 12 hour satellites. It appears possible that

with this program, uniform, efficient analysis of the more than a score of deeply

resonant satellites of 12 and 24 hour period will ultimately produce definitive

constants for more than a quarter of the longitude geopotential terms of degree

and order less than 8.
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LIST OF CAPTIONS

Figure 1—Characteristics of 97 Existing resonant Orbits With Beat Periods

Greater Than 10 Days.

Figure 2—COSMOS 41 Semimajor Axis Variation in 1965 (units of earth radii) .

Figure 3—COSMOS 41 Semimajor Axis Residuals After Improved Gravity

Solution (units of earth radii).

Figure 4—COSMOS 41 Mean Anomaly Residuals After Improved Gravity

Solution (units of degrees).

Figure 5—Gravity Constants From COSMOS 41 Mean Anomaly Data.
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