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Elise R. Fisher

ABSTRACT

A general resonant orbit and grevity constant determining program has been
developed accepting short arc mean Kepler elements as data., The evolution of
these elements is calculated by numerical integration of their long peried and
secular variations.

With only slowly~changing mean element coordinates being integrated, a step
size of the order of anorbit revolution or moreis achieved. Satellite ephemerides
over 5000 revolutions are calculated in about a minute on an IBM/360 computer.
Partial derivatives of the evolved mean elements with respect to initial values
and gravity constants are readily evaluated from numerically generated variant
trajectories.

To test the method, simulated and actual orbit duata from long resonant
twelve-hour trajectories have been processed for gravity informationby a least-

squares technique. The gravity recovery is inexcellent agreement with the model




for the simulated data, and with previous analytic results from the actual data
on Cosmos 41.

Extensive data from many resonant 12 and 24 hour satellites is currently
being processed by the mean element program. Preliminary determinations
from this data are given. The final result should be definitive information on

more than a quarter of the longitude harmonics through 8, 8.




RESONANT SATELLITE GEODESY BY HIGH SPEED

ANALYSIS OF MEAN KEPLER ELEMENTS

INTRODUCTION

Resonant satellite geodesy has undergone considerable elaboration since
1961 when A. H. Ccok of England wrote (to our knowledge) the first theoretical
treatise on the subject (1). At present we think the theoretical aspects are
understood for most orbit classes, although a general analytic theory of satellite
orbital resonance is still an unsolved problem of celestial mechanics. However,
we have developed a general semi-analytic theory that should be adequate for
the purposes of resonant satellite geodesy. This theory and it's application to
the solution for the geopotential is the main subject of our paper.

Since 1965, there has been a startling increase of the database for resonant
satellite geodesy. What used to be regarded ae a rather esoteric theoretical
subject with only a few isolated examples has multiplied to such an extent that
we should now speak of the nonresonant orbit as the isolated exception rather
than the rule. In April 1968, 600 objects were being tracked in the United
States. Ninety seven of these objects had primary resonant beat pericds greater
than 10 days (see fig. 1). The primary resonant orbits are those with nearly
repeating ground tracks in one day. Eighteen of these had beat periods greater

than one-hundrel days.
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Most remarkably, six objects were fonnd with nearly commensurate orbits
in two days (2). These also had greater than 100 day beat periods. When
analyzed, they should provide the first really good information from satellites
on many constants of odd order between m = 17 and 29.

Many orbits in shallow resonance (i.e., with less than about 10 day beat
period) have already been used by the Smithsonian Astrophysical Observatory
(SAO) and others for geodetic solutions (3,4,5,6). In addition to these, many
deeply resonhant orbits (7) should provide definitive solutions for a large number
of longitu.ie harmonics by analyses of mean elements similar to those of Kozai (8)
and King-Hele's group (9, 10) on the zonals.

Referring to fig. 1 there appears to be a sufficient number of existing orbits
resonant with terms of order 12 to 15 with a good distribution of inclinations and
eccentricities to allow the definitive determination of many of these constants.
For 8th to 12th order terms, there are fewer resonant orbits with a more re-
stricted distribution of elements, but possibly still enough to give definitive
determinations of a few constants of these orders. At the low frequency end of
the spectrum the situation is very favorable for definitive geodetic solutions
because of the large number of deliberately commensurate communications

satellites.

INTEGRATION OF RESONANT ORBITS
Previous analytic solutions for the evolution of resonant orbits have been

restricted in one or more ways which preclude universal application. This



general problem includes not only all relevant resonance effects from rapidly
circulating to librating orbits, but also should not be restricted by orbit inclina-
tion or eccentricity. We achieve a uniform solution by numerically integrating
the coupled Lagrange planetary equations for the Keplerian elements (sce ref.
11, p. 23). The Earth's disturbing potential defined in terms of these elemunts

is a fourfold Fourier series due to W, M. Kaula (11),

where:

ula, A4 cos V¥ £m even

sin¥lp o oad
and:,
V=[(t-2p) @+ (L-2p+ ) Mim(Q-0,-hp )],
The Cy,,,S4p, and Jg., Mg, sets of gravity coefficients are related by:
Con =JgnCos mArg,

St :J,E,m SinmAg
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In this potential representation; a, e, i, m, {}, and w ars the conventional
Kepler elements, semi~major axis, eccentricity, inclination, mean anomaly, right
ascension of the ascending node and argument of perigee. The constunts u, a,
and 6, are the Earth's Gaussian gravity constant, mean equatorial radius, and
Greenwich hour angle,

This integration technique would offer no advantages over the straight
numerical integration of the equations of motion in cartesian coordinates except
that the Fourier analysis of the disturbing potential enables us to ignore the great
majority of terms which have only short period effects. Only the resonant tes-
seral and secular and long period zonal (oblateness) terms are calculated for

the geopotential effects., These terms are those for which:

4-2p+q=0, m=0 (zonals)
and

£=2p+q=m/s, m#0 (longitude terms),

where s is the resonani nrbit's commensurability ratio expressed as it's nearest
rational mean motion in revolutions per day.

It can be shown that integrating the long period and secular variations of
the elements is equivalent to a 1st order integration of canonical variables with-
out short period terms. These variables are exactly those which would be ob-
tained by a Von Zeipel transformation (following Brouwer (12)) or through the

method of Brown and Shook (13).




The long period sun and moon cffects of W, M, Kaula (14) are also
included in the integration. Drag is Incorporated by inclusion of the long
period variations of the elements given by formulae similar to those of King-
flele (15).

Integration of the slowly evolving mean element coordinates permits time
steps of about one day, in contrast to about 1/100 revolution when short period

effects are included.

DIFFERENTIAL CORRECTION PROGRAM

A differential correction program using independently determired mean
Kepler elements ag the data type has been kuilt around the numerical integrator
described in the previous section. The great efficiency which can be achieved
by integrating mean elements permits us to solve numerically for the partials
of the Kepler element updates with respect to initial mean elements and gravity
constants in reasonable computing time from variant trajectory differencing.
Using these partials and the mean element residuals from a reference trajectory
we form and solve the normal equations for a least squares estimation (of the
corrections to the initial elements and gravity constants) in the usual way (11).
The differential correction process is iterated until the surm of the squared

wesiduals reaches a minimum.,
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GRAVITY RECOVERY WITH COSMOS 41 DATA

Figure 2 shows the variation in a set of North American Air Defense Com~
mand (NORAD) mean semi~-major axes for Cosmos 41 (1964-49D) in 1965,
Actually this data represents a conversion from the NORAD mean~-mean motion
to a semi-major axis (8) averaged with respect to mean anomaly, This gives a
semi~-major axis compatible with the integration described previously, The

conversion is:

172 a \2 2/3
q = [——-—-—“ﬁ +g~ T, (-;3-4'3) <1 --g- sin? i) 1- 02)"3/2:| )

where J, = 1083 X 10"6, and A is the mean-mean moticn., This conversion
was necegsary beca
according to Kozai (1959) (16) and do not represent mean elements averaged over
mean anomaly,

The variation in fig. 2 is almost entirely due to resonance with 2nd and 4th
order terms in the geopotential since other effects have been found to be very
small or negligible.

In the numerical analysis with the high speed program, we chose to fix the
(2, 2) harmonic and solve for (3, 2) and (4, 4) to try to duplicate the analytic
solution over the same data obtajned by Wagner (1968) (17). Starting with (3, 2)
and (4, 4) values quite far from the final ones, the differential correction program

using this data converged to an improved initial semi~-major axis, (3,2) and (4, 4)
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constants in less than a minute of running time on an International Business
Machines (IBM) 360/91 electronic computer. The trajectories were computed
in this run at about 5000 revolutions per minute. The final residuals after
cenvergence are shown in fig. 3 and appear to be quite random. The scatter is
typical of that seen for NORAD eclements. The root mean square residual is
slightly lower than in the analytic solution.

Figure 4 shows a comparison of the corrected gravity constants with the
previous analytic results, and is also encouraging. However, the residuals in
mean anomaly from the corrécted solution show small periodicities consistent
with 6th order resonant effects superimposed on a secular trend whi;:k i waont
probably due to a slight incompatibility remaining in the semi-major axis
definition.

Figure 5 shows the results of differential corrections of this orbit using
mean anomaly data as the observation type. The solution for (3, 2) and (4, 4) is
compatible with the previous results on thie semi-major axis according to the
random variances allowed by the data for the constants. The solutions for (6, 6)
are intriguing when compared to the SAO-66 M1 (3) nonresonant solution. But they
(as well as (3, 2) and (4, 4)) are not to be considered definitive because, as the
last corrected solution indicates, there is still a considerable influence on this
data from other resonant harmonics. Definitive determinations will require the

use of a nuinber of resonant orbits.
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CONCLUSION

A

A Ligh speed differential correction program acce ‘' ng mean elements as
observation data has been developed and checked out on both simulated (not
shown here) and actual data from 12 hour satellites. It appears possible that
with this program, uniform, efficient analysis of the more than a score of deeply
resonant satellites of 12 and 24 hour period will uitimately produce definitive

constants for more than a quarter of the longitude geopotential terims of degree

and order less than 8.
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LIST OF CAPTIONS

Tigure 1—Characteristics of 97 Existing Resonant Orbits With Beat Periods

Greater Than 10 Days,
Figure 2—-COSMOS 41 Semimajor Axis Variation in 1965 (units of earth radii).

Figure 3—COSMOS 41 Semimajor Axis Residuals After Improved Gravity

Solution (units of earth radii),

Figure 4—COSMOS 41 Mean Anomaly Residuals After Improved Gravity

Solution (units of degrees).

Figure 5—Gravity Constants From COSMNS 41 Mean Anomaly Data.
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