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ABSTRACT

A brief resume of diffusion models and solar proton propagation in the
interplanetary medium is given. Observations of solar protons from the Solar
Proton Monitoring Experiment flown aboard the Explorer 34 satellite are then
presented. Attention is focused on the 1-10 Mev proton intensities and their dif-
ferent belkavioral characteristics as compared to higher energy (>few tens of
Mev) solar protons. Observations of quasi-periodic variations in the !-10 Mev
proton intensities are presented. Power spectra are shown for both quiet and
active periods. It is found that during the quiet periods analyzed, the 1-10 Mev
protnn intensity power spectra displayed an f-1to f-1-5 trend. Some mechanism
is apparently ordering the proton intensities in the frequency domain. Active
periods are shown in which prominent peaks in the power spectra are observed
at 0.0125 cycles per minute (2.1 (10) "4 Hz; 80 minute period) and at 0.02 c; cles
per minute (3.3 (10)"* Hz; 50 minute period). A summary of observations con-
cerning the entry of low energy protons into the magnetosphere is given. It is
argued that the entry of these particles into the magnetosphere is governed by
the existing magnetosphere configuration. As this configuration is in turn de-
termined by the boundary conditions imposed by the interplanetary medium, it is
further argued that changes in the mode of entry should be expected as inter-
planetary conditions change. Data indicative of both diffusive and direct entry

are reviewed.

*Invited paper presented at the ‘‘Seminar on the Study of Interplanetary Space Physics using Cos-
mic Rays’® USSR Academy of Sciences, June 4-7, 1969, Leningrad, USSR. Proceedings to be pub-

lished by A. I. Ioffe Physical Technica! Institute, Academy of Sciences, USSR, 1969.
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SOLAR PROTON OBSERVATIONS, 1-10 MEV

INTRODUCTION

In this report we present observations of solar protons recorded by the
Solar Proton Monitoring Experiment (SPME) onboard Explorer 34. We shall
emphasize the lower energy (~1 Mev) observations and will discuss i) propaga-
tion in the interplanetary medium and the general characteristics of the low
energy solar proton population as compared with higher energies, ii) observa-
tions of quasi-periodic variations in the low energy solar proton intensities,
and iii) the entry of these protons into the magnetosphere.

Explorer 34 was launched on May 24, 1967 into a highly elliptic orbit having
a ~34.5 R, apogee, a 67° inclination and a period of ~4.3 days. The satellite
was spin stabilized at 22.4 revolutions per minute with its spin axis oriented
perpendicular (90° = 2°) to the ecliptic plane. After nearly two years of opera-
tion Explorer 34 entered the earth's atmosphere on May 3, 1969.

The SPME consists of four basic detecting channels measuring protons

> 60 Mev, > 30 Mev, 2 10 Mev, and 1-10 Mev. All channels employ solid state
detectors and use a combination of discriminator levels and shielding thicknesses
to obtain the above proton sensitivities. The channels also respond to alpha
particles of energy roughly four times the quoted proton sensitivity. Electron
contamination is negligible in all channels except the > 10 Mev channel, whose

primary electron response is in the radiation belts.




The > 60 Mev and 230 Mev channels are omnidirectional over 27 steradians
and have an effective area of ~1 cm?2, The 2 10 Mev channel is also omnidirec-
tional over 27 steradians and has an effective area of 0.13 cm2, Data from these
three channels are used to produce nearly continuous monitoring observations of
solar protons. These observations are routinely published in the Solar-
Geophysical Bulletin in the form of both plots and tabulations of the hourly flux
averages for the month si~ months before publication [Solar Geophysical Bulletin,
1968].

The 1-10 Mev channel has a 60° full look angle, uses an 86 micron thick
surface barrier solid state detector with a 2 cm? area, and is oriented to look
out normal to the satellite spin axis. Since this channel accumulates for scveral
revolutions of the satellite, no directional information in the ecliptic plane is ob-
tained. However rough directional information with respect to the local magnetic
field may be obtained by observing this field direction move in and out of the de-

tector look angle.

GENERAL CONSIDERATIONS

Applications of simple three-dimensional isotropic diffusion theory to the

propagation of solar cosmic rays (Morrison, 1956; Parker, 1956, 1963; Meyer

et al, 1956; Bryant et al, 1962; Hoffman and Winckler, 1963; Krimigis, 1965) have

been able to describe energetic (> few tens of Mev) solar proton time histories
as observed at ~1 AU only in the isotropic phase near and somewhat beyond the

time of maximum intensity of a solar particle event (see for example reviews of




solar cosmic ray observations by Webber, 1963, Fichtel and McDonald, 1967

and Kavanaugh et al, 1969). In spite of their limited success, these early studies

uncovered new insights in the understanding of energetic particle propagation in
the interplanetary medium. However, they are now known to be unable to explain
certain important chararteristics in the time histories of solar flare protons as
observed at ~1 AU, For example, isotropic diffusion theory is unable to account
for a) observed aniosotropic angular distributions in the near-earth solar proton

intensities (Lust and Simpson, 1957; McCracken, 1962; Bartley et al, 1966; Iia_n

e_t_il, 1966) and b) the dependence of the arrival time, the rise time to maximum
intensity, and the shape of the intensity time curve on the solar . ungitude of the
parent flare (west longitude flares are observed to yield faster arrival and rise
times at ~1 AU than east longitude flares (Burlaga, 1967)).

Given these facts ~lus the existence of a spiral interplanetary magnetic field
(I_’a;r_k_e_r, 1958) it became apparent that if diffusive processes between the earth
and the sun were responsible for the near-earth solar proton intensities and time
histories, they must be anisotropic in character. Further, the strong coupling
between charged particles and magnetic fields would indicate that the principal
axes of diffusion should lie along and perpendicular to the local magnetic field
line, Direct observations of ths¢, strong collimation of solar protons along inter-

planetary field lines have been reported by McCracken and Ness (1966).

The results of several studies (Reid, 1964; Axford, 1965, Roelof, 1966;

Jokipii, 1966; Burlaga, 1967; Dolginov and Toptygin, 1967) have produced a




picture of aniosotropic diffusion of energetic solar protons through the inter-
planctary medium which far better fits the observations than the earlier iso-
tropic diffusion studies. Spatially anisotropic diffusion is able to qualitatively
account for item a) above and quantitatively account for item b). However some
questions still remain as to whether diffusion effects within -~ 1 AU are pri-
marily responsible for the solar proton characteristics observed near the earth,
One reason for this concern is that two different models (Reid (1964)—Axford
(1965), and Burlaga, (1967)) of solar proton release into and propagation through
the interplanetary regions yield similar and satisfactory fits to the intensity-
time observations, thereby eliminating for the time being any uniqueness in a
diffusive solution to the problem. Also, while the models do predict different
anisotropy versus time profiles, they can at best only indicate the trend of pos-
sible large anisotropies in the solar proton angular distributions - i. e., they are
generally qualitative in accounting for such anisotropies. In particular, the ob-

served large anisotropies lasting beyond the maximum of an event (McCracken,

1962; McCracken et al, 1967) cannot be explained by a pure diffusive process.

Complimentary to the model studies, Roelof (1966) and Jokipii (1966) have
conducted detailed investigations on a specific scattering mechanism which may
be responsible for the anisotropic diffusive characteristics ot energetic solar
proton time histories. They have used random intery. anetary magnetic field ir-
regularities in a particle pitch-angle scattering formalism and have obtained the

components of the diffusion tensor in terms of the power spectrum of the field




irregularities. Roelof (1966) has shown that these results allow for both colli-
mation and diffusive effects and depend directly on the magnitude and spatial de-
pendences of the power spectrum. In fact, in the case where pitch-angle scat-
tering is effective for a large distance along the field line, Roelof (1966) has
shown that in a spiral interplanetary field configuration (Parker, 1958) the one-
dimensional anisotropic diffusion equation obtained from such a pitch-angle
scattering process has the same functional form as the three-dimensional iso-
tropic equation proposed earlier (Parker, 1963) and thus must duplicate its suc-
cesses as well as rectify some of its deficiencies.

It is important to resolve the ambiguities in the phytical model of the in-
jection and propagation region since the characteristics of the region directly
enter the calculations of the diffusion coefficient as described above. Conversely,
it is possible that che results of the calculations of particle transport in dis-

ordered magnetic fields can be used to infer some of the local and large scale

characteristics of the interplanetary magnetic field (Roelof, 1966; Jckipii, 1966).

The preceding remarks have applied mainly to energetic (> few tens of
Mev) solar protons. As observations have extended to lower energies the spatial
and temporal complexity of the events has greatly increased. For example, re-
currence events are seen where low energy solar protons, contained within a
solar longitude interval of several tens of degrees, are observed to recur with

a 27-day period (Bryant et al, 1965; Fan et al, 1966). The nature of these re-

curring events has led to the suggestion of particle storage near the sun above




the active center (Fichtel and McDonald, 1967). Particle storage at the sun has

also been used to explain observed anisotropies and durations of solar electron

events (Lm and Anderson, 1967) and to explain the observed '"core-halo" struc-

ture present in certain events (E_i_t_\mgg_zll, 1968; Anderson, 1968).

The existence of rapid low energy proton propagation trancverse to the field
lines has been argued from the observation of early particle onset times near
the earth from flares far removed in solar longitude from the field line con-

necting to the near-earth region (McCracken et al, 1967; Williams a. . Bostrom,

1967), and from measurements of event onsets at interplanetary positions
separated by longitude intervals up to 180° (Iiap__c':_t L al, 1968).

Observations of low energy (~ 1 Mev) solar protons have also shown that
non-flare associated events are present in the intery.'anetary medium for a

significant fraction of the time, even during solar minimum (Krimigis and

Van Allen, 1966). In addition, the time structure displayed by the low energy

solar protons is in general not at all indicative of a diffusive process (see for
example, Fan et al, 1966 and Figures 1-3 of this paper). It has also been ob-
served that the lower energy solar protons are at times very strongly collimated

and flow along interplanetary magnetic field “1iaments (McCracken and Ness,

1966; McCracken et al, 1968). However, in a later section of this note we shall

see cases where the low energy solar proton intensities are roughly isotropic

and thus independent of the local magnetic field direction (McCracken et al,

1968).




To illustrate some of the more general solar proton characteristics we show
in Figures 1, 2, and 3 hourly averages of the four SPME detecting channels for
the time periods indicated.

Shown along with hourly average intensities are the radial distance from the
center of the earth to Explorer 34 (apogee ~ 34.5 R;) and the projection of the
orbit on the ecliptic plane. The higher count rates at or near perigee are due to
the earth's radiation belts. Note that this effect is particularly noticeable in the
2 10 Mev channel which has the largest electro:: sensitivity.

Figure 1 shows the active period of the May 1967 events, Figure 2 shows a
veriod of moderate to light activity (June 1967) and Figure 3 shows a period of
no observable activity in Avgust 1967 in the > 60 Mev and > 30 Mev channels.

Figures 1, 2, and 3 ciearly show the rapid increase of solar proton activity
as lower energies are sampled. In addition it is clear that the 1-10 Mev solar
proton time histories differ markedly from the > 60 Mev, > 30 Mev and
> 10 Mev time profiles. This qualitative difference in the 1-10 Mev and 2 10 Mev
time profiles is so often characteristic of solar protons that it is indicative of
a transition energy existing between 1 and 10 Mev which separates energy re-
gimes responding to different acceleration and/or transport processes.

Figure 3 is shown as an example of the sudden appearance of a very soft
solar proton spectrum. No intensity increase above background is observed at
2> 30 Mev, a small increase (partially obscured by the radiation belts) is observed

for >10 Mev protons, while the 1-10 Mev proton intensities increase by four




-

orders of magnitude over their carlier level. For a differential spectrum of the
formN(E) dE ' E'", Figure 3 yields values of n as large as 4.

In summary, the sun appearsto be a prolific source of low energy (~ 1 Mev)
protons. Dv g periods of relatively weak solar activity, very soft proton spectra
are often observed. This low energy (~ 1 Mcv) portion of the solar proton spec-
trum also often exhibits a markedly different time structure at ~ 1 AU than the
higher energy ( 210 Mev) protons, It remains to be seen whether diiffusive proc-
esses can reconcile these differences - particularly since there is even reason
to question the effectiveness of a diffusion mechanism between the earth and the
sun which controls the behavior of energetic (> few tens of Mev) solar protons

as observed at ~1 AU,

QUASI-PERIODIC INTENSITY FLUCTUATIONS
Satellite observations of quasi-periodic fluctuations in solar proton intensi-
ties ranging in period from about 15 minutes to several hours have been reported

by Bryant et al, (1965) and Fan et al, (1966). For the event of September 10,

1961 Bryant et 9._1, (1965) show a sequence of variations obtained within the earth's
magnetosheath which displayed a period of ~ 90 minutes and constant phase over
the entire energy range of 5.7 - 87 Mev. The coherency of the oscillations (lack
of energy dispersion) led to the interpretation that they were controlled locally,
i.e., near the region of observation.

Fan et al, (1966) suggested tha. the short term (~ 15 minute) intensity varia-

tions which they observed in interplanetary regions could Le produced by field

S




modulation caused by the propagation of magnretohydrodynamic waves in the
interplanetary medium. Using transversely propagating waves with a velocity
of - 30 km/sec they obtained a modulating period of ~ 1000 seconds, consistent
with their observations,

However, several explanations are possible for tie observation of such
quasi-periodic proton intensity variations. For example they may be due to
i) an interaction with the magnetosphere, magnetosheath and/or bow shock
regions, ii) source mechanism characteristics at or near the sun (this may not

be the explanation for the event discussed by Bryant et al, (1965)). iii) A resonant

interaction with hydromagnetic waves in the interplanetary medium or iv) the
passage of a filamentary magnetic field having an inherent structural periodicity.
As these phenomena effect the propagation of solar protons in the interplanetary
medium it is of interest to learn which, if any, of the possible mechanisms
dominate over an extended time period.

We present in this section preliminary results of a study of quasi-periodic
variations in solur proton intensities as observed by the SPME 1-10 Mev channel

onbcard Explorer 34 (Williams et al, 1969). A more extensive report is now in

preparation,

Variations with periods from tens of minutes to hours and which are ob-
servad to be both coupled to and independent of the local field and its fluctuations
are often seen in the 1-10 Mev intensities. In order to treat these variations

quantitatively, a time series analysis yielding a power spectrum of the fluctuations




has been performed on the 4 minute averaged 1-10 Mev data. The folding fre-
quency is thus 0.125 cvcles per minute (- 2.1 (10)°3 Hz). Smooth trends in the
data are removed by the application of a low pass filter. This is accomplished
by subtracting a 100 point weighted running average from the data. The auto-

correlation function and power spectrum are then obtained.

Figures 4 and 5 show data from time periods in which no noticeable intensity
oscillations are present. Figure 4a shows 1-10 Mev proton intensity data for
November 15-16, 1967 along with the ecliptic longitude 7 and latitude - , and
magnitude |B' , of the local interplanetary magnetic field. The Explorer 34 mag-
netic field data have been generously made available to us by Drs. N. F. Ness
and D. H. t'airfield.

The large field variations in ~ are well outside the viewing cone (full angle
= 60°) of the 1-10 Mev detector. The observation that the proton intensities in
Figure 4a are independent of the field direction is thus indicative of a nearly
isotropic flux.

The results of the time series analysis of the 1-10 Mev proton data in
Figure 4a is shown in Figure 4b as a full logarithmic plot of the power spectrum.
The frequency is given in cycles per minute and the power as (counts per sec)?
per (cycle per minute). Multiplication by 21 converts the power to units of
(directional flux) 2 per Hz.

Figure 4c shows a linear plot of the power spectrum given in Figure 4b
along with a plot of the filter shape used in these analyses. The decrease in

power at very low frequencies ( £0.01 CPM) is due to the low pass filter.
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Figure 5 presents the data and power spectrum of the 1-10 Mev proton
intensities from another period (October 31-November 1, 1967) in which no
marked intensity variations were observed.

The results of the time series analysis for both the above periods show the
power spectra to follow an f "1to £~ 15 power law. This is of interest as count
rate data from a threshold detector which are random in time yield a flat (f°)
power spectrum, i.e., the individual data points are not correlated in time. The
f-1 tof 1 5 trend shown in Figures 4 and 5 indicates that the 1-10 Mev solar
proton intensities are being ordered in the frequency domain by some as yet un-
known mechanism.

Figures 6 and 7 present the 1-10 Mev intensities and power spectra for two
periods in which quasi-periodic variations were observed. Figure 6a shows a
small event on December 15, 1967 consisting of a sequence of oscillations with
a period of a few tens of minutes. The power spectrum in Figure 6b shows a
prominent peak at a period of 50 minutes and a possible secondary bruader peak
with a period of 20-25 minutes.

These oscillations do not appear to be controlled by the local magnetic field
as there are no field variations in Figure 6a which are correlated with the pro-
ton variations. The power spectrum of the 6-component of the field also shows
no prominent peaks during this time interval.

Figure 7 shows the 1-10 Mev proton intensity data and resultant power spec-

tium for the period November 2, 0452 hours through November 5, 0800 hours,
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1967. The power spectrum in Figure 7b shows a peak at ~.0125 CPM (period
- 80 minutes). Visual inspection of Figure 7 shows that many of the proton in-
tensity variations during this period are correlated with variations in the local
magnetic field direction.

In summary, we have seen that the quiet time solar proton fluxes (1-10 Mev)
appear to be ordered in the frequency domain by some as yet unknown mecha-
nism. The power spectra for these cases show an f "!to f ! 5 trend over the
frequency range 0.01 - 0.12 CPM (1.7 (10) % - 2(10) 3 Hz). We have also seen
cases in which variations were present which displayed prominent peaks in the
power spectra at 0.02 CPM (Figure 6) and 0.015 CPM (Figure 7). While a cor-
relation with the local magnetic field was apparent in Figure 7, no such correla-
tion could be made for the variations of December 16, 1937 in Figure 6. This
latter event was thus not caused by the guiding of an anisotropic flux in and out
of the detector collimating angle.

The gyroradius of a 1 Mev proton in a 57 field is ~ 3 (10)* km (2 (10)"* AU).
A wave of this wavelength propagating in the interplanetary medium will have,
depending on the direction of propagation, frequencies ranging to > 10°! Hz in
the proton's rest frame. Resonant interactions between these waves and the
protons are possible as the proton gyrofrequency in a 57 field is ~ 6 (10)"2 Hz.

It is also possible that magnetospheric effects and/or source effects at the
sun contribute to these variations. It is hoped that further studies will narrow

down the choice of doininant mechanisms.
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LOW ENERGY PROTON ENTRY INTO THE MAGNETOSPHERE

Indirect yet valuable information on the solar wind - magnetospheric inter-
action and the resulting magneiic field configuration can be obtained by studying
the entry of low energy solar protons into the magnetosphere. Rapid and direct
access of low energy solar protons to the polar cap and geomagnetic tail regions
is predicted if a large fraction of the earth's high latitude field lines directly
connect to interplanetary field lines, as in an "open' magnetospheric configura-
tion (Dungey, 1961). In the absence of significant interconnection diffusive ef-
fects will govern the entry of such protons into the magnetosphere. Consequently,
time delays should be observed between the arrival of protons outside of and
within the magnetosphere. Such effects in an extended geomagnetic tail con-

figuration (Piddington, 1960; Dessler, 1964; Axford et al, 1965; Dessler and

Juday, 1965) having no significant interconnection have been considered by

Michel (1965) in discussing cosmic-ray cutoffs and by Michel and Dessler

(1965) in discussing polar cap absorption in homogeneities. They have obtained
tail length and delay time estimates of >1 AU and a few hours respectively. We
shall see that these early estimates are not in quantitative agreement with avail-
able solar proton observations.

Williams and Bostrom (1967) have argued that variations in the mode of

entry of low energy solar protons into the magnetosphere are expected since this
entry is controlled by the existing magnetospheric configuration which in turn

depends on the boundary conditions imposed by the interplanetary medium. They

13




have used this argument to explain large observed pass to pass fluctuations in
low energy solar proton polar cap averages during the February 5, 1965 event
which were not present in the interplanetary regions,

Kriniigis et al, (1967) have reported that for the July 7, 1966 event low

energy solar protons had access to the earth's polar caps within 30 minutes after
their arrival in the near-earth interplanetary region. While not conclusively sup-
porting either an "open'" or a ''closed'" magnetosphere, these data did show
quantitative disagreement with earlier tail length - delay time estimates (Michel

and Dessler, 1965).

Polar cap proton intensity profiles showing enhanced fluxes in the aurcral
regions have been reported by Blake et al, (1968) and presented by Bostrom et al,

(1967) and Zmuda et al, (1967). Such profiles do not support field line intercon-

nection (which reqrires a uniform polar cap intensity profile within minutes of
the arrival of sclar protons) and are in qualitative agreement with diffusive entry.
A recent study (Williams and Bostrom, 1969) has presented evidence indicating
that a diffusion process controlled the entry of protons into the magnetosphere
on May 26, 1967. Proton intensities in the interplanetary medium were obtained
from the 1-10 Mev SPME channel onboard Explorer 34 and 1.2 - 8.5 Mev proton
intensities over the northern polar cap were obtained from satellite 1963 38C.

We shall summarize these results using Figures 8, 9, and 10 (from Williams

and Bostrom, 1969).
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Figurce s shows the time period studied and presents interplanetary 1-10 Mev
proton intensities, polar cap 1.2 - 8.5 Mev proton intensities, Dst, and a summa-
tion of the interplanetary field direction (D. H. Fairfield, K. W. Behannon and
N. F. Ness, personal communications). The absolute unnormalized fluxes shown
in Figure ¥ point out that while general similarities exist between these two
regions, significant differences in the respective time histories do occur, In
particular it is seen that, a) the ratio of polar cap to interplanetary fluxes
varies by a factor of - 3 during the period shown, and b) the 'significant decrease
in the interplanetary fluxes occurring at ~ 1120 hours (Figure 8) is not observed
over the polar cap. These features do not support the existence at these times
of a radily accessible polar cap region as in an open magnet spheric configura-
tion. They are qualitatively consistent with low energy proton access to the
polar cap being controlled by a diffusion process.

Figure 9 shows the time sequence of five passes (1-5 in Figure 8) obtained
during a period in which a slight increase occurred in the interplanetary inten-
sities. Here is clearly seen a time history »f polar cap protons which progresses
from pass 1 where the intensities tend to increase toward the polar cap, to
passes 2, 3, and 4 which show a profile peaked near the auroral regions and
having a minimum at the highest latitudes, to pass 5 which shows a distribution
much more uniform over all latitudes sampled.

The general features of these polar cap observations can be explained by

the magnetotail configuration showa in Figure 10 a, b. A Figure-8 tail current

15




svstem defines two approximately cylindrical surfaces which when coupled with
the rotation of the carth contain “he field lines connecting to the low latitude edge
of the northern and southern polar caps (Dcsslcr and ngd_a_)_', 1963; Axford ct al.,,
1963). Diffusion into the tail region should produce polar cap profiles which are
initially peaked near the auroral regions and which gradually fill in the high
latitude polar cap region in much the same manner as shown in Figure 9.

A rough estimate of the magnitude of the diffusion coefficient may be ob-
tained by considering diffusion into a long cylinder of radius a, (Figure 10a),
which has an internal density of zero and in which diffusion is purely radial.
Figure 10c presents the solution to this problem by showing the radial density
profile for several different times following the application of an external and
steady source of strength n_ [Crank, 1957). The similarity of the radial profiles

in Figure 10c to the polar cap profiles of Figure 9 is readily apparent. (Note

that r a = O corresponds roughlyto A = ~/2 andr a - 1 to the nightside auroral

ovel.) The ratio of polar cap to auroral oval intensities will be assumed to yield
n n_, the ratio cf internal to external densities, at r a = 0. Figure 10c thus
vields the appropriate value of Dt a? from which D can be obtained.

Pass 4 in Figure 9 gives a polar cap to auroral region rat.o of n n_ - 0.4
yielding (from Figure 10c) a value of Dt a? ~ 0.15. Due to the gap in the Ex-
plorer 34 intensities, the appropriate value of t can only be estimated from
Figure 2as t  1,5-5 hours. Using a = 20 R, gives D = 1.4 (10)'® - 4,0

(10)!5 cm~-/sec.

16
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The value of D obtained in the above analysis is considered a first approxi-

mation to the value of the radial component D, of the diffusion tensor. The

reY

relative magnitude of the component along the ticeld line, D, ,, cannot he obtaired 1n
this analysis and depends on assumptions used in estimating pitceh angle scattering
cliccts.

As the above analysis gives no information about D, ,, it can give no accurate
estimate on the "length' of the tail, i.e., the distance to the region where particles
begin to be diffused into the magnetosphere. A crude upper limit value on this
length is obtained by assuming rectilinear motion of the protons down the tail to
the auroral regions wkere they first appear. The timing and structural response

of passes 8 and 10 in Figure 8 to the two small flux increases observed in the

interplanetary data yield an upper limit for the tail length L, of (Wi_lliams and

Bostrom, 1969)

L < (420 - 2400)R,

Note that the region of entry for low energy solar protons into the tail may be
closer to the earth, depending on the magnitude of D, ..

It was further noted by Williams and Bostrom (1969) that the rapid access

of low energy protons to the entire Figure-8 current pattern and resulting dif-
fusion into the cylinders (arrows in Figure 10b) can qualitatively account for the
appearance of peak proton intensities near the auroral regions and the latitude
spread (~ 10°) of this pcak. However, such a configuration is unable to quanti-
tatively account for observed low energy proton cutoffs, particularly on the

dayside hemisphere.
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The ready access of low energy solar protons to 6.6 R; (Lanzerotti, 1968)
may be directly related to their anpearance in the neutral sheet. The diffusion
cffects discussed by Lanzerotti (1968) may in this case be related to diffusion
through the "cusp' region and not to radial diffusion through the tail.

Delaved aceess (2 15 minutes) of low energy solar protons to the geomag-
netic tail is often directly observed (Kane et al, 1968; Montgomery and Singer,
1969). In addition, Montgomery and Singer (1969) report that anisotropic proton
fluxes observed in the interplanetary medium become isotropic when observed
in the magnetotail. These authors also report the lack of a strong energy de-
pendence in the observed delay times and the lack, at times, of any significant
broading of intensity structure when observed within the magnetotail. Mont-
gomery 'md Sl_llgfﬁ (1969) have interpreted these results as indicative of a mixed
mode of proton entry wherc hoth diffusive effects and direct entry are simul-
taneously operative.

Observed erhancements of 1,2-2.2 Mev solar proton intensitive at high lati-

tudes (\ ~ 80°) have been associated with the high latitude topology of the mag-

netopause (Williams and Bostrom, 1967; Williams et al, 1968). Such enhance-

ments may be the effect of a high latitude neutral line on the magnetopause or an
indication of the first geomagnetic field line to interconnect with the interplane-
tary field.

Figure 11 shows a polar cap latitude profile in which the proton intensity

increases by a factor of ~ 3 at A - 78°. The existence of a day-night assymetry

18




can alsc be seen. The iaterplanetary proton intensities are seen to be steady

throughout the pass, The interplanetary field at the time was strongly { - > - 40°)

southward and had been so for the preceding several days (D. H, Fairfield,
personal communication). It is thus possible that the enhancement in Figure 11
may indicate the latitude of the first interconnecting geomagnetic field line.
However, _Wl@pb _z‘lx}d'I__S_o’s_t‘x_'_o_nl (1969) point out that a southward interplanetary

magnetic field may not be a sufficient condition for direct proton access to the

magnetosphere since ditfusive effects are seen under such conditions.

Simultaneous observations of solar electrons within and outside of thc mag-
netopause have not ye. been reported. However, Lin (1968) and Anderson (1969)
have used lunar shadowing effects on 240 kev electron angular distributions in
the magnetotail to argue for the direct entry of solar electrons deep within the
tail regions. Vampola_ (1969) has reported isotropic electron fluxes which are
flat and featureless over the polar caps and which do not uniquely favor either
diffusion or direct access. We note that elertron access to the magnetosphere
may be quite different from proton access due to the large difference in gyroradii.

For protons, the mode of access seems governed by the magnetospheric

configuration existing at the time (Williams and Bostrom, 1967). Therefore

strong variations in the imanner in which low energy protons enter the magneto-

sphr.e are to be expected. Diffusive effects, direct access, or various inter-

mediate cases may be observed at any particular time. In addition, diffusive |
effects are operative on time scales and within tail length estimates much shorter

than previously estimated.
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Figure 1.

Figure 2,

Figure 3.

Figure 4.

FIGURE CAPTIONS

Hourly averages of solar proton intensities for the period May 2.4 -
May 31, 1967. Data from the Solar Proton Monitoring Experiment
onhoard the Explorer 34 satellite. Satellite position shown below
proton intensities as a2 plot of the radial distance to the satellite
(apogee  3-L.5Ry) and as a prejection of the orbit into the ccliptic
plane. The high intensity points near perigee are due to the carth's
radiation belts. Note that the 210 Mev channel is significantly more
sensitive to the trapping regions than the other detecting channels.

To convert to flux values when solar protons are present, the ap-

propriate geometric factors to use for the 260 Mev, 230 Mev, 210 Mev,

and 1-10 Mev channels are 27 cm?ster, 2-c¢cm 2ster, 0.79 cm 2ster,
and 1.7 cm 2ster respectively.

Same as Figure 1 for June 1967,

Same as Figure 1 for the period August 9-13, 1967. Note the very
soft spectrum for this event,

1-10 Mev solar proton intensities and power spectrum for the rel-
atively quiet period November 15-16, 1967. Observations obtained
in the interplanetary medium, and 70° W of the earth-sun line.

a) 1-10 proton intensities, solar ecliptic latitude &, longitude ¢, and

magnitude |B| of local interplanetary magnetic field.
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Figure 5.

Figure 6.

Figure 7.

Figure 8.

h) power spectrum of proton intensity data with refevence ¥ ! and

f ' °curves. Power given as (counts, sec)? per cyvele per minute.
¢) hinear plot of power spectrum shown in b) along with plot of low
pass filter shape.

Same as Figure ! for the period October 31, 0716 hours through

November 1, 0712 hours, 1967. Data from interplanetary regions,

353°W of earth-sun line. a) solar proton intensities and interplanetary

magnetic field, b) power spectrum of proton data.

Same as Figure 5 for the active period of 0000 hours through 1512
hours December 16, 1967, Data from interplanetary regions, 100°W
of earth-sun line. Note the very prominent peak in the proton power
spectrum at a frequency of 0,02 CPM (=3.3 (10) 4 Hz).

Same as Figure 5 for the period of November 2, 0452 lours through
November 5, 0800 hours, 1967, Data from interplanetary regions,
56°W of earth-sun line. Note significant peak in power spectrum of
proton intensities at 0.0125 CPM (2.1 (10)™* Hz).

Time history of 1-10 Mev protons observed at high altitudes

(228.2 R;) and 1.2-8.5 Mev protons observed at 1100 km over the
northern polar cap. The high altitude data are plotted as 15-minute
averages and the polar cap data are averages for invariant latitudes
>70°. The data shown are absolute an unnormalized fluxes. Orien-
tation of the interplanetary magnetic field with respect to the ecliptic

plane is indicated. From Williams and Bostrom, (1969).
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Figure 9,

Figure 10,

Figure 11.

High latitude proton intensity profiles from 1963 353C for passes 1-5
from Figure s, Simultaneous Explorer 34 data shown were available.
Flux values are unnosmalized. Explorer 34 altitude 32 R.. Error

bars show statistical uncertainties. From Williams and Bostrom,

(1969).
(@) Sketch of magnetospheric configuration: (b) The current pattern

in the tail region (after Axford et al., 1965, and Dessler and Juday,

1963). Heavy arrows indicate current flow and light arrows indicate
proton diffusion: (c) Resulting radial diffusion pattern in a long
cylinder of radius a, with initial internal density of zero, following
application of an external, n .+ The internal density distribution,

n n , is shown as a function of r a for various values of Dt a? where
D - diffusion coefficient and t - time following application of the
external density, n . From (a) it can be seen that these radial pro-
files transform to polar cap latitude profiles in the following ap-
proximate way: r a = 0 correspondsto A = ~/2and r a = 1 cor-

responds to the auroral region. From Williams and Bostrom, (1969).

Plot of solar proton intensities obtained from satellite 1963 38C over
northern polar cap from 1501-1511 hours on May 30, 1967. Simul-
tane\ous interplanetary solar protons intensities obtained from
sateliite Explorer 34 are also shown. Interplanetary field at this

time was southward at =~ ~ - 40° (D. H. Fairfield, personal




communication), Of interest is the large step in polar cap intensities

occurring at an invariant latitude A - 78° at 0750 hours local time.
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& . one year design spacecraft, are examined in an effort to

provide information concerningthe useful life of a space-
craft system exclusive of experiment performance.
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SPACECRAFT PERFORMANCE ANALYNIS

INTRODUCTTON

In response to o reguest to the Program Support Division, the Cost Experi-
enee Group of the Buxiness Management Office has investigated performance of
spacceraft developed under Goddard management in order to gain insight into
the ureful life of a rpacecraft system exclusive of experiments, The information
is intended to aid in amortizating spacecraft costs over an expected useful life,
and xupport the caxe for demonstrating the potential of long-lived unmanned
zatellites in the 70°s,

The initial analysis attempted to show the progressive growth in performance |
of satellites in orbit which could be projected. This approach was inconclusive, |
The approach then turned to utilizing a comparison of the mean design life and
mean performance months by vear of launch, the separation of follow-on designs
as a discrete sample, and the development of a meantime to failure for the
spacecraft samples using a reliability calculator based on total performance
hours and number of failures.

The initial findings were Lased cn a random sample of twenty-five space-
craft, of which twenty-four provided useful data points. (See Appendix A.) The
random sample indicated a 95% confidence for a meantime to failure of 36
months for a 12 month design life follow on satellite.

Due to the limited number of 12 month designs in the original sample, an
enlarged sample was sought. An attempt was made to identify the design life of
all Goddard managed Spacecraft. Thirty (30) one year design spacecraft were
identified and useful performance life was determined from documents and
appropriate project personnel,

The results of this analysis support the random sample analysis. The total
sample, thirty (30) spacecraft, indicated a Mean Time to Failure (MTF) of
thirty-four (34) months at a 95% confidence level and a MTF of thirty-eight (38)
months at a 95% confidence level for the follow on design sample consisting of
eighteen (18) spacecraft. A follow on spacecraft is considered to be a result of
. continuing program using spacecraft designs proven in earlier spacecraft
operation,

An attempt to designate 1 mode of failure was complicated by the "graceful”
degrading effect.* The suspected modes of faflure will not be presented in this

“Flaww, Fred %, Reliability Assessments for Spacecraft - What Can They Accomplish;
LSFC N Mol - OO, Maich 1908,
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document due to their controversial nature and lack of significant contribution to
the findings which are directed to "'when' a fajlure, as defined by the criteria for
measurement of performance, has occurred rather than the "how" of failure,

CRITERIA FOR MEASUREMENT OF PERFORMANCE

The design life for purposes of this analysis is the design goal or longest
period of operation expected at the time of launch as documented in the Project
Development Plan (PDDP), or other documentation of mission goals and success
criteria, When this type of information was not available the existence of a 12
month design goal was confirmed by individuals familiar with the mission, e.g.,
project manager or other responsible individual involved in the mission,

The analysis is concerned with the operating life of the spacecraft independ-
ent of experiment life. To perform this artificial isolation of spacecraft subsys-
tems and experiments those subsystems of the ""bus' which provide the environ-
ment necessary to support 2 sensor were selected as the indicators of
satisfactory performance. Only spacccraft which obtained orbit were considered
in the analysis of performance.

The failure of the control, power, communications or data handling subsys-
tems to provide the designed support for satisfactory operation of a sensor,
regardless of the ability of the sensor to function, is considered to be the failure
point of the spacecraft in this analysis.

The spacecraft is performing satisfactorily if it is maintaining a satisfactory
attitude, temperature, providing power and capable of receiving and transmitting
data. A tape recorder failure did not disqualify a spacecraft if useful amounts of
real time data can be collected. Spacecraft operation on solar cells at favorable
sun angles following loss of battery storage is satisfactory performance when
useful amounts of data can be collected.

In the one yecar design life study, a condition considered a failure for analysis
purposes which does not stop transmission of useful data is Adescribed as an
anomalous operation. The graphical presentations identify anomalous actions
by a square (J), Only the performance hours prior to commencement of
anomalous operation are used in the MTTF analysis on the decay graphs. The
OGO series when operating in its spin mode is considered anomalous. The
IMP-B operating hours are considered anomalous due to its improper orbit.

The results of the performance life decay graphs and the 95% confidence
level of the Mean Time to Failure (MTF) analysis are shown in tabular form in
Table I-1. The related graphs and sample descriptions are found in Graphs
I-4 through I-7, and Tables I-3 and I-4 respectively,
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PART 1

SPACECRAFT PERFORMANCE ANALYSIS

OF A RANDOM SAMPLE
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PART 1

TABLES AND GRAPHS

Table 1

Summary of Resulte

Table 2

Data Sheet Random Sample Performance Analysis

Graph 1 - Satellite Average Design Life, Performance Life, First Launch vs.
Follow-on Satellites

Graph 2 - Satellite Performance Life by Year

Groph 3 - Mean Performance + Mean Design Life by Year of Launch

Graph 4 - Performance Life Decay for Total Random Sample
Graph 5 - Performance Life Decay for Follow-on Missions
Graph 6 - Performance Life Decay Over Year Designs in Random Sample

Graph 7 - Performance Life Decay for Follow-on One Year Design in Random

Sample ‘

\

Table 3 - Mean Time to Failure Analysis Total Sample -
Table 4 - Mean Time to Failure Analysis for Follow-on Missions
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RESULTS OF ANALYSIS OF THE RANDOM SAMPLE

The analysis presents sample points by comparing performance life to
design life, and by examining the follow-on spacecraft as a discrete sample.
The data points are developed from Table I-2 (Data Sheet Performing Analysis).
The results show that the follow-on spacecraft performance exceeded the first
launch spacecraft performance significantly (graph one). The mean performance
months to desigh months ratio has remained between 2.0 and 3.0 while mean
design life has increased from 3 months to 9.0 months (graphs two and three).

MEAN TIME TO FAILURE (MTF) ANALYSIS OF THE RANDOM SAMPLE

In order to project the existing data into a measure of Mean Time to Failure
a reliability calculator was used.* Given the performance hours and number of
failures the calculator fixes a failure rate per cent per 1,000 hours, and a mean
time to failure, Confidence levels range from 99% to 50/50 or best estimate. In
this analysis the spacecraft is assumed to be the unit under test. Spacecraft
which are operating or were turned off while operational are not considered to
have failed. Performance hours are measured from day of launch to day of
failure or shut down, or to the end of the study period,

The confidence level used in application of this data is a matter of individual
choice. For the amortization of cost and consideration given in performance
incentives a best guess or 50/50 confidence may be a suitable choice. In the
estimation of useful performance in support of a sensor a higher confidence,
with resultant reduction in MTF would seem more realistic.

*The reliability calculator used was a circular. slide rule as used in test condition environments,
The failure rate and Mean Time to Failure (MTF) are computed at the spacecraft level from the
total performance hours and the number of spacecraft failures. The validity of the slide rule
estimate is tested by establishing approximate confidence intervals in Appendix B.
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B ‘ 1
Table 1-2
Data Sheet Random Sample Performance Analysis
Performance Design
Flight Launch | Failure Time Life Performance
Date Date Months Notes
Mos |Days | Hrs

TIROS 1 4-01-60; 6-16-60| 2.5 77| 1848 3 1
TIROS III 7-12-61, 8-07-62 |13 394 | 9456 3 3
TIROS IV 2-08-62| 9- -62| 7 203 | 4872 3 3
0SO 1 3-07-62| 8-06-63 |17 517112408 6 1-3
SYNCOM 1 2-14-63| 2-14-63| 0 0 0 12 1
TIROS VII 6-19-63 | 12-06-65 | 29 903 | 21672 3 3
SYNCOM II 7-62-63| ---- (66 | 2002 48048 | 12 2
IMP-A 11-27-63| 5-06-64| 6 164| 3936, 12 1
IE-A 8-25-64|12-29-64 | 16 490| 11760 12 1
NIMBUS I 8-28-64| 9-23-64| 1 27| 648 z 1
BE-B 10-10-64| ---- |51 | 156137464 12 2
BE-C 4-29-65| 4-05-68 {36 | 1071|25704| 12
IMP-C 5-29-64| 5-12-67 |24 71417136 12
OGO 11 10-14-65 1.0-24-65 .3 10 240 12
ESSA II (OT-2)| 2-08-66| ---- |35 | 1078|25872 6 1-2
OAO1 4-08-66| 4-09-66 |-~ 1.5 36| 12
NIMBUS II 5-15-66| 1-16-69 |32 973 : 21352 6 :
ESSA 11 10-02-66 | 10- -68 |24 728 | 11472 6 "
ESSA IV 1-26-67| 5- -68|16 | 462|11088| 6 3
ESSA V 4-20-67| ---- |21 | 64415456 6 2
1 - Identifies a first in series spacecraft. % '
2 - Spécecraft remaining operational as of January 22, 1969.
3 - Spacecraft shut down or no longer monitored as of failure date.




Table I-2 kContinued)

Performance Desi
. Launch | Failure Time X egn Performance
Flight Life
Date Date Months Notes
Mos| Days| Hrs

IMP-F 5-24-67 —— 20 609 14616 12 2
OGO 1V 7-28-67 ———— 18 546 13104 12 2
0OSo 1V 10-18-67 —— 13 462 11088 6 2
TTS-1 12-13-67! 5- -68| 5 140| 3360 12 1

1 - Identifies a first in series spacecraft.

2 - Spacecraft remaining operational as of January 22, 1969,
3 - Spacecraft shut dewn or no longer monitored as of failure date.
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Graph I-1

Mean Satellite Design Life and Performance Life-First |
Launch Versus Follow-on Satellites |

Graph 1 compares the mean performance life to the mean design life of the
first S/C in any launch series to the performance of life of the remaining S/C.

Satellites First Follow-on '
|

in Series Satellites
i TIROS I TIROS I
0SO I TIROS IV
SYNCOM I TIROS VII {
IMP-A SYNCOM II
IE-A BE-B
NIMBUS I BE-C |
OAO I IMP-C
" TTS I 0GO II ‘
ESSA I (OT-2) |
NIMBUS II
ESSA I ‘
ESSA IV
ESSA V
IMP-F
0GO IV
030 IV
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Graph I-2
Satellites Lifetime in Orbit

The mean design life for satellites launched in 1961 through 1967 is com-

pared to the mean performance life by year. Operational satellites remain as
follows:

1 each from Cy 63, 64, 66
4 from CY 67
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araph 1.3

Mean Natellite Performance Months &
Mean Design Life by Year of Launch

Graph 3 ix a plot of the mean performance design life ratio for sample
satelliter by vear of launch.

Four of the uix satellites in the CY 67 launch group are still operational.
One 8/C each in CY 63, 64, and 66 i8 operational.

CY 65 performance design life ratio was lowered due to the failure of the
OGO IT control system ten days after launch. While OGO II is still operational
in its backup spin mode, it i8 considered a failure in the sample due to the
existence of experiments requiring a stable platform in its payload.

CY 64 performance design life ratio is lowered by NIMBUS 1.
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Graph 1-4
Performance Life Decay Random Sample

This graph compares the sample mean design life, 9.4 months, to the months
performed by spacecraft in the sample. The area to the left of the design life
line is 225.6 months (9.4 x 24 = 225,6). The area under the performance line
is 452.5 months. Performance to design life ratio is 2.0, It should be noted
that at the end of the sample period, January 22, 1969 there were seven
operational spacecraft.
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Graph I-5
Performance Life Decay of Follow-on Missions
This sample represents the performance in months from date of launch for
the sixteen follow-on spacecraft. At the end of the sample period, January 22,

1969, seven spacecraft remained operational. The performance months design
months ratio is 3.1:1.0 as of January 22, 1969.
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Graphs I-6 and I-7

Performance Life Decay of One Year Design Life
and One Year Design Follo./-on Spazecraft

1
The random sample contains twelve one year design satellites of which |
seven are follow-on spacecraft. The performance month design month ratio |
for the one year design sample is 1.7:1.0. The follow-on performance month

design month ratio for the follow-on spacecraft is 2.6:1.0.

« The size of the sample was considered marginal for use in the analysis,
' therefore, a new sample of all identifiable one year designs is examined in
Part II.
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Table I-3

Mean Time to Failure Analysis

Total Performance Hours - 330,636
Number in Sample - 24
Number of Failures - 12 Other. S/C in Sample - 12
TIROS I#l TIROS I
SYNCOM [1#1 TIROS IV
IMP-A#1 i 0s0 1#1
IE-A#1 TIROS VII
NIMBUS I*#1 ‘ SYNCOM II*2
BE-C BE-B*2
IMP-C ESSA I1*2
| OGO 11 ESSA IV
OAO I#1 ESSA V*2
NIMBUS I IM P-F*2
ESSA III OGO 1V*2
TTS-1#1 0SO IV*2
.
Confidence MTF Failure Rate %
. Level Hours Months Per 1,000 Hrs.
E 99 14,700 20.4 6.8%
95 17,500 24.3 5.7%
90 18,900 26.3 5.3%
60 25,000 34.7 4.0%
50/50 26,900 37.3 3.7%
1. # First spacecraft in series.
2. * Operational spacecraft at end of sample period January 22, 1969.

22
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Table I-4
Mean Time to Failure Analysis
Follow-on missions only
Performance hours - 296,640
Number of Failures - 5 Other S/C in Sample - 11
BE-C TIROS III
IMP-C TIROS IV
oGO II TIROS VII
NIMBUS II SYNCOM I1*2
ESSA III BE-B*2
ESSA m*2
ESSA IV
ESSA V2
IMP-F*2
OGO IV*2
0SO IV*2
Confidence MTF Failure Rate %
Level Hours Months Per 1,000 Hrs.
99 22,900 31.8 4.4%
95 27,900 38.8 3.5%
90 32,000 44.4 3.1%
60 47,000 65.3 2.1%
50/50 51,000 70.8 1.9%
2. * Operational spacecratt at end of sample period January 22, 1969.
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PART 1II

SPACECRAFT PERFORMANCE ANALYSIS
OF
ONE YEAR DESIGN SPACECRAFT
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PART Il
TABLES AND GRAPHS
Table II-1 - Summary of Results
Table II-2 - Data Sheet for One Year Design Performance Analysis
Graph II-1 - Mean Performance in Month Versus Year of Launch
Graph II-2 - Mean Performance Design Life Ratio by Year

Graph II-3 - Performance Life Decay for One Year Design Spacecraft

Graph II-4 - Performance Life Decay for Follow-on One Year Design Spacecraft
Table II-3 - Mean Time to Failure Analysis for One Year Design Spacecraft

Table II-4 - Mean Time to Failure Analysis for Follow-on One Year Design
Spacecraft
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ONE YEAR DESIGN LIFE SAMPLE

The one year design sample consists of thirty (30) one year design space-
craft. The sample consists of all Goddard Managed one year design life space-
craft for which design life and performance life could be fixed with reasonable
accuracy.

The performance time is measured to a failure. A failure is the result of
the control, power, communications, or data handling subsystems inability to
provide the designed support for satisfactory operaticu of a sensor, irregardless
of the ability of the sensor to function.

Total performance hours are noted in Table II-2. The performance hours
including anomolous hours are shown separately for information only. The
anomalous operation hours were not used in the MTF analysis or reflected in
the graphical analysis.

The anomalous performance identified in Table II-2 and on the graphical
analysis identifies a situation in which data collection from the spacecraft
continued but performance was not adequate for the analysis. The OGO anomaly
is the collection of data in the '"backup' or spin-mode which does not provide
designed support for satisfactory operation of all sensors. The IMP-A collected
small amounts of useful data from May 30, 1964 to May 10, 1965 when at favora-
ble sun angles. The IMP-B gathered useful data from October 4, 1964 to July 18,
1965 but the mission was classified as a failure due to improper orbit as a result
of launch vehicle malfunction.

ANALYSIS OI' ONE YEAR DESIGN SAMPLE

In the analysis of one year design, a conservative bias has been effected by
the Criteria for Measurement of Performance. The exclusion of performance
hours of the OGO in the spin mode, the exclusion of data from IMP-A following
battery failure, and IMP-B in total due to improper orbit result in a reduction of
127 performance months in the analysis of performance of 12 month design
spacecraft.

The mean performance in months has exceeded the design life consistently
since 1962. The percentage of launched spacecraft remaining operational is 45%
for all years after 1964 with no less than 40% remaining operational in each
year since 1964,

The performance life decay graphs show a tendency for the spacecraft
failure rate to decrease after an initial period of about six months from launch.

27




The initial or infant mortality in the first month accounted for 20% of the oh-

served failures or anomalous occurrences in the sample. An additional 27% of l
the observed failures and anomalies occur in the next five months. A total of ‘
47% of all observed failures or anomalies occur in the first six months following |
launch. During the remaining six months of the design life only 6.6% of the ' 1
failures or anomalous occurrences were observed. The high initial mortality is

not exhibited by the follow-on sample.

The results of the performance life decay graphs and the 95% confidence
level of the Mean Time to Failure (MTF) analysis are shown in Table II-1, The
related graphs and sample descriptions are found in Graphs II-3 and II-4 and

' Tables II--3 and II-4 respectively.
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Table II-2
Data Sheet for Twelve Month Design Sample
Spacoorant | Humoh | Falure | B pertormane

Month | Hours

Explorer VII 10-13-59; 8-24-61 22 16344 : 1

Explorer XII 8-15-61: 12-06-61 4 2736 1

Ariel I 4-26-62 | 11-09-64 31 22320 1,3

Alouette 1 9-28-62 ———— 77 56640 1,2

Relay I 12-13-62| 8- -65 32 23256 1

Syncom II 7-26-63 ———— 67 46992 2

(IMP-A) Explorer XVIII 11-26-63| 5-30-64 6 4536 4

Relay II 1-21-64 ———— 62 42576 2

Ariel II 3-27-64| 3- -66 24 17520 3

Syncom III 8-19-64 ———— 54 40080 2

(IE-A) Explorer XX 8-25-64| 12-29-65 16 11760 1

OGO 1 9-04-64| 9-04-64 0 5 1,4

(BE-B) Explorer XXII 10-09-64 -—— 52 38784 2

(S-3C) Explorer XXVI 12-21-64| 5-26-67| 29 | 21216

(BE-C) Explorer XXVII 4-29-65| 4-05-68 35 25944

(IMP-C) Explorer XXVII 5-29-65| 5-12-67 24 17136

oGO II 10-14-65| 10-23-65 0 240 4

Alouette II 11-29-65 —-——— 39 28800 2

(DMEA) Explorer XXXI 11-29-65 ———— 39 28800 2

OAO 1 4-08-66| 4-09-66 0 36 1

(AE-B) Explorer XXXII 5-25-66| 3-22-67| 10 7104

OGO III 6-07-66| 8-23-66 3 2040 4

AIMP-D 7-01-66 ———— 31 23736 2

ATS-1 12-06-66 ——— 27 19872 1,2,5

30
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Table II-2 (Continued)

Performance
Spacecraft Launch | Failure Performance
Date Date Month | Hours Notes
(IMP-F) Explorer XXXIV | 5-24-67| ---- 21 | 15816 2
(AIMP-E) Explorer XXXV | 7-19-67 -——- 19 14520 2
OGO IV 7-28-67{ 1-19-69 19 13008 3, 4
ATS III 11-05-67 -— 16 11856 2
TTS 1 12-13-67| 5- -68 5 3360 1
OGO V 3-04-68 ——— 12 8952 2

Performance Notes:

1, First spacecraft in series.

2. Spacecraft remains operational as of March 11, 1969.

3. Spacecraft shut down or no longer tracked as of failure date shown.

4, Spacecraft exhibited anomalous performance after failure date shown.
Total measurable performance for anomalous spacecraft is as follows:

Total Performance
Launch
Spacecraft Dat Measured

© Performance Months Hours
(IMP-A) Explorer XVIII 11-26-63 5-10-65 18 12792
OGO 1 9-04-64 - 52 39624
IMP B 10-04-64 7-18-65 9 - 6960
oGO 11 10-14-65 11-01-67 25 17976
OGO IOI 6-07-66 ——— 32 24240
OGO IV 7-28-67 ———— 19 13992

5. ATS series design life exceeds 12 months but has been used as 12
months for purpose of this analysis.

31
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Graph II-1
Twelve Month Design Life
Mean Performance in Months

S,
Year o1 Launch

The OGO anomalous hours are not shown in 1964, 1965, and 1966. The 1966
performance months are also affected hy the OAO I failure at launch.

The year of launch mean performance has exceeded the design life of 12
months in all samples. The 1959-1961 sample of two spacecraft is not considered

to be significant due to the lack of complete documentation on design life criterion.,

As a result of the MTF analysis, the spacecraft remaining operational in the
1966 and 1967 samples have a 99% confidence of reaching a 29 month performance
level.
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Graph II-2
Twelve Month Design Life
Mean Performance Design
Life Ratio by Year
The remarks concerning anomalous hours from Graph II-1 are also true in

this presentation.

The overail ratio of 2.1:1.0 is developed from Graph iI-3. The follow-on
ratio for all years which is not shown is 2.4:1.0 is developed from Graph II-4.

The results of the MTF analysis indicate a 90% confidence level in the

lg._unch year samples 1965, 1966 and 1967 mean performance design life ratio
(P/DC) reaching the 3.0 level.
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Graph II-3
Twelve Month Design Life

Number of Spacecraft Performing
Vs,
Months Since Launch

The tendency of spacecraft failure rate to decrease after an initial period
of about six months is shown on this graph. The initial or infant mortality in the
first month accounts for 20% of all the failures or anomalous occurrences. An
additional 26.6% of the failures or anomalous events occur prior to reaching six
months in orbit.

The MTF lines represent the expected sample MTF at the indicated level of
confidence.

The Performance month to Design month ratio (P/DL) for the sample is
2.1:1,0 as of March 11, 1969.

The mean performance months as of March 11, 1969 are 25.2 months.
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Graph II-4
Twelve Month Design Life

Follow-on Spacecraft Performing }
Vs, !

Months Since Launch . |

i

The follow-on spacecraft failure rate does not exhibit the high infant mortality
of the total sample. With the exception of the OGO which is considered anoma- |
lous and the Explorer XXXII (AE-B) all spacecraft have met or exceeded the \
design life criteria. |

The MTF lines represent the expected sample MTT at the indicated level | |
of confidence,

The Performance months to Design months ratio (P/DL) for the sample is
2.4:1.0.

The mean performance months (P/SC) as of March 11, 1969 are 28.7
| months.
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Table II-3

Mean Time to Failure Analysis !

Total Performance Hours - 565,985
et oo - b Nd et A A A 0 i S W sl -

Number in Sample - 30

[ eSS B e —

Number of Failures - 15

Explorer VII Explorer XXVIII
’ ‘ Explorer XII OGO II
Relay I OAO 1
Explorer XVIII Explorer XXXII
OGO 1 OGO IIT
Explorer XXVI OGO 1V
Explorer XX TTS1
| Explorer XXVII
el Hours Monthe Per 1,000 Hirs.
99 21,000 29 4.7%
95 24,500 34 4,1%
| 90 26,200 36 3.8%
60 383,500 46 2.9%
50/50 36,000 49 2.7%
40




Table II-4

Follow-on
- Mean Time to Failure Analysis

Total Performance Hours - 376,320

— - 1

Number in Sample - 18

l Explorer XXVI
Explorer XXVII

J

Number of Failures - 7 {
|

1

Explorer XXVII f

OGO II

Explorer XXXII

OGO II 1

0GO IV L
g |

Confidence MTF Failure Rate %
Level Hours Months Per 1,000 Hrs.
€9 23,800 32 4.2%
95 28,500 39 3.5%
|

| 90 32,000 44 3.1%
| 60 45,000 62 2.2%
E 50/50 48,800 66 2.0%
I,,
|
{
;
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APPENDIX A

RANDOM SAMPLE SELECTION PROCEDURE

Forty-six two digit numbers were selected from the first two digits of a
one-hundred line fourteen column five digit random number table. Entry to a
line and column was made by using two digits in the table. Columns were read
down five digits, then diagonally to the next block of fives. Five entries were
made to complete the sample.

Random digits were matched to Jaunch sequence numbers to select S/C.
Launch sequence numbers are chronologically assigned in "GSFC Space Pro-
gram Record: August 1959 to December 31, 1967. (PEP - 067), GSFC, NASA;
Greenbelt, Maryland. Twelve random digits greater than seventy-three and
eight duplicaticus were eliminated from the sample. Three launch vehicles
failed. Thesr: sample numbers were replaced by the next numerical launch not
already in the sample. The Telstar, launch twenty-two, was eliminys‘ed as non-
Goddard Managed. Launch seventy-three carried two S/C, TTS-1 and Pioneer
VIII. Pioneer VIII was eliminated as non Goddard Managed. The resulting
sample is twenty-five S/C in the following programs:

Missions in sample of twenty-five

Number
in
Program Sample Misgsion

PIONEER 1 \'

TIROS 4 I, I, IV, VI

0sO 2 I, 1V, (D)

SYNCOM 2 I, II

EXPLORER 6 XVIII IMP-A), XXVl (IMP-C),

NIMBUS 2 ST (BE-B), X4V (BE-C)

NIMBUS 2 I, IO

OGO 2 I, IV (POGO) (D)

ESSA 1 2 (OT-2)

ESSA 3 II (TOS-A), IV (TOS-B)
V (TOS-C)
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Number
in
Program Sample Mission
OAO 1 I
TTS 1 I
TOTAL 25

It should be noted that only four of the sixty-six missions successfully
orbited were classifed as mission failures. Three of the four appeared in the
random sample. The only unsuccessful mission not in the sample is OGO 1.

The analysis of performance is based on twenty-four of the twenty-five |

spacecraft. The PIONEER V mission could not be included due to a lack of
available data.
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APPENDIX B

CHI-SQUARE CONFIDENCE INTERVAL TEST
OF RELIABILITY CALCULATOR

The purpose of this appandix is to demonstrate a method which may be used
in establishing approximate intervals for (1) the Mean Time to Failure (MTF)
calculations and /?) to test the validity of the reliability calculator circular slide
rule in developing Mean Time to Failure (MTF) calculations for the analysis.

' It is assume? that an expotential model of the failure-time distribution is
| given by

t>0
f(t) = ae %t
a >0

The spacecraft is the component under life test, not the related subsystems.
» The value of o is an assumed constant failure rate representative of the failure
period which occurs following infant mortality and prior to wear out failures.
The test life of the component is from launch to failure or to the end of the
observation period. Spacecraft which were shut down by command were .0t
considered to have failed. :

To make inferences concerning the mean life () of the spacecraft and the
validity of the reliability calculator, the assumptions are an expotential model of
the failure-time distribution, a fixed accumulated amount of life time (T) elapsed,
and the observed number of failures (k) may be treated as the value of a random
9 variable,

Given the above condition, an approximate confidence interval for the mean
life of the spacecraft is given by

) When T = Total nbserved performance hours at the end of the sample period.

1 = The mean time to failure.
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Where y 2 cuts off a right hand tail of area /2 under the Chi-square dis-
tribution with 2k + 2 degrees of freedom, and y,2 cuts off a left hand tail of area
/2 under the Chi-square distribution with 2k degrees of freedom.*

The sample examined was the twelve month design life follow-on spacecraft
(Table II-4). Based on the results of the analysis (shown in Table B-1) for the
conditions assumed the circular slide rule MTF estimates are considered valid.

*p. 375, Miller, 1. and Freud, John E,, Probability and Statistics for Engineers, Prentice Hall, Inc.,
Englewood Ciiffs, N. j., 1965.
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