CASE FILE N 60 30868
COPY NASA TMX 58030

NASA TECHNICAL NASA TM X-58030
MEMORANDUM JUNE 1969

A NEW APPROACH TO THE
ANALYSIS OF LINEAR MODELS

By Fred Michael Speed

A Dissertation Submitted to
the Graduate College of Texas A & M University
in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy in Statistics

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
MANNED SPACECRAFT CENTER
HOUSTON, TEXAS






ABSTRACT

A New Approach to the Analysis of Linear Models
(May 1969)

Fred M. Speed, B.S., St. Mary's University
M.S., St. Mary's University

Directed by: Dr. R. R, Hocklng

This dissertation analyzes linear models
by writing the model in the form Y = Xu + e
subject to 6Ty = £ , where the usual assump-
tions are made about e . It is shown that
for experimental design models, XTX is always
diagonal and of full rank. Included are

methods to obtain GT

for the classical
deslign models as well as arbltrary linear
models. Other toplcs are regression models,
covariance models, estimates of fixed effects
in mixed models, and a procedure for obtalning

expectations, varlances and covariances for

quadratic forms.
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CHAPTER 1. INTRODUCTION
1.0 Preliminaries

The theory of linear models is one of the basic
tools used by the statistician in analyzing data. It
has evolved from a strictly algebraic tool, which could .
be used on hand calculators, to a sophisticated matrix

technique which 1s amenable to high-speed computers.

The classical theory of linear models has as its
foundation the works of R. A, Fisher [13]. Fisher's
approach is based mainly on intuitive and heuristic
concepts. He informs his readers that his methods are
the logical way to analyze the data. Fisher states that
his book is to be a handboock for research workers, expe-
cially biologists. He makes no attempt to justify his
results on a rigorous mathematical basis. The textbooks
(1473, [321, [34] published between 1915-1945, for the
most part, follow this trend. They present the statis-
tics in a "cookbook" manner; that is, if the experi-

menter follows the algebraic fecipes given, he 1is

NOTE — The citations on the following pages follow the

Journal of the American Statlistical Association.



assured of obtalning the desired statistic. In 1947,
Bartlet [2], Cochran [6], and Eisenhart [11] stressed
the need of putting the basic concepts supporting the
analysis of variance on a more mathematical foundation.
From then until 1962, authors like Brownlee [4],

Cramer [7], Scheffe [28], and Wilks [36] presented the
mathematical gpproach to the analysis of variance. One
disadvantage of their works, however, 1s that the anal-
ysils 1s derived using a strictly algebraic approach,
and while their results are mathematically valid, they

have lost their intuitive appeal.

About 1955, the elements of matrix theory were
applied to the analysis of variance. Graybill [15],
Rao [27], and Searle [31] published textbooks which use
maﬁrix theory as a basic tool. The result of using
matrices is to provide not only a rigorous mathematical
backing for the analysis of variance but also a con-
ceptually concise theory of linear models, hénce, a con-
cise theory for the analysis of vari%nce. Recently,
several writers [20], [22] have beenﬁadvocating using
linear algebra in studying linear(models. An appre-
ciatlon of this method requires a detailed knowledge of
linear algebra, function analysis, tensor products and

projections.



This dissertation provides another improvement in
that it provides a method of analysis that makes use of
the very simple structure of the observiations. That is,
we assume that each observation came from a population
with a mean and a variance. If we have more than one
poéulation, we may know certain relations about the
‘means of these populations. All hypothesis testing and
estimatlion 1s done in terms of the population means.

It is shown in Chapter 3 that the classical linear
models can be consldered in this manner. Using this
approach with matrix algebra, we have a theory of linear
models that is both mathematically conclse and concep-

tually clear from the viewpolnt of statistics.

This approach avoids the misunderstanding caused
by imposing "nonestimable" conditions on the nonfull
rank models. It provides an understanding of using
additional information in mixed models to obtain better
estimates of the fixed effects. It avoids uéing spe- |
cial formulae when there are missing cells. There is
no need to have one theory fér the balanced case and
another theory for the unbalanced case. Thils approach

also suggests a technique, which is computationaliy



efficient, to find expectations, variances and covari-
ances of YTAY and Y'BY where Y ~ N(u,V) , and V is

not necessarily diagonal.

The value of this approach as a teaching tool is
fourfold. First, the student uses fundamental concepts
and relationships to derive the results. Second, the
student is taught baslc principles that apply both to
the equal and unequal number per cell case. He is not
taught a lot of "tricks" that apply only to the bal-
anced case — "tricks" that would throw him into a
guandary when he encounters missing cells, etc. Third,
there 1s no question about what is beling tested. The
only way to obtain a sum of squares for an F test is

to specify that the hypothesis to be tested is

T T

H: Xu=g§E& , where A

o 1s the hypothesis matrix,

and £ is known (usually zero). Finally, the inter-
pretation of interactions and main effects has more
meanlng since these are related to means of popﬁlations

and their interpretation in this light 1s clear.

As a computational tool, this approach is designed
for high-speed computers. Since we have established
the relation between this approach and the classical

models, whenever we have a balanced experimental design



model, we will use the special computational methods to
obtain estimates or sum of squares and then continue the
analysls from our viewpcoint. A computer progfam, which
was written in FORTRAN V, effic;ently performs the

analysls described in this dissertatilon.

The dissertation has seven chapters. This chapter _
contains the definitions and theorems necessary for
understanding this approach. Chapter 2 provides the
theory for analysis of the general "u'" model. Chapter 3
provides the relationships between the classical models
and the "u" model. Chapter 4 covers the analysils of
mixed models. Chapter 5 provides analysis for regres-
sion models and covariance models. A discussion of
tests for maln effects and iﬁteractions also is included
in Chapter 5. Chapter 6 gives several numerical
examples 1llustrating the theory developed. And
Chapter 7 considers some of the research that still is

needed in this area.

1.1 Definitions and Theorems

In this section, we will give the definitions and
theorems necessary to understand this approach. The
definitions are all referenced. The first group of

theorems, 1.1 tog1.15, is also found in the literature



and has been referenced. The next set of theorems,
1.A to 1.F, has been proved by the author and the

proofs are included,

Definition 1 [15] —~ An nxn matrix A is said to be

idempotent if A « A = A

Definition 2 [15] — An nxn matrix P is said to be

orthogonal if PP = I .

Definition 3 [15] — If A is an nxn matrix and X and

o are such that AX = oX , then X 1s said to be an

eigenvector of A and o the corresponding eigenvalue.

Definition 4 [15] — When we write YTAY, we mean that

A 1is symmetric.
We will assume that
Y = Xu + e

where, unless otherwise indicated,
X 1is a full rank matrix,
u 1is a constant vector, and

e ~ N(0,0%T)



We will write

min Q(u)

eTu=6

and mean that we want to minimize Q(u) subject to

eTu = § . Also

min Q(u)

means that we want to minimize Q(u) subject to 8Ty = &

and ATy = £

Theorem 1.1 {27] — Let A be an arbitrary rxp matrix.

The four equations

(1) AXA = A
(11) XAX = X
(111) (ax)T = ax
(1v) (xa)T = xa
have a unique solution X . We call X the general-

ized inverse of A and denote X by At

1]

If the vector equation Ay b is consistent,
then the general solution is y = A™b + [I - A%Alz
where 2z 1is arbitrary. ©Note that AA"b = b and

A[T - ATa]1 =0 .



The vector equation Ay = b 1is consistent if and

only if AA™b = b .

If A 1is rxp where v < p and A is of rank

r , then the rank of I-A"A is p-r.
Also note that A% = (aTa)*a”

Theorem 1.2 [27] — Let Y ~N(u,%) . If Z =AY + &,

where 6. is fixed, then Z ~ N(Au + §_, ATAT)

0 03

Theorem 1.3 [15] — Let Y ~ N(u,GZI) , and let

Kk T
vTy _ Y AiY
2 2 ?
o = o]
where n, is the rank of Ai . Any one of the three

conditions listed below is a necessary and sufficient
condition that the following two statements be true

T 2 2 _.T
(1) ¥ A Y/0% ~ X (ni,xi) » where A, =u'Au

(i1) YTA.Y, YTA.Y are independent if i # j .
i 3

The conditions are:
(1) A, 1is idempotent for all 1 = 1,*++,k
(2) AA; = 0 for all 1 # j

(3) n = Zni



Theorem 1.4 [15] — If Y ~ N(u,V) , then Y BY is dis-

tributed x2(k,k), where k = rank B and A = u'Bu )
if and only if BV is idempotent. In the case where

YAy
>
2

ficient condition is that A% = A .

V = 6%°T and Y'BY =

the necessary and suf-

" Theorem 1.5 [27] — Let A be an mxm symmetric matrix

with eigenvalues Al 2> 12 2 e > xm , and Pl...’pm

corresponding eigenvectors. Then

T

X
max AX Al
X XX

or

X Ax

i
P

min
X XX

Theorem 1.6 [15] — If T ~ xz(p,l) , Z ~'x2(r) and

rT
o7 1s‘distributed

T and Z are independent, then u

as Flp,r,Ar].

S

Theorem 1.7 [27] — Let R =\min [y - Xu]T[Y =~ Xul] sub-

jeet to ATu = £ and where X is not necessarily of

full rank, then

R? = Rg + ss(AT,E)



where

RS = YTy - u*T(xTx)u*
ss(AT,e) = [ATu* - £1TATETX)TATTIATu* - ]
u¥ = (xXTx)txTy

Theorem 1.8 [21] — Let Y ~ N(u,V) . Let S, = Y'AY

and S, = YTBY . Then we have

(1) E[Sl] = Tracel[AV] + utAu
(11) v[s,1 = 2 Trace[AV]? + 4uTAVAu
(111) Cov [S8,,8,] = 2 Trace[AVBV] + 4T AvVBu

Theorem 1.9 [15] — Let Y ~ N(u,V) . Let T = AY,

S, = Y'BY and 5, = Y'FY , then

(i) T 1is independent of S, 1if and only if

AVB = 0

(11) S, and S, are independent if and only if

BVF = 0

Theorem 1.10 [15] — Let A Dbe an nxn symmetric matrix

with rank n . There exists a nonsingular matrix P

such that PTAP = T .

10



Theorem 1.11 [15] — Let A be an nxn symmetric matrix

with rank n . There is an orthogonal matrix H such
that HYAH = D where D 1is a diagonal matrix of

eigenvaluyes.

Theorem 1.12 [30] — Let Y ~ N(u,V) . Then

Cov (Y,Y'AY) = 2VAu .

Theorem 1.13 [27] — Let tysece,t  be unbiased estimates

of 6 , and let V denote the covariance matrix of

the t,'s. If we want to choose a® = (a, *°*-, an) S0

1
that n
B E a.t.}1 = ©
i1 1
j_=
and
n
v E a.t.
1 1
i=1 |

is a minimum, the optimum choice of a 1s

v 1y
L
2Ty~ 1y

where &7 = (1, =*+, 1) .

11



Theorem 1.14 [27] — Let Y = WB

nxp matrix of rank q <p , B

and e ~ N(0,0%1) .

+ e where W 1is an

is a constant vector

then

(1) minimum variance unbiased estimate of ATB

is ATB , where B8 = (Www)twTy = w'y
(2) minimum variance unbiased estimate of 02 is

52 = L [y - wel®[Y - w8l

n-4dq
T
= min LY - WB1'[Y - W8]
B n-a

Theorem 1.15 [15] — Let A, B, C be nxn matrices, then

(1) Trace(AB) = Trace(BA)
(1ii) Trace(ABC) = Trace(BCA) = Trace(CAB)
" (iii) If A is also idempotent
rank(A) = Trace(A) .

Theorem 1.A — Let A% = A and B® = B;. If A-B is
positive semidefinite, then AB = B .
Proof — Let B = [bl,---,br] . In order to show
AB = B, we will show that Abi = bi for arbitrary 1
Now suppose bi = 0 , then Abi = Db,

12

i " Suppose ?i # 0



then bT[A - Blb, > 0 . Hence b.[AJb, > b Bb, .
1 1 1 1 1 R

But B is idempotent. Hence Bbi = bi"‘ Therefore

T
- - biAb. :
b.Ab, 2 bbb, . Let S = Now S > 1 . But by
i 1 1 1 bTb
i i
xTAx
Theorem 1.5, we see that max T occurs at the max-
X'xX
imum eigenvalue of A . Hence S < XMAX . But A is
"idempotent. Hence A = 1 . Therefore S =1

MAX
Hence bTAb. = b'b, or b [I - Alb, = 0 . Now since
1 1 1 1 R 1

A 1s idempotent I-A 1s idempotent. Hence
T _ .T _ _ - _
bi[I ~ A]bi = bi[I Al[I A]bi . Let z; I A]bi.

Now O = b?[I - Alb, = 7z 7. . Hence z, =0 or
1 1 i 1 kR

it

Ab, = b, . Hence AB B .
i i

Theorem 1.B — Let R?
2

min [T - Az]T[T - Azl . Then
Z, . .

R? = T[T - aa™]T .

Proof — Now it is well known that the 2z that minimizes
[T - Az]"[T - Az] 1s a z such that ATAz = ATT . Now
it is also well known that the normal equations always
have a -solution, hence by Theorem 1.1, one solution is

7z = (ATA)TATT = A*T . Hence !

RZ = [T - AA™TIT[T - AA*T]
= [[I - Aaa*ITI7(T - aA™IT
= TT[I - AAYI[T - AA*IT
= TT[I - AAYIT

13



2

Theorem 1.C — Let R° = min [Y - Xu]T[Y - Xu]

to ATu = £ where At

2

R? = [Y - xUIT[Y - XU] where

1}

u

+ xTx)TIALAT (xTx) "]

subject

is of full row rank, then

[T - (xT%) " IArAT(xTx) " a7~ AT 1 (xTx) " 1xTy

Proof — Let us construct the Lagrangian function

L(u,p) = [Y - xul®[Y - Xul + 20"[ATu - €]
Now
LWae) = ox"y + 2(x™)u + 2hp
and
Q—I"—(%-S-Q-)- = 2(ATu - &)

Setting the partials equal to zero, we have

(xTx)T XTY - AP

AT

]
(a2

hence

i
i

T " %%y - (xTx)" g

u

1

Now, since AW = £ , we have

£ o= ATET) Ty - ATETX) T

14



or

—

5 o= -(TETOT) T + (AT (x x)‘lA)”lA (xTx) " xTy
Hence

xTx)"1xTy + (XTX)‘lA[AT(XTX)'lA]‘lg

=2
I

- xTx) " AT (x x)‘lA)‘lA (xTx) " 1xTy

[T - x0T ") " x0Ty
+ (XTI ET) T e
Hence R2 = [Y - XulT[Y - Xu]

Theorem 1.D — Let Rg min [Y - Xu]T[Y - Xul] and

uew,
Ri = min [Y - Xul®[Y - Xu] . 1If w, C wy, , then
uew ‘
2 _ .2 2
ROS.Rl.

Proof — Let Uew, such that Ri = [Y - XG1°[Y - xul

Let ew, such that Rg = [Y - X%1°[Y - X% . Now ﬁéwé

implies ﬁewl. Hence )
: .
2 ~ T ~ =T 4
Ry = [Y -X¥I[Y - x¥] < [Y - XU]"[Y - Xq]
2
= R 1 .

15



Theorem 1.E — Let R® = min [Y - xul®[Y - Xul subject

to ATy = & , where AT is rxp of rank r , then

2
35 ~ xz(k,x) » where k=n-p+r and A 1is zero
o

ir ATy =&

Proof — Now R? 1s the min [Y-XulT[Y-Xul subject to
uew = {u/ATu = £} . By Theorem 1.1, all solutions to
A u = £ can be written as u = go + Bz , where
ATGO =& , ATB = 0 and 2z 1s arbitrary. Hence

w= {u/u = Eo * Bz} . Therefore

e
i

min [Y - XE - xBz1T[Y - XE, - (XB)z]
Z

Let T =Y - XSO and A = XB

R2 = min [T - AZ]T[T - Az

Z

This 1s in the form of the classic least-squares

problem. Hence by Theorem 1.B, R? = TT[I - AA*]T ,

Now by Theorem 1.2, T ~ N[X(u - 50), 021] . Since

I - AATIT

02

+ o TT[
I-AA" is idempotent and by Theorem 1.4,

1s x2(k,\), where k = rank[I - AAT1 and

A = [X(u - go)]T[I - AATIX(u - E)]

16



Now by Theorems 1.1 and 1.15,

k = rank[I - AA¥] = Tface[I - AAY]
= n - Trace[AA™] = n - rank(A)
= n - rank(XB) = n - rank(B)
= n-(p=-r) = n-p+r

Now, if ATu =& , fthen u = 50 + Bz , hence

U - go = Bz . Therefore

[XBz]1 [I - (XB)(xB)"I1XxBz

>
[}

(xBz)T[XB - XB(XB) XBlz

0

il

Therefore if ATu = £ , then A =0 and RZ ~ y?(k)

Theorem 1.F — Let Q = Q, + Q, where Q ~ xz(k,k) and
2

Q ~X (kl,xl) - If Q,=Q-Q, d1s nonnegative, then

,

independent.

2
~ x“(k - ko, A - Al) and Q; and Q, a?e

Proof — We can assume withoutgloss of generality that

T T T
Y AY - Y BY _ Y [A - B]Y
5 and Ql 5 hence Q2 = 3 s

o o o
where Y ~ N(u,cZI) . Now A-B is positive semidefinite

and by Theorem 1.4, A% = A and B = B . Hence by

Q =

17



Theorem 1.A, AB
I =[I~-A]+[A

YTy = YI[I - AlY

(1) [I -
(11) [A -
(1i1) [1I -

hence by Theorem

B . Therefore let us consider

Bl + B ; or

+ YT[A - B]Y + Y'BY . Now
AJ[A-B]l=A-A-B+B=0
BIB=B-B =20

AlB=B-B =0

1.3, we have

T
() TS A 520 -, )
1 2 X VK354,
(111) YLBIY o200y
52 X A Eyehy
T T T
(iv) L1 ; A]Y, 1A 5 BIY ona X—%X are
o o
independent.
T - T
Now u'u = AO + AZ + Al but 10 = uu A , hence
Az = A - Al s and n=n - k + kz + kl hence

18



CHAPTER 2. THE MODEL
2.0 Preliminaries

In this chapter we will assume that we have
sampled p wunivariate populations, where éach popu~
lation has a mean and a common variance. Also, let
" us suppose there may be certain restrictions known
about the means. Now, while each population may
have been sampled a different number of times, only
those populations from which at least one sample was
taken shall be included in the model. These obser-~

vations can be expressed as

i3k Ui 5 ik
where the means satisfy the relations

u = ER, (R, = 1 eeo I’)

where is the kth observation from the' (ij)th

Yijk
population:

u 1is the vector of uij in some order,

Uy is the mean of (ij)th population,

19



eijk are uncorrelated random variables such

that E(eijk) =0 3 V( ) = 0%,

€ix

T

62' is the 2th restriction on the uij's, and

Ez is known.

Naturally, the number of subscripts is essen-
tially unlimited; however, to simplify the notation,
the number of subscripts will be kept to three. In
order to better convey the concepts in this section,

we will consider the following example.

Suppose we had six populations indexed by twb
subscripts (ij), that is, (11, 12, 21, 22, 31, 32).
Also, suppose we took the following number of obser-
kvations from each population; 2 from population 1,
2 from population 2, 5 from population 3, 3 from
population 4, 1 from population 5, and 5 from popu-

lation 6. Let us further suppose that we know

20



where U is the mean of the (ij)t% population.

We can express the above as

Yis = Y5t Cisx
subject to u -Uu,,,. - u,.,, +u,,., =0 for all
ij i3] i} 1]
i’ i',,j, vj' . i=13293; j =l,2; k=1,"'nij .

In order to simplify the presentation, we can
rewrite the general model in matrix notation. We

have

(o]
]

Xu + e (2.0)
subject to 6°u = §
where

Y 1is the nx1l vector of observations,

u 1is the pxl vector of cell means,

X 1s the nxp design matrix,

e 1is a random variable such that E[e] = 0 ,
EleeT] = 02T , |

T

6 is an rxp matrix of rank r that repre-

sents the restrictions known about the means,

£ 1s an rxl known vector.

21



Let us express our example in matrix notation.

We have

subject to 6" u =0

‘where

Y 1is an 18x1 vector
X 1s an 18x6 matrix
u is a 6x1 vector
e 1is an 18x1 vector
is a 2x6 matrix

& 1s a 2x1 vector

22



and where

—

(V111
112
J121
Y122
Ya11
Y212
Y213
I214
Y215
Y221
Y222
Y223
Y311
Y321
Y322
Y323

Y324

Y325

subject to [

o

H oM P M O

o o o ©

0 0!
0 0
0 0
0 0
0 0
0 0
0 0 [u,,]
0 0 Uy,
0 O Usq ‘e
0 0 u,,
g O Ugy
0 @ LP32_
1 0
01
0 1
0 1
0 1

01

23



Because of the formulation of the model, xTx
will always be diagonal with diagonal elements equal
to the number of observations from each population.
One statistic that will frequently be encounteféd is
u¥ = (x7x)"*xTY which is nothing more than the

vector of cell means. In our example,
(x*x) = Dpiagl2,2,5,3,1,5]

and

(u¥)T = [Yll./2,Y12./2,Y21./5,Y22,/3,Y31./1,Y32,/5]

We shall now consider point estimation and test of
hypothesis for the model described by Eq. (2.0).
Note that the restriction is an essential part of

the model,

2.1 Polint Estimation

In this section we want to consider estimafion
of functions of the uij . For the Toment, we shall
consider only linear functions of thé uij . In
the classical analysis of experimental design models,

the question of estimability is raised, that is, not
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all linear functions yield unbiased estimates. In
particular, Graybill [15] gives the following defi-
nition of estimability.

"...A parameter (or a function of the

parameters) is said to be linearly

estimable if there exists a linear

combination of the observations whose

expected value is equal to the parameter

(or the function of the parameters)."

Now in the model described by Eq. (2.0), we see
that uij is always estimable. One obvious estimate

is y Hence, any linear combination of the u,

ij1 i3

is estimable. A better estimate of uij would be
the mean of the observations of the (i,j)th popula-
tion, or in other words, the cell mean. Hence, one
estimate of ATu would be ATu* = AT(xTx) IxTy

Note that E[ATu*] = AT[XTX]—lXTXu = ATu . There-
fore, for the model defined by Eq. (2.0), there is

no need to be concerned with the gquestion of estima-
bility. Now we shall consider the problem of finding

the best (minimum variance) linear unbiased estimate

of kTu .

Theorem 2.1 — Suppose we wish to estimate ATu . The

Best Linear Unbiased Estimate (B.L.U.E.) for A Tu is
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A e

ATu where u 1s that value of u that minimizes

[y - Xu]T[Y -~ Xu] subject to 0Ty = £

Proof — The proof will proceed in the following
manner: (1) we shall find G , (2) we shall find
the B.L.U.E. of A"u and, (3) then observe that the
B.L.U.E. of ATu is equal to ATu.

A

Let us find u . In order to do this, we shall

construct the Lagrangian function

L(u,8) = [Y - XulT[Y - Xul + 28%[8Tu - £&]
Now
EL%%;ﬁl. = —2x"y + 2(xTX)u + 286
and
aLguzﬁ) = oTu - ¢
~Upon setting the partials equal to zero, wé
obtain
xTx)u + 88 = xTy
o7y = ¢
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Now

v o= @0 %%y - (xTx)"les
But
8Td = &
hence
§ = [T te1 e (xTx) 1xTy]
- [T (x"x)"te1 7 e
therefore
a = [1- &™) teeTx™x) te) T Jux
+ (xTx)"teeT(x™x)"te) "1 (2.1)
or
4 = u* - (X0 teeTxTx) te) teTur - £]

(2.2)
where u¥* = (XxTx) 1xTy .

Let us now find the B.LiU.E. of ATu. The problem
can be restated as one of finding a'Y + d, such that
V[a’y + d] = ¢%a%a is a minimum subject to
E[aty + d] = ATu given 6Ty = £ . Let us consider

d as d=y"¢ . Now E[a"Y +dl=a"u + "¢ = 2Tu
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whenever 6 u = g or atxu + YTeTu = ATu , Wwhich

means a’x + yTeT =T . Hence, we want to minimize

UzaTa subject to a’x + YTGT = AT . The Lagrangian

function is
L(a,y,p) = o%a’a + 202[AT - a'x - YTGT]p
Taking partials, we get

oL(a,yY,p) 2 2
Rl Toeds J WP L0 = -
5 20%a 207 Xp

aL(%zvzp) = 207,
Y

8L(a,Y,0) . T _ 3Tx - yTeT
3p

Setting the partials equal to zero, we have

Xp = a
6Tp = 0
xTa + 6y = A
ToA  LTA
or XXp = X"a , which means
o= T %A = @TOTHA - ey]
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But ¢ S = 0 , hence

oT(xTx)7 A - 6Y] = 0
or
[eT(xTx) "t - oT(x™x)"teyl = o
-or
3 o= 67T te17teTrxTx] "t

A

Since a = Xp , we have
3 = XTI - eeTxTx) e te T (xTx) "]

Therefore, the B.L.U.E. of A’u is

a’y + 4

6TrT - xTx) to(eT(xTx) " te) LoT1(xTx) xTy

+ AT e e T (xTx) o1 1k

AT{IT - (xTx) " tereT(xTx) Yo teTu
+ (xTx) Le(e® (x*x)"le) 1} (2.3)

But from Eq. (2.1), we see that a Y + d is just
AT, Hence, the B.L.U.E. of ATu 1s ATG. One imme-

diate consequence of the above is that if A = I ,

A

then the B.L.U.E. of u is u (given 67Tu = E).

And 1f there are no restrictions on the uij (that
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is, pT = 0), then 0 = u# , a well-known result.

The following theorem provides us with an unbiased

estimate of 02

Theorem 2.2 — Let &> = ——=—— [Y¥ - Xul®[Y - Xu]

then E[0%] = o2 .

Pron -~ Let us consider

Y -X2 = Y - X{[I - (XTx) te(eT(x"x) o) teT)
c Ty 4 T e (xTx) "te) Thed
Let
A o= 1 - (xTx)"teceT(xTx)te) T
then
Y -xu = Y- XAGKT) % [xu + el

- x(xTx) et (xTx)"te) e

= Y - XAu - Xae - X(x"X) " (T (x™x) o) e
= X[I - AJu + [I - XA(XéX)—lXT]e

- x(xTx) " HeT () ey e
= x(xTx)teeTxTx) ey treTu - ]

+ [T - XAxTx) " 1xT e
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But eTu = & , hence

Y - xa = [I - xa(XTx)"*x%1e (2.4)

We are now going to show that I — XA(X'X) 'x*
is ldempotent. We will first show that A 1s ldem-
potent. Let us set 2Z = (X°x) te(eT(xTx)" e)‘l T

Then,

[xTx) " Te(eT(x™x) " te) e T1r (xTx) "te(oT(x™x) "te) 1o ]

= (xTx) " te(eT(xTx) to toT

Hence Z 1is idempotent; therefore, A =1 -7 1is

idempotent. Now

XA (xTx) " TxTxa (xTx) "1xT xaA (xTx) T

i

XA (xTx) " 1xT

il

Therefore, I - XA(X'X) 'x® is idempotent and

[T - xa(xTx) 1xT77T I - x(xTx)"1aTxT]

1 - x(x™X)™t .1 -

6 (6T (x™x) "L0)~Lo™ (xx) "1 1x"
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i

I - X[T - (xTx)7?
. aeT(xTx) Yoy Lo T (xTx) " 11x"

T - XA(xTx)"txT

H

Let us set W= 1 - XA(XTX)'l)(T . Hence, we see that
from the above, W is symmetric and idempotent.
Hence,

[Y - xa]%[Y - xu] eTw e

= eTWe (2.5)

Now by Theorem 1.15,

E[eTWe] ozTrace[w]
= o2Trace[I - XA(XTX) 1xT]
= o%[n - Trace(XA(XTx) " 1xT)]

= 02[n — Traceld]

= o?[n - TracelI

- (XTX)'le(eT(XTX)'ie)“19Tj]
= o’[n - [p

- Tracel (xTx) Yo (ot (xTx) o) teT11]
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o%[n - [p - Trace[Irxi]]

oz[n -p + r]

Hence,
’ n-p+r 4. 1

is an unbiased estimate of 02 .

Up to this point, we have made no assumptions
about the distribution of the e vector. We shall
now assume that e ~ N(O,GZI) . With this assumption,

we are able to prove the following theorem.

Theorem 2.3 — Suppose we are given

Y = Xu + e subject to Ty = g

where e ~ N(O,OZI) and where Y, X, u, GT, g are

defined by equation (2.0). The estimates, u and

02 s of u and 02 s Where

4 o= [I- @™ teceTx®x) re) reT1r (xTx) 1% y]
+ (xTx) tereT(xTx) " te17 e
3’2 = '1:1'—:—'—"]5——_-*_—? [Y - Xa]T[Y e Xﬁ]
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have the following properties:
(a) Unbiased
(b) Consistent
(¢c) Efficient
(d) Sufficient
(e) Complete
(f) Minimum variance

(g) 0 ~ Multivariate Singular Normal:

(h) (ﬂ-:-g-—*—xl> 62~ x%(n - p + r)
o

(1) 4 and &% are independent

Proof — The likelihood function is

n
flesu,0?) = (2m0?) 2 mxp {- —15 [Y - Xul"[Y ~ Xu]}
20 '
(2.6)
subject to 87y = £

‘In order to‘establish some of thégproperties, we
will show that O and &° are essentially maximum
likelihood estimates. We want the“§a1ues of u and
o? that maximizes Eq. (2.6) where u must Satisfyv

0Ty = & . However, we shall maximize 1n [f(e,u,oz)]
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instead of f(e,u,oz). Therefore, we want to maximize

-2 n (2m) - Ban (6%) - 2 [Y - xul%[Y - xul
2 2 202
subject to 6Ty = g

Constructing the Lagrangian function, we get

268) = 1n [f(e,u,02)] + &7[6Tu - £]

L(u,o
Taking the partials of L(u,az,é) with respect to

u, 02, § , we obtain

%E- L xTy - xTX)ul + 08
u 2
g
3L _ -n_ , [Y - xul'ly - xul
802 202 204
oL, _ T
g——eu—i

Equating the partials to zero, we have

xTx)n - 0852 xTy

= % [Y - xa1°[Y - xi]

Now, solving for 4 in the first équation we have

4 = xT)™xTy + xTx)"leds?
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. TA
But since 86"'u = § , we have

g = oT(x™x) Ty + 0T (x"x)1e85?

or
§3% = -eT ™) te1 Mo ur - £]
where
u¥ = (x7x) Ty
Therefore,
4 = u* - (x™x) te(eT(xTx) ro) treTur - £3

= [I - (xTx) re(eT(x™x) te) Lo TIu*
+ (xXTX) te(eT(xTx) o) it

which is i1dentical to Eq. (2.1). Hence, we know that
4 1is (1) unbiased and (2) has minimum variance among
estimates which are linear in the observations. It
will be shown that owing to sufficiency and complete-
neSs, we can extend the class in which 1 1is best to
include all unbiased estimates of u:. Hence, U and
32 are maximum likelihood estimates. They are con-
sistent and asymptotically efficient as all the nij's
increase. Hence, 6% 1is also consistent and effi-

cient; and by Theorem 2.2, 32 is also unbiased.
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Now let us consider the following
[Y - xul™Y - xul = [4 - wI®&T0O00 - ul
+ [Y - X017y - x0] (2.7)
given oTu = E
The proof of Eq. (2.7) is as follows
[Y - x0170Y - %01 + (@ - TE™HA - w)

= e [Wle + AT(XTX)4 - 2uT(XTX)A + uT(XTX)u

But XU = Xu + (I - W)e from Eq. (2.4). Therefore,

we have

(1) at(xTx)n wWxTxu + 2uTXT(T - We

+ eT[T - WIII - wWle
(11) -2u"xTxd = -2u"xTxu - 2u™XKT(T - W)e
Therefore

(Y - xOT(Y = x0) + @ - TETXW@ - w)

]

eTEW]e + e [I - WwIlI - Wle

T
eTWe + e e - eiWTe - eTWe

+ eTWiwe
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[Y - xully - xul

]

Thus, Eq. (2.7) is an identity. Therefore, the

likelihood equation can now be written as

n
flesu,0%) = (2m0?) 2 Exp {— —l? [(n -p + r)o?
20

+ (- wIETQ - u)]}

Hence, 4 and o2 are jointly sufficient for u and

o2 . It can also be shown that 4 and 0% are com-
plete (Ref. [15]). Since 4 and 62 are complete,
sufficient statistics, if a function can be found
such that E[f£(1,62)] = g(u,0?) , then f 1is the
minimum variance, unbiased estimate of g(u,cz).
Hence, we see that both 4 and 62 are unbiased
minimum variance estimates in the class of unbiased

estimates of u and 02 .

Let us now find the distribution of U . From

Eq. (2.1), we have

au* + (xTx)"Yo(oT(xTx)"le) 1

~
u

AT %Y + xTx)"te(eT(xTx)tey e

it

(2.8)
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2 (a(xTx) " xTx (xTx) 1A T)

<
™
[
L
it

o2a(xTx) " taT

i

it

o2axTx)r - oT (e (xTx) " te)y Yo T (xTx) 1]

o2AlT - 8(eT(x"x)"Lo) LeT7(xTx) 1

il

o2an(xTx)™t

il

o2a(xTx)"t

and U 1s normal by Theorem 1.2. Note that since A
is idempotent, V[U] is singular and hence u has a
multivariate singular normal distribution. The reason
for this is that wu is constrained to lie in a p-r
dimensional subspace of the p space. The implica-
tions of this will be taken up when we consider

interval estimation.

Let us now consider the distribution of 82 .
Now by Eq. (2.5) we have (n'- p + r)o? = eT[wWle .

Therefore, by Theorem 1.4,

eT(w)e

0'2

xz(n -p +r)
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Hence,

+ A2
l:l—_"g—_-,—-xl ~ )(2(1’1 - p + r)
o

We will now show that 4 and &2 are indepen-

dent. To do this, we observe that from Eq. (2.8) and

from the fact that 6 u = £ that

a AT " 1T rxu + 1 + (xXTx) " toroT(xTx) te) 1t

-1g-1

I

Au + (xTx)"te(eT(x X) e + A(XTx) 1xTe

u + AXTx) " x%e (2.9)

Thus 4 - u = A(X'X) *xTe . Now, by Theorem 1.9,

A2 ’1 T

i-u and ©° are independent if (A(XTX) X)W) = 0

But

AxTx) " xTw axTx)IXTrT - xax®x)"xT)

H

-lT

A(XTX) - AxTx)"1xT = 0

(2.10)

Therefore U-u and 6° are independent, which also

implies that O and §2 are independent.
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2.2 Interval Estimation

Since the distribution of'E:ng 62 1is known to
o
be xz(n—p+r), the procedures for interval estimation

of 02 are well known and will not be discussed here

However, since 4 has singular distributlon, we
'shall discuss the problems associated with finding
confidence intervals for‘ATu. For the moment, we
will assume that AT is a 1xp vector. We will post-
pone the discussion of simultaneous confidence

intervals until Section 2.4.

Suppose we wish to place a confidence interval
on_hTu. Then, the B.L.U.E. of ATu is ATQ and
viATaT = o2 TaxTx)7taA . Note that A(XTx)7'AT is
singular and there is the possibility that

AT aTHA = 0 . Since (xTx)

is a positive -
. 2, 7T Tory=1,T

definite matrix, o“A (A(X'X) "A")A = 0 1if and only

if ATA = 0 . Now we claim A"A = 0 if and only if

A = 6y . In other words, the only time viATal = o

is when we are estimating ATy = yTaTu = YTE s a

known constant. The proof of this is: Suppose

ATA = 0, then we have by Theorem 1.1,

.
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= [T - (A5)Y*aT1z . But AT)* = AT since AT

is idempotent. Hence

[T - aATAT1z = [1 -aT]z

>
1]

ft

o (6T (xTx) o) teT(xTx)t

8y where vy = (87(x"x)"1te)"1e T(xT x)"t

Now suppose A = 8y , then

T T

AT = aTey [T - 6¢eT(xTx)"1e) 1T (xTx) 10y

L}

]

[6 —8]ly = O
Therefore, if u 1s a nontrivial function of the

T A T
parameter, we know that [A"U = A7ul

is distributed
viaTa

. ~ Tyy—1+T '

as N(0,1). Since U - u = A(X'X) "X'e , we see that

AT - w) = ATaxTx)"*x%e and from Eq. (2.10)

ATA(XTX)"lX W= AT0 = 0 . Hence by Theorem 1.9,

AT(G-u) is independent of G2 . Hence,

A4 - au (n - p +1r)o” 5, ¢ statistic
, 2 T -—1 T 2
Vo2ATa(x x)

(¢}

with n-p+r degrees of freedom. The procedures for
finding confidence intervals from this information

are well known.
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2.3 Hypothesis Testing

In this section we will develop a procedure for
testing HO: ATy = Yy agalnst the two-sided alterna~
tive HA: 1Ty #Y , where AT is an sxp matrix of
rank s . We will use the likelihood ratio test.‘

The following is a brief description of the procedure. .

Suppose Xp1aXystte,X  are distributed as L(x,6),
where ©6 1s an element of a set & . Now, if we
want to test Ho: few , where w 1is a subset of
Q , versus H,: 0e[ - w] , we construct

A

max L(x,0)
_ DBew

I(x) = max L(x,0)
0eQ

Now we can observe that

(1) T(x) is a function of x alone and hence a

statistic
(2) 0=<T(x) <1
(3) small values of F(%) suggest rejection of

H L4
o
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Let us now apply this procedure to our model. Since

Y ~ N[Xu,czl] where 6°u = £ , we see that

n

L(Y;u,cz) (2ﬂ02)-5 EXP {— —l5~[Y - Xu]T[Y - Xu]}

i

20

glven 6Tu = £ .

Hence we see that O 1is the set of all u such that

6Tu = £ or 0 = {u/6"u = £} . Now suppose we wish to

test Ho: ATu

i

Yy , then w 1s the set of all u

such that ATu

Hi

y and 6Tu = £ ; or w = fu/hTu = v
and 6Tu = £} . Therefore § - w = {u/ATu # v and

6Tu = £} . And now we can write

max f[Y;u,czj
6Tu=¢

L



T

0 ‘
Let BT = and 6T = 5 , then we can
AT Y
write

2
max f(Y3;u,o%)

T .
r(Y) B u=¢ 5
max f(Y;u,o)

eTu=€

In Section 2.1, we showed that the values of u

and 0% that maximized f(Y;u,cz) subject to 6Tu = £
were
0 o= [I- &™) teeTx™x) o) teTux
+ [x™x1 teeT(x™x) o) e
3% = %'[Y - x21%[y - x41 ,  where
ub = (xTx) " xTy
Therefore

n
~2 —3— n
(215%) * Exe {- 3}

]

max f(Y;u,cz)

eTu=€
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Likewise it can be shown that the values of u and

02 that maximize f(Y;u,cz) subject to BTu = § were

T = [I- T T x™x) 11 18T Ju*

+ XTI BT Tx) ") 7ts

G = 2[Y-xu1”Y - x0]
1
Therefore sup f(Y;u,cz) = (2n32) 2 EXP {— %} .
T
B u=§
Hence, we see that
_n
72\
r(y) = =
o
_2
The statistic that we will use is T(Y) ® . Let
2
us denote T'(Y) ® as L¥ . Now we reject Ho if

> T(y) .

L¥ > Lg since L¥ > Lg if and only if PO(Y)
The problem now is to determine the distribution of

L¥ . Let us consider the identity

where
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Let us note that by Theorem 1.C,

n6? = min [Y - XxulT[Y - Xu]
uew
1
and
~2 T
no® = min [Y - Xu] [Y - Xu]
Uew
2
where
ot .
w, = {u u = [Y]
AT
and
w, = {u/6Tu = &}

Now W, is a subset of W, s hence by
Theorem 1.D, G2 is greater than or equal to &2 .
-2 ~2

Now by Theorem 1.E, ng and ng are xz(hl,xl) and
o o '
, i
X (hz,xz) where h, =n - p + (r + 8) and A, is
T

le . )
zero if u = and where h, = n ~-p + r and

AT Y 2
12 = 0 if eTu = £ . But wc are given that eTu =g ,
hence A, =0 and A, = 0 if AT = y . Therefore
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we have E%— N E%m + EE (a2 - 5%) Now
o g o
35 (5% - %) > 0 , hence by Theorem 1.F,
o
B (5% - 3% ~x%(s,0) and % (G% - F%) 1s
g o
independent of 23-52 . Therefore we see that
' o
n(s2 - §%)
L = o’
ng?
2

g

is the ratlo of a noncentral x2 and a central x2 .
n-p+r .

Therefore by Theorem 1.6, F = < L is dis-

tributed as a noncentral F with s and n-p+t+r
degrees of freedom and noncentrality parameter A ,
where A = 0 1if H_: A"w = y is true. Now L¥* > L¥
if and only if L > Lo ; and L 2 Lo if and only if

F 2 F_ . Hence we reject H : ATy = Yy if F 2 Foo.

—

And since we know the distribution of F , it is easy

to find F . i
(o]
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Let us now consider a computational form for

F . By Theorem 1.7, we see that

R2
o]

(1) min [Y - xul®[Y - Xu]l
BTu=6

I
]

(11) min [Y - xul®[Y - Xu]

+ ss(BT,8)

Rj + 8s(87,¢)

BTu=E
where
RZ = Y'Yy - u*T(xTX)u#
and
ss(8”,8) = [BTu* - 17[BT(x"x) " *BI"*BTur* - 5§71
and
ss(et,e) = [6Tu* - £17[6T(xTx) o1 e u®

where u#¥

n-p+r [SS(BT,G)] - SS(GT,E)]
s Ri + 8s(8T,€)

Let us also note that

E[SS(B,8) - 8s(67,£)

>
L}

[8Tu - s17 BT &™) "8y 18Ty - 5]

- (6Tu - £)TreT(xTx) el [eTu - £]

- £]

'(XTX)'leY . Hence F can be written as

(2.11)"
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But we are given 6Ty = £ , hence

>
il

[8%u - 81787 (x™x) 181718y - 6]

0 T 0
Afu -y (BT (xTx) "B aTu - s

(A% - y1TBT(xTx) " B17 AT - 67 .

i

Another form for the numerator sum of squares

will be given at the end of Section 3.0.

2.3.1 Choice of AT for H: ATu=y

Some care must be taken when choosing AT for

Ho: ATy = Y . For example, suppose we are given the
model Y = Xu + e subject to u, - u, = 2 . The test
Ho: U, - u, = 0 is obviously meaningless. In other

words, we must choose AT such that

LT
3]
« - [i]
6"
is a consistent set of equations and rank =r + s
T
A
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2.3.2 Example

Let us consider the example in Section 2.0.

There we were given Y = Xu + e subject to 6Ty =
where
T 1 -1 -1 1 0 0 0
8 = and E =
1 -1 0 0 -1 -1 0
Now suppose we wanted to test Ho: Uy, = U,, = Uy,

or H : ATu = 0 where
o 1

Hence we have

1 -1 -1 1 0 0] 0|
1 -1 0 0 -1 1 0
T
Bl = 6 =
1 1 -1 -1 0 o 0
1 1 0 0 -1 -1 | 0]
Hence

N %s(Bf,o) - ss(eT,Oﬂ

F = ;
s ss(eT,0) + Rz

where n -p +r =18 - 6 + 2 =14 and s = 2 .
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Let us consider another hypothesis. Suppose

we wanted to test H : u,, =u,,, for all i,i',j.
o ij i'3
The Ag matrix would be:
1 0 -1 0
Az - 1 0 -1
0 1 ~1
0 1 0 -1

Now, when 8T  1is augmented to Ag to form Bz =

we see that Bg is a 6x6 matrix of rank 4, that is

1 -1 -1 1 o 0]
1 -1 0 0 -1
Bg 1 o -1 0o o o
1 0 0 -1
0 1 -1
0 1 0 0 0 -1

If we add the third row to minus the first row,. we
obtain the fifth row; and minus the second row plus

the fourth row yields the sixth row. , Therefore, in

#

light of Section 2.3.1, we would take B] to be
1 -1 -1 1 0 0]
T |1 -1 0 0 -1 0
By =
1 -1 0 0 0
1 0 Q0 0 -1 0
- d
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HBg where

Let us note that Bf

1 o 7]
0

|

'_I

(w]
o M o o
v OO o

We willl show later that this implies that
HO: 4. = u,, =u,, 1s equivalent to H: u,=u
for 1, 1', j . This example points out the care
needed in selecting the hypothesis and the constructing
of the B matrix. By properly setting up the B

matrix, the experimenter will know exactly what he is

testing and willl be guaranteed a valid test.
2.4 Simultaneous Confidence Intervals

In this section, we will be concerned with finding
confidence intervals for ATu = § . The procedure is
as follows. By Theorem 2.3, we know that

W -u~ N(O, AxTX)™AT) . Hence
AT - w) ~ N0, A"AaTX)"IAT) .
Now, from Eq. (2.9) we see that

AT@E - w) = ATaTx) " xTe .
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Consider

™ = LT - w1 AT AT A ITE - W)
o’ ‘
or
12 = L Trx(x™0 ThATA (AT AT FATA () T e
: g
= eTa(cTa) e e

where G = X(XTX)'lATA . But

re(cTa)*eT16lc%e1*e™ = aa"®)*e” ,

2

hence by Theorem 1.4, T° ~ xz(k) , where k = rank(G)

Since A is not of full rank, we must consider the
possibility that ATa = 0 . However, by following a
similar argument as put forth in Section 2.2, we see

T,T

that ATA = 0 if and only if AT = r'e’ or

il

T

ATu = PTE , a known vector. Hence if ATu is a non-

trival function, then ATA # 0. Now

Tyt T.
2 . o7 a7
(¢]

is independent of eTWe since G(GTG)+GTW = 0
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Therefore

~ F(h, n-p +1r) .

Hence

PT{EAT(G - w1 T AT @ - W g }= -
~2 - Ol
ko

But since & = ATu , the set of § such that

(ATQ - &) TIATaxTx)~1aATAT [ATE - 67

< F
o2 a
is a (1l-o) simultaneous interval for 6 = ATu . Now
if 6 =0, then A =1 and
= AT - wITATETO T (uF - w)]

c

which is the classical result. Numerical examples of

the above procedure will be given in Chapter 6.
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CHAPTER 3. RELATION TO OTHER MCDELS .
3.0 Preliminaries

We will now consider the relation between the "u"
model discussed in Chapter 2, that is Y = Xu + e sub-
Ject to 6Ty = £ , and the classical linear models.
‘The assumptions for the classical models are very sim-
ilar to the assumptions for the "u" model. For the
classical linear models, we assume that we have sampled

p univariate populations where each population has a

different mean, but all have the same variance.

The functional form for these models is Y = Xu + e

subject to u = PR or simply
Y = WB + e (3.1)

where W = XP and P 1is pxt of rank g . We shall

refer to this model as the "B" model.

We shall assume that e ~ N(O,GZI) , Since it is
this case that is most interesting. The case in which
we assume E[e] = 0 and E[ee’] = 02T has limited
application and the needed results can be obtained by

following a similar line of reasoning as for the case
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where e ~ N(O,OZI). In order to establish a relation
between the "u" model and the "B" model, we shall define
the concept of statistical equivalence between two
models. We say the "u" model and the "B" model are

statistically equivalent if:

(1) there is a 1-1 correspondence between linear
estimable functions of the parameters, and
minimum variance unbiased estimates are

identical.

(ii) there 1s a 1-1 correspondence between test-
able hypotheses, and the test statistics

(under the same criterion) are identical.

Now suppose we are given Y = WB + e where
W=XP , or in other words, u = PB . Let us consider
the following "u" model: Y = Xu + e subject to

67u = 0 where:

(1) 6Tp 0

It

[

(2) rank(eT) rank(X) - rank(XP)

i

| (3.2)
(3) T is (p-q)*xp of rank p-q.
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In light of the above, we are able to prove the

following theorem:

Theorem 3.0 — The "u" model as defined by Eq. (3.2) is
statistically equivalent to the "B" model as given by
Eq. (3.1).

"Proof - By Theorem 1.14, the minimum variance unbiased

2

estimate of o¢° in the "B" model is given by

52 1

T
R mén [Y - wB1"[Y - WB]

where g = rank(W) . And from Theorem 2.3, the minimum

variance unbiased estimate of 02 in the "u" model is
given by
62 = 1 min [Y - Xul®[Y - Xu]

n-p¢+r

subject to ewu,w 0. But r = rank(e') = p - q .
Hence n-p+r=n-q. Now 6°u=0 implies that
we [I-(6°)*6T)z where 2z 1s arbitrary. But we are
given that 6 P = 0 3 hence ;P = [I - (BT)+6T]G s

where G 18 chosen so that P 1s pxt of rank q .
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Let .z =0y, . Hence am= [T - (67)*6%1ay. = Py - . There-

fore, we have

/\2 - l T
ou - n--p + r min - [Y - Xu] [Y»-ﬁ Xu] o

GTu=O

- I min [Y - xul®[Y - Xu]

n =9 y=py

= 1 _ min [Y - wylP[Y - wy]

n-p ¥
= ¥ . (3.3)

Hence the minimum variance unbiased estimate of 02 in

the "u" model is identical to the minimum variance

unbilased estimate of o2 in the "8" model.

Now suppose we wish to estimate GTB, and that GTB

is estimable; 1.e., there exists an a such that

§T = aTW . Since u = PR , we have

g = Ptu+ [T - PPPIz .

60



Hence GT

8T = a%xp . Therefore, we see that

8 = 6Tptu + 6T[T - P*Plz . But 6T = a'w or

§T[I - PPIz

aTxpP[I - PPz

/ aTX[P - Plz = O

Hence GTB = 8Tp*y . Now let us suppose we want to
estimate ATu in the "u" model. Since u = PB , Wwe see
that ATu = ATPB . Therefore, we have a 1-1 corre-
spondence between estimable functions; that is if we
want to estimate STB, then we can estimate ATu where

T

AT = s7pt , or if we want to estimate ATy we can esti-

mate GTB where §T = ATP .
From Eq. (3.3), we see that

min [Y - Xul¥[Y - Xu]l = min [Y - WB1T[Y - W8]

BTu=O 8

Also from Eq. (3.3) we see that U 1s that value of u

‘that minimizes [Y - XulT[Y - Xu] subject to 6°u = 0

.
>

and B8 1s that value of B tpat minimizes

[y - wl®[y - wsl.

We will now show that u = PR , that is we will

show that PR minimizes [Y - Xul®[Y - Xu] subject to
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6Tu = 0 . Now let U

"
+d
w

. We see that

Hence u satisfies the constraints. Also

/

[Y - xpR1T[Y - xPR]

Yy - xul¥ry - xul

= min [Y - XPB]T[Y - XPB]
8
= min [Y - XulT[Y - Xu]

subject to 6 u = 0 . Hence U = 4, or U = PB

Now by Theorem 2.3, the minimum variance unbiased esti-
mate of ATu is ATd = AT = 8T8 ir &% = ATP . But
by Theorem 1.14, aTé is the minimum variance unbiased
estimate of STB. Hence if we wish to estimate 6T8,
then the minimum variance unbiased estimate of 6TB in
the "u" model is AT4 where AT = 8°P" . The converse
also is true. That is, suppose we wish to estimate
ATu, then the minimum variance unblased estimate of 2Ty
T

in the "B" model is 6 B where &% = A'P . Thus condi-

tion (1) is satisfied.

If we wish to test H_: §°8 =y in the "g"
model, we see that this is equivalent to testing

Ho: ATy = Y in the "u" model where ATp = §T . The
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reason for this is the 1-1 correspondence between esti-
mable functions. Now, if we use the likelihood ratio
test as a test criterion, the test statistics are iden-

tical. This can be established by considering the

following: ’
2 T
Rl = min [Y - Xul'[Y - Xu]
BTu=O
ATu=y

min {y - Xu]T[Y - Xul]
u=Pg

xTu=Y

[}

min [Y - Wl [Y - W8]
sTptpg=y

but 6T = aTW = aTXP . Hence

sTp*pg = aTxpp'pg = aTxpg = 578
Hence
2 T
R] = min [Y - W] [Y - wg]

§"B=y
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Now the appropriate test in the "u" model is

min [Y - Xul®[Y - Xul = min [Y - Xul®[Y - Xu]

6Tu=0 6Tu=0
T —
F = LA U=Y _
SO
but
min [Y - Xul®[Y - Xxul =  min [Y - WBIT[Y - wR]
6 Tu=0 §Tg=y
ATu=Y
and
min [Y - XulT[Y = Xul = min [Y - We1T[Y - WR]
6Tu=0 8
and 62 = 32 hence
min [Y - we1°[Y - W8] - min [Y - we1'[Y - wg]
. 6TB=Y B
~2
sSO

which is the appropriate test in the "B" model.: Hence

condition (ii) is satisfied and the theorem 1is proved.

The importance of Theorem 3.0 is that if we are
given Y = WB + e where W 1s an nxt matrix of rank

g <t , we can transform this to the appropriate "u"
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model and perform the analysis in the "u" model. Hence

we have the ability to work in either model.

Let us now consider another form for the numerator

of the test statistic. From Theorem 1.7, we see that

~ -1
N T
min [Y - wgl"[Y - wgl = [&78 - Y]T[Y[LZEJ_]
6T8=y o |
© 1678 - ¥1 + R}
where
RZ = min [Y - wel"[Y - we]
B
and
vIsT8l = o2sTwTw)*s
Hence
min [Y - WB1T[Y - WB] - min [Y - WwB1 [Y - W8]
GTB::'Y B
= (678 - NTETWTW ) (6T - v) = RB? - B

Now we know, by Theorem 3.0, that
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where

Hence

vIATR) = vIs®el .

Therefore, we can write

. rq TAq-1 n
RZ -R2 = A4 - Y]T[YLA—%lv—][kTu - v]
[s)
but
viaTal = oZAaTaxTo "y .
Hence
Ri - R§ = AT - 1T T T -

Thus the test statistic can be written as

T4 - 1T TAT T - y]
~2
SO

(3.1)

Hence we have two forms for the test statistic.

We shall now consider specific models usually
encountered in statistics and show how they can be
analyzed in the "u" model. One important aspect of
using the "u" model should be noted; and that is that

there is no need to distinguish between the so called
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"equal numbers" case and the "unequal numbers" case.
The theory developed in Chapter 2 is completely gen-
eral. If we indeed have equal numbers, then X™X = rI
and all of the formulas simplify. Furthermore, our
analysis does not have two séts of equations as do some
of the analyses of linear models. For instance,
"Graybill [15] has a section in which he analyzes the
two-way without interaction assuming equal numbers and
then a chapter devoted to the analysis when he has

unequal numbers.

3.1 Classification Models

In this section, we will consider classification
models, that is one-way, two-way without interaction
and the two-way with interaction. Extension to

higher-way classifications is "easily" seen.

3.1.1 One-Way Classification

Suppose we are given the usual one-way classifi-

cation, that is

y__ = u+ai+ei i=l’ooo,a’j =l’oo-,n

ij j
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Now we can rewrite this in matrix notation as

Y=WRB +e , where W is nx(a+l) of rank a . At
this point, we would like to find the appropriate "u"
model. From Eq. (3.2), we see that we want 8T such
that rank(8') = rank(X) - ranK(W) . But rank(X) = a
and rank(W) = a . Hence rank(8 ) = 0 which implies

6T = 0 . Therefore the appropriate "u" model is

- + 1 = L . I = o e
yij ui eij i 1, sa3 J 1, ,ni

In other words the ui's are unconstrained. Note, how-
ever, that we do know that u;, =u + a, or in matrix
notation u = PB . Therefore let us consider hypoth-
eses about u and a, in the "B" model. For example,
suppose we want to estimate a.,-a.,. We need to find a

1 2
AT such that A P = 6T . It is clear that

Hence to estimate a.-a. in the "B" model we estimate

1 72
- m.,,n T - o =
u,-u, in the "u" model. Since 6 0, u; Yl./n1 and
u, = Yz./n2 . Hence
1 7% = YW -4 T Yl'/nl - Yz-/nz g

which is a well-known result. Now suppose we wanted to

test Ho: Q) =0, = e =aqa_ . The appropriate test
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in the "u" model is H : u, = u_ = *¢» =u . We
o 1 2 a ~

shall present numerical examples of this test and sev-
eral others for the one-way classification in Chapter 6.
The important fact here is to note that given the "B"

= ’ n,.n
model yij u + o, + eij » the appropriate "u'" model
is yij =u, + eij .

3.1.2 Two-Way Classification Without Interaction

The usual definition of the two-way classification

without interaction model in the "B" model notation is

= + + +
Yijx w0y T Yy T ey

i1 =1,¢°*,a; J = 1l,***,b; k = O,l,-~~,nij . In other
words, we assume that the model is additive.
Graybill [15] gives the following definition of the two-

way additive model.

"The two-way classification model
y., = u,, + e,. will be said to be
ij 1] 1j
an additive model if uij is such
that u,, - u,,. -u,., +u,,., =0
17 13 13 i3
for al1 1, i', 3, j' .M

This definition provides us with the appropriate

"u" model; that i1s Y = Xu + e subject to 6 u =0 ,
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Now rank(6') = rank(X) = rank(XP) . The rank of X

is, say, p and rank(XP) = a,+ b - 1 . Hence, by
Theorem 3.0, rank(67) = p~a-b+ 1 . Now let us
consider various possibilities. First let us suppose

1 = 1,**c,a; j = Ll,***,b, and k = 1 . Then p = ab and

rank(eT) =ab~-a-b+1=+(a~-1)(b -1) . Also

~D _ l AT A
g = m[Y—XU] [Y'—XUJ

_ 1 AT ~
'~ @b - ab + r [Y - uwl"lY - ul

1

/\T ~
G- Dm o1y ¥ - ully - ul

Hence the degrees of freedom for residual are (a-1)(b-1)

as is well known for this case.

Second, let us suppose i = l,***,a, j = 1,°°*,b

and k = O,l,---,nij . In this case, rank(X) =p ,

which is the number of nonzero nij . Hence the degrees
of freedom for residual are n, ,-a-b#l, where

2.2 - T
n,, = 44 n;, . Inthis case, 8 1isa (p-a-b+1)xp
matrix.
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Let us now consider the structure of 8T rfor the
above two cases. First, let us consider the following
example: Let 1 = 1,2,3,4, 3 =1,2,3, and k = 1 .
Since a method of constructing 8T is given in

Chapter 5, we will not now discuss the details con-

cerning the construction of 6T . We will only observe
the structure of eT . The constraints on the uij
were that u,, - u,,, - u,,, tu,,., =0 for all i, J,

ij i'3 ij i'j
i', j' . Hence we have

Upp = Uy = Uy, v uy, =0

- — 4 =

Ugyp = Upy 7 Uy3 T Usg 0

Upyp = Uy = Uyy tuy, =0

Upy = Ugp = Uyg + Uz = 0

Upp = Uyy = Uy, tu,, =00

Upp = Uy = Wyy vy, = 0

Note that we do not have the constraints of all
i, 1', j, 3' . This is because the above six form a
linearly independent set, and any other constraint

would be a linear combination of these six and need not
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T

be included in 6 This is in keeping with the

T

assumption that 6 be of full-row rank. In matrix

notation, we have

Let us now consider estimates and tests of hypoth-

esis for this example. The "B" model is

= + + + .
Vi3 T T Yy T G4y

The appropriate "u'" model 1is

subject to 6Tu = 0 where 6T is given above. Now we

know that
u. . . .
ij 1 J

Suppose we wish to estimate 0, =a., then

u,, - u,,., =04, - a,, 3 or, if we wish to estimate
ij i'j i i



.~Y.,» we see that
Y] YJ s

- U = L - Ly e
YJ YJ

u,_ ., .
-J o:,‘

have a completely balanced additive

is equivalent to u,_.-u,,.
i3 173

u, .
13

Let us test HO:

where BT

0

0
0

see, however, that Ei- -u

The reason

i3

ive

= Q.

i

and

We also

for this is that we

model and u,  -u,,
1 1

0 0
0 O
0 O

= luoy oy a0, vy v, vl

or

o

(@)

The appropriate

test in the "u" model is i ui'j . In matrix
notation, we have:
Uy Uyp Uy3 Upg Upp Upg U3g U3p Y33 Ygp Yygp Yy
1 0 0 -1 0 0O 0 0 0 0 0 67
1 0 0 0 0 0 -1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 -1 0 O
o 1 0 o0 -1 0 0 0 0 0 0 O
2w = {0 1 0o o 0o 0 0 -1 0 0 0 Olu
0 1 0 0 0 0 0 0 0 0 -1 0
o o 1 o 0 -1 0.0 0 0 0 O
0 0 1 0 0 0 0 0 -1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 -1




From Section 2.3, we see that to test

T :
B: ATu=0, weset B-= gT] , but B is a 15x12

matrix of rank 9. This can be seen by observing that

T

the first row of A" , minus the fourth row of A

3

is equal to the first row of T , and so on. After

eliminating the dependent rows of B , we have

eT
B = e
1
where
1 1 1 -1 -1 -1 0 0 ©o0 0 0 o©
Af = % 1 11 0o 0 0 -1 -1 -1 0 0 o
L} 11 0 0 0 0 0 0 -1 -1 -1

Ho: U, = U, = Up, T U,

Hence if we wanted to use Eq. (3.4) to calculate F

3

T
1

this procedure are given in Chapter 6.

we would use HO: Au = 0 . Numerical examples of
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J

= 1,2,3; and k = O,l,"',nij

Let us now consider an example where

i=1,2,3,4;

Suppose we observed

the data in the following manner:

1 T2 3
Y111 Va1
Y112

Y221 Y221

Y311 Y321
Ya31
Ya11 Y432

A blank cell means no observations were made at the

combination of

v.

ijk

=u+a, + v, + e,
i | i

Y111
Y112
Y131
I221
I231
I311
I321
Y411
Y431

V432

i

lo o 0o o 0o oo o I

and j

jk

O O O O O O o+~ O O
o O O O O O - O O O

O O O O O +H O O O ©

Again, the "B" model is

The "u" model is now
0 0 0 5

0 0 0 O U4

0 0 O 0' U, 5

0 0 0 O u,,

0 0 0 0 U, + e
i 0 0 O U,

0 % 0 O u,,

6 0 1 0 U,q

0 0 0 1 LP41

0O 0 O :h
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subject to. 6Tu = 0 or subject to

Byy 7eByg T Mgg B Bya i Bag. t gy

/

]
(o)

Thus if the model is to be additive (that is, no inter-
action) then the uij must satisfy the above con-
straints. Again, we will postpone the discussion of

the construction of 6° until Chapter 5.

Let us now consider estimating O, =0, We can use

u, . -u,,, where wu,. and u,,. exist; that is we do
i3 173 1] 173

not say that u u is an estimate of a.-a, since u

127 42 1 4 12

and U,y do not exist in the model. Rather, we would

use u Let us observe the following. First

13" Y43"

u,,-u,, is not equal to a;-o, as in the balanced case.

2 2

This can be seen by observing that

ﬁl. ) U;q ; U3 ) 2u + 2al ; Yyt Y,
ﬁ'z. = (1,12‘2 + u23)/2 = (2u + 20, + ¥, + y%)/2
then |
5, -9, = (a -a,) sl T2
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Also, suppose we test H0 1= @, =0, =0,
Again, we test H : u.,., = u,,, 1in the "u" model, or
o ij i
Uy Uy3 Uy Upy Uzy Ugpy Uyy Uy
— =
1 0 0 -1 0 0 0
1 0 0 0 0 -1 0
ATy = 0 1 0 0 -1 0 olu = o0
0 0o -1 0 0 0 0
0 0 0 0 0 0 -1
n _
T T R T
Now we augment A to © and obtain B~ , that
is
Y11 Y13 Yp2 UYa3 Y31 UY3p Ya1 Y43
1 -1 o 0 0 0 -1 1
1 -1 -1 1 -1 1 0 0
1 0 0 0 -1 0 0 0
B = |1 0 0 0 0 0 -1 0
0 0 1 0 0 -1 0 0
0 1 0 -1 0 0 0 0
| 0 1 0 0 0 0 0 -1]
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After eliminating the dependent rows, we obtain

1 -1 0 0 0 0 -1 1
i1 -1 -1 1 -1 1 0 0
5T
B = 1 0 0 0 -1 0 0 0 =
, 2T
o 0 1 0 0 -1 0 0 1
0 1 0 O 0 0 0 ~1
L. —
where
1 0 0 0 =1 0 O 0
xi = |0 0o 1 0 0 -1 0 O
0 1 0 © 0 0 0 =1
Thus, in order to test Ho: o, =0, =04, =0, , wWe
test H : ATu = 0 or
o 1
Ujy m Uy =0
H, Uyy = U3y = 0
Upjg = Uy = O

Let us restate the procedure for analyzing

Yis = Ut oo, + Yj + e

ijk ik

(1) Find 67

(2) u =TT - (xTx) Ye(aTxTx) te) toT1(xTx) xTy
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(3) T4 is B.L.U.E. of ATu

(4) H : ATu = 0 can be tested by using the

o)

results of Chapter 2 or Theorem 3.0.

In concluding this section, let us observe the
following. First, we have given estimates and tests of
hypothesis for the "classical" estimates and tests of
hypothesis; however, there is no need to restrict our-
selves just to these. We would have tested, for

example, H 2ul. = u,, 1in either of the above cases.

As we know, we can test HO: kTu = £ where AT is

arbitrary and & is known.

Second, if we are in the completely balanced case,

we know that to test Ho: al = uz = u3 = u4 and
HO: Yy = Y, T Y5 » We can use
Tvi, (. )?
88(a,) = —3— - —13
rv.? (. )’
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to obtain the numerator sum of squares for the test

statistics and we would obtain 32 by

2 .
2 _ z:yij - ss(:i) - 88(y;)

/

In other words, Theorem 3.0 says that Ho: ~ATu_= 0
is equivalent to Ho; STB = 0 . Thus if the computa-
tional form of SS(8T) is simple, we could use it to
obtain 8S(AT). 1If §T is not one of the "classical™
hypotheses, then simple forms probably do not exist for

SS(8T) and we would use SS(AT) directly.

The generalization to the N-way classification

follows similar reasoning and will not be given here.

3.1.3 The Two-Way Classification with Interaction

The usual two-way classification with interaction

model is given by yijk = u + o, + yj + sij + eijk

1= 1,000,835 § = 1,0++,b; k = 0,1,2,+++,n . . In this
case, the rank of X 1is the number of nonzero Ny s
which we denote by p . Also, the rank (XP) is p .

Hence by Theorem 3.0,

rank(67) = rank(X) - rank(XP) = p-p = 0 .
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T

Hence 6° = 0 . Therefore, the appropriate "u" model
is Y =Xu + e . Let us first consider the case
nij =t ; that 1s, t observations per population.

Now the test for interaction in the "8" model is

H: 6,.-6,,.~-6,.,-8,,.,=0 forall i, i', j,
o ij i'j ij itj
j' . We know, however, that wu,, = u + o, + vy, + 6§, .
1] i J 13
Hence H : wu,., -u,,, -u,., +u,,., =0 for all i,
o ij i'5 ij i'j
i', j, J' 1s the appropriate test for no interaction

in the "u" model.

Now let us consider u,.,-u,, .- Now

o
|
o
i

bu + ba, + vy, + 61. - bu

- ba, -y, - 62.

1 2
or
T SR Ol T

1 2 1 2 b

If we impose the restrictions 61- = 0 for all i's,
i
then El- - Ez- =0, -0, . Therefore, in order to
test Ho: O; = o, = e*c =0, we test
H: U, =u, = **» =1 in the "u" model. An anal-
o) 1 2 a*

»

ogous result is true for the Yi's. Again, we need not

restrict ourselves just to these three tests. Also,
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for this simple case, we would use the known computa-
tional equations to obtain the sums of squares for these
three hypotheses.

Let us consider an example where k = O,l,---,nij
Let i=1,2,3,4; j = 1,2,3 , and suppose we observe

the following:

J
1 2 3
i
y
1 111 . .
Y112 121 131
5 Y221
Y211 Vo9
3 Y311 Y321 Y331
4 Y411 Y421 Y431
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In matrix notation, we have

[}
+

=
—

~N
—

™
i

—
N

N
o~

-
[32]

N M 4 Nom
I T B
S 85 B3 3 3 3 3 23 3 3 3

I

o o O o o ©

(a»)

)

[

O

e

O

o

(@]

)

=

o

(@]

o

o

)

o O o O

)

O

O

[an]

o

—

(@]

[

l

Y111

Y112

Y121

Y131

Y211

Y221

Y222

Y311

Y323

Y331

Ya11

Yan1
v

431

In this case, the test for interaction is

where

Upp Yo Y33 Yoy UYop Uzg Yz Y33 Uy Yuo Yus

We see that

.
.
-~

Now let us consider u, -u,
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u,, =
Now
u, -0, =
Suppose 61. =0
El- - 52. =a; -
H_ El. - a‘z, =
H

in the "B" model.

Here we see

11+

12
2

Usyy t Uy,
2

84

u+OL2+ 5 + 5
Y (v, +v.,)
. 1 2
0&1—01,24-‘—3-/-— 5
61. (621v+ 622)
+ -
3
H 621 + 622 =0 and y,£ =0 ,
Y3
0, + 5= Hence 1f we test
0 , we are testing
Y
3 _
Oy = 0, + - = 0
Now let us consider
Y Ty Uy Uy,
2 2
Y. o+ Y § )
_ 1 0 '2 11 12
= u+ o + 5 + 5
Y, +°Y 8 8
_ 1 2 21 22
= u+oa,+ 5 + 5

then



Hence

Upy Fuy,  (upy tugy) . - a
2 2 1 2
§0 %9855 - (621 *8,,)
+
2
Now suppose we set 611 + 612 = 0 and
621 + 622 = 0 . Then we have that
Y11 " M2 Yan T2
2 2 - 1 2
Thus, if we test
S S U N3 Uk SO F W Y
o’ 2 2 2
_ Ua1 T Uy
2

and impose the proper nonestimable conditions, we will

test HO: al = a2 = a3 = a4 .

However, What have we ;eally done? We have ighored
all yijk with j = 3 . In other words we have "thrown
away" data so as to get a complete design and then ana-
lyzed it as though j = 1,2 . If we do this, the inter-
pretation of the results should feflect the fact that

j = 3 was not included in the analysis. We shall
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postpone the discussion of the merits of such hypoth-
eses to Chapter 5. The point is that if such a test 1is

desired, it can be done.
Let us summarize the analysis of this model.
(1) eT =0
(2) a=u*= (x7x)"xTy
(3) A'u =

(4)y If H : A'u=E& , then
ss(AT,e) = T4 - 17T T TG - £

This concludes the discussion of classification
models. Extension to higher-order designs are

straightforward.

3.2 Design Models

In this section we will consider some of the more
common designs found in classicai experimental design
theory. The designs in this section include the Latin
Square, Balanced Incomplete Block, and the Split Plot
Designs. Note that the Randomized Complete Block is
not included since the analysis of it is identical to

the two-way without interaction. Also, no structure
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will be assumed about the "treatments" since it would
be a simple matter to perform an analysis given a spec-

ific structure for the treatments.

3.2.1 Latin Square
The model for the Latin Square is

= +
yijk u + o, Yj + 6k + eijk .

We can consider this as a three-way classification

without interaction and with missing cells.

We know that there are m2 observations. Now
X = I and rank(X) = m® . Also rank(XP) = 3m - 2

Hence by Theorem 3.0,

rank(eT) = m? - Sm+2 = (m-1)(m-2) .

Now from Chapter 2, we know that the degrees of freedom
for error are n-p+r, where n is the number of obser-
vations, p 1is the number ‘of populations, and r 1is
the rank (6T). Now n = m2, p = mz, r=(m-1)(m - 2)

hence the degrees of freedom for error are
n-p+r = (m-1I)(m-2)

which is a well-known result.
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Let us consider the following 3x3 Latin Square.

Column
1 2 3
1 |a|B|c
Row 2 B C A
3 C A B
in the "u" notation, we have
Y111 U122 Y33
Us1a Usa3 Ys31
U313 Usag Ussn
The rank of o = (m - 1)(m -2y =2 +1=2 . Now

1 -1 0 o 1 -1 -1 0 1

1 o -1 -1 1 0 0 -1 1

ut = [ u u u u..hou u u u ]

U'lll 122 7133 7212 223 T231 7313 7321 332

The method of constructing 6T for the Latin Square 1is

given in Chapter 5. Now the appropriate "u" model is

~

subject to 6%u = 0 .
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Let us consider u,, -u,,,, where u,, 6 means we
average over only those terms in the model, that is
= I E SR Y I EF.
1e- 3
4 _ Upip T Uppy tUngy
20 3
Now uijk =u + o, + Yj + 6k . Hence
ul.c —u2.t = u'l'--d'2
Thus if we test H : u = u = u , this is
fo) l" AR 3--
equivalent to Ho. 0, T &, = 0, . Likewise,
Ht u,y, =u,,, =Uu,,, 1s equivalent to
Ho: Y=Y, =Y, o And Ho: U,, = U,,, = U, o 1s
equivalent to HO: 61 = 62 = 63 . Now
= _ Ui1p *FUp3q *Usyy
oal 3
= Uy T Uy, F U4,
.-2 3
= _ U313 T Uopy FUygs
.-3 3
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Or in matrix notation, the test H : u = u =
is:
1l -1 0 -1 0 1 0 1 -1

1 0o -1 6 -1 1 -1 1 0

/

Now let us suppose that U1 is missing. In
this case, rank(8T) = 1 and
T
8 = [1 -1 -1 0 1 1 -1 O0lu
where
T
u- = [u u u u u u u u

= _ Y231 T Y30
o.l 2
and
- _ Ttz T Uy, t U,
.02 2
S0 that we see
.
ST = s s 4l
cel ce2 1 2 p)
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Therefore, H_: u - U = 0 is equivalent to

in the "B" model. Now consider

H - 122 231 223 133

223 332 231 321

. (8, + 8, - 285 = o)
o —
|6, + 8, - 28, = of
or
§, -6, = 0
HO 1 2
§, =6, = 0

Again we see the flexibility we have in choosing AT

in order to test H : ATi = £ . If we have the
standard Latin Square and the standard analysis is
desired, then we would use the known computational forms

for finding the appropriate sum of squares. If we have

missing data, the "u" approach offers a straightforward
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method for the analysis. Numerical examples will be

given in Chapter 6.

3.2.2 Balanced Incomplete Block (BIB) Design

/

The model for the BIB design is

V.o = u + ui + Yk + eijk
i=1l,¢**,a, J = 1l,***,b . Now k=1 if ith treat-
ment is in the jth block and k = 0 otherwise. This
is merely a two-way without interaction with missing
cells. It also reflects the condition where the blocks
and treatments have been arranged so that ui—aj is
estimable. In the "u" model, this is equivalent to
saying that the populations have been sampled so that

the appropriate test for main effects is

H: uvu,, -u,,. = 0
o ij i'j

The conditions for a BIB designfare
(i) FEvery block contains k treatments
(ii) Every treatment occurs in r blocks

(1i1i1) Every pair of treatments occurs together in

the same number (denoted by A) of blocks.
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The number of populations is bk, and there is one obser-
vation per population. Hence X = I . From Theorem 3.0,

we know that

rank(eT) rank(X) - rank(XP)

rank(I) - rank(P)

bk - a - b + 1

Let us consider the following BIB design.

Treatment
Block
Number
1 1 2
2 1 3
3 2 3

In the "u" model notation, we have

J
1 2 3
i
1 Y11 ! Y12
2 Yo1 Uss
3 Uzy | Y33
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If we had no missing cells, then the constraints on the

u,.'s would be u,. = u =0
ij

i ilj— uij' + uiljl s

for all

i, 1i'y, j, J' . Let us list the constraints assuming no

missing cells. One set of four linearly independent

constraints is:

Upp = Uy m Wy v u,, =00
Upp = Uy = Wy3 t Uy =0
Upp = Ugp = Uy F U5, =00
Upp = Ugp = Uy v Uy, = 0

(The procedure for listing this set is given in

Chapter 5.) Now u are missing.

132 Y222 U3
must eliminate these from the above equations.

Subtracting Eq. (2) from Eq. (1) we have

Uy, Uy, Uy - Uy, =0

and subtracting Eq. (4) from Eq. (3) we have

“Uyj, F Uz, Uy - Uy, =0
or u13 + u22 = u23 + ulz
Upg = Ugy T Uy, U,
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(1)

(2)

(3)

(4)

we



or u = u - U + u

Substituting this into Eq. (1) we have

And bk -a-b+1=6--3-3+1=1 which is the

T

rank of 8 Hence the corresponding "u" model is

Y =u+ e subject to 6Ty = 0

Let us now consider a number of hypotheses

(1) H: u,, -u,,. =0
o ij i'sg

(ii1) H: wu,, - u,,, =0
o] 1 1"

(iii) H: wv,., -u,., =0
o ij ij

(iv) H: u . =-u ., =0
°© *3J |

As before, we mean by u,

.y U, .. and u, ., only those
ij°, itj ij

uij's that exist in the model, and u,, and u,, mean
we sum over those uij that receive treatment "i" or
that are in block j . For example, u = u + u

1- 11 21

and u_, = u,, +u,, , and so on.
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The corresponding hypotheses in the "B" model are:
(i) Treatment adjusted for blocks
(ii) Treatments unadjusted

(1i1i) Blocks adjusted fqr treatments

(iv) Blocks unadjusted

A numerical example of the BIB design is given in

Chapter 6.

3.2.3 Split Plot Design
The model for the Split Plot Design is

= + +
yijk u Bi aj + 6ij + Yy + tjk + eijk

where Gij and eijk are assumed to be independent,

normally distributed, random variables. If we consider
that Gij is fixed, this is nothing more than a three-
way with interaction. This is assuming there is no
interaction between o, and yki and that there is no

three-way interaction. In this case, the appropriate

"u" model is Y = u + e subject to 6Tu = 0

6T is chosen so as to indicate that the model is

s Where

96



partially additive. For example, suppose we had the

following Split Plot

= u+ B, + .+ 6., + + ..+ e..
‘Vijk Bl uj 613 Yk tjk eljk

where 1 = 1,2, j = 1,2, k = 1,2 and Bi = the block
effect, aj is the main treatment effect, and Y is the

subtreatment effect.

Block 1 Block 2
Treat. 1 Treat. 2 Treat, 1 Treat. 2
Sub 1 X X Sub 1 X X
‘Sub 2 X X Sub 2 X X
In this case, we have 6Tu = 0 where
eTu =
Uggp = Yyqp = Yggp F Ugpp = Uygg T Uy 0 F Usoy - Ugny
Upgg = Uygp ¥ Uggq = Uypp = Uygy F U505 = Uyny T Us0

Again, we refer to Chapter 5 for the construction of

eT
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The following table gives the appropriate tests

in the "u" model

Source of Variation

"Blocks"

HAH

Error a

"B"

"AB"

Error b

Note that

error b = min [Y - Xu]T[Y - Xul .

6 Tu=0

But since X = I , min [Y - Xul®[Y - Xu] = 8S(8%)

Now suppose ﬁlll is missing. In this case,

T

T
B u = u

121 ~ u122 - u221 + u222 =0 , Here 6 is

obtained by eliminating u for the constraint equa-

111

tions given above; however, the hypotheses given above
no longer apply since U411 is no longer in the model.

As in the case of a missing observation in the Latin
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Square, there are several hypotheses that seem appro-
priate. Again we defer discussion of these hypotheses

to Chapter 5.

This ends the discussion of relating the classical
experimental design models to the "u" model. If we are
given any design model of the form Y = ¥Xu + e , sub-
ject to u=PB or Y =WB+ e , we know by
Theorem 3.0 how to obtain the appropriate "u" model.
The discussion so far has been limited strictly to
design models. Through minor modifications, however,
we can use the "u" model to describe a regression model
or a covariance model. This will also be covered in

Chapter 5.
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CHAPTER 4. THE MIXED MODEL
4.0 Preliminaries

We now consider the analysis of the "mixed"
model - a model in which some of the components are
fixed and some are random. Up to now, we have assumed
that all the components were fixed, that is we con-
sidered u;5 as a constant. We will still assume
that we are in a design model, that is X 1is a matrix
of zeros and ones. The regression model and covariance

model will be considered in Chapter 5.

In order to anélyze the mixed model, we wili:
(1) assume that uij is a constant; (2) find the sum
of squares associated with various hypotheses;
(3) assume the proper structure on the uij , that is
j’cij) ; .and (4) find
the expectations of the sum of squares and then test

we will assume that u,,~ N(u¥
ij i

hypothesis or estimate the components of variance.

This is the classical method of analyzing mixed models.
Here is an example to clarify these concepts. Suppose
we have yijk = uij + eijk where

u.,, = u+o, +y.+86,.
ij i i ij
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and where

u 1is a constant
o, is a constant
, 2

. ™ N(O o )
A& Ty
2
Gij ~ N(O,cs)

2
eijk ~ N(0,0%)

We would analyze Y = Xu + e assuming u is a con-
gstant, that 1s we would test Ho: ATu = v , etc. Let
us denote the sum of squares associated with

H : ATu = v by ss(AT,v). If we are in a balanced
case, then the distribution of SS(AT,v) can be found
and a test can be performed. If we are in the unbal-

anced case, we would estimate 0$ and cg and find

variances of these estimates.

Since the distribution of SS(AT,v) is known only
in the balanced case of the mixed model, we shall not
discuss the test of hypotheses in detail. The more -
important aspects of the mixed mod;l analysis are the
problems of estimating variance components and then
finding variances of these estimates. We shall con-

sider these problems in depth. .
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In order to do this, we shall develop a procedure
for finding expectations, variances and covariances for
sums of squares. This procedure 1s designed for sum of

squares obtained by analyzing the "u" model.

If we test HO: ATy = v , then the form of the

sum of squares, SS(AT,v), is
ss(AT,v) = [aTd - v1TATaxTx) " taTa "t
. [ATG - v] (4.1)
where A, (xTx)7! and(ﬁ are defined in Chapter 2.

In order to find a simple expression for Eq. (4.1),

we must consider the following theorems.

Theorem 4.0 — Suppose we want to test H : ATy

]
<

If T is a nonsingular matrix, then HO: ATy = v is

equivalent to testing Ho: ATu = v , -that 1is

ss(TAT,Tv) = ss(AT,v)

Proof — From Eq. (4.1), we see that

SS(TAT,Tv) (AT - v]Trra®axTx) " taTarTyot

- [TATG - TVv]

[ATO = 17T rraTa(xTx)~taTarT] i

. [ATﬁ - v]
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(A0 = v1TATax®x) " 1aTa77 a0 - v

i

]

SS(AT,v)

Theorem h,1 - Suppose we wish to test Ho: ATu =V .,

There is a T such that Ho: rfu = & 1is equivalent

T

to Ho: ATu = v , Wwhere TI''I' =1 and

ra(x™x)"*a"r = D, where D is a diagonal matrix.

Proof — By Theorem 1.10, there is a nonsingular matrix

Tyl _ T _ T
Bl such that BlA ABl =1 . Set Tl = BlA . Now by

Theorem 1.11, there is an orthogonal matrix B2 such

that

Ty yTor=1,Tm T _
,BleA(X X) “A T1B2 = D .

T

_ T _ T . .
Let T" = 82T1 BzBlA . Now BzBl is nonsingular,

hence by Theorem 4.0, H_: r"u = 17y = & is equiva-

lent to Hé: ATu = v where

—
il

TprTRT
B2B1A ABle

- T
= B,IB]
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and

rTa(xTx) " 1aTh

The theorem 1s proved.

From here on if we test Ho:
assume that A® 1is such that ATA
ATaxTx)"taTh = D For if AT

v, we will

I and

did not satisfy these

conditions, we could find an equivalent hypothesis that

does. Hence Eg. (4.1) can be written as
ss(AT,v) = (T4 - wTTrTE - v)
= (AT)Tp7ATA - 2vTp ATy
+ v~y (4.2)
Let us partition AT and v as follows:
T
i el
AT = 5 ; voo= E
AT J Y
s
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Hence

(AT T~ AT)

t

Also

and

v'D

106

atap~ Ao

_d...:l'_. O LI )

1

0 é; .o
2




Hence Eq. (4.2) becomes

S S T

ALu

T - 1 T~ 2 Vilts )
s = 30 A () -2 Y

i=1 i=1 1
S. vi
+ E 3 (4.3)
i=1 *
Now if we test H : ATu =0 , ‘then Ea. (4.3) reduces
to
S 2
T _ 1 (,T~
ss(at,0) = Y- S (kiu) (4. 1)
i=1 ¢

We shall denote SS(AT,O) by SS(AT). Since we normally
test hypotheses of the form HO: ATu = Q0 ,  the
remainder of this chapter will give results only for

this case. The other case, while not difficult to

obtain, involves rather lengthy algebraic expressions.

Let us now find the expected values, variances and

covariances of the sum of squares which is given by

Eq. (4.4).
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b,1 Expectations, Variances and Covariances of

Sums of Squares

The following theorem provides us the moments for

ss(AT).

Theorem 4.2 — Let

S ~\2
ss(aT) = - Aiiu
1 N dll
1=1
and
s R
T ,2 kg u)2
(1) - 3
2 G
j=1
where u ~ N(u,R) , then
Sl X
» T _ 1 T A
(1) E[ss(Al)] = Z — E,:Aliu:]
- 1i
j=1
S

et
il
et
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2
i=1 “1i
S
' 1 T 2 T » 2
+ 2 }E: E dlidlk Cov [(Al u) ,(Xlku) ]
i < k
or
Sl )
T - E : 1 T
V[SS(Al)] = 53— [2(Al RAl )
i=1 “1i
T T
+
Hu A1911“1911“]
S
2{: ' :E: 1 2 (r a\?
+ 2 dl'dlk Cov [(Xl u) ,(Alku) ]
i < k *
(1i1) Cov [ss(Af), ss(Ag)]
S S .
- - 1 1 7 A\2 7 )2
= }E: :i: dl' E;T Cov [(Aliu> 3(12ju> ]
i=1 j=1 -+ *J

2 2] 2
. T oA T A _ T
(iv) Cov [(Xliu) ,(Azju) } = 2(kliRX2j)
T

T T
+ Lu AszZijlixliu
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Proof — The proof of this theorem relies on repeated

application of Theorem 1.8. Now we have that

E [ss (AT \}
1y
From part (i) of Theorem 1.8, we see that

2
T A T
E[kliu} E[u A Xl u]

T T
Trace[ﬁklixli] + u A Allu

i
o
= |
'_l-
=i
>
g
P
<
— )
N

It

Trace[kT.RX,.] + uTA .XT u
1i7714i

1i1i
_ T T T
= kliRkliv+ utklikliu
Hence part (i) is established.
Now s
1
1 12
V[ss( )] 3 4 [ ] v C
ic1 %14
whefe
s
! 1 T 2 T A 2
c = 2 E E 3 dlk Cov [(Allu) ,(Xlku) ]
i < k 11
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Again by Theorem 1.8, part (ii), we have that

2
T A
V(Aliu)

2
T T T T
2 Trace Rxlixli] + Uy AlixliRklikliu

1l

-

-

_ - T .7
= 2 TLacehﬁklixlinlixli]

TR)\ T

T
*HUTA A RA A

- T T
= 2 Trace[kliRAliAlinli]

TR)\ T

T
+
Huh A gRA A0

2
N T T T T
- 2(A11RX11) *AUTA AR A
The expression for C will be given later. Hence
part (ii) is established. Now part (iii) is established
by the linear property of covariance. By Theofem 1.8,
part (iii), we see that

2 2
T - T ~
Cov [(Xliu) ,(iju) ]

T T
2 Trace(Rxlix;iszjkzj]

T T T
+ bu KlixliRAZjAZju

_ T T
= 2 Trace[AZijlikszkli]

, T, ,T T
+ Lu AlikliRAZjXZju
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a2 2 2
T T 2 i T
Cov {(lliu) ,(xzju) ] = 2(x2ij;i)

T T T
+ lu AlikliRX A

257254

Hence part (iv) is established. Now C 1in part (ii)

is seen to be

2
2 : :E: T T T T
2 dll " [2(AlkRX1i) + bu Aliklinlkllku]

Hence the theorem is proved.

Let us discuss some of the computation aspects of

~ _ _ T
Theorem 4.2, Let by = RAyyo sz = szj, £, WAy,

and £, = uta 5 These quantities are needed for
| E[ss (A’i)]and E[SS (Ag)], that is

1

E[SS( )] d { il 11 T fii]z

i=1

0

But now we see that these quantit%es are needed for

v[ss (A{)] , that is

| 1
| 2
\| _ 1 T
V[SS(Al)] - 5‘2"’ [2(>‘1ibli> * ”f kllbll}
, i=1 T1i
Sl ,
1 T T
ik Z Zd i [Z(Aliblk) * ufljflk)‘liblk]
1 < K 1i71lk J
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and
s s

Cov [SS(AT),SS(Ag)] - }i:

i=1

N

2
T
2(A .b ,)
et dll 23 [ 1i~ 29

[N

+ Mf fzjkl 2j}

Once the expectations are found, the effort to find the

variances and covariances is minimal.

Before returning to the analysis of the mixed
model, let us note that in the completely fixed model,

there is no need to find E[éS(Af)] and V[SS(A?)] by

Theorem 4,2 because SS(A?)/sl is a noncentral chi-
square and the moments can be expressed in terms of the

noncentrality parameter.
From Eq. (2.9), we see that
i = u+ a@™ %%

Now we will assume a structure on the uij , that is

we will write Y = Xu + e subject to 8%u = 0 where

kl 1'{2

u = Ua, + V.b, (4.5)
ZE: i'i }E: i3
1=1 i=1
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and where

Ui is a pXxs, matn}x assoclated with o,

o is an siX1 constant vector
V. 1s a pxsj matrix associated with bj

bj is an stI random vector such that

57 -
bj ~ N(O,cb_I/
J
2
e ~ N(0,0°T)

e, bj and bjl for J # j' are mutually

independent.

Now we see that

=1

k2
U.o, + z Vb, + AxTx) " x%e
i1 J 3]

j=1

I\g

Hence
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1

k:l

E U,o,
i~i

i=1

i

viual

k2
Z ;'vjvgci + AxXTx) " 1aTo?
j=1 )



Let us now show that SS(AT) and 62 are inde-

pendent where

~2 (Y - x)T(y - x0)
6]
n-p+mr

eTWe
n-p-+r
Topy~1,T ,
where W =1 - XA(X"X) "X* . Now we know that
q4-u-= A(XTX)—lee . Let z = We . Hence u-u and =z
are independent since W A(X'X) 1xT = 0 . Thus

Cov [U - u, z] = 0 . But
Cov [0 - u, zJ] = Cov [ﬁ,z] - Cov [u,z]"

But Cov [u,z] = Cov [u,We] = Cov [u,elW = 0 since we
are assuming by the structure of u that u and e

are independent. Hence Cov [u,z] = 0 . But U and

Z are both normal, hence 4 and z are independent.
Hence SS(A?) and 62 are 1ndependent. This fact will
be useful when we are finding variances of the estimates
of components of variance. This results says that the
sum of squares associated with. Ho: _ATu = 0 dis inde-

~2

pendent of ¢~ no matter if the model 1s fixed or

random, or if we have a balanced or unbalanced design.
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At this point, there are sufficient tools to find
estimates of components of variance and the variance of
these estimates. This can be done by using Theorem 4.2
and assuming the proper structure on u , that is u

has a structure as given by Eq. (4.5).

In order to provide a better understanding of
these concepts, we shall consider a number of specific
examples.

4,2 Mixed Model Examples
4,2.1 The One-Way Classification

For this model, we assume

L. = u, + e,. i=1,°°- a + 1;
yl:] i lj 3 QaJ 3

J = 1,000.m;

i}

where u, = y + b, and b, ~ N\O,oz) . In terms of
i i i b ‘

Eq. (4.5), we have that u = y1 + Vb . Now suppose

we wish to estimate Ui . We begfn by assuming a com-

‘pletely fixed model. Let us test HO: u, =u,
. T 1 (,Tn)\2

Then SS(A7) = E:ET; (Aiu) . But now from Eg. (2.9),

we know that

4 = yl + Vb o+ A(xTx) " 1xTe
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Now for the one-way classification, we know that
V1 =1 and A = I , hence

4 = yl+ b+ (x7x) xTe

Thus E[ﬁ] =yl , and

v[al = T - ol + o?(xTO)7H
Therefore, we see by Theorem 4.2 that
a
T _ 1 T 2,,T 2
sssa™] = 30 & (WImy + v2aT) )
i=1 * ﬁ
But lTki = 0 since we are testing
Hot Wy 5wy =t = U, = Uy

Also we see that

ATRA, = o2aTa, + AT o

i i b i i i

_ 2 2

= Gbi+ dic

since AT(XTX)_lA = D . Therefore
a

Tyq o_ .2, 2 :E: 1

E[SS(A")] = ac® + oy e

(4.6)
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Now let

a
- i
Ko = EE: a;
i=1.
Let us use 32 from Theorem 2.2 as an estimate of
02 . Hence an unbiased estimate of Gé is
T ~2
Uf) = SS(A lz: - 80 (u..])
0
Now
v[&i] = [V[SS(AT)] + av(3?)

_ 2a Cov [ss(AT),Szj]/kg

and

viss(a®)] = Za: (—1-15 [2(;\'§in)2]

where
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and

ATRA, = 0
i3
Thus
a 2
viss(aTy] = 2 z | L [02 + d.cz}
2 b i
< 4d°
i=1 i
[ 2 a
= ole? SO Ly 06252 S L
= 20b2d2+20b0 Zd.
| i=1 T4 i=1 1
L 2 2 4
= 2_k10b + 2kocbo + aco ]
where '
a
_ 1
SURD D
i=1 i
a
- 1
ko = Za‘;‘
i=1 *
Now
~2
o]
hence
4
V(O'Z) - 20

(n - (a+ 1))
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Since SS(AT) and &2 are independent, we know that

cov [85(A"),56%1 = 0 . Thus

v[s?] - {2

2_4
4 2 2 4 2a”¢c 2
(klc + 2k00b0 + ao ) + (5= (5 ¥ lT)] ko

(4.8)

Let us now consider the special case where we have
an'equal number of observations from each population,
that is t observations per cell. In this case,

1

xTX = I and D = (XTx)7%! = £ I . Hence we see that

at

PT
o
1
M-
Q
- l*"
I

-
|1
-t

{x‘
[
i
M=
o
- NlH
0
V]
Cr
N

i=1
Thus
22 _ ss(AT) - ag?
b ' at
and
~21 _ 2 4 2 2 4
V[ob] = 2[%t cb + 2atcbc + aoc
2
a 4 2,2
+(n—(a+1))6]at
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4 2
(n - (a + 1))t%a

which is the classical result for the variance of 35‘

in the balanced case.

Now it is easy to see that Eq. (4.7) represents an

unbiased estimate for o2 for any AT such that

b
AT1 = 0 . Thus it is possible to generate an entire
class of unbiased estimates of oi . And Eq. (4.8) is

the general expression for the variance of such an esti-
mate. Now if ATy # 0 , then it would be necessary to
obtain an estimate of vy since E[SS(AT)] would contain
a Y . This does not pose any problem since Theorem 4.2

is completely general.

4,2.2 The Two-Way Classification Model Without

Interaction (Random)

For the moment, we will restrict ourselves to
finding estimates of thegcomponents of variance. We
will assume the model is Y = Xu + e subject to
6Tu = 0 , Wwhere éTu = 0 implies an additive model.

We will also assume that

u = vyl + Vla + V2b
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that is a ~N(O,o§) and b ~ N(O,Gi) and a, b, e
are independent. Rather than discuss a completely
general model, let us take a specific case and obtailn

results for it. Let us assume

= + + +
Y. Y a, bj e

ijk ijk

where i = 1,2,3, j = 1,2 and k = 1,*--,nij » Where

Ny = 2, My, =2, Ny =5, Ny =3, 03y =1, 0y, =5
Hence
T 1 -1 =1 1 0 0
B ’u = u = 0
1 =1 0O 0 -1 1
1 0 0] 1 0|
1 0 0 0 1
0 1 O 1 0
V = vV =
1 0 1 0 2 0o 1
0 0 1 1 0
0 0 1 0 1
L - . —

Suppose we wish to test (1) H_ : u,, g 3e

Let A denote the appro-

and (2) Ho: u,, = 1

u,,
priate.hypothesis for (1), and A2 denote the appro-

priate hypothesis for (2).
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Now
A(xTx) 14T

317
,1826
. 0506

~.0813
.1124

i} 0225

and

2074

.1826
3174
~.0506
.0843
~.1124
.0225

L2074

.0506
-.0506
.1629
.0618
.0843
-.0169

-.5703

.0843
.0843
.0618
.2303
L1404
.0281

~-.5703

L1124
-.1124

.0843

-.1404

.3539
.1292

.3629

-.0225
.0225
-.0169
.0281
.1292

L1742

.3629

.5388 .5388 -,0898 -.0898 -~.4h490 . Lk49O

T .4o83[

-
i

and

1 -1 1

-1 1

T, (vTyy=1,T
AlA(X X) "A Al

T T -1,T
AZA(X X) "A k,

Thus

"~
u =

Y1 + Via + Vb + A(x"x

it

-1]

Yy 1xTe
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and

E[0] = +v1
Al T 2 T 2 Toy=1,T 2
v[ul = V,Viol + V, Vool + A(X'X) "ATe
and
T ~ T LT 2 2
All[V[u]]All = Allvlvlkllca + dllc
T A LT T 2 2
AoLVLullry, = >‘12T\kr1V,17‘12(’a +4,,0
T T T 2 2
A LVIuldn, = A5 Vo VoA, 0, + dy00
Let
bT AT Y 2[.2074 -.5703 .3629]
11 1171 . . .
pT_ = ATy 2[.5388 -.0989 -.4L90]
12 121 . . .
T T -
b21 k21v2 3[.4083 -.4083]
and
T - T Tyy=1,T _ 5 :
£, = A, ACX)TTAT = [.4046 -.Lok6 .3035

~.5056
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Thus from Theorem 4.2, we see that

T 1 T 2 2
E[SS(Al)] = [bllblloa +d, 0 ]
11
1 [, 2 2
3 [b12b120a+d12°}
12
T T
bT. b bT b
_ 2 él 11, é2 12|, 5.2
ar %11 12
_ 2 2 2 2
= 2062 + (6 + 4.45)02 = 20° + 10.4502
and
T T
bl b
T 21°21 2 2 _ 3 2
E[SS(AZ)] - Td ] b T O 065 % T O
2 2
= ¢g° + 7.4170b
and

<3
n
|45
——
-
= oH
i
ad
1
i |
N
—
———
L O-‘
= +3
-
(o3
(=
ot
Q
[V 8]
+
Q
(™=
-
Q
3]
e
381
| OR—

4
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b..Db b-.b
v[ss(Ai)] = kot 42|22 ) + |22
\ Y11 12
T
. b11P32) 4
d..4d Ga
11712
T T
b..b b..b
+ 1 él 11, éz 12(,2,2
11 12 a
B 4 2 2 .000018) 2
= log™ + 2(6 + (4.45)° + 5%,
+ M(lO.MS)ozoz
= Lg* 4 111.602 + 41.800202
2
T T
b_.b b .Db
_ 4 21°21) 2 2 21°21
V[SS(Az)] = 20 +L¢——————-———d g, 0 +2-———-————d o

21 21

= 20% + A(7.417)ci02 + 2(7.417)%%

4

= 20% + 29.660@02 + 110.020§
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and

1 T 2\2
Cov [SS(AT),SS(AT)] - 2|(5 20100 ) ]
1 2 dlld?.l 21 11
1. .2 ( T 2)2
S
d12 d2l 2112

d11d21 : d12d21
= 20%(.9938) = 1.988¢%
Now
F )]
22 _ 1 -2 7|55 \M
a 10.45 10.45 82
_ o\
52 - 1l -1 SS(Al)
b T.417 7.017 ~2
s ~2 4 . ~2
and since V(¢®) = ¢ /7 , the variances of o) and

3; can be easily found. Let us now outline the pro-
cedure for finding estimates of 02 and ci for

arbitrary hypothesis. Suipose we have Ai and Ag .
Then
T _ 2 2 2
E[SS(Al)] = klo + kzca + k30b
T _ 2 2 2
E[SS(AZ)] = k4c + ksoa + kscb
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Now if we set

(&, k, k] (2] ss(Ai) ]
k, k, k|o2| = SS(Ag)
|1 0 o | fi_ Besidual_
Then
[52] k, K, k;*l—ssﬁz)_
o?l = |k, k Kk Ss (Ag)
f;— 1 0 o0 Residual|

and the covariance matrix of the estimates can be

T T
1)’ SS(AZ) and

residual. The values of ki and the covariance matrix

found from the covariance matrix of SS(A

of the sums of squares can be obtained by Theorem 4.2,
Let us observe that o? does not have to be estimated
by residual. Such an estimate, however, has many
desirable properties, i.e., central chi-square, unbiased

and so on.

i
W

k.2.3 The Two-Way Classification Without Interaction

(Mixed)

Let us now assume that
u = yl+Ug@a+Vhb (4.9)
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where vy, a, U v b are as defined above. Before

1’ 1°
we analyze this model, let us consider the idea of com-

bining unbiased estimates. Suppose tist0,t  are

unbiased estimates of 6 and that V is the covari-

ance matrix of the ti's. We would like to find a set

of a.'s sudh that E:a.t. is an unbiased estimate of. 6
1 1 1

and V(z:aiti> is a minimum. Let t% = (t,, e, b))

T

and a~ = (al, LI an) , then the problem is to mini-~

mize a'Va subject to E(2a"t] = 8 or subject to
aTR = 1 where & 1is a vector of all ones. The choice

of a , as given by Theorem 1.13, is

. = V12
LTy 1g

Now suppose V 1is unknown. If we can estimate V ,

say by V , so that V and t are uncorrelated, then

T, _ 3Ty it
a’t = —=—— 1s an unbiased estimate of 6 since
To—1
LIV TR
FTA-l— TH-1
Ela"t] = E[2T——|elt] = E|: 1|10
LV 74 LV 2
r'A 7
2 Tv iy
R P vy L
LV 7L

The merits of such an estimate will not be discussed

here.
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Let us now analyze the u structure as given by
Eq. (2.9). 1In order to obtain estimates of 05 and
02 , We can use the procedure outlined above. The
interest now is in estimates of the constants. For

example, suppose we wanted to find an unbiased estimate

of a,-o, in the "B" model. There are two methods by

1 2
which we can do this. First, find xf so that
T. _ T T T - _ .
klu = Yxll + klUla + Alvlb o a, and then use
A?ﬁ as an estimate. Second, find a Ag s0 that

E[Aga] = ul - a, and use Agﬁ as an estimate. The

difference between the two methods is the followilng:

Tn the first case, xiﬁ = a, - o, + LAXX)T'x"e and
E[Aiﬁ] =0y -0, while in the second case
T~ T T Tyy=1,T
kzu = 0; - oo, * szlb + AZA(X X) "X"e , and
E[ATG = o, -a, + AV(E(D)) = a. - a
2 1 2 2 1 2
since E(b) = 0 . Thus in the second case,
T T~ _ _ L TA
Azu # a; - o, but E[Azu] = a, a, - Hence Alu
and Agﬁ are two estimates of a.-a,. Let us consider

1 72
the following set. ‘

Let § = {A/XTUla = a, - o, and yATl = 0} then if

AieS,

T A _ T T Toy=1,T
E[A.u] = E[(al - az) + xivlb + AiA(X X)X e]
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Now

_ T 2 2
V(A.u) = (xivllei)ob + dio

If we can estimate Ug and 02 so that Azﬁ is uncor-

related with 85 or ~32 s, then we can obtain an esti-

mate as described above. For illustration let us
consider the same example as described in Section 4.2.2,.

Now one choice for Ai would be

T

M

(L 0 -1 0 0 0]

and XT could be

2
T
Az = 1 0 0 =1 0 0]
Now
TA T o oToy=1yT
Alu = o, -a,+ AlA(X X) "X'e
and
TA T ,oToy=1,T
Azu = 0, - 0, + bl - b2 + AZA(X X) Xe
and we see that E|AT4] . E[ATG] = a. - o And
"1 2 1 2
R . 2
Vtklu‘ = dlc
[, T~ _ 2
V‘qud = 20 + dzc
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and

Ta Tal _ (T, uTyy=1,T 2 _ 2
Cov (Alu, Azu) = AlA(X X) A A0 = co
Let
sz _ (¥ - x)T(Y - xu)
n-p+r

It has been shown that 1 and hence A U is independent

of G2 . Now let AT ve any hypothesis such that

AT1 = 0 and ATUl =0, then

S T T
sTv_vTs .
E[SS(aT)] = 3113152 4 gq2
3 b
j=1 ’
Now
~2 _ ss(aT) - so?
b K
where
5. 6%v.vTs,
k = e
=1 3

Now if Aies, then Xfﬁ and 3; are uncorrelated. This

can be seen from the following:

2
TA ~2 Z(6§u)/dj - 8(72
Cov [xiu, o T

] = Cov A?ﬁ,
1
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or g S pa U 8,820
Cov [Kiu, Ub] = E Cov Aiu, ——E%El—
i=1 ]

S [, T~ 22
n Cov Aiu, o ],

-

But Cov [Agﬁ, A] = 0 and by Theorem 1.12

Cov [x?ﬁ, GTa.s?ﬁ] = 22Tvs,sTu
1 1 1 i 1 1
where u = E[4] = y1 + U,o . But Giu = 0 . Hence
Cov [ATG, GTG.S?G] = 0 . Hence Cov (X?ﬁ, 82) =0
i i i i ? b
Now set
~ d 32 032
VA !
~ 2 ~2 ~2
co Zob + dzc
and
2Ty 1y
then A
ATu
Tl
a
TI\
% Azu
is an unbiased estimate of 0y =0,. The choice of AT
and Af, Ag and so on will not be discussed here. Let

us note that this technique is used by many authors

when analyzing the Balanced Incomplete Block Design
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when treatments are fixed and blocks are considered

random. For this design, they usually choose AT and

1
Ag to represent the so-called interblock and intrablock
estimates. Also they choose AT so that AT repre-

sents the hypothesis of treatments adjusted for blocks.

In other words, they use tl =q,, - G.,. as one
ij i'j
estimate of O =0,y The other estimate they use is
=10' - 1! a! = -
t, =uj, -ul,, where uj, %:nijy.j./(r A) . Now

due to the construction of the BIB design, Ei.—ﬁg,_ is

independent of 4,.-U,,.. The estimate of o2 is
i3 "1i'j3 b
obtained by testing H : Ugjg = Uiy s and calculating
the estimate of ci in the usual manner. Their esti-
mate of ao,~0,, is
' 1 1
t = altl + a2t2
where
21l _ [vT's
TH-1
a, 27V 7R

”~

and where V 1is a diagonal matrix with elements that

are functions of 82 and Ei . Néte that this pro-

cedure is merely a special case of the procedure
described above, that is the hypotheses Ki ‘and kg

associated with u,.-u,,. and u! -u!,. are elements of
ij "i'j is Tite

S and AT1 =0 and ATUla = 0 . Since we are not
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restricting the estimates of 0, =0, , to be independent, -
it is possible to obtain other unbiased estimates than
those usually suggested by most authors. A numerical

example will be given in Chapter 6.

4,2.4 Point Estimation in the General Mixed Model

In the previous section, we restricted our discus-
sion to the two-way classification without interaction.
The methods described there are completely general and
can be extended to other models. In this section, we
shall consider a general.mixed model and discuss
another procedure for estimating ATu. Let Y = Xu + e
subject to 6Tu = 0 . Now suppose e ~ N(O,V) . If

V is known, then the B.L.U.E. of u is given by

=3

= [T - x™v i) teeT(xTv x)"te) Lot xTv 1x17?t

X'V Yy

Hence the B.L.U.E. of ATu is given by A'W. 1In most
cases V dis not known. When this happens it is possible
to replace V by V , an estimate of V . If we want

”~

A
u to remain unbiased, we can choose V so that V
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and e are uncorrelated, that is suppose we replace

by V , then

T = [T - X 0 e(eT(x™v 1x)"1e) 1eT]
(X% %1717 xu + el
or u¥ = u + A¥e where
A% = [T - (Xl Lo (6T (X 1x) " Le) " Lo
[XT{}— 1y —1XT{}— 1
Now if 9 and e are uncorrelated, then

E[A*e] = E[A*]E[e] = E[A*¥] « O

i
o

Thus E[u*] = u . An example of this approach is

given in Chapter 6.
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CHAPTER 5. OTHER TOPICS
5.0 Preliminaries

In this chapter, we shall consider other topics
related to the analysis of linear models. These topics
include regression, covariance, and a discussion of
tests for main effects and interactions. A section on

the construction of eT also 1s included.
5.1 Regression

The "u" model as defined in Chapter 2 is the clas-
sical design model. We could have started with the
general regression model and then observed that the
"u" model is a special case; however, since we wanted
to emphasize the use of the "u" model in experimental
design, we chose to start with the "u" model as
defined in Chapter 2. We shall now define the general

regression model.

Let e ~ N(O,GZI) énd let Y = Xu + e subject
to 6°u = 0 . We no longer consider uij as the
mean of the (ij)th population and XX is not generally
diagonal. Likewise, u¥ = xTx) %%y is no longer

the "cell" means. The theory developed in Chapter 2
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is completely general, and by changing the inter-
pretation of wu, a, u¥, and X , we can use the
results developed there. The classical regression

equation is
Y = Xu + e

Usually, there are no restrictions placed on the
parameters. Hence we see that 4 = (XTX)—lXTY . If

Ho: ATy = § then

(aT0 - e (T T T - ]

~2
SO
where
c2 YOI - x(xTo) Ty
n-p+r

These are all well-known results.

If there are restrictions placed on the param-

. T N2
eters, that is 6~ # 0 , then u, ¢

and F can be
found by the fechniques described in Chapter 2. Since
the analysis of these models is weil known, they will

not be discussed further.
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5.2 Covariance Model

In this section, we will consider a special case

of the regression model, that is

m
. = u,, + Z, . + e,
Yijk ij ZBP ijkp eljk
p=1

subject to 67u

i

0 . Or in matrix notation, we have
Y = Xu+ ZB + e (5.1)

subject to 6°u = 0 where

X 1is the nxp design matrix of rank p
u 1is the vector of uij
Z dis the nxm matrix associated with B

B is the vector of covariates

¢

~ N(O,Uzl).

Let us consider the density of Y

n

paoch

f(y;u,B,Gz) = (2m0?) ?

2

« EXP {_ (Y - Xu - 78)T(Y - Xu - ZB)}
20

subject to 6 u = 0 . We will find maximum likelihood

2 . -
estimates of u, B, o . As 1is customary, we maximize
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it

In £(y3u,8,0°) = -3

1n (2w02)

(Y - Xu - 78)"(Y - Xu - Z8)

20
subject to 6Tu = o . The Lagrangian function is
T
< 2
20
T,T
26°67u
* 2
o}
3L _ _ on (Y -Xu-78)"(Y - Xu - 78)
502 202 20"
T,T
2678 u  _
- 7 = 0
o
3L _ 2(-XTY + (X"X)u + xT7g + 08) _
au 202
oL _ 2(-2"v + (z"2)g + z2"xu) 0
a8 552
3L _ 207u _
Wl — = 0
36 o]

Now from (1) and (4) we get

~2 _ [¥-x2-281"y - x0 - zg]
n

From (2), we see that

a = @I %y - xTx)"xTzR + 687
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But from (4) we see that 674 = 0 hence

0 = 870 = ot (xTx) Ty - oT(xTx) xTz8

- (6T xTx)"te)s

or
§ = (6T@xTx) tey teTr(xTx) " xTy - (xTx) tx"zR]
Hence
o= @™y - xTx) THxTzE)
- xT)tereT(x™x)"te1 e T (xTx) "Xx Ty
- T tereT(x™x) o1 e T(x™x) "1k Tz
= [1 - &™) teeTx™x) te) teTIux
-1 - (xXTx) " te(eT(xTx) te) LTy
where
u¥ = (XTx) " xTy
vt o= (xTx)"txTzB
Let Y
A o= [I- x™) te(eT(xTx) te) o]
then
4 = Afu¥ - y¥] (5.2)
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Now from (3), we see that

(z'z)8 = zTy - z™xd
= 27y - zTxALu* - y¥]
= 27y - z%xau* + z%xa(x®x) " xTzp
or
(277 - z2Txa(xTx0)"%xTz18 = 2%y - z%xa(xTx) Ty
= 72701 - xaxTx) "%y
or
72701 - xa(xTx) %128 = z7r1 - xaxXTx) XTIy
or
B = [2%(1 - xa@™x) " xTyz17 271 - xax™x) "%y
(5.3)
Now let
s2 _ [Y -xa -nzﬁjztz ;gXﬁ - 78] (5.4)

By following similar arguments as in Chapter 2,

~ A A2 R . .
we can show that u, B, o are minimum variance
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unbiased estimates. Now suppose we wish to test

H_: ATR = 0 . Then

ss(a®) = (ATé)T[iifzgl]-l(ATé)
Now
v(aTR) = a"v(R)a
and
V(B) = [27(T - xa@x™x) *xT)z1 162
Now let us consider V(u).
V(a) = A[V(u*) + V(y*) - 2 Cov (u*,y*)JaT
Now
v(ur) = o(xT)7?
viyt) = B0 Mx%zv(3)z xxTx) L

~-1,T

Cov (u¥*,y#*)

= xTx)"ix T[cOv (v,8) 12 x xx) 7t

-lT

= @)™ - xxTo) ATyt

- zv()zt(xTx)?

= [T %T - (xTx)"1aTxT1zv(B)

- z2T(xTx)"t

cov [(xTx) *xTy, (xTx) 1xTz3]

(5.5)
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But
AlCov (u*,y*)1aT = [ax™x) %% - ax™x)ta™x"]
« Zv(B)zT(xTx)"taT

[AxT0) 7T - a0 T 12v(8)

H

o zTxTx)"1a®

Thus

—-12

v = AXTX) + AxTx) " xTzv (B2 x (xTx) Ao

Now suppose we wish to test Ho: Afu = 0 , then
T o~ (AT (v (@) M RN
SS(AY) = (A"u)"|= 5 (A7u) (5.6)
o

Therefore Eq's. (5.5) and (5.6) provide us with direct
tests of hypothesis for testing H_: ATg = 0 and

Ho: ATu = 0 respectively.
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Let us consider the following example taken from

Ostle [247.

Gains in Weight (Y) and Initial Weights (X) of

Pigs in a Feeding Trial

Treatment

24 * 180
31 | 169

20 1 171
26 i 161
20 | 180
25 { 170

Total 160 {939 | 146 {1031

The model is

Now A =T, (X'X)=6I , Z'X=[160 146 195 202]

Hence

% T T
271 - xa(x"x) "%z = 2% - LXK Z)

21319 - 20957.5 = 361.5
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and

271 - xa(x™0) Ty = 2Ty - EREY)

120253 - 119756.17

= -496.83
Thus . 8 3,%%%%%§ = 1.374 and V(é) = 02(361.5)"1 .
Therefore, 1f we test H : B =0, then |
SS(B) = 361.5(1.374)2 = 682.5.
Now
4 = A(u* - y¥)
S 2 1 ,Ty7%
= Y - E-X 7B
1 156.50 160
5= |171.83) _ %_146 (1.374)
167.50 195
183.00 202
or
(119.85
- 138.39
122,83
1136.73
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Suppose we wished to test HO u, =u, =
Ho: ATu = (J where
-1 0
AT = 0 -1
0 -1
Now
2.13 1.79 2.40 2.48
V(ﬁ) - 1.79 1.81 2.19 2.27
2.00 2.19 3.09 3.03
2.48 2.27 3.03 3.30
Hence
T oo [ATV()ATTY e
S8(A7) = (A'w) [————2——] LA u]
o

This concludes the discussion of covariance.

=

1609.6

Eq's. (5.2), (5.3), (5.4), (5.5), (5.6) provide the

information necessary to analyze a general covariance

model as described by Eq. (5.1).

In this section, we consider two methods of

constructing

5.3 The Corstruction of 6

6

T

T

The first uses Theorem 3.0, that
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is, 1f we are given the "B" model Y = XPR + e , then

we choose eT so0 that
(1) o¥p =0

(2) rank(6T) = rank(X) - rank(XP)

This can be done by finding the linearly independent
rows of I-PP'. However, this requires computing p* s

which can be time consuming if P is a "large" matrix.

The second approach can be used for most of the
classical experimental design models. Here we must
know the functional form of 6 u. For example, in the
two-way without interaction we know that the u,

must satisfy

for all i, i, j, j*'

We will now give rules for finding 6T for the
two-way classification without interaction, and the
three~way classification with intéraction. First, we
will assume no missing cells and then consider the case

when there are missing cells.
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5.3.1 The Two-Way Classification Without Interaction

Let us consider the following model.

ject to u,, -u,,, -u,., +u,,., =0 for all
ij i i 3

i, i'y, 3, 3" .
We can generate 8T in the following manner.
(1) Write Upg = Upp = Uy + U
(2) Let J wvary from 2 to 4 with I = 2 .
(3¥ Let J vary from 2 to 4 with I =3 .

(b) Let J wvary from 2 to 4 with I = 4 .

(5) Let J vary from 2 to 4 with I=5.

In computer notation, we would have

Ll = 1
L2 = 1

DO1 I = 2,5
DO 1, J = 2,4

WRITE (6,30) L1,L2,I,L1,L2,J,I,J
1 CONTINUE

30 FORMAT (1H , 4(2I3,2X))
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This would print out the indices of the uij's. For

instance, the output would look like

11
11
11
11
11
11
11
11
11
11
11
11

21
21
21

31

31
31
41
41
41
51
51
51

12
13
14
12
13
14
12
13
14
12
13
14

Thus, the first row of 6 u is~

u

the second row is u

80 On.

rank(8%) = 15

11

- Uu

21

11
This is a linearly indepéndent set

o

+ u

12

21 — ¥

as 1t should.

22
23
24
32
33
34
42
43
by
52
53
54

+ u

23

(YY)

0 , and

"such that -

5.3.2 The Three-Way Classification Without Inter-

action

Suppose oupr model 1is
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i:l’oc-,a;j =

subject to no two-way interactions and

interactions.

This means

1,°°%,e; & = 1

uij' - ul'j' uij" ui'j"
u'jk - u.Jlk u.jkl u‘j'k'
Uieg 7 Yirex ~ Yy T Yyaag
- - +
Yigk 7 %ivgx T Yigrx T Yigx
- u, .
Uigrr 7 Biegke 1§k
_uiljlk| =
for all i, i', j, J', k, k!

’opo,n

no three-way

0 (1)
0 (2)
0 (3)
0 4)

ijk

To generate a linearly independent set satisfying

(1), we use

- - +
ull' u u u

and let I = 2,+**¢,a , and J =
manner as in Section 5.3.12

be obtained by using

- - +
U,y ~ U, - U u

and letting J =

2,%**,b

in the same

A set satisfying (2) can
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For (3) we use

for I = 2,¢**,a; J = 2,*2+,b; K= 2,*++,c . We must
fix I and J and then let K wvary. In computer

notation, we have a nested "do-loop."

For example, suppose

The set representing no (I,J) interaction is

Urie T Upp. T Upp. P Uy =00
Uppe = Uppe T Ypz. T Uy, =00
Upge ~ Uzp. T Upp. T Uz, =00
Upre T Uzp. T Wp3. Tz =00

The sets representing no (J,K) and no (I,K) inter- .

actions can be obtained in an analogous manner.
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The set representing no (I,J,K)

interaction is

221
~Upyp, = O
Y21
Uy, = 0
Y31
Uy, =0
Us31
—U,33 = 0
Usa1
Uz, =0
U3z1
~ U,y = 0
U331
— U3, = O
U331
- Uzzy = O
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T

Thus, for this example 6~ is a (20x27) matrix of

rank 20.
5.3.3 Split Plot

As shown in Chapter 3, we can consider this as
a three-way classification with no (J,K) and no (I,J,K)

interaction. Thus the model would be

= +
Yis5x Yiik T Ci5x
subject to
u - U,.,p - Y, .o, *tu .,., = 0
*jk *i'k *jk *J'k
- - +
Yigk 7 Yirgk T Yigrk T Yivgx

- u, ., + +
ulet ui-'j'k' uij'k'

- ‘ui'j gt

for all 1, i', j, J*, k, k' . We construct 6" by

finding the linearly independent set for no (J,K)

interaction and the set for no (I,J,K) interaction.
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5.3.4 Missing Cells

The procedure for constructing 6T when there

are missing cells 1is as follows.

(1) Construct 67 as though no cells were

missing.

(2) Eliminate the uij‘s that do not exist in the

model.

Consider this example; vy

1t
[
[0

. . .. + e.. , where
1] 1] ij

i=1,2,3; 3 =1,2,3, and k

i

O,l,.no,nij

J
1 1 2 3
1 X X
2 X X X
3 X X X
In other words, u,, is not in our model. Suppose

the constraints are no (I,J) interaction. Now we

write
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and generate

11

Uy ~

U3n ™

U1 ~

Now we subtract (3)

31

Now

31

U1 ~

Y11 -

21

o1

Uszg

Ui

32

21

u

Usq

21

(1)

(2)

(3)

()

are a set of linearly independent constraints which

span the set of possible constraints.

8Tu to be the above three equati&ns.
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5.3.5 Balanced Incomplete Block

As shown in Chapter 3, we can consider this as
a two-way classification without interaction and with

missing cells. .For example: yij = uij + eij sub-

ject to no (I,J) interaction. Suppose we observed

! 1 2 3
i
1 X X
2 X X
3 X X
that is Ugps U,y and u,; are not in the model.

Again we write the constraints as though there

were no missing cells, that is

U1 — Y21 ~ Wy T Yy T (1)
U1 7 Uy 7 U3 T U3 (2)
Y11 7 Y31 T Y12 T Y32 (3)
Uyg — UY3p 7 Yy3 T U3z (4)
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We must eliminate u

95 and u from the above

312 Y2 13
equations. We subtract (4) from (3) and obtain

Upz = Uy ~ Ugg t U, =0 (5)
Subtracting (2) from (1) we obtain
-u +u - u + u = 0 (6)

12 13 23 22

Subtracting (6) from (5) we have

or

Substituting u into (1) we have

22
Ujp = Upp — Uy P U, m Uyt u,, = 0
Thus
eTu = 1 - u - u + u u + u
11 21 ~ Y12 32 33 23

5.3.6 Latin Square

The Latin Square can be considered as a three-
way classification with no interactions and with

missing cells.
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Suppose we observe

Column
1 2 3
L Y111 Y122 Y133
Row 2 Y12 Y223 Y231
3 Y313 Y321 Y332

Here we have a 3x3 Latin Square. We can considér

9 - + K3
the model as yijk uijk eijk subject to no

interactions where i = 1,2,3; J = 1,2,3; and

k = O,l,2,nij . Let us first write 6T if we had
no missing cells. Now 8T can be constructed by
using the results of Section 5.3.2. We would then

eliminate all the ui.

Jk?s except

Y112 Y1222 Y3133
Ug12s UYaa32 UYy339 Y3332 Y3312 UY33; The result of

this is

T 1 =1 0 o0 1 -1 -1 0 1
B 'u = u
1 0 -1 -1 1 0 0 <1 1

Naturally we would not uée,this approach if we had

no missing cells since standard computing formulas are

readlly available.
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5.4 Tests of Hypothesis

Previously, we have assumed we had the hypo-
thesis to be tested. There was no discussion about
whether tﬁéée“hypothesesfwefe abbropriate. Our
attitude ﬁas;beén‘tha£»if an experimenter came to
us with a model and wanted to fesﬁ a giveﬁ hypothesis,
say H_: ATW = 0, then we provided the correct
test. It was the experimenter's problem to decide
what he wanted to test. This attitude seems to con-
tradict most textbooks on applied statistics and

most computer programs that analyze linear models.

These textbooks and programs provide the reader
or user with one set of hypotheses that are to be
tested. They seem to say, "Here are the answers,
we hope you have asked the questions that correspond

to these answers."

Let us take a simple example. Suppose an
experimenter came to us with data taken in a com-
pletely randomized design infwhi;h he had three
"treatments." He knew before he ran the experiment
that the effects due to the "treatments" were not

equal. What he wanted to know was, "Is the effect
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of treatment 1 twice the effect of treatment 2 plus

treatment 37"

Now he runs his experiment, obtains the data,
and calls on the local statistician to analyze his
data, The statistician is overjoyed at having such
a simple textbook problem. In no time he gives the

experimenter the usual computer output:

Source of Variation af SS MS F
"Treatments™ a-1 XX XX r¥¥
Error n-a XX XX

As the statisticlan hands the output to tThe experi-
menter, he happily explains, "Your F value is
highly significant." The experimenter, seeing the
statistician is pleased about the significant F ,
also is pleased and leaves with great admiration for

the mystic powers of the statistician and his science.

Farfetched? Not at all; similar occurrences
happen daily. The statistfcian is given data and
asked to analyze it. He puts the data into one of
the "can" programs, gets the standard output, and
thinks he has done his job. This is fine as long as

he is in the simple balanced case. But things change
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when he tries to analyze data in the unbalanced case.
In the first place, the literature on analyzing such
data is quite confusing. This problem stems, possibly,
from trying to tie the aﬁalysis of iinear models to

the analysis of "main" effects and interactions.

For example, suppose we are given the following

table:

Source of Variation

A a~1
B b~-1
Error (a=1) (b-1)

It is customary to refer to A and B as main
effects. There would be general agreement on the

interpretation given to them. If we are given:

Source of Variation

A (a-1)

B (b-1)
AB ‘ (a=1) (b-1)
Error ab(r-1)

we still say A and B are main effects and AB is

interaction. Now the trouble begins. A number of
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texts indicate that "A" means that we are testing

HO: o: =0, 1 5 1,*e>,8a . They give this inter-

pretation to both of the previously given tables.

But then we read,

"In the presence of interaction, it is
rarely useful to ask about main effects

of either factor..... Despite questionable
meaning, mean squares for the main effects
are commonly reported even when IiInteraction
is present. This 1is a routine practice
which is open to criticism, but is almost
unavoidable."

One text defines the main effect A "as a measure
the change in the response variable to changes in t

level of the factor averaged over all levels of all

the other factors." But in the two-way model with
interaction, this same text indicates the test for
A implies testing HO: a, = e = . There is

no averaging here. Also the fact that we are in a

balanced case allows us to do things that are not

of

he

valid in the unbalanced case. For linstance, consider

the following two tables:

Source of

Variation af S8
A a-1 SSA
B (b-1) SSB
AB (a=1) (b-1) SSAB
Error ab(n-1) E
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and

Source of

Variation af S8
A a-1 SSA
B b-1 SSB
Error f abn-a-b+l E!

Note that one difference in the two tables is that

E!'! = E + SSAB and that SSA and SSB remain the same.
If we have unbalanced data, this 1s not frue. We
would get an SSA' and SSB' as well. In the unbalanced

case, what does SSA, SSB, SSA' and SSB' signify?

Suppose we are in the "missing" cell case and
the model is yijk = u + oy + Bj + aij + eijk . One
textbook says "it is now necessary to assume that
there are no empty cells, else the main effects are

not estimable..." Yet another text presents methods

to obtain the sum for "main" effects in this case.

This brings us to another point. Are the
restrictions placed on the para&éters (or random
variables) an integral part of the model or are
they used simply to help solve the normal equations?
Again, if we are in the balanced case, it really

makes little difference. But what about;theé
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unbalanced case! The use of z:ai = 0 rather
than z:n..a. = 0 can result in some very con-

13 1
fusing answers in the analysis of the two-way
interaction design. Also, if we are in the mixed
model, the expected values of the mean squares depend
upon whether we use the restrictions as an integral

part of the model.

Summing up, 1t seems that an analysis has been
developed for certain models in the balanced case.
This analysis was tied to the idea of main effects
and interactions. When other models were developed,
their analyses were forced to flow along lines
similar to the balanced models. Since the techniques,
concepts and interpretations were special to the
balanced case, they could not be carried over directly
to the unbalanced case. There is no need to tie the
analysis to one form. In fact, there is no reason
to think fthat experimenter A and experimenter B

want the same analysis to

#
k

yijk = 1u + ai + Yj + dij + eijk
It is absurd to think both men are interested in the

same hypotheses. Their analyses should depend upon
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the reasons for which they conducted their experi-
ments. Their experiments should have been designed

to answer certain questions.

Does this "u'-model approach free the statis-
tician from all responsibility in formulating the
hypothesis to be tested? Yes and no. The statis-
tician, in his role as consultant, will have to take
the objectives of his client and express them in
meaningful mathematical terms. As we all know, the
mere statement of the objectives is quife an accom-
plishment. Also, in certain models, the statistician -
can present hypotheses suggested by the model. For
example, suppose we had a 3x3 Latin Square with one
missing observation. Let us suppose Uiqg is mis~

sing. And suppose we would 1ike to suggest some

possible hypotheses to be tested.

1 2 3

A B C

1 Yy22 Uy33 Uy
B C A |

e Usi2 Y23 Ui31 Useo
C A B

3 U3ys Uso1 Uszz | Y3..
unl- u-z. u.3.
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Some possible hypotheses are

u u u
. 1o _ 2o _ Jes
(1) H,: >— = 3% = 3
u u u
. ] _ D - *3e
(2) Hy: —— = —3—= 3

(3) H: XU, + KU,  +Kiu, =0 where

2K, is not necessarily zero.

and so on.

Another example is the following two-way classi-

fication with interaction

1 2 3
1 Y1 Uy 3
2 Ya1 Uaa Uos
3 Uiy Uss
4 U1 Ugo

What are appropriate hypotheses for this model? The
first, of course, should be to see if the model is
additive. Suppose not, then what can we ask. We

could test the following:

H: u = u = U

o 11 21 a1
Hot Uy, = Uy, = Uy,
Hyt Uiy 5 Wy = Ugg
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Or we could use a test like the one suggested by
Elston and Bush [12]. Again, we should define the

purpose of the experiment and ask questions with

that in mind.

In conclusion, let us note that throughout
Chapter 3 we postponed the discussion of the "merits"
of various hypotheses to this section. Yet nowhere in
this section did we discuss the "merits" of these
hypotheses. The reason for this is that, while any of
the hypotheses that were posed are'legitimate,'their
value or merit depends upon the purpose of the experi-
ment. The researcher and the statistician have a
joint responsibility to pose meaningful hypotheses
that are to be tested. Finally it might be better if
we did not tie hypotheses to the idea of "main" effects

and interactions.
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CHAPTER 6. NUMERICAL EXAMPLES
6.0 Preliminaries

We will now consider several numerical examples.
These examples were run on the UNIVAC 1108 using a
program written in FORTRAN V. The program calculates
the sum of squares for H_: ATy = 0 ithhe'following

manner.

il
s

(1) AT 1is orthogonalized, that is AT A

where Hl is chosen so that
T - T, T _
A, = HlA AHl = I

All

(2) AT = H AT where H is chosen so that
2 2™ 2

T Tyy~1,T _ T To,y=1,T T
AZA(X X) A A, = szlA(X X) "A \H, = D
a
T _ T - 1l T 242
(3) 8s(rA™) = s(xz) = E T (Aziu)
i=1

This procedure is explained in detail in Chapter b,
Because of a lack of space, this chapter does not

consider all the intermediate steps needed to calcu-

late the sum of squares.
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6.1 The One-Way Classification

Consider the following example taken from

Ostle [24].

Storage Conditions

1 2 3 4 >

The model is

where

Ho: u, = u, = U, ? u, = Ug

which is equivalent to Ho: 0, = 0, = 0, = 0O

in the "g8" model.
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Thus Aiu = 0 is
1 -1 0o o0 0]
1 0 -1 0 0
u = 0O
1 0 0 -1 0
1 0 0 0 -1]
Let
8617 -.3463 -.1258 -—.3U463 ~.0432]
\ .1713  .3691 -~.8321  .3690 ~.0773
0 7071 0 -.7071 0
|.1679  .2095  .3031  .2095 ~.8900_
. 2382 0 0 0 |
0 L4488 0 0
D =
0 0 .3333 0
e 0 0 .8730 |
Then HO: ATu = 0 is equivalent to HO: ATu = 0
where ATA =T and AT(GXTX)"pA =D .
Now 0 = u®* = (XTX)“lXTY .k
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A

But (XTX) is diagonal, hence u is just the cell

means, that is

8.0 |
6.6
a = |7.3
1 9.1
| 7.1 ]
and
4
T - 1 2 _
ss(AT) = :E: a;'(xja) = 10.66
i=1
and
A2 [Y - x01°0Y - x41 _ 7.17 _
o = R p— = 5 = 80
and
10.66

F o= ncgoy = 33

Now suppose o, ~ N(b,oi) , and we wish to
estimate o- using the above SS(A"). From Eq. 4.7,

we see that

c2 SS(AT) - ug?

[

fl
—
o
Ul
o

where k
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Hence

~2 _ 10.66 - 4(.80) _
Oa - 10.56 - -7064

and the V(3§> is, from Eq. (4.8),

2k 2
V(G2 = L% ﬂ—-czcz PR P P
K2 Kq K2
0 0
E ?— -
where kl = = = 32.898 or
2
a;
1
~2\ 4 2 2 4
V(Ga> = .590a + .380a0 + .104¢

which agrees with the results obtained from the for-

mula in Searle's paper [29].

Now suppose we wanted to estimate oz from

H : ATu = 0 where

Then we see that D = .3333@ and

2
ss(AT) = .3§33 (T2 = 3(§L§> = % (6.25)

9.375
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Thus

¥2 - 9.375 - 3.20
k
a 0
where
. = ‘ !'_ = . l =
ko Zd. .3333 3
1
or
~2 _ 6.175 _
. = 3 = 2,058
and
2k _
v(3° = —1 5%y 5-0 2 + 2_ L+ 16 ot
a k2 a k2 k2 9
0 0 0
where k., = }E:L— = 9 or
1 2
a.
1
~2 _ 4 4y 2 2 104 4
V(&a) = 2oa + 3 cac + BT o

202 + 1.330202 + 1.28¢%

It is clear that 82 has a smaller variance
than 32 . By the above procedure, we can generate a
rather large set of unbiased estimates and find the

variances of the estimates in a rather efficient
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manner. This approach is contrastedlwith Searle's
paper [29] in which it took considerable effort to

develop an expression just for the variance of one

unbiased estimate.

6.2 The Two-Way Classification Without Interaction

6.2.1 No Missing Cells
Let us consider the example taken from Harvey [18].

Ration No.

1 2
1 5
6
Sire No. 2 5
6
3 3
The model is
V. = u + e

ijk ij ijk

1 =1,%+%,3; §j =1,2; k = 1,°°+,n

ij
subject to
Upg = Uyy — Uy, v u,, = 0
Upp = Ugp = Up, YUy, =0
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The matrix A(X"X) 'AT is given in Section 4.2.2. Now

(u)t = (5.5, 2.5, 4.6, 8.3, 3.0, 5.4)
(W = (3.19, 4.81, 5.39, 7.01, 3.65, 5.27)
6% = .02
Let us test H_: u,, =u,,,6 and H_: Glj = E;j,

The corresponding hypothesis matrices are also given

in Section 4.2.2.

Now
SS(A"D = 15.68
SS(A§> = 9.707
and
FLo= piitilpy = 1.95
9.707

F2 = T2 T 2.41

Now suppose that before the experiment was run we,

thought that U,, = 2u11 « Therefore, another test is

HO: u,, = 2u11 . Most texts do not treat hypotheses
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like this; however, the sums of squares can be

obtained by

ss(ATy = (ATDYTATATX) T IATA 1" (ATS)

where AT = [2 0 0 -1 0 0]

or
1 2
ss(1”) = zg._(ﬂa)z (1.63)
i=1 i
and
1.4y
Fs = 7o ~ 35

The estimates of variance components are discussed

in Section 4.2.2.

1

CHY
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6.2.2 Missing Cells

Suppose we were given the following data

Temperature

[42]
o
(0}
o
L
I
>
&
0]
w
£
O

Fabric

observations

The model is

M
R
-
)]
+
i)
-
=3
[0
i &
(3]
e
A K4
‘M
ot
=Y [
11
-
B
@
O
KK
Y
O
[}
—
£
jan
w0

42 743

34

33

31

24

23

22

21

44

Upy Y33 Y14

-1
-1

-1

~1

0
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Now

and

H :

g% = 8.183
(ut)T = (2.0, 4.6, 7.7, 2.3, 4.1, 5.5, 9.2,
3.0, 8.55, 13.2, 3.37, 5.75, 11.0)
()T = (1.84, 4.01, 8.30, 1.55, 3.82, 5.99,
10.3, 3.74, 8.17, 12.47, 3.76, 5.73,
10.22)
Now suppose we test Ho: uij = ui'j and
i = uij' , then the appropriate. sums of

squares are, respectively,

37.86

)
ol

T

215.23

Again we can test Ho: Au = 0 for arbitrary AT
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6.2.3 BIB Design

The following example is taken from Graybill [15].

Total Weights of Nitrogen in Grams of Six Cuttings
of Alfalfa Forage Grown in Greenhouse Pots

Treatments ; Block total Y,

2.67
(2)
3.00
(3)
3.14
(4)
2.63
(5)
3.13
(6)
2.99
(7)
3.54
(1)

Grand total Y,,, = 58.30

The model is yij = uij + eij subject to 8'u =0

where
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and where

33°

557

~1

=1

11?2

15°

37?2

637

-1

41°

657

-1

-1

-1

-1

-1

437

667

-1

22°

0 0

0 0

0 -1

0 0

1 0

-1 Q

0 0

0 0
Y262

522 ¢

76> U

77

-1

32°

54°?

-1

-1

181

o

g



Now o2 = .2424 and

0999999
.8500000
.5399999
.6700000
.1400000
.8200000
.0000000
.9200000
.7800000
.9100000
.1400000
.1300000
.0999999
.6300000
.8399999
.9899999
.1300000
.0100000
.7500000
.9899999
.8600000

o
*
]
DO W WD WW W NN WD W YW

Now suppose we test

(1) H : Ugs = Ujey

(2) H_ : ugy = Uy
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D N W N W DD N wwwh H+H H Do o

foo

4233332 ]
L0704761
.996190ﬂ
0461904
6290476 |
.95L7619
.8hou762
0290476
.8304762
2104761
.9819047
.9876190
7704761
9647619
.8347618
.0390476
.9147619
.1761904
5576191
6890476
.3533332 |




These are
(1) Treatment "adjusted" for blocks.
(2) Blocks "adjusted" for treatments.
(3) Treatments "unadjusted."

(4) Blocks "unadjusted."

In tabular form, we have

Source of
Variation

Now if we are in a fixed model and are interested in

just H: wu,, =u,,. , then we see that
o ij i'3 ‘
= 3.2908 =
F = 5T = 2.263
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And if we are in a mixed model, where treatments are

fixed and blocks are random, we see that

E[ss(AT)] = 602 + 1402
where AT 1is associated with. H : u,, =u, .,
: o ij ij
Now
g% = 242y
~2 _  1.5375 - 6(.2424)
Also
u - U,,, = 0O, =~ 0,,
ij iy i i
and
E(ui. - ui,.) = a, -a,,
T T T
Let A be such that Au =u,, — u,,. @and A be
1 ‘ 1 i ity 2
such that A u =14, -14T.. . Now ATd and AT4 both
2 ie it 1l 2
are unbiased estimates of a.-a,,. Let o = V(ATG),
i i 11 1

_ TA ! _ TA \TA
0,5 —'V(Azu) and 015 = Cov (Alu, k2u> . Then

T/\
Aju %11 912
v ATG ) 4] o =7
2 12 22
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Now from the discussion in Section 4.2.3, we

know a better estimate of a,-a,, would be a

A TA
al(klu) + a2<X2u) where

g1l _ v
T ,~1
a, L7V T4
T—
and where & = [1 1] . But G115 94, and 0,, are
functions of 02 and oi . However, if we use the
82 and Si as described above, then Azﬁ and Agﬁ

will be uncorrelated with ¥ ' since A' satisfies
the conditions described in Section 4.2.3. Hence an

unbiased estimate of a.,-a,, is a ATu) + a. (AT
i i 1\ 1 2\ 2

where
S I )
a R Ty
2
For example, suppose we wanted to estimate Oy =0,y We
T/\ _ e A _
could use Alu = ull u21 .377 and
L - l N A ~ ~ A
AU 7 Lugg +ugy - Uy, Uy + Uy, - Uy,
Uy = Ugy tlUgy —Ugg t Uy, - Ul

= 1.47
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e
I

Now u + Ae where u = yl + Ula + Vlb and

E[1]

Yl + Ula .

~ _ 2 T 2
viul = obvlvl + oA

Now Afu and Agﬁ are unbiliased estimates of a -0, . And

1
‘v(}fﬁ) = oIV VIA + 4,0
where
dll = .86
A
Hence
V(ATG) = .860°
2
Also
V(kiﬁ) = ol v, via, +'a2202
where
a,, = 3
AZV VA, = 9
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Thus

T _ 2 2
V(izu)f = 307 + 9ob
TA TA _ 2, T T 2, T Tyy=1,T
Cov (Alu, Azu) = GbA1V1V1A2 + o AlA(X X) TA Az
= 0.
Now substituting 52 ana o2 which we found

b
above, we have

Aiﬁ 86072 0

T
T 2 2
Azu 0 30 + 90b

2085 0
0 .7812

and V is uncorrelated with Aia and Azﬁ. Therefore,

1

75085 o
a 1
1\ 0 577 L1
a 1 0 1
2 .2085
[1 11+
1
0 7817|-t
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Hence another unbiased estimate of o_.-~a_ is

1 2
TA TA
al(klu> + az()\zu>

it

.297 +ﬁ.310

= .607

This is the same estimate as the one obtained by
Graybill [15], where he used the "interblock" and
"intrablock" estimates. Let us exhibit another esti-

mate obtained from the general procedure. Let

TI\ _ A ~ -
Alu = Upp om Uy 377
TA _ 1 ~ ~ ~ A A
Agu = s lugg - Uy, m U,y U Uy, - Uy,
tlUgg = Ugy ¥ Ugy = Ugg + Uy, = U]
= 1.47
T~ 1
Aguo= o lupyp vupg tug, -uy Fuy, - Uyl
= .620
TA TA : A . .
We see that Alu, xzu and Asu are unbiased estimates
of al-az. Now
A _ 2, T 2
'V(A3u> = obA3VlVlA3 + d330
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where

d33=’§~
A§V1V$A3 = %ﬁ
Therefore,
V(Aﬁﬁ) = %9 ol + % o2
and
Cov (xfﬁ, A§ﬁ> = ATan,o? = %-02
Cov (A q, x§ﬁ> = AV, ViAol + AcAr o
= % 02 + 20@
Now
.2085 0 .1616
v = 0 7812 .1618

.1616 .1618 L1726

and ¥ 1s uncorrelated with Ald, Agﬁ and AT4
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Hence

al -
a1 = ¥A—f
LV
a3
L6226
= L1661
.2113

Thus, another unbiased estimate of o, -0, is

TA TA TA _
al<klu> + az(xzu> + a3(k3u) = .6099

Let us find an estimate of 0q=0, using the con-

cepts developed in Section 4.2.4. There we saw that

. . T
another unbiased estimate was A u where

T = [I- T ) tereTx™1x) te1 16Ty
o XTIy

where V 1is an estimate of the covariance matrix of

Y
In our case, we have

T o= [I- Te(eTe) teTy
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T — —

Now A'u = ull - uzl is an unbiased estimate of

o,-a, and A"0 = .376 . In this case, V is almost

1l

diagonal since the nonzero off-diagonal terms are
.006. Hence U and U are not significantly dif-

ferent.
6.3 The Two-Way Classification With Interaction
6.3.1 No Missing Cells

Let us consider the example given in Section 6.2.1.

Since 6T = 0 , we have that

)T (u*)T

(5.5, 2.5, 4.6, 8.3, 3.0, 5.4)

Now suppose we test

(1) H_: U, = ug,,
(2) H_: E;j = E.J,
(3) H, Ujy = Uyag = Ugge F U S 0
Note that (3) is equivaleprt to H : 8Tu = 0 where

6T is defined in Section 6.2.1.
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The results are tabulated below

Hypothesis

4
1
3
]
T
1
)
1
]
1
i
4
)
]
1
1
1
3
L)
]
[l
1
1
]
1
]
]
1
i
1
T
1)
[

To illustrate, let us find the expected value of
SS(AT), where AT 1is the matrix associated with (2).
Now AT =-%[1 -1 1 -1 1 -1]

2

Suppose we assume the following structure on u
u = vyl + Ula + Vlb + V26

where yl, and Ula denote the fixed effect, Vlb and
V26 denote the random effects, and where b ~ N(P,oil)
§ ~ N(é,czl) . Let us note that some authors [28]
assume that & ~ N(0,V) where V has some nonzero
off-diagonal elements. Naturally,itheir results will

differ from ours. Now U = u + (XTX)—lXTe , hence

E[u]

n

vyl + Ula

1

~ 2 T 2 T 2,,To 1
viul obVlVl + GGVZVZ + o“(X°X)
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Note that V2 = T ., Hence

~ B 2 T 2 2,,T -1
Vviul = GbVlVl + 061 + o (X°X)
Now
Elss(A™)] = - [IA™V@AT + (A"w)?]
1
Now
"1 0 0 | 1 0]
1 0 O 0 1
o, =|0 10 v, o= |0
0O 1 O 0 1
0O 0 1 1 0
0 0 1_] | 0 1
Hence
A= ATyl o+ ATU
= 0
and
ATV()A = (ATV1V§A)0; + 0§ATAI + (AT(xTx) " th)o?
= 30b + og + dlcz
Hence
T . 3 2 1 2 2
E[SS(A7)] = dl oy *+ dl o  + o
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where

d, = ATET)TA
.Y
90
Hence
E[SS(A™)] = o + 2.19507 + 6.58502
Note that there is a o; term in this equation. This
does not agree with those authors who assume
§ ~ N(0,V) .
6.3.2 Missing Cells
We shall consider the example given in
Section 6.2.2. Here 6T = 0 . The major question is

which hypotheses are to be tested. Let us test the

following.
(1) H: u,, =u,,,
(2) H: u_., =u,_.,
° *3] *3J
- T —
(3) H: 68u=0

where ©6° is defined in Section 6.2.2. Now

(1)

(u¥*)

8.55, 13.2, 3.37, 5.75, 11.0)
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The results are tabulated below

Hypothesis

This concludes the examples on the two-way classifica-

tion with interaction.

6.4 Latin Square

This example is taken from Snedecor [32].

Cows

Period 2

] -
v ]
n u
" '3
" a
n n
u a
" ]
" ]
= s
- ']
" n
- "
= a

The model is

i=1,2,3; J =1,2,3; k

l
o
-
et
»
o

subject to no

interactions.
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Hence eTu is
[1 100 0 1 -1 -1
oTu = : : SR
1 0 -1 =1 1 0 0
where

u u - u u

T =
ut o= LUy Yinp Yi3z o Ya1p Yoo

Uzyz Uspp Uaszad

Now we test the following hypotheses:

(1) H: u = 4 = U

o loa 2.. 3.0
(2) HO: u‘ol. = u.z. = 3
(3) Ho uo-l = utnz = uoc3

Let us consider (3) in detail.

_ u ..o+

u.ol' = 3

= _ Y122 T Uy * U5,
° e 3

= _ U133 Y Usp3 FUsig
«e3 3

In terms of the "B" model

i3k
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Hence

Hence H :
O

HO: 51 = 62

given below.

(u*)T

()"

u.cl

]

=63

b5 4 Yl + Y2 + Y3 . al + az + a3
1 3 3
& . Yl + Y2 + y3 . al + u2 + a3
2 3 3
+ 5 4 Yy Yy o Y3 . O %y O3
3 3 3
=1u,,, =1u,,, is equivalent to
in the "B" model. The results are

(608, 885, 940, 715, 1087, 776, 8hk,

711, 832)

(711.3, 883.3, 759.7, 931.7, 886.7,

696, 868, 823)

Hypothesis

uzoo

)
1
'

a
1

H
T
[
1
:
1
1
v
]
1
'
1
[
1
'
1
¥
'
1
3
]
1
t
1
'
1
1
1
1
v
[
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Let us now consider the case where we have a missing

cell. Suppose y,;; = 608, is missing. The model

remains the same except that

6Ty = [1 -1 -1 0 1 1 -1 0lu

where

T  _
ut o= UL, Upggs Uygps Uppgs Upgys Uggss

]

Uzpgs Y339

Again we have the problem as to what we should test.

Let us test H_: ATu = 0 or

- Ujypp = Up3p ~ Ugpz T Uz5, = 0
o’ _
Ujopg ~ Uppp ~ Upgy * Uy = 0
This is equivalent to H : 8, = 52 = 53 in the "g"

model. The results are given in the following. table.

80960.
2773.0
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6.5 Simultaneous Confidence Intervals

Let us consider the example in Section 6.1.

ij i
J = 1,2,-°',ni . Now suppose we wanted an o% con-

That is y.. = u, + eij where i = 1,2,3,4,5 ,

fidence interval for ATu.  From Section 2.4, we see

that the set of all £ such that

(g - A"HTWTETO TN T E - AT
882 - (drsrn‘P)

is an a% confidence interval, where F is the
(alsln_p)

a% point of a central F distribution with s and

n-p degrees of freedom. Let us take o = .95 and
- 1 0 0 0 O uy
Amu = u = .
0O 0 0 1 0 U,

Now the set of & such that

(2 - ATOTMTET) I e - AT
5C.80) < 4,26

; u
is a 95% confidence interval “or

Uy
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Or we have

O-CIL T

1.6

or

(5, - 8.00% (g, - 9.1)?

1.36 + 2.27 & 1
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CHAPTER 7. CONCLUSION
7.0 Summary

In the preceding chapters we have developed a

comprehensive theory of linear models. We have shown

that by formulating the model as yijk uij + eijk R

where Visk ~ N(u, ., 6%) and where certain relations

ij

may be known about the uij , We could analyze this
model in a very efficlent manner. It was shown that
the one theory can be applied to the balanced case,
the unﬁalanced case, the missing cell case, the case
of interactions and the case of no interactions. We
also showed that the one theory can be applied tb both
classification models and design models. By using
this approach, we are able to analyze mixed modeis,
that is we can estimate components of variance and
provide estimates of fixed effects based upon
information recovered from the random effects., We
also applied this approach to regression and

covariance models.
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There are a number of advantages to using the
"u" model approach. First, let us contrast it
with the usual approach used to teach the balanced
case. Here the student is given a set of rules and
a set of equations. He is told that with these he
can analyze certainAdesigns.\ For example, in the
two way classification with interaction, he is told
that the following table is the way to analyze such

a model:

Source of

Variation df

A a-1

B b-1

AB (a=~1) (b-1)

ab(r-1)

where
2, = - 2
A = 2 ; . -
yy bn <yll‘ yc..)
i=1 x
b - — 2
B = E -
yy an (y.J. y-.l)
J=1
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a b
— — — — 2
AB = n ... = V., - A
vy Z<‘V13' View = Yoy, )
i=1 j=1
E = AB - A - B
Yy vy vy vy

Some intuitive justification is given as to why
the degrees of freedom and sums of squares arise as
they do. Other tests of hypotheses are almost never
considered. Also, some authors include certailn

restrictions as a part of their models. For example

- = u+a, +8, +8,., +e,.
‘V:L]k ul 63 i4 ijk

where

The table above answers only three questions;
that is, it tests only three hypotheses. As we know,
there are infinite hypogheses one can test. DBut the
student is told to test the same hypotheses each time

he conducts such an experiment.
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This approach 1s especially harmful to those
students from other disciplines that have had only
two or three "methods" courses. In those courses,
we taught them only the rules of statistlces rather
than the rules and concepts. As a result, they do
not understand the true role of statistics or of
the statistician, They think statistics is 1imited
only to certain models that can be analyzed and only
certain questions that can be answered, Using
standard computer programs perpetuates this mis-
conception. Persons laboring under this miscon-
ception are the ones who give us boxes of data cards
that we as statisticians are supposed to analyze by
our "mystic" methods. More importantly, these
students, from their experiences in the "methods"
courses, have the mistaken idea that there are only
four or five classical models that are valid to
statistical analysis. They might make wrong
assumptions about thé data generated by thelr experi-
ments in an effort to make those%experiments fit one
cf the classical models. Or they might disregard

some of the data in order that their experiments
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will fit the balanced design of the classical
statistical analysis. The result could be that a
model which does not describe the experiment is used.
Thus, the "u" model provides a method of analysis
that enables the experimenter to pose an essentially
unlimited number of hypotheses. It also allows a

great amount of flexibility in choosing the model.

Second, the statisticlan is like a merchant — he
is a merchant of models. When a sclentist comes to a
statistician, the scientist has conjectured that a
phenomenon he has observed or will observe may fit a
certain model. He asks the statistician to help
formulate the model so that gquantitative analysis can
be performed. The statistician looks over his "“stock"
of models and tries to find one that approximates the
model presented by the scientist. If the statistician
can offer only balanced models, or if the scientist
can only ask predetermined gquestions, thelr efforts
degenerate into a game of data shuffling which has

little or no scientific vélue.
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Statisticians should be experts in models. They
should formulate abstract models, analyze them, and
investigate their advantages and limitations so that
when they are called upon to help the scientist, their
"stock" is such that they can be of help. They will
also be able to determine whether the questions posed
can be answered by a given model. Thus the second
advantage 1s that the "u" model offers a general
abstract model that can be applied to a large number

of practical problems.

FPinally, there are several approaches to
analyzing linear models. One 1is the generalized
inverse., Another is the "u" model approach outlined
in this paper. The claim here is not that the "u"
model is the only approach, rather that it is one
method that is conceptually simple, It is based upon
the most fundaﬁental statistical assumptions. .The
student can be shown how to pose the questions, how
to test them, and how to interpret them without having
to understand the mathematics involved. Yet the
principles they learn will apply to all types of

linear models and not just to balanced models.
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7.1 PFuture Research

We will now discuss several research topics

which arose from studying the "u" model.
T7.1.1 Other Models

Presehtly, the "stock" of models 1s primarily
linear models. We should seek to include nonlinear
models, Also, the tests of hypotheses are restricted
to the form Ho: ATu = g , We should generalize this

to include hypotheses of the form HO: ATu 2 £

H_: AT < £, ete.

7.1.2 Variance Components

Perhaps the use of the "u" model can reveal
something about the properties of the estimates of

the components of variances in the mixed medels.
7.1.3 Estimates of Fixed Effects in the Mixed Model

We have seen that we need not restrict ourselves

to the BIB design or to' the classical interblock and
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intrablock estimates in estimating fixed effects.
However, the criteria we used in finding estimates
was that the estimates must be unbiased. We should

consider other criteria, such as minimum variance and

50 On,
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