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ABSTRACT

An analysis was conducted to determine the loss characteristics of two-
dimensional, minimum length, supersonic nozzles with sharp-edged throats. Boundary
layer characteristics were calculated and used to obtain the conditions downstream of
the nozzles after the flow had mixed to a uniform state. Subsonic, sonic, and super-
sonic aftermixing axial Mach number solutions were obtained for this model. The loss
characteristics were investigated for nozzles designed over an exit Mach number range
of 1.5to 5.0. The effect of nozzle flow angle, throat Reynolds number, and specific
heat ratio on losses were studied.
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ANALYTICAL INVESTIGATION OF TWO-DIMENSIONAL LOSS CHARACTERISTICS
OF SUPERSONIC TURBINE STATOR BLADES
by Louis J. Goldman and Michael R. Vanco

Lewis Research Center

SUMMARY

An analysis was conducted to determine the loss characteristics of two-dimensional,
minimum length, supersonic nozzles with sharp-edged throats. Boundary layer charac-
teristics were calculated and used to obtain the conditions downstream of the nozzle atter
the flow had mixed to a uniform state. Subsonic, sonic, and supersonic aftermixing axial
Mach number solutions were obtained when the free-stream axial Mach number at the
nozzle exit (before mixing) was supersonic. The subsonic solution corresponds to mixing
plus oblique shock losses, whereas the supersonic solution corresponds to shockless
mixing., The sonic solution corresponds to the limiting conditions possible if the nozzles
exhaust into a constant area passage.

The nozzle loss characteristics were studied as a function of nozzle flow angle,‘free»‘
stream Mach number level, and throat Reynolds number. The effect of specific heat
ratic was also investigated. , |

The results of the aualjrsis indicated that higher nozzle efficiencies occurred for the
supersomc solutlon than for the subsonic solution, because of the absence of shock losses
in the supersomc solution. Intermediate efficiencies were obtained for the sonic ‘solu-
tion, For the supersonic solution, it was found that the aftermixing flow angle deflects
towards the axial direction resulting in further flow expansion on mixing. This results
in higher aftermixing Mach numbers and total-to-static pressure ratios for the supersonic
solution than for the subsonic solution. The nozzle Mach number level has little effect on
the nozzle efficiency for the supersonic solution. However, for the subsonic solution,
higher Mach numbers result in higher oblique shock losses, and therefore lower effi-
ciencies. Increasing either the throat Reynolds number or specific heat ratio results in
an increase in nozzle efficiency.



INTRODUCTION

Supersonic turbines have potential application in turbopump and open-cycle auxiliary
power systems (ref. 1) where high-energy fluids are used and high pressure ratios are
available. This has resulted in a need for design procedures applicable to this type of
turbine. Some experimental data on the overall performance of supersonic turbines has
been reported in references 2 to 4. Unfortunately this data does not include sufficient
information to assess the individual performance of the stator and rotor.

Supersonic stators and rotors can both be designed by the method of characteristics
as applied to the isentropic flow of a perfect gas. Computer programs for the design of
two-dimensional supersonic nozzles and rotor blades have been reported by Vanco and
Goldman (ref. 5) and Goldman and Scullin (ref. 6), respectively. The design of blading
by these procedures must then be supplemented by a knowledge of the loss characteristics
of the nozzle and rotor.

The purpose of this report is to study analytically the loss characteristics of mini-
mum length supersonic nozzles with sharp-edged throats under conditions applicable to
auxiliary space power systems. This type of nozzle produces uniform parallel flow at
the exit. To obtain a theoretical estimate of the losses, the following calculations are
required: (1) isentropic design of the minimum length supersonic nozzle, (2) calculation
of the boundary layer characteristics (momentum and displacement thicknesses) for the
nozzle, and (3) determination of the losses due to mixing downstream of the nozzle. The
isentropic nozzle design is obtained from the computer program of reference 5. The
boundary layer parameters are calculated by the method developed by Cohen and Reshotko
(ref. 7). Finally, the aftermixing losses are found by the procedure given by Stewart
(ref. 8) for turbomachine blades.

The loss characteristics of two-dimensional minimum length supersonic nozzles
with sharp-edged throats were investigated over an ideal free-stream Mach number
range of 1.5to 5.0. The effects of nozzle flow angle and throat Reynolds number are
studied over this Mach number range. The effect of specific heat ratio is also included.

SYMBOLS

M Mach number

P pressure, psia (N/ mz)

Re Reynolds number, Re = yV/v
u tangential direction

V velocity, ft/sec (m/sec)
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X axial direction
width, ft (m)

a nozzle flow angle measured from axial direction, deg

v ratio of specific heats

i nozzle efficiency

v kinematic viscosity, ft2/ sec (mz/ sec)
Subscripts:

fs free-stream

id  ideal

t throat

0 station upstream of nozzle (stagnation conditions)
1 station at nozzle exit

2 station downstream of nozzle

METHOD OF ANALYSIS

The calculation of the loss characteristics of two-dimensional supersonic nozzles
that produce uniform parallel flow in the minimum distance is described herein. This
type of nozzle has a sharp-edged throat. The nozzle loss characteristics were obtained
by first designing a series of loss-free nozzles for given exit Mach numbers, nozzle flow
angles, throat Reynolds numbers, and specific heat ratios. The boundary layer charac-
teristics (momentum and displacement thicknesses) for the ideal nozzles were then ob-
tained and the nozzle profile corrected to include the effect of the displacement thickness.
Finally, the Mach number, flow angle, pressure ratio, andkinetic energy loss were cal-
culated assuming the flow mixes to uniform conditions downstream of the nozzles,

The losses obtained in this analysis are for two-dimensional blade rows. In an
actual design, three-dimensional effects would have to be included. A method of esti-
mating three-dimensional losses from two-dimensional losses has been described by
Stewart, et al. (ref. 9).

Nozzle Description and Design

As seen in figure 1, a typical nozzle consists of three sections: (1) a converging
section, (2) a diverging section, and (3) a straight section on the suction surface. The
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Figure 1. - Supersonic nozzle with sharp-edged throat,

Figure 2, - Supersonic nozzle design.

converging section produces the flow turning with little losses. The diverging section
accelerates the flow to the desired free-stream Mach number at the exit. As shown in
figure 1, this section is designed by the method of characteristics. The computer pro-
gram described in reference 5 was used for this purpose. The straight section on the
suction surface completes the nozzle profile and its length is determined by the required
nozzle exit flow angle,

For the low flow rate open-cycle auxiliary power system of current interest, laminar
flow would occur. The boundary layer characteristics for the ideal nozzles were ob-
tained by use of the compressible laminar-boundary layer theory of Cohen and Reshotko
(ref. 7). The final nozzle profile was obtained by adding the displacement thicknesses to
the loss-free nozzle coordinates. Figure 2 shows a nozzle designed in this manner. The
dashed line represents the loss-free nozzle profile. The displacement and momentum
thicknesses at the nozzle exit (station 1, fig. 2) were used to calculate the conditions
downstream of the nozzles.



Loss Characteristics

The calculation of the losses due to mixing downstream of turbomachine blade rows
has been described by Stewart (ref. 8) in terms of boundary layer characteristics. In
this loss model, the flow sufficiently downstream of the blade row is assumed to be uni-
form and parallel. Application of the continuity, momentum, and energy equations between
stations 1 and 2 (fig. 2) results in the determination of the aftermixing velocity, flow
angle, pressure ratio, and kinetic energy loss. For supersonic free-stream velocities
two cases have to be considered: (1) supersonic free-stream axial Mach numbers and
(2) subsonic free-stream axial Mach numbers. ‘

Supersonic free-stream axial Mach numbers. - For supersonic free-stream axial
Mach numbers at the nozzle exit (station 1, fig. 2), two aftermixing solutions are possible
for this model. One solution results in supersonic aftermixing axial Mach numbers and
is hereafter referred to as the supersonic solution. The mixing losses are the result of
the nonuniformity of the flow at the blade exit, and for zero boundary layer this solution
corresponds to straight through flow. No shock losses occur for this solution. The sec-
ond solution results in subsonic aftermixing axial Mach numbers and will be referred to
as the subsonic solution. For zero boundary layer, this solution corresponds to an
oblique shock wave occurring at the nozzle exit plane (station 1). Therefore, with a
boundary layer, the losses are a combination of mixing and shock losses. A schematic
representation of these solutions is. shown in figure 3.

The supersonic solution might not be physically possible in certain situations. For
example, if the nozzles exhausts into a constant area annulus, the annulus could become
choked as the exhaust pressure is decreased, This is a consequence of the system of
shock waves passing through the nozzles during start-up. For these conditions the maxi-
mum aftermixing axial Mach number would be one., Supersonic axial Mach numbers
could be obtained if the annulus area increases. The solution where the aftermixing axial
Mach number is sonic is also presented.

An approximate method was used to obtain the sonic solution. It was first observed
that the subsonic solution can also be obtained by first mixing the nonuniform flow to
uniform conditions (supersonic solution) and then having the uniform flow undergo an
oblique shock of equal strength to a shock occurring across the exit plane. If the strength
of oblique shock is decreased it is possible to estimate flow conditions when the after-
mixing axial Mach number is one. A schematic of the sonic solution is shown in figure 4.
In this analysis all three solutions (subsonic, sonic, and supersonic aftermixing axial Mach
numbers) are presented.

Subsonic free-stream axial Mach numbers. - For subsonic axial Mach numbers at
the nozzle exit, only one aftermixing solution is possible for this loss model. The after-
mixing axial Mach number is subsonic for this solution and is again referred to as the
subsonic solution. Only mixing losses occur for this situation.
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The loss characteristics for the nozzles are indicated by the aftermixing Mach num -
ber, flow angle, pressure ratio, and efficiency. The nozzle efficiency 7 is defined as

Vy

Vs, 1D

n= (1)

where V2 is the aftermixing velocity, and Vz, 1D is the ideal velocity at station 2 ob-
tained by isentropic expansion to the aftermixing static pressure. The effect of working
fluid on losses was obtained by varying the specific heat ratio and the throat Reynolds
number. The throat Reynolds number Ret is defined as

RAL

Yo

Re, ()

where y; is the throat width, V, is the throat velocity, and Vo is stagnation kinematic
viscosity. The effect of nozzle flow angle on losses was also obtained. The nozzle flow
angle was varied over a range that includes both subsonic and supersonic free-stream

axial Mach numbers at the nozzle exit plane (station 1),



RESULTS AND DISCUSSION

The results of the study of the loss characteristics of supersonic nozzles are pre-
sented in this section. Although, the loss characteristics were investigated for nozzles
designed over a free-stream Mach number range of 1.5 to 5.0, similar trends were found
for the different Mach number levels. Therefore, only the primary results for a single
Mach number level of 2.5 are discussed. First, the nozzle efficiency and nozzle after-
mixing conditions are discussed. Then, the effects of Reynolds number and specific
heat ratio on nozzle efficiency are presented. Finally, the effect of Mach number level
on nozzle efficiency is discussed. The results for all the Mach number levels are in-
cluded in the appendix since they may be used for preliminary design purposes.

Nozzle Efficiency and Aftermixing Conditions at Mach Number of 2.5

Nozzle efficiency. - The nozzle efficiency 7 is shown in figure 5. The throat
Reynolds number Ret and specific ratio ¢ are kept constant at values of 10 000 and
1.4, respectively. As discussed previously, three solutions corresponding to subsonic,
sonic, and supersonic aftermixing axial Mach numbers are shown in the figure.

The efficiency for the supersonic solution is higher than for the subsonic solution
because of the absence of shock losses in the supersonic solution. Intermediate effi-
ciencies occur for the sonic solution. It is interesting to note that for the subsonic solu-
tion the efficiency exhibits a maximum.

Lo Myp>1

Nozzle efficiency, n
co

] 1 | 1 1 1 1
30 60 90
Nozzle exit flow angle, a;, deg

Figure 5. - Effect of nozzle exit fiow angle on nozzle efficiency for
nozzles designed for free-stream Mach ntaimber of 2.5, throat
Reynolds number of 10 000, and specific heat reatio of 1.4.
(Supersonic aftermixing axial Mach number, M, 5> ;- sonic
aftermixing axial Mach number, Mx 2= 1; subsohic aftermixing
axial Mach number, My 2 <Y sonic free-stream axial Mach
number, My ;<L) ’
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Figure 6. - Aftermixing conditions for nozzles designed for free-stream Mach number of 2.5, throat Reynolds number of 10 000,
and specific heat ratio of 1.4, (Supersonic aftermixing axial Mach number, M 2> 1; sonic aftermlxmg axial Mach number,
My 2= 1; subsonic aftermixing axial Mach number, M,  <1; sonic free-strea axial Mach number, M, ;= 1.}

Nozzle aftermixing conditions. - The aftermixing conditions are shown in figure 6.
The aftermixing Mach number M, is shown in figure 6(a). The effect of nozzle flow
angle on aftermixing Mach number is similar to that exhibited by the nozzle efficiency.
For the supersonic solutioh, aftermixing Mach numbers equal to and greater than the
free-stream Mach number, M, s, 1’ occur. As will be seen subsequently, this is the
result of further flow expansion occurring on mixing,

The aftermixing flow angle oy is shown in figure 6(b). For the subsonic solution
the flow deflects away from the axial direction. The deflection becomes larger as the
nozzle flow angle decreases because of the increased strength of the oblique shock that
occurs for this solution. For the supersonic solution, the flow deflects toward the axial
direction resulting in further flow expansion.

The nozzle total-to-static pressure ratio pO/ Py is shown in figure 6(c). The flow
expansion occurring for the supersonic solution results in lower aftermixing static pres-
sures Do than occur for the subsonic solution. Therefore, the total-to-static pressure
ratio is higher for the supersonic solution.

Effect of Reynolds number on efficiency. - The effect of throat Reynolds number on
nozzle efficiency is shown in figure 7. The free-stream Mach number and specific heat

L0, 51 — My2>1

R LR B
g e
S L
5
k-
5 B My1=1
= [T N I N T
30 60 90
Nozzle exit flow angle, a;, deg
(a) Throat Reynolds number, 2000. (b} Throat Reynolds number, 10 000. {c) Throat Reynolds number, 50 000.

Figure 7. - Effect of throat Reynolds number on nozzle efficiency of nozzles designed for free-stream Mach number of 2.5 and
specific heat ratio of 1.4. (Supersonic aftermixing axial Mach number, M %2 >1; sonic aftermixing axial Mach number,
My 2 = I; subsonic aftermixing axial Mach number, My 7 <1; sonic free-stfeam axial Mach number, My 1 = 1.)
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Figure 8. - Effect of specific heat ratio on nozzle efficiency for nozzles designed for free-stream Mach number of 2.5 and throat
Reynolds number of 10 000. (Supersonic aftermixing axial Mach number, M, o> 1; sonic aftermixing axial Mach number,
My 2 = 1; subsonic aftermixing axial Mach number, My 5 <1; sonic free- “stréam axial Mach number, My j = 1.)

ratio are kept constant at values of 2.5 and 1. 4, respectively. As expected, the nozzle
efficiency increases as the Reynolds number increases, For laminar flow, the skin fric-
tion or viscous losses are known to vary inversely with the square root of Reynolds
number. Therefore as the throat Reynolds number is increased, the viscous losses in
the subsonic, sonic, and supersonic solutions decrease, resulting in higher nozzle effi-
ciencies,

Effect of specific heat ratio on efficiency. - The effect of specific heat ratio y on
nozzle efficiency is shown in figure 8. The free-stream Mach number and Reynolds num-
ber are kept constant at values of 2.5 and 10 000, respectively. It is seen that an in-
crease in specific heat ratio results in an increase in nozzle efficiency.

Effect of Nozzle Mach Number Level on Nozzle Efficiency

The efficiency of nozzles designed for free-stream Mach numbers of 1.5, 2.5, and

Ier2>1
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5 Lo /"
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28—
E o .
- _ — 2 - - -
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P A T T U YT [ (U I A " A NN NN DO B B
30 60 90 30 60 90 30 60 90
Nozzle exit flow angle, a;, deg
{a) Free-stream Mach number, 1.5. (b) Free-stream Mach number, 2.5. (c} Free-stream Mach number, 3.5.

Figure 9. - Effect of free-stream Mach number on nozzle efficiency for throat Reynolds number of 10 000 and specific héat ratio
of 1.4, (Supersonic aftermixing axial Mach number, M 2>1 sonic aftermixing axial Mach number, M 2= 1; subsonic
aftermixing axial Mach number, M 2<1 sonic free- stream axial Mach number, M X1~ =1)
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3.5 are shown in figure 9. The throat Reynolds number and specific heat ratio are kept
constant at values of 10 000 and 1. 4, respectively. For the supersonic solution, the noz-
zle Mach number level has little effect on the efficiency. For the subsonic solution,
higher Mach number levels result in lower efficiencies. This is to be expected, since
the strength of the oblique shock occurring in the subsonic solution increases as the Mach
increases. Therefore, at the higher Mach number levels, larger shock losses occur for
the subsonic solution,

SUMMARY OF RESULTS

An analysis was conducted to determine the loss characteristics of two-dimensional,
minimum length, supersonic nozzles with sharp-edged throats. Boundary layer char-
acteristics were calculated and used to obtain the conditions downstream of the nozzles
after the flow had mixed to a uniform state. Subsonic, sonic, and supersonic aftermixing
axial Mach number solutions were obtained when the free-stream axial Mach number at
the nozzle exit (before mixing) was supersonic. The subsonic solution corresponds to
mixing plus oblique shock loss'és, whereas the supersonic solution corresponds to shock-
less mixing. The sonic solution corresponds to the limiting conditions possible if the
nozzles exhaust into a constant area passage.

The nozzle loss characteristics were studied as a function of nozzle flow angle « 1’
free-stream Mach number level Mf BT and throat Reynolds number Re;. The effect
of specific heat ratio was also 1nvest1gated The following results were obtained:

1. The nozzle efficiency for the supersonic solution is higher than for the subsonic
solution, because of the absence of shock losses in the supersonic solution. Intermediate
efficiencies occur for the sonic solution.

2. The aftermixing flow angle deflects away from the axial direction for the subsonic
solution, but deflects towards the axial direction for the supersonic solution. The super-
sonic solution, therefore, represents further flow expansion on mixing which results in
higher aftermixing Mach numbers and higher total-to-static pressure ratios than occur
for the subsonic solution.

3. Increasing either the throat Reynolds number or specific heat ratio results in an
increase in nozzle efficiency.

4. The nozzle Mach number level has little effect on the nozzle efficiency for the
supersonic solution. However, for the subsonic solution, higher Mach numbers result
in higher oblique shock losses, and therefore lower efficiencies.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, April 8, 1969,
128-31-32-07-22.
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APPENDIX - LOSS CHARACTERISTICS OF TWO-DIMENSIONAL SUPERSONIC
NOZZLES WITH SHARP-EDGED THROATS

The nozzle loss characteristics for nozzles designed for free-stream Mach numbers
of 1.5, 2.5, 3.5, and 5. 0 are presented herein. These curves may be used for prelim-
inary design purposes. For each Mach number level, curves of nozzle efficiency, after-
mixing Mach number, flow angle, and total-to-static pressure ratio are presented. The
nozzle flow angle has been varied so as to include both subsonic and supersonic free-
stream axial Mach numbers. Results for three different throat Reynolds numbers are
given. The results for free-stream Mach numbers of 1.5, 2.5, 3.5, and 5. 0 are shown
in figures 10 to 13, 14 to 17, 18 to 21, and 22 to 25, respectively.
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