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ABSTRACT

ANISOTROPIC SOLAR COSMIC RAY PROPAGATION
IN AN IN'HOMOGENEOUS MEDIUM

A phonomenological, 1-dimensional model of solar cosmic ray

propagation is presented which allows one to compute both the

anisotropy and the intensity as a function of time during the early

phases of certain events. It applies for arbitrarily large

anisotropies, ranging from 0 to 1, and is valid for even the earliest

times. Thus, it is not subject to the restrictions of earlier

models based on the diffusion equation of telegraph equation.

The model assumes that cosmic rays are released instantaneously

and effectively interact with isolated scattering centers which are

distributed uniformly throughout the solar wand. Each scattering

center is assigned a probability P(x i) that a cosmic ray will be

reflected by it this function ranges from 0 to 1 and can be any

function of position. The mathematical formulation of the model

consists of a set of difference equations involving P(x i) and the

probabilities f+ and f of finding a particle moving away from or

toward the source, respectively, at a given time and position.

The model is used to examine the general effects of a diffusing

region close to the sun (the solar envelope) on solar cosmic ray

propagation. The model, applied to the >1.1 b y protons of the May 4,

1960, event, gives a good fit-to the intensity-time curve for the

"sunward" flux and correctly gives a negligible "anti-sun" flux through-

out the event. The characteristic dimension and diffusion coefficient

of the diffusing region are .found to be 27 Re and D = 10 
21 

cm 2/sec,
max



A t

respectively. It is suggested that the solar envelope may be identified

with an -,xtetided solar wind heating region and that the cosmic-ray

scattering may be due to the hydromagnetic waves which Barnes has

postulated as the enery source.
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ANISOTROPIC COSMIC RAY PROPAGATION IN AN INHOMOGENEOUS MEDIUM

I. The Solar Envelope

L. F. Burlaga

I. Introduction

The existence of a diffusing region close to the sun has been inferred

from recent observations of low Energy, solar cosmic ray anisotropies

(McCracken et a1., 1967 , Lin et al. (1968)) and from an early study of the

anisotropy and dispersion effect in a high energy (?1 Bev) solar cosmic

ray event (Lust and Simpson, 1957). Following Lust and Simpson, we

shall call this region the "solar envelope". The above authors, also infer

the existence of a second diffusing region near the earth and beyond,

which is the cause of the trend toward isotropy with increasing time.

Following Parker, who was the first to study this region quantitatively,

we shall refer to it as the "solar shell." The large anisotropies observed

during the rise of certain events imply that relatively little diffusion

occurs between the solar envelope and the solar shell.

There are many diffusion madels which attempt to examine various

aspects of the propagation, but as yet there is no model which properly

accounts for the highly inhomogeneous structure of the solar wind as

described above, and which describes both the solar cosmic ray intensity

and anisotropy as a function of time. The aim of this paper is to present

a simple, phenomenological, 1-dimensional model, valid even in the limit

of large anisotropies, which enables one to use the measured anisotropy

and intensity profiles of solar, cosmic rays to study the inhomogeneous

structure of the medium.

s e	 ..
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The model is presented in Section L 
In 

Section 3 the model is

applied to examine the general effects of the solar envelope on cosmic

ray propagation, and it is shown how the model can be used to analyze

certain types of cosmic ray events,, The unusual event on May 4,	 19600

is analyzed 
in 

Section 4, whore it is shown that the model gives good

fits to the intensity-time profiles for both the forward and backward

Fluxes, and that the size of the solar envelope is —27%. A possible

relation between the solar envelope and the solar wind heating region is

also discussed in Section 4.

For most events, the solar shell must also be considered, because

this is the cause of the approach to isotropy. This will be considered

in a subsequent publication, where analytical properties of the model

and its relation to models based on the Boltzman equation will also

be discussed



II. The Model

We consider propagation in a 1-dimensional, semi-infinite medium

with a source at x=O. The medium is represented by an infinite

number of point scattering centers which are equally spaced and extend

from the source to infinity. The scattering properties of the medium

are described by two parameters: X, the constant separation between the

scattering centers, and the "effectiveness" of the scattering centers,

PL , which is the probability that a particle will be reflected when it

encounters a scattering center at xL . The properties of the cosmic

rays are represented by three parameters: a) their speed v,

which is assumed to be constant, b) f L T , the probability that a

particle is moving outward (i.e. away from the source) after a collision

at L- 1, T-1 and is just approaching point; L at time T and e) 
f  T'

*_he probability that a part i cle is moving inward ( i.e. , toward the

source) after a collision at L+l, T-1 and is just approaching point

L at time T. Thus, fL 
T 

is proportional to the flux of particles
a

moving away from the source (the forward flux) and f- 
T 

is proportional

to the flux of particles moving toward the source (the backward flux).

One can write the following recurrence equations for f + and f-:

^	 ', ) -f
L JjT+i

_ f,

j l? ^^_	 l	 L	 1^ T

The first of these equations states that the probability that a

particle is moving outward toward L+I at time T+1 is the sum of the

probability C',at a particle moves inward toward L at T and is
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reflected at that point, plus the probability that a particles moves

outward toward L at T and is not reflected at that point. The

second equation has a similar meaning. These equations form the basis

for the model. Given PL ,  a source function, and the boundary conditions

one can use (1) to calculate f+ 
LIT and f- LIT at any L, T.

For the source function, we choose

f + 0 ^
0 = I . ;	 f- .0 p o 

= 0 1	 (2)

corresponding to an instantaneous point source. For the boundary

condition, we choose

f 1,T "- f- o,T-J.'
	

(3)

which implies a reflecting boundary at x 
L 

=0



111. Apelication to tho Solai oeolkq, t ,

ideally, onu would like LO use ^ 61 1u model to do-duco V(:i)	 of

course, this cannot 
be 

done. 1J1OW0Vt 1 1' ) 01U.; Can proceud iWueLiVtAy

and use 
the 

model 
to 

LOOL certain hVpo01v.twG Loncurnin^,; 11(x)- Thitj

section follows th y; 	 approach and examint:,t 1-ho ofEects 01 a

diffusing region close to the sun (the solar envolopo) on solar cosmic

ray propagation.

Lot Us assume that

M ,	
_ (TD)2

P (L)	 5 

The choiz q of a gaussian, is somewhat arbitrary, but the results of

interest do not depend sensitively on the exact form of F(L). The

coefficient .5 was chosun because in the limit Lb--v, c5o the model

reduces to the I-dimensional random walk in a homogeneous medium, if

P = .5. The essential effects of the solar envelope on cosmic rays

are determined by %.-he number of scattering centers in t-ie envelope,

which is measured by L 
D'

To illustrate the properties of the model and the effects of the

envelope,we have calculated the sunward and antisunward "fluxes",

f+ and C, for various values of L D , assuming that there are Lo

scattering centers between the observer and the source, The results

fall into three classes, corresponding to L 
D 
<,!,1 0 , L 

D 
—L o , and L ^L 

0 ,
When L 

D <<L 
0 , 

f - is found to be negligible, as one would expect,

since there is a negligible probability of backscattering beyond the

observer's position. The characteristics of f+ are illustrated in Figure Ia,

When L 
D;—< 

2, the maximum intensity occurs at the onset ) To , and 4T) decreases

(4)

I
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exponentially at all times. When L D-6, the envelope begins to act

like a diffusing region' the particle intensity risesto a maximum

at Tm, shortly after onset and then decays exponentially as 	 result

of the loss of particles from the 'diffusing' region. As L D increases

to 10, the maximum shifts to :l.ater, times and the decay, though still

exponential, is less rapid as a result of the greater effectiveness

of the diffusing region in delaying the escape of particles. With

the observer at Lo=50, the values LD = 2,6, and 10 correspond to a

solar envelope with dimensions 8.4 RCj, 25.2 Rp, and 42 Rp, respectively.

When LD-;L0 , the scattering centers beyond LO are effective,

and an appreciable anti, sun flux, f is observed,. This is illustrated

in figure lb for LD=30 and LD=40. The rise to maximum and exponential

decay are seen in both f+ and f , and the trend toward increasing

Tmax and TD with increasing L o continues. The anisot •;npy approaches

a limiting value which decreases as LD increases. This is 28% for LD=

40 and 68% for LD=30.

When LD»Lo , the propagation tends to be like l-dimensional

diffusion, as one would expect, so this` c;a w.jj not be discussed

f:urthcr.

Having illitstr.ated the general.. effects of a solar envelope of

various dimensions on cosmic ray propagation, we now show how certain

cosmic ray observations can be used to infer the size R and diffusion

coefficient D = kv/2, of the solar envelope, on the assumption that

P(L) has the general form of (4) .

r
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S ince

R = 
L
D x210	 ( in units of 110)( 5)
0

and	
D( cm2) = 1.5x10 13v_ (cm/sec)	

( 6)
sec	 2 L

0

the problem can be stated, "Given f+(t) and f ( t) , and assuming P(x)

is given by (4) , find L 0 and LD."

From numerical calculations with L 0 ranging from 50 to 500 and

L  ranging from 5 to 50, the following empirical relation was found

L  ,=100 (Tm  To -1) 2 ; L  < L0A.	 (7)

( TI) / TO) 2

The error in this relation is le'sa than 10%. 	 When f+( t)

has the form shown in Figure 1, it can be characterized by three

parameters: 1) the onset time, t o = xo /v, where xo is the position of

the observer, 2) the time of maximum, t m, and 3) the decay time tD.

Since t = TT, where T	 A/v, we have Tm/To = tm/t0 and TD/ To = 	 tD/t0.

Thus, L  can be determined Very easily from the observed f + using (7).

Similarly, it was found that there is a simple relation between

TD and LD , which is given in Figure 2. This is independent of L 0 when

LD<L0 , indicating that the observer sees the same decay profile at

any position beyond the "diffusing" region and that the decay constant

is determined only by the number of effective (PM.5) scattering centers

in the envelope. Thus, given LD from '7), one obtains TD from Figure 2.

Lo can then be determined from the relation

Lo = To = to TD /tD
	

(8)

Thus 'L 0 and LD are determined: by ( 7) and (8) if to, t  and tD are

known, q. e. d.. R and D are then given by ( 5) and (6) .
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ZV . The May 4, 1960 Event

We shall zi	 allow haw the model can be applied to gave the

characteristics of the envelope and the intensity-time profiles of

the forward (looking toward the source) and backward (looking away

from the source) fluxes for the >1 by protons in the May 4, 1960,

event.

The classical May 4 event presents a special challenge to propagation

theories, for it was of unusually short duration, the anisotropy was always

essentially 100%, and it defies any attempt: to describe it by the

common diffusion models. On'the other hand, it was clearly associated

with an optical flare and a cm radio burst at 1025 UT, so that the
f

injection time can be determined (assuming instantaneous injection);

and	 good measurements of the intensity-time profiles for several

viewing directions are available, so that f+(t) and f - (t) are well-

known. Moreover, the flare occurred at N OW, which is only —100

from the theoretical position of the base of the interplanetary

magnetic field line that passes through the earth (Burlaga, 1967),

so the use of a 1-dimensional model is justified if perpendicular

diffusion can be neglected near -the sun as suggested by Axford (1965),

Burlaga (1967) and others.

The data which we use for this event are taken from McCracken

(1962), Figure 202. For the forward flux, we use the data from the

Fort Churchill neutron monitor which was viewing at an angle 6 -x+00

from the streaming direction. These data are shown by the dots in

Figure 3e The backward flux is inferred to be zero for all t, because

Mirny, which viewed at 6-1200 saw no enhancement at any timed Since



9

f^ was alwayj near the background level, and since f+ was characterized

by a rase to maximum followed by an exponential decay, it is likely

that angst of the scattering occurred near the sun, so that the model

of the preceding suction should be applicable for this particular

uvunt,

From Figure 3 we find that t o = 13.3 min, tm = 22.5 min. and

t 	 24.1. m in. Thus, ( 7 ) gives L  = 20.9, Figure 2 gives TD = 241,

and ( 8 ) gives Lo = 160. The collision probability P(x) (equation

( 4 )) is now determined, and the model can be used to calculate

f+ and C, The results for f+(t) are shag n by the curve in Figure 3,

which is normalized to the maximum intensity. It can be seen that

the theory gives an excellent fit to the observations. The corresponding

results for C(t) (which, recall, is on an equal footing with f+(t)

in our model) show that the ma%imum is <10 -24 in the units of Figure 3.

Thus the predicted backward flux is essentially zero, in agreement

with observations. We conclude that the model provides a satisfactory

description of the observed forward and backward fluxes of the

>1.1 by protons in the May 4, 1960 event.

Now let us examine what the model tells about the solar envelope

on May 4, 1960. Since L o = 160, implying 160 scattering centers

between the sun and the earth, the separation of the scattering centers

was	 _ .00625 AU. This is approximately equal to the mean free path

near the sun. Using ( 6 ) with v=1.9xlO 10 cm/sec. , ,we find that

the maximum value of the diffusion coefficient in the solar envelope

was D-9x10 2© crn2 /sec. Similarly, using L  = 2009	 we find from

(	 5	 ) that the size of the diffusing region was R=27 Ito.
/`
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Note that the decay time tD = 20 min., is approximately the time required

to diffuse out of the shell., R 2 /(4D) = 17 min.

Our diffusion coefficient may be compared with the estimate of

Shishov (1966), D,5xl020cm2 /sec, based on the assumption that RNIOR
0

on May 4, 1960. His estimate is inferred from an analytical model for

propagation in a spherically symmetrical, homogeneous medium from a

source of the form exp(-t/16 min). While our model. confirms Shishov's

intuition, it differs fundamentally from his approach and provides more

precise results. Our model. might also be compared with those of

Axford (1965) and Fisk and Axford (1969). They presented equations for

f't- and f - , but these are for a homogeneous medium. The solutions cannot

describe the May 4, event, We also note that Reid (1964) and Axford

(1965) presented models, postulating a very thin (R <l%) envelope to

give diffusion around the sun.

Finally, let us consider the origin of the diffusing region.

Burlaga and Ogilvie (1969) presented evidence in support of the hypothesis

that there is an extended heat source near the sun which accelerates

and heats the solar wind. Hartle and Barnes (1969) have shown the

relation between bulk speed and temperature of the solar wind, found

by Burlaga and Ogilvie, can b'e obtained by assuming that protons are

heated out to —20 R(D at quiet times. Note that the size of the heating

region is approximately the size of the solar envelope inferred from

our model. Thus, we offer the hypothesis that the heating region may

be identified with the solar envelc,e. This is supported by the

suggestion of Barnes (1969) that the heating is produced by damping

of hydromagnetic waves, for these waves cou,"' act as cosmic ray

r
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scattering centers. This hypothesis raises the interesting possibility

of using cosmic ray observations and our model to study the solar

wind heating region. Since Hartle and Barnes find that a larger

heating region is required to give higher solar wind temperatures,

we would expect that the size of the envelope inferred from cosmic

ray observations would be positively correlated with the solar wind

temperature.
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FIGURE CAPTIONS

Figure 1.	 Variation of f+ and F` with T for a particle released

at T=O into a medium with P(L) = e-(LILD) 2 . The

observer is at Lo=50. For L  < 10 (panel (a)), f - is

negligible. As L  approaches Lo , F" approaches £+

(panel (b)) .

Figure 2.	 This shows how TD is rebated to L 
D' 

The relation is

independent of L o , when L  5 L0A.
Figure 3.	 The points are observations of >lol By protons seen

at Fort Churchill on May 4, 1960. The curve shows f+

obtained from the model used to generate the curves in

Figure l; no :Free p arameters were used to get this fit.

r
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