Optimum Structural Design Based on Reliability and Proof-Load Testing

M. Shinozuka
J. N. Yang
Optimum Structural Design Based on Reliability and Proof-Load Testing

M. Shinozuka
J. N. Yang
Preface

The study effort described in this report was performed by the Engineering Mechanics Division of Jet Propulsion Laboratory. This study was partially supported by NASA National Research Council, under whose sponsorship Dr. J. N. Yang holds Resident Research Associateship at Jet Propulsion Laboratory. Dr. M. Shinozuka, consultant to Jet Propulsion Laboratory, is associate professor of civil engineering and engineering mechanics, Columbia University, New York, New York.
Acknowledgment

The authors are most grateful to Dr. E. Heer of JPL for his support of this study as well as for his valuable comments in the course of the investigation.

Also, acknowledgment is due Professor F. Moses of Case Western Reserve University, who generously provided the authors with a computer program for finding usable feasible directions—this played an important role in the computational work carried out in the numerical examples.
Contents

I. Introduction .. 1

II. Expected Cost of Failure and Optimum Design 2

III. Optimum Design of Statically Determinate Structures 5

IV. Optimum Design of Statically Indeterminate Structures 8

V. Numerical Examples 9
 A. Ten-Member Structure 9
 B. Three-Member Truss 11
 C. Constant-Thickness Spherical Shell 11
 D. Variable-Thickness Spherical Shell 12

VI. Discussion ... 13

VII. Conclusion ... 17

Appendix. Proof of Equations 28 and 29 18

Nomenclature .. 19

References ... 20

Tables

1. Ten-member structure 10
2. Three-member truss 11
3. Spherical shell with constant thickness 12
4. Spherical shell with variable thickness 13

Figures

1. Relative expected component cost EC_i as a function of proof stress level e_i 7
2. Relative expected component cost EC_i as a function of optimum proof stress level e_{i^*} 7
3. Three-member truss 11
4. Spherical shell of constant thickness 12
5. Spherical shell of variable thickness 12
6. Optimum thickness h_1 and h_2 of spherical shell of variable thickness as a function of relative expected cost constraint EC_a 14
7. Optimum weight W of spherical shell of variable thickness as a function of relative expected cost constraint EC_a 14
Abstract

An approach in structural optimization based on reliability analysis is presented, emphasizing the use of proof-load tests. Methods are described of optimizing structural weight, subject to a constraint on the expected cost, which is an extended version of the constraint on the probability of failure. Methods of optimizing both statically determinate and indeterminate structures are described.

Numerical examples indicate that the expense of performing the proof-load test is always well compensated by the improvement of structural reliability resulting from such a test. In fact, under the constraint of the same expected cost, significant weight savings can be expected of structures with proof-load-tested components compared with structures having components that are not proof-load tested.

It is shown that proof-load testing significantly improves statistical confidence in reliability estimates. The question of how to deal with the statistical confidence of the load distribution is also discussed at length.
Optimum Structural Design Based on Reliability and Proof-Load Testing

1. Introduction

Thermomechanical properties of materials used for the structure of a space vehicle, such as fracture strength, elasticity modulus, deformation capacity, linear thermal coefficient of expansion, etc.—particularly those of composite materials—exhibit considerable statistical variations. Furthermore, aerospace environments and loading conditions involve a number of uncertainties as to temperatures generated by aerodynamic friction, dynamic pressures, axial accelerations, acoustic and vibration loads, etc.

This indicates that both strengths of a structure and loads acting on the structure should be treated as random variables and that the concept of structural reliability should be incorporated into the analysis of the structure and its optimum design. Some optimum design work has been done in this direction (Refs. 1–6) at different levels of sophistication of reliability analysis. It should be observed, however, that major structural components of a space vehicle are usually tested individually, or otherwise under simulated environmental and loading conditions before the vehicle is deployed. Since such simulated tests or proof-load tests are indispensable parts of the engineering task within a space program, it is extremely important that the effect of such tests be taken into account in the estimation of structural reliability and in the structural design. The present study presents, for a given expected cost constraint, quantitative results of considerable weight saving and increased reliability by taking into consideration the proof-load test.

From the viewpoint of reliability analysis, the advantage of performing the proof-load test can be summarized as follows. The test can improve not only the reliability value itself but the statistical confidence in such a reliability estimate. This is because the proof-load test eliminates structures with strength less than the proof load. In other words, the structure passing the proof-load test belongs to a subset of the original population, which possesses a strength higher than the proof load. Therefore, it is obvious that the reliability of a structure chosen from this subset is higher than that of a structure chosen from the original population. Further, the proof-load test truncates the distribution function of strength at the proof load, thereby alleviating the analytical difficulty of verifying the validity of a fitted distribution
function at the lower tail portion where data are usually nonexistent. Evidently, the difficulty still remains in the selection of a distribution function for the load. However, the statistical confidence in the reliability estimation now depends mainly on the accuracy of the load prediction. The question of how to deal with the statistical confidence of the load distribution is discussed in Section VI (in which the Bayesian approach is suggested).

This report develops an approach for optimizing a structural design (for either minimum weight or minimum expected cost) by introducing the proof load as an additional design parameter, and shows the practical advantage of the use of proof loads in terms of weight saving.

The importance of the proposed method in structural design is emphasized because it represents a truly rational approach in an area clouded by uncertainties. Moreover, it establishes a definite design procedure applicable to most aerospace structures.

Although the present study places its emphasis on the problem of optimization of aerospace structures, the principle involved can be applied to optimization problems in other engineering disciplines (such as design of civil engineering structures, naval structures, ground vehicles, material-handling equipment, and electronic systems). In particular, the optimization can be highly significant for electronic systems consisting of thousands of components when the cost of each component is so small in comparison with the total cost of the system that a relatively high level of proof load can be applied.

Civil engineering structures—gantry towers at launching sites, buildings, bridges, etc.—gain increasing significance for space technology application. Because of their characteristic construction processes, it is recognized that these structures usually undergo a tacit process of proof-load testing during construction. If the structure does not fail during and upon completion of construction, it implies that all of its structural components and therefore the structure itself have sufficient strength to withstand at least the dead load. This is the information that must be taken into consideration as the lower bound of the strength distribution for the reliability estimation of an existing structure. In this respect, it would be advisable to devise an inexpensive method of more explicit proof-load test which can establish such a bound.

If a structure under construction survives a live load due to severe wind or earthquake acceleration, the combined action of such a live load and of the dead load (existing at the time of occurrence of the live load) can be interpreted as a proof-load test. The fact that the partially completed structure has survived such a proof-load test should be taken into consideration in the reliability analysis since this fact usually makes it possible to establish a better lower bound of the strength of each of the structural components (existing in the partially completed structure).

An important implication of the above argument is that separate considerations are given to the safety of a structure during and after completion of its construction. This seems reasonable since the cost of detection and the cost of failed-part replacement may be absorbed as the construction cost, whereas any failure after the structure is placed in service would produce much more serious contractual and socio-economic problems—possibly involving human lives.

II. Expected Cost of Failure and Optimum Design

Consider the following form of expected cost EC^* of the structure, taking only the cost of failure and of proof-load test into account (although more elaborate forms are obviously possible and may be desirable, depending on the specific problem at hand):

$$EC^* = \sum_{i=1}^{n} \frac{p_{oi}C_{oi}}{1 - p_{oi}} + p_fC_f$$

where

- $n = \text{number of major structural components constituting the overall structure}$
- $p_{oi} = \text{probability of failure of a candidate for the }$ith component under the stress S_{oi} due to proof load
- $p_f = \text{probability of failure of the entire structure}$
- $C_f = \text{cost of failure (including all aspects)}$
- $C_{oi} = \text{cost of proof-load test for }$ith component (including cost of loss of candidate components that failed to pass test)
- $\frac{p_{oi}}{1 - p_{oi}} = \text{expected number of candidates for the }$ith component that failed under S_{oi} before the one that can sustain S_{oi} is obtained
These quantities (and, hence, EC') are functions of design parameters. Furthermore, the weight W of the structure is also a function of the same parameters. Therefore, the optimization of W (or EC') under a constraint on EC' (or W) can be performed with respect to these parameters.

The absolute value of C, will have no effect in the following optimization process. If the proof-load test is not performed, $p_{oi} = 0$ in Eq. (1) and the formulation reduces to the minimum weight design under the constraint of probability of failure (Refs. 1-6).

Under the further simplifying assumptions, as used in Refs. 1-6, that the resisting strengths R_i (in terms of stress such as yield stress) of individual components ($i = 1, 2, \ldots, n$) are independent of each other as well as of the load S, the probability of failure p_f of the structure can be shown (Ref. 7) to be

$$p_f = \prod_{i=1}^{n} \left[1 - F_{R_i}(c_i x) \right] f_S(x) \, dx$$

where

$$F_{R_i}(x) = \text{distribution function of } R_i$$
$$S = \text{load applied to the structure}$$
$$S_i = \text{stress acting on the } i\text{th component}$$
$$f_{S_i}(x) = \text{density function of } S_i$$
$$c_i = \text{constant associated with } i\text{th component}$$

With the aid of the theoretical and experimental structural analysis, the stress S_i acting on the ith component when the load S is applied to the structure is given by

$$S_i = \frac{c_i S}{g_i(A_i)}$$

in which A_i is a design parameter representing the size of the ith component so that its weight W_i can be given as $W_i = b_i A_i$; c_i is a constant if the structure is statically determinate, whereas it is a function of A_1, A_2, \ldots, A_n if the structure is statically indeterminate; and $g_i(A_i)$ is a function of A_i, the form of which depends on the nature of the ith component [for example, $g_i(A_i) = A_i = \text{cross-sectional area for truss-like structures}$.]

Any method of structural analysis can be employed to obtain Eq. (3), including the finite-element method used extensively in the stress analysis of aerospace structures.

The S_i density function $f_{S_i}(x)$ can be obtained from the S density function $f_S(x)$ through the transformation indicated in Eq. (3), and can be shown to be

$$f_{S_i}(x) = f_S \left[\frac{g_i(A_i) x}{c_i} \right] \left[\frac{g_i(A_i)}{c_i} \right]$$

The following points (Ref. 7) are to be noted in the derivation of Eq. (2):

1. The definition of structural failure is in accordance with the weakest link hypothesis; that is, the failure will take place if at least one of the components fails.
2. The assumption that the component resisting strengths R_i are independent from each other is a conservative one.
3. The approximation indicated in Eq. (2) is also of a conservative nature.
4. The applied load S can be interpreted as reference value of a system of proportional loading acting on the structure.
5. If p_f in Eq. (2) is to represent the probability of failure of a structure subject to a sequence of N statistical loads, $f_S(x)$ should be replaced by the density function $f_{S_m}(x)$ of the maximum load S_m in such a sequence; for a sequence of N "independent" loads, each distributed as S, the density function $f_{S_m}(x)$ is

$$f_{S_m}(x) = \frac{d[F_S(x)]^N}{dx} = N[F_S(x)]^{N-1} f_S(x)$$

where $F_S(x)$ is the distribution function of S. The previous studies (see Refs. 1-6) were all based on the weakest link hypothesis and on the assumption that the values of R_i are independent from each other. The approximation indicated in Eq. (2) was also employed in these studies, with the exception of the work by Moses and Kinser (cited in Ref. 6), where the integral expression—the second member of Eq. (2), together with Eq. (5)—was used in a different analytical approach. The weakest link hypothesis, which is probably adequate to describe the failure condition for a statically determinate structure, is also adopted in the present study for
analytical simplicity. However, some evidence exists as to its validity for statically indeterminate structures (Ref. 8) as well.

Of considerable practical importance is the case where the structure is subjected to a number of mutually exclusive and independent proportional loading systems (e.g., unusually severe wind and extremely strong earthquake motion) with \(S^{*(1)}, S^{*(2)}, \ldots, S^{*(k)} \) denoting the maximum reference values of these loading systems within a specified period of time. The probability of failure of the structure is then given by the sum

\[
\sum_{j=1}^{k} p_{f(j)}^{(j)}
\]

where \(p_{f(j)}^{(j)} \) is the probability of failure of the structure under \(S^{*(j)} \) only.

Employing in Eq. (1) the approximation indicated in Eq. (2),

\[
EC^* = \sum_{i=1}^{n} EC^*_i
\]

with \(EC^*_i \) being the expected cost of the \(i \)th component;

\[
EC^*_i = \frac{p_{oi}}{1 - p_{oi}} + p_{ji}C_f = (\gamma_i q_i + p_{ji})C_f
\]

where

\[
q_i = \frac{p_{oi}}{1 - p_{oi}}
\]

with

\[
\gamma_i = \frac{C_{oi}}{C_f} < 1
\]

This ratio indicates relative importance of the \(i \)th component with respect to the cost of structural failure.

The probability of failure of the \(i \)th component is

\[
p_{fi} = \int_{0}^{\infty} F_{R_i}(x)f_{S_i}(x)\,dx
\]

The quantities \(EC^* \) and \(EC^*_i \) can be expressed in terms of the cost of failure \(C_f \) by dividing both sides of Eqs. (6) and (7) by \(C_f \):

\[
EC = \frac{\sum_{i=1}^{n} EC^*_i}{C_f}
\]

\[
EC_i = \gamma_i q_i + p_{ji}
\]

where

\[
EC = \frac{EC^*}{C_f}
\]

and

\[
EC_i = \frac{EC^*_i}{C_f}
\]

Equations (10) and (11) indicate an important conclusion that the absolute value of the cost of failure has no effect on the optimization process. In this optimization formulation, it is only necessary to know or to estimate the ratio \(\gamma_i \) of the component cost \(C_{oi} \) to the cost of failure \(C_f \).

If the proof-load test is not performed (if \(q_i = 0 \)), then \(EC_i \) is a value representative of the probability of failure of the \(i \)th component, and \(EC \) reflects the probability of failure of the entire structure.

To perform the reliability-based optimum design, it is necessary to know the distribution function \(F_{R_i}(x) \) of the resisting strength \(R_i \) of the candidate for the \(i \)th component (henceforth referred to as the parent strength distribution of the \(i \)th component). It is assumed that, before the proof-load test, this distribution (and therefore its mean value and standard deviation) is known with sufficient statistical confidence on the basis of material tests, experience, etc. The question as to what is considered to be a sufficient confidence is crucial and is discussed in detail in Subsection VI.

Let \(e_i \) denote a design parameter indicating the stress level \(S_{oi} \) of proof load to be applied to the candidate for the \(i \)th component in terms of \(R^*_i \):

\[
S_{oi} = e_i R^*_i
\]

and the central safety factor \(v_i \) be defined as

\[
v_i = \frac{R^*_i}{S^*_i}
\]

where \(R^*_i \) and \(S^*_i \) are the measures of location (such as the mean value \(\bar{R}_i \) and \(\bar{S}_i \)) of the distribution of \(R_i \) and \(S_i \), respectively.

Once the factor of safety \(v_i \) is specified, the candidate for the \(i \)th component should be so designed that the measure of location \(S^*_i \) of the stress \(S_i \) acting on the \(i \)th component is equal to \(S^*_i = R^*_i / v_i \). This is accomplished by choosing \(A_i \) that satisfies
Equation (14) is obtained from the following relationship by replacing S_t^* by R_t^*/v_i,

$$S_t^* = \frac{c_t S_t^*}{g_t(A_t)}$$ \hspace{1cm} (15)

which is in turn obtained from Eq. (3), where S_t^* and S_t^* should be the measures of location of the same kind such as the mean value.

It is interesting to note that upon substituting Eq. (14) into Eq. (4) the S_t density function f_{S_t} becomes

$$f_{S_t}(x) = f_s \left(\frac{S_t^* u_t}{R_t}, \frac{S_t^*}{R_t^*} \right)$$ \hspace{1cm} (16)

and it is free from c_t.

The probability of failure p_{oi} of a candidate for the ith member, under the proof stress S_{oi}, is given by

$$p_{oi} = F_{R_i}(S_{oi}) = F_{R_i}(\theta_i R_t^*)$$ \hspace{1cm} (17)

and the probability element $f_{R_i}(x) dx$ of the resisting strengths R_i of the proof-load-tested ith component is given by

$$f_{R_i}(x) dx = P(x < R_i \leq x + dx \mid R_i > S_{oi})$$

$$= \frac{P(x < R_i \leq x + dx \mid R_i > S_{oi})}{P(R_i > S_{oi})}$$

$$= \frac{H(x - S_{oi}) f_{R_i}(x) dx}{1 - F_{R_i}(S_{oi})}$$ \hspace{1cm} (18)

from which it follows that

$$F_{R_i}(x) = \frac{H(x - S_{oi}) [F_{R_i}(x) - F_{R_i}(S_{oi})]}{1 - F_{R_i}(S_{oi})}$$ \hspace{1cm} (19)

where

- $P(E) =$ probability of event E
- $P(E_1 \mid E_2) =$ conditional probability of E_1 given E_2
- $P(E_1, E_2) =$ probability of simultaneous occurrence of E_1 and E_2
- $H(x) =$ Heaviside unit step function

When Eq. (12) is combined into Eqs. (18) and (19),

$$f_{R_i}(x) = \frac{H(x - e_i R_t^*) f_{R_i}(x)}{1 - F_{R_i}(e_i R_t^*)}$$ \hspace{1cm} (20)

$$F_{R_i}(x) = \frac{H(x - e_i R_t^*) F_{R_i}(x) - F_{R_i}(e_i R_t^*)}{1 - F_{R_i}(e_i R_t^*)}$$ \hspace{1cm} (21)

The Heaviside unit step function in Eqs. (20) and (21) truncates the original strength distribution at the stress level of the proof load. It is for this reason that the distribution of R_i is referred to as the truncated strength distribution in the following.

Since it follows from Eqs. (8) and (17) that $q_i = q_i(e_i)$ and from Eqs. (9), (16), and (21) that $p_{ri} = p_{ri}(e_i, v_i)$, Eq. (11) can be written as

$$EC_i = \gamma_i q_i(e_i) + p_{ri}(e_i, v_i)$$ \hspace{1cm} (22)

The optimization problem considered in the present study is either to minimize the structural weight subject to the constraint on the relative expected cost, or to minimize the relative expected cost subject to the constraint on the structural weight, both with respect to e_i and v_i. Since the analytical technique employed here can be applied to either case, only the first is discussed. Furthermore, because the optimization analysis for statically determinate structures can be simplified considerably, discussions for statically determinate and indeterminate structures are given separately.

The technique for statically indeterminate structures is a general one that can also be applied to the optimum design of statically determinate structures. In fact, the optimum values in a later example for a statically determinate structure are all checked by the technique used for the statically indeterminate structure.

III. Optimum Design of Statically Determinate Structures

The optimization problem in this case can be stated as follows:

Minimize the weight of the form

$$W = \sum_{i=1}^{n} W_i = \sum_{i=1}^{n} b_i A_i$$ \hspace{1cm} (23)
subject to

\[EC = \sum_{i=1}^{n} EC_i \leq EC_a \]

(24)

with

\[EC_i = \gamma_i q_i(e_i) + p_{ri}(e_i, v_i) \]

(25)

In Eq. (23), \(W_i \) is the weight of the \(i \)th component and \(b_i \) is a known constant; for example, if a truss-like structure is considered, \(A_i \) is the cross-sectional area and \(b_i = l_i \rho_i \) with \(l_i \) and \(\rho_i \) being the specified length and density of the same component, respectively.

Rewriting Eq. (14), one obtains

\[v_i = \frac{R_i^+ g_i(A_i)}{c_i S^*} \]

(26)

which indicates that \(v_i \) is a function of \(A_i \) (and \(A_i \) only) since \(c_i \) is a constant for statically determinate structures. Hence, equivalent to Eq. (25),

\[EC_i = \gamma_i q_i(e_i) + p_{ri}(e_i, A_i) \]

(27)

where \(p_{ri}(e_i, A_i) \) is used for \(p_{ri}[e_i, v_i(A_i)] \) for simplicity.

The problem is now to minimize \(W \) in Eq. (23), subject to the constraint of Eq. (24), with \(EC_i \) given by either Eq. (25) or (27).

Since Eq. (23) is linear and there is only one constraint equation, Eq. (24) is always active; i.e., the equality sign of Eq. (24) holds at optimum.

The present problem can now be easily formulated with the aid of the variational principle. Although the method does not generate the solution explicitly, it indicates that, for a minimum weight design, the following relationships must be satisfied, under the assumption that \(EC_a \) is small compared with unity, so that at optimum the variation of \(W_i/W \) is small in comparison with that of \(EC_a \) (see appendix).

\[\frac{\partial EC_i}{\partial e_i} = 0 \quad (i = 1, 2, \ldots, n) \]

(28)

\[\frac{EC_i}{EC_a} = \frac{W_i}{W} \quad (i = 1, 2, \ldots, n) \]

(29)

Equation (28) shows that, for an optimum structural weight, the stress level of the proof load to be applied to individual components should also be optimum in the sense that the relative expected cost of an individual component \(EC_i \) is minimized at that stress level. As an example, under the assumption that \(R_i \) and \(S \) are normally distributed with coefficients of variation of 20% for \(S \) and 5% for \(R_i \), the dependence \(EC_i \) on \(e_i \) using a specific value of \(v_i (= 1.6) \) is plotted in Fig. 1 with \(\gamma_i \) as a parameter. The locus of those points at which \(EC_i \) assumes minimum values (curve 1) plays an important role in the following optimization process. Those values of the proof load \(e_i \) that produce minimum \(EC_i \) associated with given \(v_i \) and \(\gamma_i \) are denoted by \(e_i^* \). This implies that curve 1 indicates the relationship between \(EC_i \) and \(e_i^* \), given \(v_i \) and \(\gamma_i \).

A minimum weight is realized when the total weight is allocated to individual components in proportion to their expected costs, as shown by Eq. (29). This fact was shown to be valid also for optimization without proof-load test (see Ref. 3), in which case the total weight was to be allocated proportionately to the probabilities of failure rather than to the expected costs.

Usefulness of Eqs. (28) and (29) lies in the fact that these can be used to develop an iterative procedure consisting of the following steps in arriving at a minimum weight design:

1. Construct a diagram in which the \(EC_i \sim e_i^* \) relationship is given for various values of \(v_i \) and \(\gamma_i \) (Fig. 2). This is an extended version of Fig. 1.
2. Try \(EC_i = EC_a/n \) as a first estimate of \(EC_i \).
3. Read, from Fig. 2, \(e_i^* \) and \(v_i \) corresponding to the latest estimate of \(EC_i \) and to the specified value of \(\gamma_i \). Then calculate \(A_i \) from Eq. (14).
4. Compute \(EC_i \) from Eq. (29) using those values of \(A_i \) just obtained in step (3).
5. Go to step (3) with the value of \(EC_i \) estimated in step (4) and repeat the procedure.

The rate at which this process converges to stable values of \(W_i \) and \(e_i \) is extremely rapid since the component weight \(W_i \) is insensitive to the variation of \(EC_i \). In fact, experience shows that two cycles of iteration are sufficient to obtain the optimum design.

It is to be noted that in a numerical example given later, the information contained in Fig. 2 is stored in the computer memory and the third step of the procedure is accomplished by means of an interpolation subroutine.
Fig. 1. Relative expected component cost EC_i as a function of proof stress level e_i.

Fig. 2. Relative expected component cost EC_i as a function of optimum proof stress level e_i^*.
IV. Optimum Design of Statically Indeterminate Structures

For statically indeterminate structures, the central safety factor \(v_i \) \((i = 1, 2, \ldots, n)\) cannot be chosen arbitrarily since it should satisfy continuity equations. This situation can be readily demonstrated by a statically indeterminate truss subjected to a system of proportional loading with a reference value of load \(S \). The applied load stress \(S_i \) (and \(S_j \)) acting on individual members can be determined only after the cross-sectional area \(A_i \) of the members has been specified. This implies that the \(v_i \) values are functions of \(A_i, A_2, \ldots, A_n \). In fact, \(c_i \) values in Eq. (26) are, in general, functions of \(A_i, A_2, \ldots, A_n \). Hence,

\[
v_i = v_i(A_i, A_2, \ldots, A_n) \quad i = 1, 2, \ldots, n
\]

(30)

It is important to note that the inverse of Eq. (30) does not exist. In other words, one cannot express \(A_i \) as a function of \(v_i, v_2, \ldots, v_n \); therefore, \(v_i \) \((i = 1, 2, \ldots, n)\) cannot be used as independent design variables as in the preceding section. The optimization problem should therefore be stated as follows:

Minimize

\[
W = \sum_{i=1}^{n} b_i A_i
\]

subject to

\[
EC = \sum_{i=1}^{n} EC_i \leq EC_a
\]

(32)

with

\[
EC_i = \gamma_i q_i(e_i) + p_{ii}(e_i, v_i)
\]

(33)

or

\[
EC_i = \gamma_i q_i(e_i) + p_{ii}(e_i, A_i, A_2, \ldots, A_n)
\]

(34)

The basic difference between the present case and that of statically determinate structures is quite clear; the probability of failure \(p_i \) now depends not only on \(A_i \) and \(e_i \) but on \(A_i, A_2, \ldots, A_{i-1}, A_{i+1}, \ldots, A_n \). Unfortunately, this fact makes it impossible to solve the present optimization problem in a simple iterative approach (such as that efficiently employed for statically determinate structures in the preceding section). Such a difference between statically determinate and indeterminate structures hardly makes it necessary to treat these structures differently in the reliability analysis, where the essential problem is to estimate the probability of failure of designed structures as long as the weakest link hypothesis is assumed regardless of structural determinacy.

Nevertheless, the variational principle as described in the appendix for statically determinate structures can be applied to the problem of indeterminate structures to obtain the following conditions for an optimum:

\[
\frac{\partial EC_i}{\partial e_i} = 0 \quad (i = 1, 2, \ldots, n) \tag{35}
\]

Hence, the problem is now to minimize \(W \) in Eq. (31) by a proper choice of \(A_i \) and \(e_i \), subject to a constraint on the expected cost [Eq. (34) and satisfying Eq. (35)].

It is believed that the optimization technique most appropriate to the present problem is a gradient-move method as briefly described below.

In this method, a design point \(B_1 \) is first chosen arbitrarily in the acceptable domain defined by \(EC < EC_a \) of the \(n \)-dimensional design space of \(A_i, A_2, \ldots, A_n \).

Note that once \(B_1 \) is chosen, \(A_i, A_2, \ldots, A_n \) are given and \(v_i \) can be computed from Eq. (26). With these values of \(v_i \) and the specified values of \(\gamma_i, EC_i \) and \(e_i^* \) can be read from Fig. 2. This makes it possible to check if \(B_1 \) is in the acceptable domain.

The design is then modified by moving normal to the weight contour by a specified step from point \(B_1 \) to a new design point \(B_2 \) with a lighter weight. This process is repeated until the constraint \(EC = EC_a \) is reached at point \(B_2 \).

Let \(U \) and \(V \) be respectively the gradients of the relative expected cost \(EC \)—with \(e_i \) replaced by optimum values \(e_i^* \), satisfying Eq. (35)—and the weight \(W \) at point \(B_2 \) (and hence normal to the constraint \(EC = EC_a \) and the weight contour);

\[
U = \nabla EC = \sum_{k=1}^{n} \frac{\partial EC}{\partial A_k} i_k
\]

(36)
\[V = \nabla W = \sum_{k=1}^{n} \frac{\partial W}{\partial A_k} \cdot i_k = \sum_{k=1}^{n} b_k i_k \]
(37)

with \(i_k \) being the unit base vector in the positive direction of \(A_k \) axis.

Let \(Q \) be a vector such that
\[(U \cdot Q) \text{ at } B_0 \leq 0 \]
(38)
\[(V \cdot Q) \text{ at } B_0 \leq 0 \]
(39)

The direction of \(Q \) defines the so-called usable feasible direction (Ref. 9). A systematic scheme for finding \(Q \), proposed by Zoudendijk (Ref. 9), is used in the present study.

Since \(EC_i \) are now functions of \(e_i^* \) and \(v_i \), the partial derivatives
\[\frac{\partial EC_i}{\partial v_i} \text{ at } B_0 \quad (i = 1, 2, \ldots, n) \]
can be obtained from Fig. 2 by interpolation, whereas the partial derivatives
\[\frac{\partial v_i}{\partial A_k} \text{ at } B_0 \quad (i = 1, 2, \ldots, n; k = 1, 2, \ldots, n) \]
from Eq. (26) with the aid of the finite-difference technique.

The design point is now moved from \(B_0 \) along \(Q \) in a specified step away from the constraint \(EC = EC_a \) into the acceptable domain with a reduction in the weight. The modification of the design proceeds along \(Q \) until the design point reaches the constraint again. Then, another usable feasible direction is found and the process is repeated until the design point reaches the constraint at which the Kuhn-Tucker optimal condition (see Ref. 9) is satisfied. [The vector \(Q \) cannot be found at \(B^* \) so as to satisfy Eqs. (38) and (39) simultaneously, with at least one of them being purely an inequality.] This point \(B^* \) is an optimum design point corresponding to a local minimum for the weight \(W \). The global minimum can usually be found as the least of the local minima obtained by beginning with a number of starting design points.

Disregarding Eq. (35), a straightforward application of the gradient-move technique can be made by taking \(e_i \) \((i = 1, 2, \ldots, n)\) as independent design variables in the design space. Hence, a design point \(B_i \) is first chosen arbitrarily in the acceptable domain defined by \(EC < EC_a \) of the \(2n \)-dimensional design space of \(A_1, A_2, \ldots, A_n, e_n, e_2, \ldots, e_1 \). Then, the procedure just described can be employed to obtain a local minimum. It is believed that the computational work involved in such an approach will be much more complex than the approach taking advantage of Eq. (35). It is emphasized that Eq. (35) provides not only the computational advantage but also a physical significance of the optimum test level of components, as discussed in Section III.

V. Numerical Examples

A. Ten-Member Structure

For the purpose of comparison, the numerical example of Ref. 6 is considered, in which the minimum weight design is performed for a statically determinate, truss-like structure consisting of 10 members (components) subjected to a system of proportional loading. Since the failure condition is assumed to be that of yielding, the resisting strength \(R_i = \sigma \) = yield stress. The assumption of \(\gamma_i \) being a constant for all components is used for simplicity without loss of generality.

A constraint imposed on \(EC^* \) in this example is
\[EC^* \leq 10^{-3} C_i \]
\[\text{or } EC \leq 10^{-3} \]
(40)

Note that without the proof-load test, this formulation reduces to the minimum weight design under the constraint of probability of failure \(p_f \leq 10^{-3} \), as discussed in Ref. 6.

The weight \(W \) can be written in the form of Eq. (23) with \(n = 10 \) and
\[W_i = \rho \ell_i S \frac{v_i}{\bar{\sigma}_y} \]
(41)

where
\[\rho = \text{density of material} = 0.283 \text{ lb/in.}^3 \]
\[\ell_i = \text{length of the } i\text{th component} = 60 \text{ in.} \]
\[S = \text{mean value of } S = 60 \times 10^3 \text{ lb} \]
\[\bar{\sigma}_y = \text{mean value of yield stress } \sigma_y = 40 \times 10^3 \text{ psi} \]
\[c_i = 0.1 \times i (i = 1, 2, \ldots, 10) \]
It is assumed that the distribution functions of S and σ_y are both normal with the coefficient of variation 0.2 and 0.05, respectively. Then, a choice of a set of values for v_i and S_{ni} determines the distribution function of R_i—that is, the truncated distribution of σ_y. This in turn makes it possible to evaluate p_{f_i} (Eq. 9). Therefore, in this example, the independent design parameters are v_i and e_i, or $S_{ni} = e_i \bar{S}_i = e_i \sigma_y$.

The minimum weight design subject to the constraint of Eq. (24) can now easily be achieved by the iterative method described in Section III.

The result is shown in Table 1, where the constraint of $p_f \leq 10^{-3}$ is used for both conventional design and standard optimum design (without proof-load test). Since all these designs are associated with the expected cost of $10^{-3} C_i$, Table 1 indicates that by performing the proof-load test, not only the reliability of the structure increases, but considerable weight saving is achieved.

It is further observed from Table 1 that the extent of increase in weight saving and reliability depends essentially on the value of γ_i, which is the ratio of the cost of the ith component with respect to the cost of failure. For smaller values of γ_i, larger proof loads can be applied with the same constraint of the expected cost, thus yielding lighter structural weight (this can easily be realized from Fig. 2) and smaller probability of failure. For example, the structural weight W and the probability of failure p_f associated with the optimum structural design without proof-load test are 253.2 lb and 10^{-3}, respectively, while those associated with the optimum structural design with proof-load test are 221 lb and 0.613×10^{-3} for $\gamma_i = 10^{-3}$, and 243.9 lb and 0.625×10^{-3} for $\gamma_i = 10^{-2}$.

Therefore, as a result of the proof-load test, higher benefit can be obtained for smaller values of γ_i in the optimum design. Because of this conclusion, the optimum design with proof-load test can be highly significant for electronic systems consisting of thousands of components, when the cost of each component is very small compared to the total cost of the system.

The study in Ref. 6 showed that more weight saving can be expected if the more accurate expression rather than the approximation is used for evaluating the probability of failure, although Eq. (29) will no longer be

<table>
<thead>
<tr>
<th>Member i</th>
<th>Mean load, S</th>
<th>Structural weight W, lb</th>
<th>Probability of failure p_f</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>255.6</td>
<td>1.0×10^{-3}</td>
</tr>
<tr>
<td>2</td>
<td>0.2</td>
<td>253.2</td>
<td>1.0×10^{-3}</td>
</tr>
<tr>
<td>3</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Ten-member structure ($EC_i = 10^{-5}$)
valid; hence, a more elaborate computational scheme must be applied.

B. Three-Member Truss

A statically indeterminate three-member truss is designed for a minimum weight to resist a set of proportional loading, as shown in Fig. 3. The mean value of yield stress for each member is 40×10^3 psi and that of S is 100×10^3 lb. The constraint on the expected cost EC^* is $5 \times 10^{-4} C_f$. Both σ_y and S are normal with coefficients of variation 0.05 and 0.2, respectively.

The weight function is

$$\frac{W}{\rho \ell} = (2)^\mu A_1 + A_2 + (2)^\nu A_3 \quad (42)$$

where $W = \text{total weight}$, $\rho = \text{density of material}$, $\ell = \text{length of member 2}$, and $A_i = \text{area of the } i\text{th member}$.

The gradient-move method described in the preceding section is employed to find an optimum design. Under the loading condition described in Fig. 3, the minimum-weight design is the one for which the area of member 1 is zero; in other words, in this particular case, it is a statically determinate structure. For the purpose of comparison, the result is listed in Table 2 for different values of γ_i as well as for zero proof load (standard optimum design); γ_i is assumed to be equal for $i = 1, 2, 3$. Again, a considerable amount of weight saving is accomplished for smaller values of γ_i.

Although the possibility of buckling is not considered here, it can be treated without any difficulty (for example, see Ref. 7).

![Fig. 3. Three-member truss](image)

C. Constant-Thickness Spherical Shell

A spherical shell of constant thickness h, fixed around its edge and subjected to a uniformly distributed load S, is to be designed for a minimum weight (Fig. 4). The mean values of the yield stress σ_y and the applied load S are respectively $\sigma_y = 45 \times 10^3$ psi (for both tension and compression) and $S = 0.6 \times 10^3$ psi. The constraint on the expected cost EC^* is $EC^* \leq 10^{-4} C_f$. Both σ_y and S are normally distributed with coefficient of variation 0.05 and 0.2, respectively. The maximum stress σ_{max} due to load S is the meridional stress at the fixed edge and approximately equal to (Ref. 10)

$$\sigma_{max} = -Sf(a,a,h) \quad (43a)$$

with

$$f(a,a,h) = \left(\frac{a \sin \alpha}{h} \right)^2 \left[0.75 - 0.038 \left(\frac{a \sin \alpha}{h} \right)^2 \right]$$

$$\frac{a \sin ^2 \alpha}{h} < 3 \quad (43b)$$

and

$$f(a,a,h) = 1.2 \frac{a}{h}, \quad 3 \leq \frac{a \sin ^2 \alpha}{h} < 12 \quad (43c)$$

where a is the shell radius.

<p>| Table 2. Three-member truss ($EC^* = 5.0 \times 10^{-4}$) |</p>
<table>
<thead>
<tr>
<th>Design conditions</th>
<th>Design variable</th>
<th>Member</th>
<th>$W\rho \ell \times 10^{-3}$</th>
<th>Probability of failure P_f</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current optimum design</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\gamma_i = 10^{-4}$</td>
<td>Ai, in.2</td>
<td>0</td>
<td>3.940</td>
<td>1.370</td>
</tr>
<tr>
<td></td>
<td>e^i_1</td>
<td>0</td>
<td>1.119</td>
<td>1.107</td>
</tr>
<tr>
<td>$\gamma_i = 10^{-6}$</td>
<td>Ai, in.2</td>
<td>0</td>
<td>4.102</td>
<td>1.433</td>
</tr>
<tr>
<td></td>
<td>e^i_1</td>
<td>0</td>
<td>1.075</td>
<td>1.059</td>
</tr>
<tr>
<td>$\gamma_i = 10^{-4}$</td>
<td>Ai, in.2</td>
<td>0</td>
<td>4.320</td>
<td>1.512</td>
</tr>
<tr>
<td></td>
<td>e^i_1</td>
<td>0</td>
<td>1.011</td>
<td>0.991</td>
</tr>
<tr>
<td>$\gamma_i = 10^{-3}$</td>
<td>Ai, in.2</td>
<td>0</td>
<td>4.515</td>
<td>1.568</td>
</tr>
<tr>
<td></td>
<td>e^i_1</td>
<td>0</td>
<td>0.930</td>
<td>0.907</td>
</tr>
<tr>
<td>Standard optimum design</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$-$</td>
<td>Ai, in.2</td>
<td>0</td>
<td>4.568</td>
<td>1.579</td>
</tr>
<tr>
<td></td>
<td>e^i_1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Fig. 4. Spherical shell of constant thickness

With the aid of Eq. (43), the mean applied stress \(\bar{\sigma}_{\text{max}} \) can be defined as the maximum stress produced by the mean applied load \(\bar{S} \); \(\bar{\sigma}_{\text{max}} = -\bar{S}f(a, a, h) \). The central safety factor \(v \) is then \(v = \frac{\sigma_v}{\bar{\sigma}_{\text{max}}} \) and the stress level \(S_0 \) due to proof load is \(S_0 = e\bar{\sigma}_v \).

Since this is a one-component structure, the optimum design can be achieved without using the gradient-move method. The procedure is as follows:

1. Construct a diagram where the \(EC_i \sim \varepsilon^*_i \sim \varepsilon_i \) relationship is given for various values of \(\gamma_i \) (Fig. 2).
2. Read \(\varepsilon^* \) and \(v \) from Fig. 2 for specified constraint \(EC_a \) and given value of \(\gamma \).
3. With the safety factor \(v \) just evaluated, the thickness \(h \) of the shell is computed using the following expression obtained from Eq. (43):

\[
f(a, a, h) = -\frac{\sigma_v}{vS}
\]

The results are listed in Table 3 for various values of \(\gamma \), including the case of standard optimum design (\(e^* = 0 \)) for the purpose of comparison.

D. Variable-Thickness Spherical Shell

A spherical shell with variable thickness, subjected to a uniformly distributed load \(S \), is designed for a minimum weight (Fig. 5). The thickness is \(h_1 \) at the top of the shell and \(h_2 \) at the clamped edge. The thickness varies linearly with respect to the angle \(\alpha \). No attempt is made here to determine the optimum shape of the shell (for this aspect, see Ref. 11). The following values are used for numerical computation: \(\bar{S} = 380 \) psi, \(\sigma_v = 40 \times 10^6 \) psi, \(E = 30 \times 10^6 \) psi, \(G = 12 \times 10^6 \) psi, \(\rho = 0.238 \) lb/in.\(^3\). Both \(\sigma_v \) and \(S \) are assumed to be normally distributed with coefficient of variation 0.05 and 0.2, respectively.

The weight function is

\[
W = 2\pi a^2 \rho \left\{ \left[1 - \frac{4}{\pi^2} \right] h_1 + \left[\frac{4}{\pi^2} - \frac{1}{(2\pi)^2} \right] h_2 \right\}^{1/2}
\]

where \(a \) is the shell radius.

Table 3. Spherical shell with constant thickness

<table>
<thead>
<tr>
<th>Design conditions</th>
<th>Thickness (h), in.</th>
<th>Proof stress level, (e^*)</th>
<th>Central safety factor, (v)</th>
<th>Probability of failure (p_f \times 10^{16})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\gamma = 10^{-6})</td>
<td>0.280</td>
<td>1.050</td>
<td>1.750</td>
<td>0.59</td>
</tr>
<tr>
<td>(\gamma = 10^{-5})</td>
<td>0.297</td>
<td>0.983</td>
<td>1.854</td>
<td>0.56</td>
</tr>
<tr>
<td>(\gamma = 10^{-4})</td>
<td>0.310</td>
<td>0.895</td>
<td>1.941</td>
<td>0.67</td>
</tr>
<tr>
<td>(\gamma = 10^{-3})</td>
<td>0.314</td>
<td>0.824</td>
<td>1.964</td>
<td>0.72</td>
</tr>
<tr>
<td>Standard optimum design</td>
<td>0.313</td>
<td>0</td>
<td>1.971</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Fig. 5. Spherical shell of variable thickness

\(E = \) Young's modulus of elasticity \((30 \times 10^6 \) psi), \(G = 12 \times 10^6 \) psi, \(\rho = 0.238 \) lb/in.\(^3\). Both \(\sigma_v \) and \(S \) are assumed to be normally distributed with coefficient of variation 0.05 and 0.2, respectively.

The weight function is

\[
W = 2\pi a^2 \rho \left\{ \left[1 - \frac{4}{\pi^2} \right] h_1 + \left[\frac{4}{\pi^2} - \frac{1}{(2\pi)^2} \right] h_2 \right\}^{1/2}
\]
The finite-element method is employed for stress analysis of the shell while the gradient-move method is used to find the optimum design. The maximum stress occurs either at the clamped edge (meridional stress) or at the top of the shell (tangential stress) depending on the magnitude of \(h_1 \) and \(h_2 \).

A number of starting design points were tried, and all resulted in the same optimum design. The results are listed in Table 4 for different values of \(\gamma_1 \) and \(EC_c \). For an easy reference, optimum values of thickness \((h, \text{ and } h_2)\) and the weight \(W \) are plotted as functions of \(EC_c \) in Figs. 6 and 7, respectively.

VI. Discussion

The result of the preceding examples indicates that the level of proof load to be applied to individual components is lower for the more important components (with a larger value of \(\gamma_1 \)) and higher for less important components (with a smaller value of \(\gamma_1 \)), reflecting simply that the more expensive the component is, the less one can afford to lose it in proof-load testing.

For instance, in the truss considered in Subsection V-B, under the same constraint of \(EC_c = 5 \times 10^{-4} \), the optimum levels of proof load to be applied to member 3 are \(e_3^* = 0.907 \) for \(\gamma = 10^{-3} \) and \(e_3^* = 1.107 \) for \(\gamma = 10^{-6} \). Similarly, the optimum values of \(\gamma_1 \) are 0.824 for \(\gamma = 10^{-3} \) and 1.05 for \(\gamma = 10^{-4} \) in the spherical shell of Subsection V-C.

The proof-load test can improve the statistical confidence in the reliability estimate because the test truncates the distribution function of the strength, hence alleviating—if not completely removing—the difficulty of justifying the use of a fitted distribution function at the lower tail portion where data are usually nonexistent.

The validity of this statement evidently rests on whether the truncated strength distribution can really be established with a significantly improved confidence on a sample of practical size. In general, this can be

Table 4. Spherical shell with variable thickness

<table>
<thead>
<tr>
<th>Design conditions</th>
<th>Relative expected cost constraint (EC_c)</th>
<th>Thickness (h_1), in.</th>
<th>Thickness (h_2), in.</th>
<th>Central safety factor (\psi)</th>
<th>Proof stress level (e^*)</th>
<th>Weight (W), lb</th>
<th>Probability of failure (p_f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\gamma = 10^{-4})</td>
<td>(3 \times 10^{-4})</td>
<td>0.7550</td>
<td>1.694</td>
<td>1.678</td>
<td>1.073</td>
<td>5798</td>
<td>1.706 \times 10^{-4}</td>
</tr>
<tr>
<td></td>
<td>(3 \times 10^{-4})</td>
<td>0.6980</td>
<td>1.532</td>
<td>1.511</td>
<td>1.112</td>
<td>5266</td>
<td>2.22 \times 10^{-4}</td>
</tr>
<tr>
<td></td>
<td>(3 \times 10^{-3})</td>
<td>0.6260</td>
<td>1.372</td>
<td>1.349</td>
<td>1.149</td>
<td>4716</td>
<td>1.62 \times 10^{-4}</td>
</tr>
<tr>
<td></td>
<td>(3 \times 10^{-3})</td>
<td>0.5470</td>
<td>1.187</td>
<td>1.171</td>
<td>1.174</td>
<td>4078</td>
<td>2.64 \times 10^{-4}</td>
</tr>
<tr>
<td>(\gamma = 10^{-3})</td>
<td>(3 \times 10^{-4})</td>
<td>0.8040</td>
<td>1.791</td>
<td>1.768</td>
<td>1.011</td>
<td>6139</td>
<td>1.59 \times 10^{-4}</td>
</tr>
<tr>
<td></td>
<td>(3 \times 10^{-4})</td>
<td>0.7136</td>
<td>1.596</td>
<td>1.573</td>
<td>1.072</td>
<td>5445</td>
<td>1.76 \times 10^{-4}</td>
</tr>
<tr>
<td></td>
<td>(3 \times 10^{-3})</td>
<td>0.6470</td>
<td>1.415</td>
<td>1.392</td>
<td>1.111</td>
<td>4867</td>
<td>2.26 \times 10^{-4}</td>
</tr>
<tr>
<td></td>
<td>(3 \times 10^{-3})</td>
<td>0.5610</td>
<td>1.221</td>
<td>1.203</td>
<td>1.145</td>
<td>4205</td>
<td>2.46 \times 10^{-4}</td>
</tr>
<tr>
<td>(\gamma = 10^{-4})</td>
<td>(3 \times 10^{-4})</td>
<td>0.8500</td>
<td>1.880</td>
<td>1.855</td>
<td>0.932</td>
<td>6451</td>
<td>1.99 \times 10^{-4}</td>
</tr>
<tr>
<td></td>
<td>(3 \times 10^{-4})</td>
<td>0.7520</td>
<td>1.672</td>
<td>1.657</td>
<td>1.009</td>
<td>5732</td>
<td>1.67 \times 10^{-4}</td>
</tr>
<tr>
<td></td>
<td>(3 \times 10^{-3})</td>
<td>0.6650</td>
<td>1.474</td>
<td>1.450</td>
<td>1.068</td>
<td>5058</td>
<td>1.96 \times 10^{-4}</td>
</tr>
<tr>
<td></td>
<td>(3 \times 10^{-3})</td>
<td>0.5810</td>
<td>1.264</td>
<td>1.242</td>
<td>1.108</td>
<td>4351</td>
<td>2.38 \times 10^{-4}</td>
</tr>
<tr>
<td>(\gamma = 10^{-3})</td>
<td>(3 \times 10^{-4})</td>
<td>0.8590</td>
<td>1.912</td>
<td>1.885</td>
<td>0.857</td>
<td>6554</td>
<td>2.76 \times 10^{-4}</td>
</tr>
<tr>
<td></td>
<td>(3 \times 10^{-4})</td>
<td>0.7960</td>
<td>1.753</td>
<td>1.730</td>
<td>0.927</td>
<td>6021</td>
<td>2.23 \times 10^{-4}</td>
</tr>
<tr>
<td></td>
<td>(3 \times 10^{-3})</td>
<td>0.7000</td>
<td>1.548</td>
<td>1.527</td>
<td>1.003</td>
<td>5314</td>
<td>1.90 \times 10^{-4}</td>
</tr>
<tr>
<td></td>
<td>(3 \times 10^{-3})</td>
<td>0.6030</td>
<td>1.316</td>
<td>1.296</td>
<td>1.061</td>
<td>4529</td>
<td>2.19 \times 10^{-4}</td>
</tr>
</tbody>
</table>

Standard optimum design

	\(3 \times 10^{-5} \)	0.8600	1.916	1.888	0	6566	\(3 \times 10^{-5} \)
	\(3 \times 10^{-4} \)	0.8000	1.771	1.749	0	6078	\(3 \times 10^{-4} \)
	\(3 \times 10^{-3} \)	0.7280	1.616	1.592	0	5541	\(3 \times 10^{-3} \)
	\(3 \times 10^{-3} \)	0.6500	1.421	1.399	0	4886	\(3 \times 10^{-3} \)
achieved if the magnitude of the proof load is reasonable in the sense that it is equal to a strength value within a central portion of the parent strength distribution. This is because the significant part of the truncated distribution, in connection with the evaluation of probability of failure (strength values larger than but close to the point of truncation or the proof load), involves neither the extreme lower nor extreme upper tail of the parent strength distribution.

This is equivalent to a statement that \(p_{oi} \) should not be too small compared with or too close to unity. For example, considering the fact that the coefficient of variation of parent strength distribution is 0.05, values of \(e^* \) in the \(\pm 2\sigma \) range (between \(1.0 - 2 \times 0.05 = 0.9 \) and \(1.0 + 2 \times 0.05 = 1.10 \)) may be regarded as reasonable. Hence, the optimum levels of proof-load test obtained for member 3 in Subsection V-B are reasonable. However, the optimum level for \(\gamma = 10^{-3} \) in Subsection V-C is not reasonable, because the proof load is so small that a sample of unreasonably large size would still be required to establish the strength distribution, even though truncated by the proof load. A similar situation exists when the level of proof load is unreasonably high.

This observation makes it necessary to emphasize the tacit assumption employed in the preceding examples, that the cost \(C_{ei} \) of the test for establishing the truncated strength distribution of the \(i \)th component (this test should not be confused with the proof-load test) is independent of the point of truncation \((e_i \text{ or } S_{ai}) \) yet to be determined. Such an assumption, employed in the present study for first approximation, is believed to be valid when the statistical properties of the strength of the material used are well known on the accumulated data or when the optimum levels of the proof load are found to be within the \(\pm 2\sigma \) range of the parent strength distribution as a result of the analysis.

Evidently, the cost \(C_{ei}(e_i) \) of the test for establishing the truncated strength distribution with a reasonable statistical confidence is expected to increase rapidly as the optimum location of the truncation increases or decreases beyond the \(\pm 2\sigma \) range, particularly when the material to be used is new to the engineers.

It is strongly emphasized that the assumption of \(C_{ei} \) being independent of \(e_i \) is not essential in the present formulation and analysis. In fact, the effect of the cost \(C_{ei} \) can easily be included in the formulation by modifying Eq. (1) into the form

\[
EC^* = \sum_{i=1}^{n} \left\{ \frac{p_{oi}C_{ai}}{1 - p_{oi}} + C_{ei}(e_i) \right\} + p_fC_f \tag{46}
\]

provided, of course, that the functional form of \(C_{ei}(e_i) \) is reasonably well known.
The formulation based on Eq. (46) is much more likely to produce optimum values for e_i within a central portion of the parent strength distribution because other values of e_i lead to extremely large costs in $C_{ei}(e_i)$. This fact is of utmost importance. Indeed, it is because of this that the optimum design based on reliability and proof-load test is expected to be insensitive to the tail portions of the parent strength distribution.

Even in the formulation not involving the cost C_{ei}, most of the cases demonstrated in Subsections V-A through V-D produced reasonably optimum levels of proof load, implying that most of these optimum solutions were insensitive to the analytical form of the parent strength distribution.

This is the main reason why the normal distribution was assumed for the parent strength distribution without apparent justification at the outset. Another reason is that all of the previous work also assumed the normal distribution for the parent strength distribution; therefore, the same had to be assumed in the present study for possible comparison.

It is recommended, however, that the Pearson distribution family (Ref. 12) be used if the first four moments of the distribution are known to a reasonable degree of confidence.

In the present approach, the strength within an individual member is assumed to be invariant (though statistical) for simplicity. Such an assumption is, however, subject to a critical observation that in reality the strength usually varies statistically from point to point even within the same member. It should be recognized, therefore, that the failure of the member actually occurs once the resisting strength at any location within the member is exceeded by the load acting at that point (in terms of stress, strain, or displacement, depending on the definition of failure). For example, when the load is uniformly distributed, as in a truss member, the resisting strength R_i of the ith member can be defined as the strength of the weakest cross section of the member. It may therefore be distributed according to one of the asymptotic distribution functions of the smallest values. This implies a possible necessity of taking the statistical size effect into consideration for a more rigorous analysis.

A similar but possibly more complicated situation arises if, for example, elasticity moduli of the material are more realistically treated as statistical functions of spatial coordinates. In such cases, the coefficients of the constitutive equations become statistical functions of spatial coordinates, hence making the stress analysis intractable even under the assumption that the statistical functions are homogeneous.

The normal distribution is used for the load as an example simply because it was so used in previous work. The use of the normal distribution is not essential for the development of the present analysis, however. For this reason, other distribution functions should be used if there is any reason to believe empirically or theoretically that they represent the statistical load better than the normal distribution. The following discussion thus proceeds under the assumption that the load is normally distributed; however, the discussion applies in principle to the case where the load is distributed otherwise.

It is only on rare occasions that a reasonable amount of data exist for the environmental condition of a specific space mission. For the prediction of the load, engineers usually must depend on incomplete knowledge and limited experience if such has been accumulated on similar missions. Under these circumstances, the reliability of the two parameters of the normal distribution (the mean value μ_θ and the standard deviation σ_θ) assumed for the load suffers from a considerable lack of statistical confidence.

One possible way to cope with this kind of situation seems to be a sensible use of the Bayesian approach, in which these parameters are treated as if they were random variables with a joint density function $\phi(x,y)$, using x for μ_θ and y for σ_θ. The function is constructed so as to reflect both the experience and the accuracy of the load prediction. If a set of observed data directly related to the load is somehow available, such information should be used to modify the density function $\phi(x,y)$, following the Bayes theorem, by multiplying it by the likelihood of the observed data.

It is now clear that the minimum weight W^* computed in the preceding section is a conditional one under a given set of μ_θ and σ_θ; $W^* = W^* (\mu_\theta,\sigma_\theta)$. In other words, depending on the values of the parameters μ_θ and σ_θ, the minimum weight assumes different values. It is important to realize that $W^* (\mu_\theta,\sigma_\theta)$ can be interpreted as the best design if the mean and the standard deviation of the load distribution are truly μ_θ and σ_θ.
A question immediately arises, then, as to which design should be chosen in the face of the uncertainty involved in the mean value and the standard deviation. Here is a possible answer to this question: First, construct a loss function that represents, in some general sense, the loss \(L \) caused by the choice of a specific minimum weight design \(W_0^* \) in place of \(W^*(\mu_b, \sigma_b) \) that should be chosen if the mean and standard deviation were known to be \(\mu_b \) and \(\sigma_b \), respectively.

The analytical form of the loss function would probably depend on the managerial as well as engineering judgment except for the fact that it is a function of \(|W_0^* - W^*(\mu_b, \sigma_b)| \).

Once the form of the loss function is constructed, then a best design \(W_0^* \) in the face of uncertainty of the mean and the standard deviation is chosen as the design that minimizes the expected loss \(EL \) or the expected value of \(L \) with respect to \(\mu_b \) and \(\sigma_b \). In other words, \(W_0^* \) satisfies

\[
\frac{\partial EL}{\partial W_0^*} = 0 \quad (47)
\]

where

\[
EL = E \{ L[|W_0^* - W^*(\mu_b, \sigma_b)|] \} = \int_D \int \phi(x, y) L[|W_0^* - W^*(x, y)|] \, dx \, dy \quad (48)
\]

with \(D \) being the two-dimensional domain in which \(x \) and \(y \) are defined.

For example, if a simple quadratic loss is assumed for \(L \) as a first approximation,

\[
L = [W_0^* - W^*(\mu_b, \sigma_b)]^2 \quad (49)
\]

without discriminating between an underweight design and an overweight design, it follows that

\[
W_0^* = E[W^*(\mu_b, \sigma_b)] \quad (50)
\]

To compute the expected value in Eq. (50), the minimum weight \(W^*(\mu_b, \sigma_b) \) must be evaluated at a reasonable number of sets of values of \(\mu_b \) and \(\sigma_b \). This implies that the optimization procedures described in the preceding sections must be repeated the same number of times. The cost of performing such computation, however, may or may not be justified. For practical purposes, \(W^*(\bar{\mu_b}, \bar{\sigma_b}) \) may be a good approximation for \(E[W^*(\mu_b, \sigma_b)] \).

In this context, the result of the preceding numerical examples can be considered as \(W^*(\bar{\mu_b}, \bar{\sigma_b}) \) is the numerical values used for the mean and the standard deviation of the load distribution are interpreted as the best estimate \(\mu_b \) (denoted by \(\bar{\mu_b} \) in the preceding sections) and \(\sigma_b \) of \(\mu_b \) and \(\sigma_b \), respectively.

Such an approximation is, in general, reasonable in view of the fact that the analytical form of the loss function itself is a product of subjectively inclined engineering, economical, and managerial judgment.

An alternative approach to choosing a design is that of the Bayesian confidence as described below.

Consider, for example, a set of parameter values \(\mu_{b\beta} \) and \(\sigma_{b\beta} \) such that

\[
P[\mu_b < \mu_{b\beta}, \sigma_b < \sigma_{b\beta}] = \beta \quad (51)
\]

Furthermore, consider a design with the minimum weight \(W^*(\mu_{b\beta}, \sigma_{b\beta}) \), assuming that \(\mu_{b\beta} \) and \(\sigma_{b\beta} \) are the mean value and the standard deviation of the load distribution. The probability that the best minimum weight \(W^*(\mu_b, \sigma_b) \) associated with unknown true parameter values \(\mu_b \), \(\sigma_b \) will be less than \(W^*(\mu_{b\beta}, \sigma_{b\beta}) \) is then \(\beta \). It is assumed in the above statement that the smaller the mean value and the standard deviation are, the smaller the resulting minimum weight is. A design associated with \(\mu_{b\beta} \) and \(\sigma_{b\beta} \) can be considered reasonable if the confidence coefficient \(\beta \) is small. It is to be noted that in this approach, the design becomes more conservative as a smaller value of \(\beta \) is specified.

At the last stage of this investigation, a paper by Barnett and Hermann (Ref. 13) came to the attention of the authors. It is acknowledged that the paper recognizes the practical significance and importance of proof testing from the viewpoint of reliability analysis and suggests a method of component optimization on the basis of the Weibull strength distribution as previously discussed.

This report, however, explicitly describes methods of reliability-based optimum design of structures (consisting of a number of components) subjected to a statistical
load. It also explicitly formulates the problem of optimization within the framework of a general cost-effectiveness approach. Furthermore, the present discussion of the statistical confidence of strength as well as load distribution is more complete.

Obviously, the present analysis is valid only for those cases where the quasi-static structural analysis can reasonably well replace the dynamic analysis, as exemplified by the structural response analysis of a spacecraft to the dynamic pressure which builds up as a function of time in such a way that it will produce no significant dynamic effect.

Also, in the present report, it is assumed that the structural analysis accurately describes the stress or strain within the structure. The consideration for the error in the structural analysis is beyond the scope of this report.

VII. Conclusion

The formulation of optimization problems using the constraint on the expected cost as defined in the present study is more general than using the constraint on the probability of failure as employed in the existing literature—in the sense that the former reduces to the latter if no proof-load test is performed. Numerical examples, with a particular but reasonable expression for the expected cost, indicate that the expense of performing the proof-load test is always well compensated by the improvement of structural reliability resulting from such a test.

Under the constraint of the same expected cost, significant weight savings can be expected of a structure with proof-load-tested components, compared with the optimum weight of the structure consisting of components that are not proof-load-tested. The extent to which such an extra weight saving can be achieved depends on a parameter pertaining to the importance of individual components relative to the cost of failure.

As long as optimum levels of proof loads turn out to be within a central portion of the strength distribution, the proof-load test improves confidence of the estimated reliability value of the structure, since the confidence in the reliability estimation depends mainly on the accuracy of the load prediction.
Appendix

Proof of Equations 28 and 29

Since at optimum, \(\delta W = 0 \), whereas \(\delta EC = 0 \) by constraint,

\[
\sum_{i=1}^{n} b_i \delta A_i = 0
\] \hspace{1cm} (A-1)

\[
\sum_{i=1}^{n} \frac{\partial EC_i}{\partial e_i} \delta e_i + \sum_{i=1}^{n} \frac{\partial EC_i}{\partial A_i} \delta A_i = 0
\] \hspace{1cm} (A-2)

Hence,

\[
\sum_{i=1}^{n} \left[\lambda \frac{\partial EC_i}{\partial e_i} \delta e_i + \left(b_i + \lambda \frac{\partial EC_i}{\partial A_i} \right) \delta A_i \right] = 0
\] \hspace{1cm} (A-3)

from which it follows that

\[
\frac{\partial EC_i}{\partial e_i} = 0 \quad \text{for } i = 1, 2, \ldots, n
\] \hspace{1cm} (A-4)

\[
b_i + \lambda \frac{\partial EC_i}{\partial A_i} = 0 \quad \text{for } i = 1, 2, \ldots, n
\] \hspace{1cm} (A-5)

where \(\lambda \) is the Lagrange multiplier.

Equation (A-4) reduces to

\[
\frac{\partial EC_1}{\partial W_1} = \frac{\partial EC_2}{\partial W_2} = \ldots = \frac{\partial EC}{\partial W}
\] \hspace{1cm} (A-6)

and hence

\[
\frac{\Delta EC_i}{\Delta EC_a} = \frac{\Delta W_i}{\Delta W} \quad i = 1, 2, \ldots, n
\] \hspace{1cm} (A-7)

Therefore

\[
\frac{W_i + \Delta W_i}{W + \Delta W} = \frac{W_i}{W}
\] \hspace{1cm} (A-8)

This statement can be verified as follows. If Eq. (A-9) is valid,

\[
\delta \left(\frac{EC_i}{EC_a} \right) = \delta \left(\frac{W_i}{W} \right)
\] \hspace{1cm} (A-9)

Hence, according to Eq. (A-7),

\[
\delta \left(\frac{EC_i}{EC_a} \right) = 0
\] \hspace{1cm} (A-10)

Therefore,

\[
\frac{\Delta EC_i}{\Delta EC_a} = \frac{EC_i}{EC_a}
\] \hspace{1cm} (A-11)

Equation (A-6) is automatically satisfied because of Eqs. (A-5), (A-9), and (A-11).
Nomenclature

\(A_i \) design parameter representing size of \(i \)th component
\(a \) shell radius
\(B \) design point (identified by subscript)
\(b_i \) weight coefficient
\(C_f \) cost of failure
\(C_{o_i} \) cost of proof-load test of \(i \)th component (sub-subscript identifies component)
\(C_{e_i} \) cost of test for establishing truncated strength distribution of \(i \)th component
\(c_i \) constant associated with \(i \)th component
\(D \) two-dimensional domain
\(E \) Young's modulus of elasticity
\(E[\] \) expectation
\(EC \) relative expected cost
\(EC_a \) relative expected cost constraint
\(EC_i \) relative expected cost of \(i \)th component
\(EC^* \) expected cost of failure of entire structure
\(EL \) expected loss
\(e_i \) proof stress level of the \(i \)th component
\(e_i^* \) optimum proof stress level of \(i \)th component
\(F(\cdot) \) distribution function (subscript identifies random variable)
\(f(\cdot) \) density function (subscript identifies random variable)
\(H(x) \) Heaviside unit step function
\(h \) thickness of shell
\(h_t \) thickness, top of shell
\(h_a \) thickness, clamped edge of shell
\(i_k \) unit base vector in the positive direction of \(A_k \) axis
\(L \) loss function
\(l \) length
\(N \) number of statistical independent loads
\(n \) number of major structural components constituting the structure
\(P[\] \) probability
\(P(E_1, E_2) \) probability of simultaneous occurrence of \(E_1 \) and \(E_2 \)
\(P(E_1 | E_2) \) conditional probability of \(E_1 \), given \(E_2 \)
\(p_f \) probability of failure of the structure
\(p_{f_i} \) probability of failure of \(i \)th component
\(p_{f_i}^{(j)} \) probability of failure of structure under \(S^{*(j)} \)
\(p_{s_i} \) probability of failure of \(i \)th component under proof-load test
\(Q \) usable feasible direction
\(R_i \) resisting strength of \(i \)th component
\(R_{i_1} \) parent resisting strength of \(i \)th component
\(S \) load applied to structure
\(S \) mean value of \(S \)
\(S_i \) stress acting on \(i \)th component
\(S_i^* \) measure of location (such as mean value) of \(S_i \) distribution
\(S^{*(j)} \) maximum reference values of \(j \)th loading system
\(U \) gradient of relative expected cost \(EC \) at point \(B_0 \)
\(V \) gradient of weight \(W \) at point \(B_0 \)
\(W \) weight of the structure
\(\gamma_i \) relative importance of \(i \)th component with respect to cost of failure
\(\lambda \) Lagrange multiplier
\(\rho \) material density
\(\sigma_y \) yield stress
\(\sigma_y \) standard deviation of \(S \)
\(\sigma_y \) mean value of yield stress
\(v \) central safety factor
References

