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A theory is presented to explain the observed variations of the magnetic

field and plasma in the vicinity of the moon. Under the guiding-center

approximation, solutions for the plasma flow near the moon are obtained from

the kinetic equation. The creation of a plasma cavity in the core region of

the lunar optical shadow disturbs the interplanetary magnetic field. Maxwell's

equations are used to study perturbations of the magnetic field in the lunar wake.

The acceleration drift current, which was omitted from the earlier work, is

included in the present theory in the calculation of the total electric current

in the lunar wake. Numerical solutions of Maxwell's equations are obtained.

When the interplanetary magnetic field lines penetrate into the lunar body, due

to sudden change of magnetic permeability the magnetic field is disturbed at the

lunar limbs. Propagations of this disturbance with magnetoacoustic speed forma

Mach cone downstream, which is sometimes observed as the exterior increase of

field magnitude in the lunar penumbra. Perturbations of the magnetic field are

restricted to the region insidethe Mach cone; the region outside remains undisturbed.

The numerical results agree extremely well with experimental data from the
v

Explorer 35 spacecraft.
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1. INTRODUCTION

Measurements .1-6 of the interplanetary magnetic field and plasma in the

vicinity of the moon have been made from lunar orbit on the Explorer 35 spacecraft.

The purpose of this paper is to present a theory which can explain the observed

variations of the field and plasma in the lunar wake.

When the solar wind interacts with the moon, no shocks are observed in

the vicinity of the moon. Figure 1 shows a simultaneous measurement of the

interplanetary field and plasma on Explorer 35 when the moon is outside the earth's

bow shock. The ma jor effect of the moon on the so lar wind plasma is the creation

of a plasma cavity in the umbra) region of the lunar shadow. In this cavity the

magnitude of the magnetic field increases, i.e., the field is observed to be

stronger than the undisturbed interplanetary field. On either side of the umbral

increase, the field decreases, i.e., the field becomes weaker than the undisturbed

condition. These penumbral decreases occur at the location where the plasma

density is about half of the undisturbed plasma density, and they are often bounded
f

on the exterior by additional small increases in the field magnitude. A positive

correlation between the increase of the plasma flux, the plasma density and the

penumbral increase of field magnitude has also been observed

From the kinetic theory point of view, the plasma flow in the vicinity of the

moon can be analyzed under a guiding-center approximation. The zeroth-order

solution for the plasma flow obtained by Whang 7 is in good agreement with the measured

plasma density, plasma flux, and plasma flow direction.
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The first order guiding-center theory is used to describe the plasma and

the electric current in the Lunar wake. Whang 8 has previously studied the

perturbation of the magnetic field in the vicinity of the moon by assuming that

the total electric current in the lunar wake is composed of the gradient drift

current, the curvature drift current and the magnetization current. This present

theory produces more realistic results than the earlier theory in three aspects: (1)

The present theory infers that perturbations of the magnetic field in the lunar

wake are confined to a region bounded by a Mach cone (a standing magnetoacoustic

wave), outside of which the interplanetary field is undisturbed. (2) The penumbral

decreases of the field magnitude are of the same amplitude as the observed decreases.

_(3) The umbra[ increase of the field magnitude is of the same spatial extent as the

observed increase. The basic difference of the present theory from Whang's previous

ones is the inclusion of the acceleration drift current in the calculation of the total

electric current in the lunar wake This current turns out to be at least as large

ry	 as the other terms.

The solar wind flows approximately radially outward from the sun at 1 AU

at a supersonic velocity. The solar magnetic lines of force are carried outward by the

solar wind and are twisted into the form of Archimedean spirals, thus the interplanetary

magnetic field is in general not aligned with the direction of the solar wind velocity.

Thermal motion of the solar wind-ions is an'isotropi.c; the ratio of T I, and Ti varies

between l	 and 4. In the umbral, region immediately behind the moon, only those

ion particles with high parallel thermal energy are present, while the perpendicular

thermal energy is directly proportional to field intensity. Thus, the plasma thermal

f

r	 ,
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anisotropy, T11 /T1 , increases in the core of the Lunar wake. The propagation

speed of magnetoacoustc waves in an anisotropic plasma is again highly anisotropic

when the thermal energy of the anisotropic solar wind plasma is of the same order

of magnitude as the energy of the interplanetary magnetic field'. All these rel

physical conditions of the solar wind are taken into account in the present model.

The solar wind interaction with the moon has also been studied by other

authors6.,4' 1 l using the continuum theory approach. In these models, the thermal

anisotropy of the solar wind plasma and the anisotropic acoustic waves are not

considered, and a simple polytropic relation for pressure and density is used.

Some have only considered the case where the magnetic field upstream of the moon

is aligned with the direction of the solar wind velocity.

Two dimensional steady-state solutions of Maxwell's equations are studied.

Thus the present results actually correspond to the interaction of the solar wind

with a cylindrical moon. Under the two-dimensional cylindrical-moon approximation

the solution will become less accurate at large distances behind the moon.

The first order solution of the kinetic equation is also studied in the Fast
Y

part (section VII) of this paper.	 1

1
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11. KINETIC EQUATION

The Larmor radius of the ion particles in the solar wind is only a small

fraction of the radius of the moon, therefore, the lowest-order solution for the

ion flow in the vicinity of the moon can be calculated by approximating each

ion particle by a guiding-center particle. It is convenient to use the guiding-

center distribution function 12 which is defined as a function of x, t, v and is
am

F	 ( Of 10 ^, 1 )	 (^)

► 	 where v is the component of the particles velocity parallel to B. and p the magnetic_
aw

moment. From the first order theory of guiding-center motion 13,

z
A  =e^. e

.E _
 

mU
^pB ^	 1 + U K. U1	 (2)

d	 ►►^, ._	 2

and

d FA_ o
	 (3)dt

where d/dt = a/off + ('U,. + e, v^ Q	 e. = B IB	 U^ c E x B /j32

and x = e, v e,

The collisionless Boltzmann equation can be expanded following the

T4	

Chew

Goldberger-Low theory ' 15 . The lowest-order equation can be reduced to

where the operator JD denotes the time ,derivative following the trajectory of a guiding

center in phase space.

4



Equation (4) states that F/B is conserved following the trajectory of a guiding-center

in phase space.

Solutions of the kinetic equation (4) are studied subjeti,ted to the boundary

conditions; O the moon absorbs all particles that hit its surface, and (ii), the

distribution function is Maxwellian in the undisturbed flow upstream. Once F is

known, the ion density, parallel velocity, and parallel pressure can be calculated

from

n	 ^ F d l3' c it I	 (6)

U11	 o ff U F d tA'tr
	 (7)

and	
Pig	 J 1 m1 (v' U 11 )2 F d lLA d v	 (8)

The average magnetic moment is related to the perpendicular pressure by	 y

nJ
(9)

P.I. / n B.

Consider that in the undisturbed upstream flow, the solar wind moves with a

constant velocity Uo with respect to the center of the moon, and carries with it a

steady uniform magnetic field Bo . We choose a coordinate system (Fig. 2) with its
Z.

origin located at the center of the moon, the x axis parallel to Uo, and the z axis

along the direction of the electric field in the upstream	 Eo = - loo x 8	 c ;.

5
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The scale of the coordinate system is normalized by using the radius of the moon

as a unit length.

The zeroth order equations are those in which the guiding-center velocity

of each particle is assumed to be constant in both magnitude and direction. In

this order the equation ^ray be solved analytically. The earlier theory y presented

the solution for the special case in which the magnetic field was constant. Here

an analytical solution is presented in which the magnitude of the field is allowed

to vary.

As in the earlier work the space near the moon is divided into four regions

as shown in Fig. 2. Let 41, denotethe direction angle (the angle between -Lo

and Bo) in the upstream region The analytica l zeroth -order solution gives

n/ no	 Pa / P ilo	 B/ so

and	 U11	 U. Cos o

in region 0. In the other regions the solutions are functions of B/Bo, the two solar
+"i

wind parameters c ô and S [ 5 = Uo/C2k Teo /rn`) j^and the two position parameters

n	 Qresin [
(I_ Z2 ''2 CX , + y2,-'/2

and = croon y
The solutions_are:

n	 2 g erfc ( Y, $^ + e4c ( Yz $	 (^o)
o	 Bo	 ^	 -
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Uu	 ... cos 91 + 
ex 	 Yi S^- ex p^ Y 2

S^	 11^

	

Uo	 2 ,n, z 
S n 13
	 n,B

and

P' = (' n /no)[ 1 - 5 '( Gos o + U„ / Uo Y } +
Pilo

	

' (	
+C,R)^ ^^o^S' CYJ eXp (_ Y 2 S 2 ) + t exp (

-,y
=2S2)^	 (12)

	

k	

,

where

r

^	 X 	 in regions 1,3

°O	 in region 2

Y2	 sln^(-^	 in (, + X 	 in regions 2,3

00	 in region 1

Equations (10) - (1'2) are slightly different from the solution given in reference

7, because the frozen-in effects of the variation of field magnitude are included in

the present form. With the inclusion of the factor B/Bo, the present solution is capable

of explaining the posi tive correlation between plasma density and magnetic field

strength in the exterior penumbra

A solution to the first order equations in which the deflection of the guiding-

center trajectory in the non-uniform magnetic and electric fields is taken into occount

is, obtained numerically in section VII.

WN! to
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Hil. MAXWELL'S EQUATIONS

Maxwell's equations are used to describe the variation of the magnetic

field, The total electric current is composed of the magnetization current, the

gradient drift current, the curvature drift current and the acceleration drift current.
f

Let D/Dt denote the deri vative a/at + U V , U the fluid velocity and 
e 

the

fluid density. The acceleration drift current density is

l	 ^' DU= c e, ,,^
A 8	 D 

r
The acceleration drift current is sometimes known as the polarization current 16 , and

was not included in the early theoretical treatment 3 • 8 of the solar wind interaction

with the moon. This term is at least as important as the other terms of the current
L

density. Maxwell's equations can now be written as

v•g =or..

and

C1+ 4n2 vx 6 	 4T1 e^ x P^ p^nn+l?1x+P DU
^ 	 (14)' 	 `	 g /	 ^-	 8	 D -t

Here n is the number density of the plasma, Pl and P H respectively the perpendicular

and the parallel plasma pressure.{

In the wake region, the electric field is only slightly disturbed from the

undisturbed electric field Eo . The perpendicular component of the fluid velocity can

be calculated from

8

(13)
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IV. THE EQUATIONS OF CHARACTERISTICS

In a collisionless plasma, the magnetoacoustic wave 17 propagates along

the field direction with speed a=C(Pj-P, i +B%rr)/P] , and perpendicular to th e
i02

field direction with speed	 The solar plasma flow is

supersonic in the vicinity of the moon except in the umbral region of the lunar

wake, where the margnetoacoustic speed becomes very large because the plasma

't

	

	 density and pressure decreases. In the supersonic region outside the lunar umbra

the method of characteristics is used to calculate the variation of the magnetic

field.'
h

Let B and denote respectively the magnitude and the direction angle

of the vector B, and e2 = eZ x e , then one can write

vx8 C-ez•VB + B v ib e^

e, x wtn n — eZ ' v zn n) e
i	

e, x x	 = ox e,

'	 - C ova e
and	 etx(U•vU^ _T U•^ pU1 e1 + Ull p e,)xe,

Making use of these relations, one can write Maxwell's equations C (13), (14)] as

es -V In 8 + ez•V
JS =o	

(16)

and	 A S7 $ + 2 . p4 = H 	 (17)

where

A,' = EJ, U - b 2 eZ



A s 	
2ca e , — U n U

and	 P, /P) ?2 • V In ( M /B ).

We now consider the linear combination of the two equations (16) and (17)
,f
r obtained by multiplying equation (16) by a factor r and add the two equations,

is
I	 I `—;

L S7 .^ri g + M . vc =^	 (18)

where
L ( Ul Q,, + T ) ?, + C U, 2 - 6 2) eZ

c

and	 ww^^	 ( 2 r r Z
Ulf Sz

y

The magnitude and the direction of vectors L and M may be adjusted by the variation

of the factor T. Now, suppose for some choice of 1•, the vectors Land M are parallel

	

t	 and tangent to a curve C, then onlythe derivatives along the C-direction are contained

in equation (18)-. In this case the curve C is known as a characteristic curve.

Land Mare parallel vectors when

' 2 G z 
Ul 2 +  	 0112- p 2 D

2

or

-C+ —	 z' _ (a
2 U,, 2 + b2 U112 _ o 26

Substituting these two roots into (18), one can replace the Maxwell's equations by

a pair of characteristic equations

L+ v,^n $ + M+ V c

(19)

r. w
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where

Lt - Tt	+ A,

M }	 -C^. e 2 + AZ

L and M are parallel vectors, thus each of the above equations contains the

derivative of B and 0 along the direction of a characteristic curve.

The characteristic equations (19) are used to calculate the variation of

e	
magnetic field in the supersonic region (where T 2 > 0) of the lunar Wake, In the

subsonic and transonic region a different method, which is developed in the next

F	 section, is used in calculations.

In equation (19), if a ll three terms in one of the two equations are zero,

its solution may be called the simple wave solution in frozen-in plasmas.
A	 ;

1

1
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V. THE UMBRAL ANALYSIS

The method of characteristics derived in section IV can be used to calculate

the variations of magnetic field in the supersonic region of the lunar wake. In the

subsonic and transonic regions of the lunar wake, approximate solutions of Maxwell's

equations are calculated under the assumptions (i) the magnetic field, B, changes

rapidly in the y-direction, but very slowly along the x-direction, and (ii) Bx and

By are of the same order of magnitude.

The divergence of B equation requires that a Sx /a x = - a By /a Y	 Thus

the order of magnitude for the derivatives of B can be measured by

aOx aEx , aBY aB	 2
'Y	 x	 Y	 ax 1 E E E

Dropping out the second order terms, Maxwell's equations (13), (14) may be

written as

BX	 +	 b l3,,	 20
i Y	 2	 3 a y 	 (20)

whe re

z,° Q
2 By + bz

g^ 
U 20 2

x _ Y

Z2	( 61P, /P) e- x vtn C n /8

and 	 2 Qa b2) BXgy 2 13 2 UK 
Uy

For given x, the method of characteristics is used to determine the solution

for B in the supersonic region outside the lunar umbra. Thus, conditions at the Tower

_...	 a	 .

13
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and the upper boundary of the umbra are determined from the characteristics

solution,

Bx = Bx 1	 at	 Y = y 1	 (21)

Bx = Bx 2	 a t	 y = Y2	 (22)

By = $y1	 at	 y = Y 1	 (23)

By = BY2	 at	 Y = Y2 ,	 (24)

The divergence of B equation also requires that, when x is fixed

Y^	 YZ	 °0

Y,	 y2	

) Jy 0 .	(25)

Subjected to the above five conditions, Eq. (20) can be integrated numerically for

the solution of B in the interval Yi !-= y 1!5: y2.

In Eq. (20), the density gradient in Z2 is the main driving force for the
I,

	

	
y

variation of Bx along the y-direction;,in the umbral region, integration of Eq. (20)

is carried out by assuming a series form for the first order term a By day	 let

B -	 + C, y + ^^ y z + C3 y 3,	 (26)
y

where the four constants co, c J ; c2, c3 are adjusted to satisfy the conditions (21)-(25).

Making use of the condition (23) , and (24), c2 and. c3 can be determined as functions

of co , c i . `As the first order term aByAy is a known function of c o , c  and y,

numerical integration of Eq. (20) can be carried out starting at y y, with Bx = Bxi

The solution for Bx will be in the form of

 '. "-P

a

n
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13X - Bx C C. ,	 y )	
t2

Here we still have two adjustable constants c o and c 1 Their values can be determined

I	
when both Eq. (22) and Eq. (25) are satisfied. The method described above indicates

	 i

that by assuming acubic-polynomial solution for the first order term, one can calculate 	
I

the solution for Bx satisfying all required conditions.

i

e

F

r

E,
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VI. NUMERICAL SOLUTION

Given the speed ratio S and direction angle t 4̂ , the zeroth order solutions

of n/no, U 11 /Uo and P 11 /P„ o for ion particles can be calculated from Equations

(10) - (12). These analytica l solutions are used to approximate the plasma conditions

in the lunar wake. Then based on the mathematical method developed in the two

preceding sections, solutions for the perturbation of magnetic field in the lunar

wake can be carried out numerically. The results quantitatively reproduce the

major fea;•ures of the observed magnetic field perturbations in the lunar wake.

The perturbations of the magnetic field in the lunar wake depend upon four

solar wind parameters: the plasma anisotropy TIIO /T.Lo , the speed ratio S, the

direction angle 0. 1 and the parameter ^_^•srp, /gZ. B is defined asthe ratio

of the perpendicular thermal pressure to the field pressure (the plasma therma l

pressure includes both the ion and the electron thermal pressure) . For typical

interplanetary conditions at the orbit of the earth, the ratio of T^^ and T^, varies

between 1	 and 4 1 the speed ratio 'S is of the order of 7 — 10, the magnetic field
,a

has a direction angle cb .. 135 or 3150 and the B value is of the order of unity.

Experimental evidence has shown that the field anomalies are strongly affected

by the B va l ue 18 .

A numerical solution for some typical solar wind parameters is plotted in

Figures 3 and 4.

Figure 3 shows the variation of the field magnitude in t he lunar wake region.

The exterior increase of the field magnitude actually represents a standing magneto-

acoustic wave attached to the lunar limbs; it resembles the Mach cone in aerodynamics.

7 111 	 ;OF
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Perturbations of the magnetic field are restricted to the region bounded by the

Mach cone; the region outside remains unperturbed.

Figure 4 shows that the width of the umbral increase is always slightly

less than one lunar diameter. This feature agrees with observed data, and was

not predicted by previous theories. The penumbral decrease of field magnitude

obtained here again agrees with measurements far better than Whang's early results.

The numerical solution is carried out by assuming that the field is slightly

disturbed at the initial line x = 0 near the lunar limbs. These disturbances propagate

downstream to form the standing magnetoocoustic wave, which is observed as

penumbral increases. If the field is completely undisturbed at the initial line,

then numerical solutions cannot produce the observed penumbral increases. This

suggests that when the magnetic field lines penetrate into the lunar body, due to

sudden changeof magnetic permeability across the sunny side of the lunar surface,

the magnetic field is disturbed near the lunar limbs. These disturbances propagate

in the supersonic flow to the downstream. ►,f the field magnitude increases at the
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VII. FIRST ORDER SOLUTION OF KINETIC EQUATION

The zeroth order solutions of the kinetic equation discussed in section 11

are obtained under the assumption that the guiding-center particles are not

accelerated; their trajectories are approximated by straight lines. However

since the electric and the magnetic fields are perturbed in the lunar wake, the

velocity and the trajectory of a guiding-center will also be perturbed The effect

of the induced electric field on the guiding-center trajectories has been discussed

by Alfonso-Maus and Kellogg 19 . In this section the combined effect of the induced

electric field and the perturbed magnetic field are included in calculating the

first order solution of the guiding-center _kinetic equation.

We consider that in the perturbed region the elec.tron density is equal to

the ion density and the electrons always assume an equilibrium distribution in the

potential field. The potential of induced electric field depends on the ratio n/no

according to the logarithmic law

k Te / e	 (28)

From this equation, one can calculate that the magnitude of the induced electric

field is very small compared with the upstream electric field Eo.

The guiding-center kinetic equation states that F/B is constant on the path

of a guiding-center in phase space

w_ F
	.,
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One may write the operator Z in the following form

Ra +Rz ŷ + R bX	 ,

which indicates that the guiding-center trajectory is described by

	

C4 x _ d y	 d v	
(30)

	

Ri _ Rz	 R3

The expressions for R j 's are of the following forms;

R 1 = U, In	 V GOS l

R 2= — Uj. cos 4 V sin ck

andR3 ^ dt _ e^ .;^,p 211 .. —^ 013 _ m v4 + v 7c V

The procedure of calculating the first order solution for the distribution

function F(u, p) at any point in the perturbed region is the following. If B and

are known, then one can integrate Eq. (30) to obtain the trajectory of a guiding

center and the variation of v along its trajectory. The magnetic moment p is an

adiabatic invariant as the guiding center moves. In the undisturbed region upstream,

the guiding-center trajectories are straight l ines, and the distribution function is

Maxwellian, Fo. If the trajectory intercepts the lunar surface, the distribution

function F(v,p) is zero. Otherwise, the trajectory will end at the undisturbed

region with its pa4rallel velocity changed `to fr.., the distribution function can now be

. 4 calculated from

(29)
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Following this procedure, one can numerically calculate the guding-center

distribution .function at any point in the perturbed region as func ►ions of vand N.

Taking moments of this distribution function one can calculate the first order solution

for n, Up and P ig at the point of interest.

One further simplifying assumption is used to carry out some first order

solutions in this paper, that is, all particles are assumed to possess the same

magnetic momer-it

t	 pso /n . . .

h

Under this assumption, the guiding-center plasma has thermal motion only along

the field Line; its distribution function depends on one velocity variable V . The

plasma behaves as a one-dimensional gas.

Consider that (i) the electron temperature Te = 2T I10 , (ii) the potential

is calculated from the zeroth-order n, and (i'i'i) the magnetic field B is calculated

from the method outlined in the previous sections. One can calculate the first-

order solution for F. Some first order solutions are plotted in Figure 5.. The first

order solution shows a slightly decrease of the plasma density gradient across i le

boundary. The analytical solution for the zeroth order density is practically good

enough for the purposes of understanding the plasma flow in the lunar wake.

Figure 5 also shows that (i) the penumbral decreases of field magnitude occur

at the location where the plasma density is about half of the upstream density, and

(ii) a positive correlation exists between the increases of plasma density and magnetic

fre`d strength in the penumbra.

MIN,	 -	 -	 r
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FIGURE CAPTIONS

Figure 1	 The simultaneous measurements of field and plasma obtained on
August 5, 1967 from lunar orbit on the Explorer 35 spacecraft.
The trajectory of the spacecraft is shown projected on the
ecliptic plane and positionally correlated with the data through
UT annotation. The x- axis is parallel to the sun -moon line.

Figure 2	 Four characteristic regions of perturbed plasma flow in the vicinity
I	 of the moon.

Figure 3	 Distributions of the magnitude of magnetic field in the lunar wake.
Perturbations of the field are restricted to the region bounded by
the Mach cone. The dashed lines indicate the direction of plasma
velocity.

Figure 4	 Perturbations of the field magnitude in the lunar wake calculated
for T4. /Tic=1.5^ s lo, , = t35°, Aid _ 1.

Figure 5	 The zeroth order and the first order solutions of the ion density. The
first order solutions are calculated for Te	 2T110
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