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A NEW ITERATION FOR LOCATING EQUILIBRIUM POINTS

IN NONLINEAR SYSTEMS

Clarence Cantor, Systems Division

and

Vawzi P. Emad, Department of Electrical Engineering

Abstract

A discrete nth order nonlinear dynamic system, or an iteration for a nonlinear set

of n algebraic equations in n unknowns, can be represented by

X k+1 — f \ X k 1

where x  is an nth order state vector. The problem is to locate the equilibrium points

of the system, give some approximation of these points, when the original iteration is

divergent or only slowly convergent. Newton's method solves the problem in general,

but requires f(x) to be available in analytic form and also requires extensive compu-

tations of partial derivatives. Steffensen's iteration, utilizing sets of n + 2 iterates

obtained from the original iteration, can also solve the problem while avoiding the dif-

ficulties in Newton's method. Steffensen's iteration is based on a linearization of the

	

.	 system about an equilibrium point x  , in the form
l

Xk+1	 Xe	 A\Xk — Xel

	

t	 .

However, Steffensen's iteration breaks down when the A matrix corresponding to a set

of iterates has an eigenvalue equal to ones or when the matrix cannot be determined.

The proposed iteration is equivalent to Steffensen's iteration in the general non-

singular case, but it can be readily extended in a meaningful way in a large class of

singular cases -where Steffensen's iteration breaks down. Also, the, proposed method
r

should produce better results in near singular cases where Steffensen's iteration can
I

cause discrepancies due to numerical errors. 	 !
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A large class of problems in nonlinear systems involves determining the solutions

(equilibrium points) of the vector equation,

x = f (x) .	 (1)

For example, in a discrete nonlinear dynamic system represented by

X k+1	 f \ X k /	 (2)

where xk is an nth order state vector, it is often necessary if not mandatory to determine

the equilibrium paints x e (there may be more than one), where x e is defined by

xe = f Cx e )	 (J)

Equation 2 can also represent any iteration scheme involving n unknowns to be

h determined.

<w	 If an approximation x o of an equilibrium point is known, and if the process defined

,r by (2) is convergent (asymptotically stable) in a region containing xo, then the equilibrium

point xe can be obtained by repeated application of (2). However, this is not possible if

:.;	 the process is divergent, or impractical if the process is only slowly convergent.

Newton's method [1], [2] is a pow-erful method that can be used in general to solve

equation 1 (or 2) , even when the iteration defined by equation 2 is divergent. Let

g( x)	 f (x) - x	 (4)
I

^.: Then the equation to be solved is

g(x)	 0:	 (5)

s



If x 0 is an approximate solution of (5)' (or (1)), and x  is the exact solution, then (5)

can be linearized about x = xO to yield

g ( X.) + J 1 x 0 / \ X e - XO 1	 0	 (6)

where J (X O) is the Jacobian of g(x) evaluated at x -- x 0 .

Assuming J-1 ( X 0 ) exists, we can solve (6) for an approximation of x 

X  ti x O - J 1 ( X O ) g (X O )	 ( 7)

-Since this is only an approximate solution of X  (although hopefully a better approxi-

mation than xO ), we can treat (7) as an iteration, namely

X1 _ XO	 J-1 (X
O) g (XO) and xk+1 = X  - J-1 ( X  / g(Xk)	 (8)

which is Newton's iteration for a system of equations.

In terms of (1), we have

9 (X k)	 f (Xk)	 Xk	 and	 J ('Xk )	 A ( X k )	 I

where A(Xk) is the Jacobian of f(x) at x xk. Hence, (8) can be written as

Xk+1 - Xk	 (A(Xk) 
_ I)_1 ( f ( xk) - Xk / 	 (9)

Equation (8) (or (9)) will converge to x  if xO is sufficiently close to x  One of the

difficulties in Newton's method is the need to calculate J (X k), with its n 2 partial deriva-

tives, at each x k , which can require rathor extensive calculations. This is alleviated

in the modified Newton's method which in general is not as rapidly convergent. Here	 y

2
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J kx o ) is retained throughout the iteration, namely

X k+l	 X 	
J-1  \

X O / g (X k)
	

(10)

.Another limitation of Newton's method is that 'g(x) (or f (x)) must be available in

analytic form. Thus a computer simulation of a discrete control system x k+1	 f ( xk ),

where f(x) is not available in analytic form, and only sampled output x k is available,

cannot be treated directly by Newton's method.

Steffensen's iteration [3] is another method for solving (2) which is similar to

Newton's method. It has the advantage of not requiring the calculation of partial deriva-

tives. Also, it does not require that f(x) be available in analytic form. It utilizes sets

of n + 2 iterates obtained either from the system equation (2), or from a computer

simulation of the system.

Assume that (2) is approximately linear in a region surrounding the equilibrium

point xe. This linearity can be expressed as

X k+1	 X 	 A`Xk X e 1	 (11)

where A represents the Jacobian of f (x) at xe

It is easy to show then that
k 

	
_

	

AX k+1 _ X k+2	 Xk+l	 A\Xk+l Xk

of

	

AX k+1	 A& k ..	 (12)

3	
;
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We define n  n matrices X0 , ao, and AX 1 as follows.

R

	

	 _	 1XO _ ( X O X 1 X2 .....Xn_1 1

0X 0 = (AX O AX1 ...... AXn-1 )

0X 1 = (Ax l 0X2 ... Axn )

	
(13)

Then (12) yields

L^X 1 	A AX O or A = AX, (AXO) -1
	

(14)

assuming (AXo -1 exists.

Utilizing (11), with k	 0, we can solve for xe as follows.

(A-I) x	 Ax - x - (x -x	 _ (A -I) x - Lxe	 0	 0	 1	 0	 Q	 0

or

Xe = x0 - (A - I) -1 Ax o 	 (15)

Using the expression for A of (14), we obtain after some manipulation,

(A- I) - 1 = AXo (1 - AX0)-i

and

-X  - X O - AXo (OX1 - AXo) 

1 AXo	 (16)

Since the system is not really linear, (16) yields only an approximation of x  but

one which hopefully is closer to x  than the starting point x 0 . Calling this new approxi-

mation x (1) ,  we have

X0 1)	
XO0 (1

0-1
/ - 1 

AXO	 (17)

.r

	

a	 n



r.

We can repeat this process using x 0(1) as the Sta.rtiug point for a new set of n + 2

iterates, and apply (17) again to obtain X  
2) , and so forth. This yields the sequence

X  °> , x(1) , x o(2) , • - . This process is Steffensen's iteration. Hopefully, the se-

quence xo o > , X  1 >, x0 2 >, • • will converge to x e . In general, this convergence will

occur if the first starting point x 0(0) is close enough to x e , even when the original itera-

tion of equation 2 diverges.

One of the difficulties in Steffensen's iteration occurs when the matrix (OX 1 ao)

is singular or nearly singular. When it is singular, there is nothing one can do to con-

tinue the process except perhaps introduce an arbitrary perturbation in the starting point

X  k) and hope that the new set of n + 2 iterates yields a non-singular (0X 1 - AX o). When

the matrix (0X 1 - ao ) is nearly singular, numerical errors can produce a large dis-

crepancy in the resulting new approximation of e .

The singularity of (, X i - Z ^X o) can arise in two ways. Since 0X1 = AAXo , we have

AX 1 - AXo = (A -I) OXo .	 (18)

Thus 0X 1 - AXo will be singular if either (A -I) or OX o is singular.

The proposed method to be described next provides a systematic and meaningful

extension of the iteration when (AX, - OXo) is singular or nearly singular. It avoids the

numerical errors associated with inverting a near singular matrix. In the general

case, when (OX 1 - OXo) is non-singular, the proposed algorithm yields the same results

as Steffensen's iteration with an equivalent amount of computations. 'It has one advan-

tage here also in that after an iteration, the A matrix can be obtained with less additional

calculations than would be the case in Steffensen's iteration.

5



PROPOSED NEW METHOD	 ' ` '

First we will consider the general case when (nXl - ,1X o ) is non-singular. This

implies that neither (A- I) nor z1X o is singular.

Consider the matrix

,^Sx
0 / 

o (
'^'x 0 AX 	 .. AX n_ 1 AX n) (19)

This matrix is obviously singular since it coi).tains n + 1 columns and only n rows.

Hence, the last column, L^x n , can be written as a linear combination of the first n

columns, namely

AX 	 = C O AX  + C1 '^SX 1 +	 + Cn-1 AX n- 1 (20)

Now

AX,	 Xi+1	 Xi	 \ Xi+1 X e )	 (Xi _X  )

F
or

	

AXi	 (A-I) ( xi - Xe 1	 (21)

utilizing (11). Thus we can write (20) as

1( A'-I ) (Xn Xe 
1	 (A I ) [C o ( X0 xe 

1
l + C 1 ( X1 X e I + ....+ Cn_1

( X	 X e )]
 Xe)]	 (22)

^	 IJ

I}remultiplying by (A - I)- i (which is assumed to exist in this general case) yields

X 	 Xe	 CO ( X0 Xe ) + C 1 ( X1 — Xe) + • ., } Cn- 1 ( Xn_1 Xe)	 (23)

6



Solving for xe yields

c0 x0 
c 1 

x1 ... { 
c n-1 xn-1 — x 

e	 n- 1.	 (24)

Ci - 
1

j=0

Assuming

n-1

c
i 

;^ 1

i=0



r

e

The combination of (25) and (27) represents the new algorithm for determining

xo(i) , xo 2) , etc. Equation (27) is used first to determine the constants c  which are

then used in (25) to obtain xo 1 >. Then xo 1) is used as the starting point to obtain a new

set of n + 2 iterates from (2), and the process is repeated. This algorithm for the ap-

proximation of xe has been derived using the same equation (21) that yields Steffensen's

iteration, and thus gives identical results in the general non-singular case. The amount

of calculations in each algorithm is about the same. The new algorithm has the advantage

of yielding the A matrix, when that is desired, with fewer additional calculations than

Steffensen's iteration. Since ( 'nxo ) -1 is calculated in the new algorithm, A = (AX 1 ) Ax-
01

is determined from one additional matrix multiplication. In Steffensen's iteration

(equation 17), we deterin ne the matrix AX o (L\X 1 AXo ) -1 = (A- I) 1, so that a matrix

inversion is required before extracting A. The greatest advantage of the new algorithm,

however, is that the same general form is used to extend the iteration in singular or

near singular cases, where Steffensen's iteration breaks down or causes large errors.

This will be discussed later.

We still have to prove that

n_1

E =o

in order for the new algorithm to be valid.

Proof: Assume

n-1

c	 - 1
i`o

8



Then (20) can be written as

n-1

L
C  AX  = C 0 AX  + C 1 A

X  + .....-+C n-1 AX 
n-1 (28)

i= o

Using (12), we can write Ax  as

,!^x n	 A Ax n-1 = A2 AX n-2=	 ... = An Ax o .	 (29)

Utilizing (29) in (28), we obtain

CO ( An - I) Ax o + C 1 (An-1 - I) Ax1 + .,.... F ......+ c n-1 (A-I) ,^sx n_ 1 = 0 .	 (30)

J
Each term in parenthesis in (30) contains the factor (A-I) whose inverse exists

in the general case. Then multiplying equation 30 by (A- L) -1 yields

co (An-1 +A n-2 + .....+A+ I) Ax o + c i (inn-2 +
An-3 + ......A+ I) Ax1

..... . + C n-2 ( A + I) xn-2 + C,-1 Axn_ 1 = 0	 (31)

Performing the indicated matrix multiplications, using (12) , yields

C
0	 0	 0	 1,
Ox + (c +c ) 	

1
px +.....(c 

0 
+c 

1 
+ .,....+c n -1 ) AX, = 0

or

Ox	 = -
n-1	 0	 0	 0

C Ex 	 (c + C 1
) Ax1 	 0	 1	 n-2	 n-2	 (

_ ( c + c + ...... + c 	 Ax	 (32))

Equation (32) implies that the last column. of QX o is a linear combination of the

`	 first n 1. columns. This implies that det LAX , = 0 which contradicts the fact that

(ao) _ 1 exists in the general case. 	 Q.E.D.	 j
9
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Thus

n-1

IT, 
C	 1

0

and the algorithm of (25) and (27) is valid.

We will now extend the algorithm to cover the case of I Dxo 
I 

= 0 and I A- II ^ 0.

In all of the subsequent arguments, we assume that Ax o 0, because if it were the

problem is solved trivially, i.e. Dxo = 0 => AX O = 0X 1 	• •	 0 which implies that

X 0 = X1 = X2 = • '• = Xn+ 1 and we are at an equilibrium point a lready.

Let r be the rank of the matrix (D o ) . Then the first r columns of (ZAO) are

linearly independent.

Proof: Let k be the maximum number of consecutive columns, starting with the

first, that are linearly independent. Then 1 k r < n. Then the k + 1 column must

be expressable as a linear combination of the first k columns, or

AXk = a 0 AX E + a 1 0x 1 + ......+ ak-^ Dxk_I	 (33)

	

We can then express Ax k+l as	 -

AX k+1	 A Ax k 	 a0 AX1 + a 1 0X 2 + ...... + 
ak- 1 AXk

AXk+1 	 aO,'!^X1 +a 1  0X2 + ......+ ak•
-2 AX k-1 + a k-1 (ao '^Ixo + a l AX  + ....-+ ak-1 '!^X'k-1 /

or

AX	 b AX + b Ax + .. + b AXk+1 -	 0	 0	 1	 1	 k-1	 k-1	 (34)

i

10
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Thus the k + 2 column is also expressable as a linear combination of the first k

columns.

We can express the k + 3 column, Axk+29 as

AX k+2 - AL^x k+1 = bo Gxl + b i Ax  + .....+ b k-2 '!^Xk-1

+ bk-1 (ao px O + al Ax , + ...... + ak-1 
'^

x k-1 J	 (35)

Thus the k + 3 column is again a linear combination of the first k columns. Con-

tinuing the process will show that every column after the first k columns is a linear

combination of the first k columns. Hence the rank of AX Q must equal k or k = r.

Since the first r columns are linearly independent, we can express the r + 1

column as a linear combination of the first r columns. Thus

LAX r -
 CO Ax 

o
+ C 1 Ax 1 + ...... { 

C r-1 Ax r-1	 (36)

From (21) , we have

QXY	 (A - I) (Xi — Xe

Then (36) can be written as

PW



Since this represents our next estimate of x e , we denote it by xo 1) , or

(1> —	 C 0 X0 + C1 X1 + .....• { C r-1 X r-1	 X 
X 

0	 r-1 (38)

cl	 1
i= 0

Note that this is exactly the same form as (25) for the general non-singular case,

except that n-is replaced by r o We can prove, that

r
-1

c^ ^ 1i= 0

r-
in the same way that we proved that

n-1

Ci ^ 1
i^^=0

y

in the non-singular case. Simply replace n by r in the latter proof.
d	 q

To complete the algorithm of (38), we must solve for ci, 	 0, 1, • • • r 1. If

we take the dot product of (36) with ^sxo, Oxl, • • , and Gx r_i, we obtain

C0	 ^6x0 '^Sxr

c l	 Ax l px r
Gr

(39)

C r-1AX 
r-1 . , QX r

r

1

v
r

t

12
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where

AX  . AX 	 tsxo tsX 1 	AX 	 '!^Xr-1

AX1 . AX O 	AX, Ax 1
	L^X1 ' .AXr-1

G	 o	 ,
r

AXr-1 ^ 0	 ^X r-1	 1 ......	 QX r-1 AX r -1

is the Graman corresponding to the first r columns of '^Sx o . Since these columns are

linearly independent, I G r I	 0 and Gr 1 exists. Then,

CO	 AXO ..AX r

C 1	AX1 • AX r

..	 = Gr 1  	
(40)

Cr_1	 AXr_1 AX

Equations (38) and (40) constitute the algorithm in the case where Mo is singular

with rank r and (A- I) is non-singular. Note that these equations can also serve as the

algorithm for the general non-singular case by letting r = n. Then (38) becomes the

same as (25) and (40) reduces to (27) since

G - \ '^Xo T ao	 (41)

and

L^Xo '^Xn

^X ^X

	

1	 n	
rr	 l

	

:.	 \ao /T
,!SX

n	 (42)

'^Xn-1 ..^Xn

-	
1

13
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Then

^0

c1

. 1
	 Gn 1 (AX0 ) T AX  - AX 1 \ 0)-1 AX0 	 Ln - X0 1 ^n	 (43)

Cn_,

which is the same as (27).

We will now show that the algorithm of (38) and (40) can be used meaningfully in

many cases when (A-I) is singular. The only restriction on its use is that the null

spaces of (A-I) and (A-L) 2 be equal. This is equivalent to the condition that (A-I) is

fully degenerate i.e., the number of independent eigenvectors V i such that (A - I) V i = 0

equals the multiplicity of 0,,.e zero eigenvalue of (A-I). The proof of this equivalence

has been omitted for the sake of brevity.

Again we assume that AX o ^ 0 for if it were, we would already be at an equilibrium

point. We have

OX 0 - ( AX 0 AX 1 ...... Ax .-1



ff
	 These k eigenvectors thus span the null space of (A- I) .

1 Let r equal the rank of AXo where r n. Then the first r columns of !\X o are

linearly independent as proved previously. The r + 1 column can then be expressed

as a linear combination of the first r columns, or
i
I
I'na = C O AX + C 1 AX + ... + Cr-1 pXr-1	 (46)

Using equation 21, we obtain

(A - I) (X r — X e )	 (A I) ^C 0 ( X O — X e / + C 1 \X1 
?C e) + .....+ C r-1 \Xr-1 Xe /]	 (47)

f

Let V be some vector, as yet undefined, in the null space of (A-I). Then V can be

written as a linear combination of the k eigenvectors V i , or

V = b l V 1 + b 2 V 2 '+	 +b,k V 	 (48)

Then

(A -I) V = 0 =	 (49)

Using (49) in (4 7) , we obtain

(	 1	 rr

(A I) PO\ X0 X'! V / +C 1\ X 1 Xe - V)

+ ...... { 
C r-1 \ X r-1 - X  - V) '- (Xr X6 - V )^	 0	 (50)

Each vector- ( Xi - Xe) can be divided into two components, one orthogonal to the

null space of (A- I) and the other in the null space of (A- I). Denoting these components' -

15
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by xia 
and xib respectively, we have

°.
X	

'	 '	
(	 )

X. - x	 xe -	 ia } x	 ^' ^'ib	 1 -	 r	 51

By definition,

(A - I) x ib - 0	 (52)
^y

Substituting equation 51 in equation 50, we obtain

(A I ) [C O X Oa + C1 X
11 + ...... C

r-1 x rI 1, a xra + C O \ x I - V

/

r-1	 r-1>b	 r

'

b	 )

We can select V by proper choice of the constants b i of equation 48, so that

V - 

C O xOb + C 1 x lb + ..... + C r_1 x r-1 b- x rb

r-1	 (54)

2- C. - 1
i=o



r

Using (54) in (53) we obtain

(A - I) L C O X Oa + C 1 Xla	
•.....^ 

Cr-1 Xri 1,a	 Xra	 6

Let

z	 CO X OIa + C1 Xla +	 + Cr-1 Xr! 
1' a Xr'a

Then (A -I) z = 0.

We can easily prove that z = 0.

Proof: Assume z ^ 0. Then z is orthogonal to the null space ` of (A - I) since each

of its components is orthogonal to this null space. This implies (A- i) z ^ 0 which is

a contradiction. Thus

z = C 0 X0a + C1 X1a + Cr-1 Xri 1,a 	 Xra	 0'	 (57)

Equation 54 implies that

1	 (	 1CO(?COb_ V)+C1(Xlb _V)+... +C r-1( X r'1,b -V /	 1Xrb-V/	 (58)

Adding (5 7) and (58) , and using the identity of (51) , we obtain

CO(XO-Xe- V)+ C1(X1-Xe-V)_+.....+Cr-1( Xr-1 X e _V)_(X r -Xe - V)	 0	 (59)
i	 .

We note that the point ( xe , + V) is an equilibrium point, which we will denote by Xe"

since

A(Xe' Xe) = AV	 V	 ( Xe - x 	 (60)

IY

i

17
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We can solve for x e' °= X  + V from equation 59 to obtain

	

/	 C0 X0 + C1 X1 + ..... + C 
r-1 X r- 1 — X 

	

X e	 =	 r-1

C1	 1
j=0

Equation 61 indicates that we can obtain an approximation of an equilibrium point

x e ' , which in general is not the same as x e , when (A -I) is singular. Of course this is

the best that any iteration scheme can do. If the system were truly linear with I A-11 = 0,

r

(61)

then the next set of iterates starting at x e ' would remain stationary at xe ' . The ques-

tion arises, in a nonlinear system with an isolated equilibrium point, can the A matrix

	

corresponding to a set of 	 iterates be such that JA -11	 0 ? We know that this can be

true at the isolated equilibrium point itself, but of course this is a trivial case since

this would mean we were already at the equilibrium point. Without answering the

question (which may be impossible to answer), we can at least say that the matrix (A-I)

can become near singular, as we get closer to an equilibrium point whose (A- I) matrix

is singular. In practical computations the difference between a singular matrix and

near-singular matrix can be academic since the numerical errors associated with

inverting a near singular matrix can cause large discrepancies. It is likely that treat-

ing the matrix as singular, when E < I A- II - < 6 , will yield more convergent results in

many cases. Thus equation 61 can serve as the algorithm for the next estimate'of the --

equilibrium point, when (A- I) is singular or near singular, or

c x +c x +_ + C X _X

	

1	 p 0	 1 1	
,	

r-1 r-1	 r

	

X
0	 r_I

C . _ 1 (62)

i= 0

or



This is identical with (38), the algorithm for obtaining an estimate of x e when

I -X o I 0 and I A - I j ^ 0: Thus without knowing whether or not I A - I I = 0 we can use

the same algorithm for determining xo 1> when /,XO is singular or near singular. The

c i in (62) are derived from the same equation that yielded the c 1 for (38). Hence

co	 AX  ..AX,

s	 c1	 AX1 ^SXr

•	 = G-1r	 (63)

C r —1	 LX r-1 .. `^X r

We have thus established that the algorithm of (38) and (40) (or (62) and (63)) is

valid for the case of AX  = 0 regardless of whether or not A- I 	 0, provided that

if IA-II = 0 the null spaces of (A - I) and (A - I)2 are equal. We will show that the

algorithm can also be used effectively in the case of near singularity of AX o in the sense

that the c l obtained from (40) (or -(63)) will minimize the norm of y, where

Y -° c o AX + c 1 L`,x + ...... + c r -1 ^ r-1 - AX r	 (64)

'

	

	 If LX o were truly singular and of rank r, then the selection of c i as per equation 40

(or 63) would make y identically zero. However assiune that M is nearly singular

and that it is desired to treat M O as though it were of rank r where r is chosen to be

the smallest integer satisfying a predetermined condition,

r •	 r + 1-	 other words, i chosen as	 ma	 integerr ch a e	 columnnIn the w r s, s	 the smallest t e such that the	 uin cang

"almost" be expressed as a linear combination of the first r columns. We would like

the difference between the selected linear combination and the r + 1 column, Ax r , , to
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be as "small" as possible. This difference vector is y. We will consider the choice

of c i to be optimum if Ilyll is minimized where

n

Y11	 L^ y 2
	

(65)
i=1

We will now derive a formula for the c i that minimizes it y ll (u r I l y (1.2 )

11y112	 = y .,y = (CO 3^SX O +C1 AX 	
+Cr-1 OX r_1 -AXr)

(C O AX 	 C1 AX  + ....,+ c r-1 AX r-1 - AXr)

Setting

r

	

a lly 11 2 =	 0ac.

}
i = 0, 1 1 • • • r - 1, we obtain r equations of the form,

	

0' - 2 (co AX O + C 1 AX 
+ .....+ C r-i Axr _1 -- AX • Ax.	 (66)

This yields the matrix equation

AXO • •AX O 	 tsx0 AX  ..,..	 pXO Axr-1	 ^C O
	pXO AX 

OxOx	 Ox AX .. 	 Ax . pX
	C 11	 0	 1	 1	 1	 r-1	 1	 1	 r

(67)
i

OX	 ^X 0	 r-1	 1	 r-1	 rU	 . pX	 Ax .. pX	 c	 AX	 AXr_1	 -1	 r-1	 r -1	 r

F •

f.
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or

C°	 nX° AX 

C 1 	Z^X1 nsXr
G-1	 (68)

C r_ 1	 AX r_1 . •AXr

This is identical to (40) (or (63)) so that selection of the c i in accordance with the

algorithm will minimize II Y 11 and thus yield a "best" fit in the case where LAX ° is nearly

singular. In the above derivation, it was not proven that 11Y 11- is a minimum rather than

a maximum. However the fact that 	 0 asI Gr+ 1 I 0 indicates that IIy II must be a

minimum for the c i chosen as per (68).

EXAMPLE

To illustrate some of the points that have been discussed, a simple example will

be presented in which the initial starting point x° results in singular matrices LAX ° and

(LaX l - InSX 0) . Obviously, Steffensen's iteration would break down in this instance. Let

X	 y + X2 y and y	 X+ Xy 2 	 (69)

This obviously has an equilibrium: point at (0, 0). However, we will pretend that

we only have some approximation which happens to be (0.1, 0.1) Forming n + 2

iterates from (69), we obtain

01	 0' 101	 .10 2030 [.103092

	

-	 -_
X ° 10 , 11	

X1	
0.101	 "a	 .102030'	

X3	
.103092	 (70)

	

0.001	 .00`1030	 .001062
0x0	

0'.001	
0x1	

.001030	
AX 	

.001062	
(71)
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We can see that ZA , and (a, - MO ) are singular. Using the algorithm of (38)

and (40) , we obtain

C O = 1.03 and	 x0( 1 ) F- 066667

L-066667

Using xo 1> as the starting point for a new set of iterates, we obtain

.066667	 [.066963]. 	 _ [.067263
x0 	 .066667	

xi	
.066963	 x2	 .067263	 (73)

Ax -
	 .000296	 ^X^ _ F.000300

0	 .000295	 1	 L.000300	 (74)

It is not necessary to go beyond x 2 since we recognize that /X 0 is singular. Using

(38) and (40) once more, we obtain

C O - 1.01351 and xo 2>	 •044757
 1.044757J	 (75)

Repeating will show that the sequence xo 1 >, x0 2 > , • • • converges to (0, 0). The

relatively slow convergence is due to the fact that in our example, A has -.n eigenvalue

that approaches one as we approach the equilibrium point. Any initial condition of the

form (a, a) is along the eigenvector corresponding to this eigenvector, resulting in .a

singular nX o

This example al so has an eigenvalue that is approximately equal to minus one near'

the equilibrium point. If we select an initial condition of the form(a, -a), which is

along the eigenvector corresponding to this eigenvalue, OX ° will still be singular but

the convergence of the algorithm will be much faster. ' For example, starting at

22
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(0.1, -0.1) yields

0 1	 _- . 101	 . 10'20 30
°	 -0.1	 X1	

.101	 X2	 -.102030	 (76)

	

. 201	 .203030^X°	
201	 ^xl	 -.203030	 (77)1

The algorithm of (38) and (40) yields

	

.000000 5 	 1
C ° _ -1.01001 and	 xo 1 ^ -	 -, 0000005	 (78)

which already is extremely close to the equilibrium point.

CONCLUSIONS

The algorithm of (38) and (40) is a general method for obtaining the equilibrium

	

points of the vector equation xk+1	 f (xk)o When the matrix (,A - LX O ) is non

singular, the algorithm yields results identical to Steffensen's iteration with about the

same amount of computations. The algorithm has one advantage in this case in that it

enables the determination of the A matrix, when that is desired, with fewer additional

calculations than does Steffensen's iteration. When the matrix (AX, - AX ° ) is singular,

the algorithm yields meaningful results whereas Steffensen's iteration breaks down in

this case. Finally when the matrix (LX oX o ) is nearly singular, (or equivalently when

'^SX o is nearly singular), the algorithm yields good results by treating zA o as singular.

This avoidsthe numerical errors in inverting a near singular matrix. Thus the al-

gorithm developed in this paper is a more comprehensive method than Steffensen's

iteration and includes the latter as a special case.
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