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R-628 

AUTOMATIC LANDING SYSTEM OPTIMIZATION 

USING MODERN CONTROL THEORY AND 

INERTIAL MEASUREMENTS 

ABSTRACT
 

Conventional automatic landing system designs for commercial transports 

have been primarily based on the utilization of Instrument Landing System (ILS) 

information to provide the position information required for acquisition and tracking 

of the landing glide path. Lateral position relative to a vertical plane passing 

through the runway centerline is derived from the localizer receiver output. 

Position relative to a vertical reference path is generated by processing the output 

of the glideslope receiver. 

The spacial reference surfaces defined by the ILS signals are ideally plane, 

however, as a result of reflections from objects on the ground illdminated by the 

localizer and glideslope transmitter antennae, irregularities, referred to as "beam 

bending" or "beam noise", are superimposed on the planar surfaces., Beam irregu­
larities are the most significant source of noise in a conventional landing system. 

The amplitude of the noise is large enough to produce significant performance 

limitations on the landing system as a result of filtering and gain limitations which 

must be introduced due to saturation limits on vehicle effectors. 

Inertial navigator position and velocity is relatively free from the high 

frequency noise which plagues ILS information, however, erroneous,low frequency, 

gyro-drift induced, variations in position and velocity exist. The position error 

after a typical flight is measured in nautical miles, for example. This error would 

appear to preclude the application of inertial position for flight trajectory control 

during the terminal phases of flight. The possibility of combining the desirable low 

frequency characteristics of the ILS sensor with the broad bandwidth of the inertial 

information then suggests itself. By applying a systematic mathematical estimation 

technique to the signals from the ILS and inertial navigator it is possible to correct 

the inertially measured position and velocity, The result is position and velocity 

information which is relatively free from noise compared to the information provided 

by the ILS. 

In order to obtain maximum advantage from the noise free corrected inertial 

position and'velocity data a complete review of the lateral and vertical position 
control systems was carried out. Primary attention was focused on improving the 
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magnitude characteristics of the open loop transfer functions of the vertical and 

lateral position regulators to increase bandwidth and minimize the effects of en­

vironmental disturbances. The ability of the control system to follow a desired 

trajectory in space was increased by feedforward compensation. Maximum resist­

ance to disturbances is achieved if the control effectors are always operated in an 

unsaturated condition. Optimization theory is applied to synthesize trajectories 

which the vehicle can follow (in the absence of disturbances) without saturating the 

effectors. This report develops the new control system structures and compares 

the performances of new and conventional automatic landing systems. 

Duncan Maclinnon 

January 1969
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CHAPTER 1 

INTRODUCTION 

1. 1 Introduction 

Routine all-weather landing of transport aircraft is one of the outstanding 

unsolved problems of present-day technology. The importance of the problem and 

its implications both for passenger safety and for economic operation of airlines 

have been recognized for decades. Now that the jumbo-type transport and the 

supersonic transport are soon to be introduced into passenger service the problem 

of all-weather landing may be considered to be a critical factor limiting the full 

utilization of these aircraft. 

Over the past ten years, important strides have been made in the direction 

of the goal of all-weather landing. Of these, the most important has undoubtedly 

been the actual implementation of aircraft control systems which use Instrument 

Landing System (ILS) information and which have successfully performed thousands 

of automatic landings. An outstanding example is the system developed by the 

Blind Landing Experimental Unit (BLEU) of the Naval Aircraft Establishment, United 

Kingdom (see ref (1)).* It is highly probable that the basic concepts of control in 

what might be termed a classical automatic landing system such as the BLEU system 

will provide the conceptual framework for the systems that will eventually be adopted. 

It does not appear, however, that systems exist which will provide the invariable 

accuracy, reliability and independence from external disturbances, which will be 

mandatory for routine all-weather landing of transport aircraft. 

The point of view of the study described in this report is twofold. The study 

is concerned with the implications of inertial navigation technology for the all-weather 

landing problem. As a corollary, the study is concerned with the application of 

control theory, both classical and modern, for the effective utilization of the inertial 

equipment. The study is directed particularly towards the development of an all­

weather landing system for the supersonic transport (SST). The SST presents a 

particularly challenging landing problem as a result of its high approach speed and 

its aerodynamic characteristics. It should be emphasized, however, that the re­

sults of the study may be applied to any aircraft. 

*References (1) to (2 5) were referred to in reference 26 and are included in the table 
of references for completeness. 
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Over the past twenty years, an increasingly sophisticated technology of 

inertial navigation and guidance systems has grown up. This technology has been 

grounded on the continuous development of extremely precise reference components, 

principally floated gyros and accelerometers and a parallel development of support 

technology, such as gimbal structures, angular encoders, and thermal control sys­

tems. The concurrent advances in computer technology have been indispensible to 

the rapid advances made in inertial systems. The developments in inertial navi­

gation and guidance have been almost entirely motivated by military requirements. 

While the utility of inertial navigation systems for commercial aircraft has been 

recognized, the participation of commercial aircraft users in inertial navigation 

development has been a minor factor because of the costs involved. It is now c6n­

sidered, however, that the accuracy, reliability and production costs of inertial 

navigation equipment originally developed for military pruposes are such that they 

are appropriate for commercial use. Plans for the large commercial transports 

soon to be introduced invariably include one or more inertial navigation systems 

per aircraft. It is planned, for example, that the SST will carry three inertial 

navigation systems to provide redundancy. 

Search of the available literature fails to show that any significant application 

of inertial navigation technology has been made to the automatic landing problem. 

A primary purpose of the present study, as noted, has been to demonstrate, by 

computer simulation, the implications of inertial navigation for the automatic landing 

problem. On the basis of work performed to date, it is believed that significant 

advantages will accrue from appropriate use of inertial navigation equipment. 

This contention is fully described and documented in the subsequent chapters. 

1. 2 Aircraft Landing 

The problem of landing an aircraft can be defined as a general problem in 

control theory. The control system, human or automated, must generate a set of 

commands which transfer the vehicle from some rather general initial state xi to 

a terminal state xf. The initial state is usually on a linear trajectory inclined at 

some angle qi relative to a vertical reference plane which contains the runway 

centerline. The terminal state, for the purposes of this discussion, is on a linear 

path described by the center of gravity of the aircraft in the vertical reference 

plane as it rolls down the runway centerline. The transfer between these states is 

usually divided into a number of clearly defined stages which are illustrated in 

Fig. 1.2.1. 
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1. 	 Acquisition- During the acquisition phase the aircraft trajectory 

is changed to a path coincident with a reference defined by the 

terminal navigation system: In the case of an ILS system the 

path is specified by the intersection of two planes defined by 

the Localizer and Glideslope signals. 

2. 	 Reference Path Tracking: During the path tracking phase the 

vehicle follows the reference defined by the terminal navigation 

system. The reference path is followed until the vehicle is 

70-100 feet above the runway elevation. During this phase a 

jet transport aircraft descends at approximately 10 feet/second. 

3. 	 Flareout: The flareout maneuver occurs during the final phase ­

of flight. The primary purpose of flare is to reduce the vertical 

rate of descent from approximately 10 feet/second to approximately 

2. 5 feet/second. Flareout is initiated at the termination of the 

Reference Path tracking phase. 

4. 	 Decrab: If a component of wind perpendicular to the runway 

centerline exists the aircraft is normally flown at a slight "crab" 

angle into the crosswind to reduce the lateral component of 

ground velocity to zero. The decrab maneuver, which occurs 

during flareout, aligns the longitudinal axis of the aircraft with 

the runway by rotating the vehicle in an uncoordinated fashion 

(roll =0). 

5. 	 Rollout: Rollout Control is the final phase of vehicle guidance 

during a landing. The aircraft is on the ground, rolling along 

the runway. The rollout control system attempts to keep the 

center of gravity of the vehicle in the vertical reference plane. 

Thus the landing system must be capable of solving a relatively 

large assortment of control problems. The next section intro­

duces criteria which may be applied to landing system performance. 

1. 3 	 Performance Criteria for Automatic Landing Systems 

Before the question of improving a system is approached, it is important 

to establish the exact nature of the indices which will be used to measure performance. 

These criteria should reflect the qualities which are normally desirable in flight 

control systems. In addition, special performance measures must be introduced 

which pertain to the problems peculiar to automatic landing. A set of measures 

which reflect these goals is: 
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Table 1.3-1 ' 

List of Specific Performance Requirements 

Phase 	 Requirement 

Acquisition 1. 	 Acquire the ILS localizer and glide-slope centers 

as quickly as possible with minimum overshoot. 

2. 	 Perform this maneuver within the restrictions 

imposed on roll and roll rate. 

ILS Reference 1. Minimize the error between the actual path of the 
Line Tracking aircraft and the ideal location of the ILS reference 

line. 

Flareout 1. 	 Minimize the error between a desired vertical 

velocity profile and the. actual vertical velocity profile. 

Decrab 1. 	 Minimize the lateral components of aircraft velocity 

and position at touchdown. 

2. 	 Minimize the angular difference between a-vertical 

plane through the runway center line and the air­

craft's longitudinal axis at touchdown. 

3. 	 Attempt to achieve zero roll angle at touchdown. 

Rollout I. 	 Minimize the distance between the path of the aircraft 

and the runway center line. 
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1. Sensitivity to environmental disturbances. 

2. Accuracy of flight relative to a desired reference trajectory. 

3. Control effector activity caused by noise. 

4. Physical limitations imposed by the aircraft structure. 

5. Human factors. 

The first two performance measures deal specifically with landing accuracy. 

A reduction in the effects of external disturbances ensures that landings may be 

repeated with small dispersion in spite of large changes in ambient atmospheric 

conditions. The ability to track a desired path accurately is obviously a particularly 

important item and will undoubtedly provide a key to winning the confidence of air­

crews and the acceptance of the new automatic landing systems by the airlines. 

Accurate path tracking also provides the greatest margin of safety, since a com­

paratively small deviation from the path may be interpreted as an incipient failure 

and an appropriate warning transmitted to the pilot. 

Control effector activity resulting from noise levels in the sensors which 

provide the information for control-loop closure must be restricted to a fairly low 

level to reduce wear on the effectors, decrease drag and limit undesired inputs into 

the pilots controls. 

The control system must also operate without exceeding the structural 

limitations of the vehicle. This implies control within a particular flight envelope 

and special care to ensure that the flexible bending modes of the vehicle are not 

excited. 

Human factors are particularly important in a passenger aircraft. Restric­

tions on variables such as roll, roll rate and vertical acceleration must be incorpor­

ated into the design. An automatic landing system should optimize items 1 through 

5 while working within these restrictions. 

The above criteria may be interpreted as a set of specific performance 

requirements applicable to each control stage of an automatic landing. Such a 

set of specific requirements is given in Table 1. 3-1. 

1. 4 Automatic Landing Systems 

As indicated above, automatic landing systems have been under development 

for some time. A conventional automatic landing system is shown in Fig. 1. 4. 1. 

The terminal navigation aid (ILS) provides position information xr relative to the 

approach reference trajectory. This information is usually quite noisy as a result 

of fluctuations in the reference path due to random reflections from objects on the 

ground illuminated by the localizer and glideslope antennae. The output from the 

ILS is fed to a coupler which operates on the signal to provide inputs mo to the auto­
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pilot which are linear combinations of the position error, the integral of the position 

error and the derivative of the position error. The output from the coupler m 0 *is fed 

to a signal processor which limits the signal to account for human factors and flight 

envelope restrictions. The control signal m 2 is then applied to the aircraft autopilot 

which modifies the vehicle attitude to effect the trajectory changes required for ILS 

reference path tracking. The aircraft is placed under landing system control when 

it is initially on a linear path inclined at some heading angle ka relative to the run­

way centerline. The control system automatically acquires the reference path and 

guides the. aircraft along it until control is tranferred to a human operator or the 

decrab and flareout control systems at an altitude of 70-100 feet relative to the 

runway. 

While the simplicity of the conventional system is very attractive it suffers 

from a number of disadvantages. 

1. 	 The open loop gains are restricted due to filtering which must 

be used to reduce the high noise level in the ILS signals. 

2. 	 The control system tends to operate in saturation much of the 

time due to the high ILS noise level and the linear relationship 

between lateral position error and signal processor input. As 

a result the control system sensitivity to environmental disturb­

ances is increased. 

The goal of this study is to improve the overall performance of a landing system by 

utilizing information provided by the inertial navigator and the contributions of 

modern control theory. This object is achieved by the application of four concepts 

a) Inertial filtering of the ILS reference signals 

b) Inertial stabilization of the aircraft control system 

c) Generalized trajectory control 

d) Nonlinear trajectory generation 

The concepts a-d form the basis for a new system which satisfies the criteria out­

lined in section 1. 3. 

A block diagram of the MIT/IL automatic landing system is shown in figure 

1. 4. 2. The command input to the system is the instruction I which selects the 

operating mode of the landing system from the phases described in section 1. 2. 

The nonlinear trajectory generator develops a new spacial reference trajectory 

which interacts with the terminal approach reference trajectory to satisfy the 
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instruction I. The reference path r produced by the nonlinear trajectory generator 

accounts for 

1. 	 Saturation constraints imposed by effectors and/or human factors. 

2. 	 The bandwidth limitations of the closed loop position control 

system. 

As a result the vehicle is able to follow the trajectory precisely without saturating 

the effectors or the limits irmposed by human factors. The utilization of trajectory 

generation has another very important implication since it permits the designer to 

select the system gains without considering the affect of gain values on gross re­

sponse characteristics, permitting in general the utilization of higher gains. The 

output from the trajectory generator consists of a set of reference position, velocity 

and 	accelerations signals r. 

The position, velocity and lagged acceleration of the vehicle are generated by 

an integrated sensor package consisting of an inertial navigator, an estimator, and 

the terminal navigation aid (ILS). The output xc of the integrated sensor is a 

corrected set of inertial system measurements xi which provide relatively noise 

free vehicle state data. The velocity, position, and acceleration components of xc 

are compared with corresponding components of r to generate a feedback control in0 . 

By exercising simultaneous control in this fashion over position, velocity and 

acceleration the affect of feedback path dynamics is eliminated and a considerable 

improvement in trajectory following precision achieved. A detailed discussion of 

nonlinear trajectory generation and its application can be found in chapter 4. 

In addition to the control component generated by comparing desired and 

actual values of position, velocity and acceleration a feedforward component q is 

produced to eliminate steady state errors. For example, a signal, in the vertical 

channel is generated to provide the vehicle pitch angle required to maintain a 

desired rate of descent. 

The total control signal is then applied to a signal processor which plays the 

same role as the command signal processor in the conventional automatic landing 

system. However as a result of careful trajectory generation and low sensor noise 

levels the limits in the signal processor are normally not exceeded. As a result 

the control system primarily operates fn an unsaturated state reducing the sensi­

tivity to environmental disturbances as explained in chapter 4. 

Subsequent chapters will discuss various aspects of the design of the 

MIT/L Landing system in more detail., 
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CHAPTER 2 

INERTIAL - TERMINAL NAVIGATION SYSTEM INTEGRATION 

2. 1 Introduction 

Inertially measured position and velocity are characterized by very low 

noise levels at high frequencies in spite of the wide bandwidth of the measuring 

instrument. As a result inertial position and velocity would appear to be ideal 

feedback variables for position control system synthesis. Unfortunately the 

position and velocity information provided by the inertial system are subject to 

low frequency gyro excited errors which increase in amplitude with time. The 

magnitude of the error in position roughly increases one nautical mile for each 

hour of operation in a system of the type currently considered for commercial 

aircraft operation. As a result the errors at the termination of a typical flight 

will preclude the use of position and possibly velocity as feedback control variables. 

A terminal navigation system such as ILS on the other hand, provides re­

latively accurate position information which is corrupted by severe high frequency 

noise. ILS position and derived velocity are thus rather unsuited for control 

applications. 

The possibility of combining the desirable features of the ILS and inertial 

information then suggests itself. Such an integrated sensor unit would combine the 

low frequency characteristics of the ILS with the wide noise free dynamic range of 

the inertial system. The equations of integrated sensor providing corrected velocity 

and position information were developed in reference 26. This chapter extends the 

technique to encompass acceleration correction and examines the properties of the 

solution in more detail. 

2. 2 Initial Inertial System Correction 

The modern approaches to navigation system design utilize the total infor­

mation provided by all the navigation sensors such as DME, VOR, VORTAC, 

LORAN, etc. and combines them using a systematic estimation technique such as 

Kalman Filtering or integral square error minimization. As a result it is possible 

to update the inertial system during flight and it will probably be possible to reduce 

the position error of the inertial system below one nautical mile before the aircraft 

11 



enters the terminal control area. Additional initial corrections may be made 

based on the data provided by the ILS system. Such initial corrections play an 

important role during the.acquisition phase of an automatic landing as shown in 

chapter 6 of reference 26. 

The lateral position relative to the vertical reference plane is the most 

important variable during the initial phases of an automatic landing. The lateral 

position may be estimated by examining the geometrical properties of a radius 

drawn from the ILS Localizer transmitter to the Vfehicle. Let r be the length ofY 

the radius and a the angular deflection of the radius from the vertical reference y 
plane. The lateral distance y from vehicle to vertical reference plane is then 

given by 

y. = a yry . (2. 2-1) 

Assume thata is measured by the localizer receiver while r is generatec by a- yY 

distance measuring device (DME) located at the localizer antenna. The angle and 

distance measurements are subject to errors e and e resoectively. The actual 

measured distance ym is then given by 

= 
ym ayry ry + rye y +.e ayey (2.2-2) 

The first term on the right hand side is the actual distance y. The last. term is very 

small relative to the second and third terms and may be neglected. The error ey in 

y is then approximately 

ey a yery + rye . (2. 2-3) 

If e y and ery are uncorrelated, the mean square value of the error E(e ) may be 

written 

E(e ) a y E(ery ) +r y E(e ) (2. 2-4) 

Assuming typical values at the initiation of acquisition 

- 4 
E(e y = 1 X 10 rad2 

2 ­

ay2 36 X 10- 4 rad 2 

E(e ).= 4 x 106 ft2 

rry = 36 "x 108 ft2 

12 



it is apparent that the second term in equation (2. 2-4) will dominate E(ey ) and 

E(e r 2 E(e ) = 36 X104 ft 2 (2.2-5)
y y aly 

Since the mean square value of the error in inertial position E(eyi ) on entering 

the terminal area will range from 106 to 109 ft 2 depending on the duration of flight, 

updating techniques and so forth, it is advantageous to perform an initial inertial 

position correction based on ILS - DME information by setting inertial lateral 

position Yi = Ym" 

Velocity data provided by the ILS - DME terminal navigation system, on 

the other hand, is generally much less accurate than the inertial velocity infor­

mation. Thus an initial velocity correction based on terminal navigator data would 

not normally be made. 

A'similar approach may be used to correct the vertical position if it is 

measured by the inertial system. In this case it is generally advantageous to use 

the radio altimeter and/or barimetric altitude as the reference variable since the 

errors in these measurements are generally much smaller than the errors in the 

glideslope signal. 

While instantaneous inertial velocity and acceleration correction using ILS 

and DME information is not feasible it is possible to generate very precise inertial 

system corrections using mathematical estimation theory. This approach is dis­

cussed in the next section­

2. 3 Estimation of Inertial System Errors 

While instantaneous correction of inertial system position in 2. 2 results in a 

reduction in position error a more sophisticated approach must be utilized if a 

further correction in inertial position and c'orrections in inertial velocity and 

acceleration are desired. Mathematical estimation theory provides the techniques 

for accomplishing these goals. A least integral squared error technique is a 

relatively simple approach to this problem which requires only a modest quantity 

of computer memory. 

Let a set of inertially measured variables corresponding to motion along 

one axis be represented by a vector 

x (2.3-1)[xi2 
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where 

Xil is inertially measured position 

xi2 is inertially measured velocity 

xi3 is inertially measured acceleration 

A simplified set of relationships which models the inertial system is then 

iil ­ xi2
 

(2. 3-2)xi2 = xi3 

subject to the initial conditions xi (0), xi2 (0). Since the time interval during an 

automatic landing is short compared to the dynamics of the inertial system the 

errors in position and velocity may be attributed to errors in the initial values 

xi1 (0) and xi2 (0) and an accelerometer bias error in xi3 (0) (as a result of stable 

member misalignment and deflections of the local vertical). Thus 

xil(0) = (position at t = 0) 4 (error in position at t = 0) 

x12(0) = (velocity at t = 0) + (error in velocity at t =0) 

xi 3 (0) = (acceleration at t =0) 4- (bias error) 

Knowledge of the errors in initial position and velocity and the bias error 

in acceleration is sufficient to correct all subsequent inertial data during the landing 

maneuver. 

Consider the system shown in Fig. 2. 3. 1.- The inertial system described in 

equation (2. 3-2) is modelled by two integrators. The input to the inertial system 

is xi 3 which is the sum of tne true acceleration x3 and the accelerometer bias b. 

The output inertial position x., is fed to a model of the ILS receiver. The true 

position is fed to the actual ILS receiver. The outputs of the ILS receiver and its 

model are multiplied by range to the ILS transmitter r to convert to measured distance 

and compared at a summing junction. It is apparent that the resultant error e will 

be zero for all t > 0 providing 

1. The ILS model and ILS system outputs coincide at t = 0. 

2. The ILS model accurately represents the ILS receiver. 

14 



Ix,2 X3 X,3 1 X I Xp 

MODE L OF ILS RECEIVER 
X;
 

INERTIAL NAVIGATION SYSTEM -8X,01 TX, (0) ' 

ESTIMATOR 7 i¢ 

CORRECTED
ThuE 
POSITION INERTIAL 

SYSTEM
 
DATA
 

1. 
01 

ILSNOISE 

Fig. 2.3. t Integrated sensor block diagram. 



The errors in inertially measured position, 

velocity and the accelerometer bias are zero 

3 

4. The noise input n is zero 

It is assumed that the first two requirements are satisfied. Satisfaction of the 

third shall now be investigated. 

Let the vector describing the inertial system xi be perturbed at t =0 by 

8xi(0). Since the system is linear the effect 6e of the perturbation 6xi(0) on the 

error e may be written 

be(t) = h(t)' 8xi(O) 	 (2. 3-3) 

where h is a vector of responses, The element hk(t) is the step response meas­

ured at e to a step in Xik applied at t = 0. The new error is then 

C(t) = e(t) 	 + 8 e(t) (2. 3-4) 

The estimation of the best perturbation in 8x.(0) may be accomplished by solving 

the following optimization problem 

Problem: 	 Find a vector of perturbations 8xi(0) which minimizes the 

integral performance index 

S[e(a) - 6()]2da (2. 3-5) 
0 

Expanding e (a) - 8 e (a)] 2 using equation (2. 2-3) gives* 

j = C(M)2 4- 2h(a)' 5xi(0) e(a) 

4- 6xi(0) ' h(aolh(a) t Sxi(0)]da 	 (2. 3-6) 

The first variation with respect to 5xi(0) in the performance index J is given by 

*The notation x' denotes the transpose of the vector x. 
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J- 6x.
1 

(0) 
. 

2h(a) EWY) 

0 

+ 2h(ae) h(a)' 6xi(0)] ca (2. 3-7) 

The first necessary condition of the calculus of variations requires 8J to vanish. 

This condition is satisfied if 
-
t 


6xi(0) [0 h(a) h(a)' do] Sh(a e(a)da (2.3-8) 

0 0 

The validity of equation (2. 3-8) becomes apparent if the TLS sensor noise is assumed 

to be zero: The error 4e(a) then reduces to 

c(a) = h(a)' [xi(o) - x(0)] (2 3-9) 

Substituting into (2. 3-8) yields 
(rt -1 rt. 

6x -(0\ h(a) h(a)' da]. h(a) h(a)' da 
IFO(00 

[xi(0) - x(0)1 (2.3-10) 

or 

xi(0) 4- 6x.(0) = x(O) (2. 3-11) 

the desired solution. The success of the solution hinges on the nonsingularity of 

the matrix 
t 

H = [h(a) h(a)'] da (2. 3-12) 

0 

If t is small, t = 6t,integral 2.3-12 may be approximated by 

H = [h(0) h(0) ']bt (2.3-13) 

Since 6t is a scalar the determinant 1HI at t = 6t is 

]HI1= h(0) h(0)'I 6t (2.3-14) 

Since the Ih(Q) h(0) 'I is zero the matrix H approaches singularity as 
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t 4 0. This explains the transient behavior of the solution shown in Fig. 2. 5. 1. 

As time increases 111 will exist and a solution for 6xi(0) generated. 

The noise n associated with reference signal xr introduces disturbances 

into the computation which affect the accuracy of the solution. An interesting 

property of the estimation algorithm is its ability to attenuate the dffects of ILS 

noise n as time progresses. This effect is a result of the averaging process in­

herent in the minimization of the integral (2. 3-5). The effect of ILS noise is 

illustrated in section 2. 7. 

The new initial conditions xi(0) + 6xi(0) may be used to calculate a corrected 

set of inertial information xc (t) by using the relation 

x c(t) = Xit) + T(t) 6xi(0) (2. 3-15) 

where the matrix T(t) is defined1tt 
T(t) 0 1 t (2. 3-16)1 

A block diagram of this estimation procedure is shown in Fig. 2. 3. 1. This tech­

nique may be used to correct vertical or lateral position, velocity and acceleration 

information using the ILS localizer and glideslope signals. 

2. 4 Simplified Estimation of the Inertial System Position and Velocity Errors 

The general estimation procedure presented in the previous section may be 

simplified if the corrections are restricted to position and velocity. This is merely 

a specialization of the method developed previously and may be arrived at by rede­

fining the following variables 

x [jill (2.4-1) 

h = [] (2. 4-2) 
h
2
 

Neglecting the accelerometer bias the perturbation ce(t) becomes 
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Ac(t) = h(t)' 6xi(O) (2. 4-3) 

Substituting (2. 4-1), (2. 4-2) and (2. 4-3) into (2. 3-5) and minimizing the integral 

gives 

8xi(O) = t h(a) h(a)' da] h(a) e(a) d (2.4-4) 
0 0 

The effect of an acceleration bias xA(0) creates an effective nonstationarity in the 

estimated initial value errors - 8 xi . The effect of acceleration bias is illustrated 
in the next section. The corrected inertial velocity and position may be computed 

once 6xi(0) is known 

xi(t) - xi(t) i- T(t) 8X.(0) (2. 4-5) 

where 

Xc(t) = (2.4-6) 

1Xc21
 

and 

[0]iT(t) = (2.4-7) 

The response characteristics of this estimation technique are illustrated in the 

next section. 

2. 5 Response Characteristics of an Integrated Sensor Unit 

The behaviour of the estimation algorithm in section 2. 4 may be demonstrated 

-by individually introducing errors in position velocity and acceleration. The results 
of a sequence of runs of this form are shown in Figs. 2. 5. 1, 2. 5. 2 and 2. 5. 3. It is 
evident that the estimation process must continue for some time before useful infor­

mation may be derived from the updated inertial position and velocity. To prevent 
the premature application of the information the corrections are multiplied by a 
matrix of functions U(t) before being applied to the inertial information. Thus 

Xc(t) = xi(t) + T(t) U(t) 6xi(O) (2. 5-1) 
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iI I 

0 x 10250 ft 

Fig. 2.5. 1 Corrected inertial position, ye, and velocity, Ye" in response 

to an initial error in inertial position. (y= 0,0 = 0, yi = 500 ft) 
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ft 0i1 47 YE-l!lKEY 

0 x 10250 ft 

50 

ft/sec 0 1 Yc 

0 x 10250 ft 

Fig. 2.5, 2 Corrected inertial position, y0c and velocity, cl in response 

to an initial error in inertial velocity. (y= =0, i= 10:0 ft/sec, yi=10.0t ft) 
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ft 0 Yc
 

ftlsec0 

0 x 10250 ft 

Fig. 2.5. 3 Corrected inertial position, yc, and velocity, c, in, response 

to an initial.acceleration, bias. (y===O, 3.=O.322 ft/sec2, O.322t ft/sec 

1yi = 0.161 t2 ft) 
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The matrix U(t) is a diagonal matrix. The elements uii (t) on the diagonal of U(t) 
are currently of the form 

S 0 t < t 1 

t t 

uiit) = t t1 tI < t < t2 (2. 5-2) 

1 t > t 2 

The times t1i and t 2 . are constants with respect to the initiation of estimation (t = 0 

in preceding sections of chapter 2). Equation (2. 5-2) shows that the correction 

5Xik(0) is gradually applied over the time interval (tlk. t2k). This procedure 

reduces control system disturbances resulting from estimator transients. 

2. 6 The Nature of Sensor Noise 

The primary source of sensor noise once estimator convergence is achieved 

in an ILS based integrated sensor unit is ILS beam center fluctuation. Changes in 

the glideslope and localizer beam center planes occur as a result of reflections. 

from objects on the ground illuminated by the localizer and glideslope antennas. 

While the effect is deterministic in nature the three dimensional complexity of the 

pattern currently precludes the application of an analytic solution to eliminate the 

effects of the fluctuations. * As a result the perturbations in beam center position 

are usually characterized by an extraneous stochastic input to the ILS receivers. 

The receiver generally possesses a low pass filter which, for the purposes of our 

investigation, is depicted by a simple time lag with time constant Tr . A typical local­

izer receiver output resulting from beam noise is shown in Fig. 2. 6. 1. The power 

spectrum of this signal is illustrated in Fig. 2. 6. 2. 

In order to investigate the effects of beam noise on integrated sensor per­

formance fluctuations in the beam center were simulated by exponentially corre­

lating the output of a gaussian random number generator using a simple first order 

filter. The resultant signal in Fig. 2. 6. 3 was added to the input of the localizer 

receiver simulation to produce the output shown in Fig. 2. 6. 4. Figure 2. 6. 4 may 
be compared to the beam noise illustrated in Fig. 2. 6. 1 to verify the validity of 

the simulated noise. The power spectrum of the simulated receiver output is com­

pared to the actual power spectrum in Fig. 2. 6. 2. 

Sensor noise level is conveniently quantized by generating the mean square 

value of the noise using equation (2. 6-1). 

*By storing the pattern, for example. 
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0 x 23.3 x 10- ft 

Fig. 2.6. t Typical localizer beam noise. (St Louis facility) 
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Fig. 2.6. 3 Simulated localizer beam' noise. 
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Fig. 2.6.4 Localizer receiver output as a result of simulated beam noise 

input (T = 0.4 sec) 
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Fig. 2.6.2 Simulated and actual localizer power spectra. 
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limit 1 T 2 
E(x) = T 1 x do (2.6-1) 

0 

If the random variable x is ergodic the limit (2. 6-1) exists and is equal to the 

statistical mean of x 2 . As a result of the relationships discussed in section 2. 2 it 

is apparent that the niean square value E(ey) of the error ey in y is related to the 

localizer output ay, the distance to the localizer transmitter ry and the error ery 

in ry by the formula 

E(ey) cey2 E(er ) r y2 E(e y) (2.6-2) 

While E(e ) and E(e ) may be considered constant during an automatic approach
ra 

ayand r are subject to variation. Thus the expectation E(e ) is time varying and 

the process ey is nonstationary. Since a is usually very small after acquisition 
it shall be assumed that 

-E(ey )r y 2E(ea) (2. 6-3) 

A similar expression may be derived for the mean square value, of the error in 
).

vertical position E(e z 

E(e) r 2 E(e z )  (2. 6-4) 

where r z is the distance to the glideslope antenna 

az is the angular deviation from the ideal glideslope reference plane 

The nonstationarity of ey and e z with respect to distance indicated in equations 

(2. 6 2) and (2. 6 3) creates difficulties when two systems are to be compared. 

Thus it is more convenient to compare E(e y ) and E(e z ) which may be generated 

from the relationships. 

E(e r Y-2E(e ) (2. 6-5) 

-E(e z ) rz 2 E(e ) (2 6-6) 

2. 7 Integrated Sensor Noise Levels 

One of the most significant improvements achieved by sensor integration is 

a significant reduction in noise level. Noise originating in the ILS in introduced 
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into the inertial corrected' system output as a result of the correction algorithm in 

section 2. 4. 

Since the noise is introduced in a linear fashion the noise contents in the 

corrected inertial position will vary as a function of the distances from the ILS 

localizer and glideslope antennas. In order to obtain meaningful statistical infor­

mation stationarity must be re-established by dividing the corrected position by 

antenna distance before averaging. The response of the integrated sensor to the 

noise signals shown in Figs. 2. 6. 4 is illustrated in Fig. 2. 7. 1 The 

normalized responses are shown. The resultant averages may be compared with 

the values computed using equations (2, 6-4) and (2. 6-5). A similar procedure 

may be used to compare the ILS velocity estimates (obtained by differentiating the 

ILS position signals) with the corrected inertial velocity estimate. The resultant 

averages are given in table 6. 2-1. 

2. 8 Summary 

A systematic procedure has been presented for correcting inertial system 

errors by combining ILS and inertial data utilizing mathematical estimation pro­

cedure. A general algorithm is presented which simultaneously estimates errors 

in inertial position velocity and acceleration. This result is specialized to yield 

a simplified procedure for estimating position and velocity errors. The transient 

behavior of the solution is investigated by generating responses to initial errors 

in position, velocity and acceleration in the absence of ILS noise. The effects of 

ILS noise on the Integrated Sensor are introduced and the resultant position and 

velocity errors are compared to the corresponding errors in the ILS signal by 

generating mean square statistical averages. The results show that the noise level 

of the integrated sensor package outputs is quite small compared to the ILS signal 

noise. 
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Fig. 2.7. 1 Response characteristics of the integrated sensor 

unit to localizer beam noise. (t 1I= t 1 2 = 15.0 sec, t 2 1 t 2 2 25.0 sec) 
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CHAPTER 3
 

LINEAR POSITION CONTROL SYSTEM
 

SYNTHESIS AND PERFORMANCE LIMITATIONS
 

3. 1 Introduction 

This chapter presents the pertinent elements of the synthesis and optimization 
of a new set of trajectory control systems which utilize the superior information 

provided by the integrated sensor package. The chapter also explores limitations 

imposed on the vertical and lateral position regulators by the dynamic characteristics 

of the vehicle and its effectors, the structure of the feedback control laws and the 
noise characteristics of the sensors. Error between the desired and actual values 
of controlled variables, sensitivity to disturbances emanating from the environment 

and control surface noise levels provide the basic criteria for this investigation. 

3. 2 Inertial Stabilization 

The integrated sensor unit, described in chapter 2, produces lateral and 

vertical position, velocity and lagged acceleration components which are relatively 

free from noise compared to the ILS localizer and glideslope signals. In order to 

effectively utilize this improved information a redesign of the lateral and vertical 
position control systems was undertaken. As shown in reference 26 the fundamental 

landing problem may be defined as a guidance problem in two orthogonal planes 

corresponding to the localizer reference plane, and a vertical plane containing the 
runway centerline. The intersection of the two planes defines the ideal ILS refer­

ence path. This approach separates the control problem into two distinct areas, 

lateral guidance relative to the vertical plane and vertical guidance with respect 
to the localizer reference plane. As a result of the decoupling inherent in the 

simplified vehicle equations of motion an accurate system design may be achieved 

by separating the two problems using the techniques presented in chapter 5 of ref­
erence 26. A convenient set of coordinates is an earth fixed reference frame 
originating at the point where the glideslope intersects the runway centerline. The 

x-axis lies along the centerline, y is horizontal while z is directed downward. The 
fundamental linearized relationships on which control system synthesis is based 

are then 
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y gp'C (3.2-1) 

1 vP (a- 8) (3. 2-2) 

where 

y is the lateral acceleration 

g is the gravitational constant 

ep is the roll angle
 

is the vertical velocity
 

v is the path velocity
P
 

a is the angle of attack
 

8 is the pitch angle
 

Lateral vehicle control is effedted by modifying the roll angle cpusing the roll angle 

autopilot. (26) Vertical control results from modification of 0 and a using the 

pitch control system and/or direct lift control devices, such as spoilers. The 

pertinent linearized forward path transfer functions are 

y Cg (3. 2-3) 

and 

z = #[a 0 (3. 2-4) 

where 

desired roll and pitch angles respectively6Pd' are0d 

jd]
is the roll control system transfer function 

[ isthe pitch control system transfer function at 
u= 0 constant path velocity 

[ C'] is a transfer function relating the perturbation in 
6 Ju=O angle of attack ato Od 
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The control variables, CPd and 8 d are constructed by linearly combining the outputs 

of the integrated sensor unit, a feedforward compensation signal and a desired 

reference trajectory. 

FEEDBACK COMPENSATION 

-KK (Kiy + s) + K-s + Kys21Y 

od sy Tas 4 

FEEDFORWARD COMPENSATION 

KY(K+ + Ks +K s2]4 
y Yr
 

2
 s
 

+ Yr (3: 2-5) 

FEEDBACK COMPENSATION 

Kz(K. + s) K. s2 

Od [z_ 1- K TassI- I c 

FEEDFORWARD COMPENSATION 

[KZ(K z 4s) 4- K s + K..s21Z 

*z
 

s (3. 2-6) 

where 
Yc' zc are corrected values of y and z 

Yr, Zr are desired values of y and z 

Ky Kz are adjustable position control loop parameters 

Ky, Kiz are adjustable integral compensator gains 

K., K. are adjustable velocity control loop parameters
y z 

K.., K7 are adjustable acceleration control loop parameters 

31 



The differentiations shown in the feedforward component are avoided
 

by explicit computation of the required derivatives as shown in section 4. 3. The
 

structure of the reference components is based on the analysis in section 4. 4.
 

(The small time constant Ta is neglected.)
 

Thus it is apparent that the control signals ePd and 0 d are formed by simul­

taneously comparing the desired and actual values of position, velocity and accel­

eration. Any discrepancy generates a command which corrects the error. The 

integral compensators (Kiy/s, Kiz/s) weigh errors in position heavily as time 

progresses reflecting the emphasis on precise positioncontrol. The feedforward 

component s 2yr/g provides the roll angle required to maintain the desired lateral 

acceleration based on relation 3. 2-1. The constant component of pitch required to 
maintain a steady rate of descent is generated by the term szr/vP 

Since the structure of the control laws is fixed, analysis and synthesis leads 

to the definition of the feedback component parameters. Thus the designer is pre­

sented with a parameter optimization problem. The criteria and constraints associ­

ated with this problem are the topics of the next two sections. 

3. 3 Disturbances, Errors, Bandwidth and Open Loop Gain 

Two important criteria discussed in section 1. 3 are minimization of the 

a tra­effect of environmental disturbances on the system and the ability to follow 

jectory precisely. These phenomena are investigated by studying linear relation­

ships using Laplace transform theory. A typical control system is shown in Fig. 

3. 3. 1. The object-of the control system is accomplished if the controlled variable 

C follows the reference input R. The system is subject to disturbances D which 

interfere with the control'process. The fixed elements' in the control system are 

and while G and H are subject to modification.G1 G2 

The transfer function between C and R is 

= GaG (3. 3-1) 
R 1 4-GQGo1 G2 H 

The dynamic response characteristics of the system depend upon the location of 

the zeros of the denominator. The location of the zeros may be modified by altering 

an over­the transfer functions G and H. The zeros are normally located to yield 

damped step response. The rapidity of the response is primarily determined by the 

magnitude characteristics of G0 G1 G2 H.. 

The ability to follow a trajectory precisely in space is an important require­

ment for an automatic landing system. Control system accuracy is measured by 

constructing the error between the desired and actual responses. 
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D(s) 

E~C)s) 

FIXED ELEMENTS OF THE CONTROL SYSTEM 

Fig. 3.3, 1 Block diagram of a control system with a reference input, R(s). a 

controlled output, C(s) and a disturbance input, D(s). 



E = R - C -(3. 3-2) 

The transfer function relating E to R is given by 

E 1 ( 3 
-1 4 G G 1 G 2 H 

The effect of external disturbances must also play an important role in 

control system design. Such effects are considered by examining the transfer 

function between the controlled output C and the disturbance D. 

C G25 G 12 3-4)H(3. + G 

The open loop transfer function of the system is defined by the expression 

Go0 = G0 G1 G2 H (3. 3-5) 

One of the most important control system parameters is the Open Loop 

Gain which may be defined as follows: 

Definition: The Open Loop Gain of the control system shown 

in Fig. 3. 3. 1 at s =s is defined by the limito 

Gol =limit GOGI 2 H (3.3-6) 

As a result df the magnitude signs the value of the limit is independent of the 
direction in which s O is approached if Gol is a rational fraction. 

In most physical systems the response to a sinusoidal signal of frequency W 

is of particular interest. In this case the general gain definition in equation (3. 3-6) 

reduces to the more common form 

lim GG 2 I (3.3-7) 

The effect of variations in the magnitude and phase of the open loop transfer 

function may be determined by evaluating the magnitudes of (3. 3-3) and (3. 3-4). 

(3.3-8) 
R=I 

,
1 G2Gol 
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Three cases are of interest 

1. IGo I >>1 The value ofj 1 + Gol -IGoll and I &-I 
G2 ol 

I , An increase in G in this range 

reduces the error and sensitivity to disturbances. 

2. I ol 11 The variation in I 1 + Goll depends on the arg Col. 

I'I and I Cj may increase, decrease or remain 

stationary as Gol varies. 

3 IGo I<< i 1 + Goll 1 1, !i and]1 qJ are essentially inde­

pendent of variations inIG o l 

The first case is the most important since it defines the spectral range where 

beneficial effects are obtained by feedback control. It is apparent that the frequency 

range where I Goll > 1, the bandwidth, should be as wide as possible. Thel GoI 
should also be as large as possible within the bandwidth of the system. Thus the 
designer is presented with two related optimization goals The maximization of 

bandwidth and open loop gain is subject to a number of constraints which are con­

sidered in the next section. 

3. 4 	 Limitations on Open Loop Gain and Bandwidth 

In general it is not possible t6 increase the open loop gain indefinitely. The 

factors which limit the open loop gain are 

1. 	 The basic dynamic characteristics of the aircraft, effectors, and the 

signals available for control system stabilization. 

For a given set of fixed elements and a set of signals 

available for stabilization, there is a limit on the 

open-loop gain that can be achieved if the system is 

to be stable.
 

2. The permissible control effector activity resulting from sensor 

noise.
 

Residual noise in the position and stabilization signals 

further restricts the gain because of the limitations 
that must be placed on effector activity due to effector 

saturation and permissible levels of control energy. 
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3. The accuracy of the linearized model. 

Approximations are generally involved in the deri­

vation of a linear mathematical model. Higher 

frequency dynamics which are usually ignored in 

the construction of a model become increasingly 

significant as the open loop gain is increased 

possibly invalidating the results of analysis. 

The stability of the control system shown in Fig. 3. 3. 1 may be explored 

using the Nyquist Stability Criterion. For the purposes of our investigation it is 

sufficient to assume that the open loop transfer function is equal to unity at one 

discrete frequency w0 and the magnitude approaches zero as w approaches infinity. 

In this case the Nyquist criterion states that the control system is stable (i. e., all 

the zeros of 1 + Gol lie in the left half of the complex plane) if the arg Gol is less 

than 1800 and arg Gol is negative at w =tO. rarg 01 
Consider the transfer functions Gf of the fixed elements and G of the vari­

able elements in the control system shown in Fig. 3. 3. 1. 

Gf = 01G2 (3. 4-1) 

Gv = G0 H (3. 4-2) 

Since Gv = Gf at a unique frequency w0 it is apparent that the system is stable 

provided that 

Gv > JGf1-1 (3. 4-3)W< w0 

IGvI=IGf I-1 (3. 4-4) 

arg Gv > -arg Gf- 180 W = w0 

a rg GGf < 0 
- 4-5)lol[ < 10fF w0> o1 W(3. 

While equations 3. 4-3 to 3. 4-5 guarantee stability the transient response of the 

control system will be unsatisfactory unless tne angle [180 - arg GvGf]at w0 , the 

phase margin, has a positive value. A phase margin of 300 to 600 is generally 

required to insure satisfactory transient response characteristics. 

The second limitation pertains to the level of control effector activity re­

sulting from random noise originating in the vehicle sensors as a result of internal 
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processes and stochastic environmental effects. The noise level is usually meas­

ured by evaluating the time average of the value of the noise squared. 

TE~)-lim it 1 0 2 
Ex T-* T k2 dt (3. 4-6) 

If the random processes are ergodic the integral (3. 4-6) will exist and will equal th 

statistical expectation of the squared value of x. Since E(x) is proportional to the 

average value of x 2 rather than the deviation in x itself it is usually more convenier 

to compare the square root of E(x) which is designated e(x) and referred to as the 

root mean square value of x in this report. 

Let Abe an effector deflection. As a result of effector saturation and 

control energy constraints the mean square value of effector deflection must be 

limited. 

E() < E() max (3.4-7) 

The mean square value of effector deflection may be expressed as a function of 

the mean square values associated with the sensors and the parameters associated 

with Gv. Thus in order to satisfy inequality (3. 4-7), restrictions must be impose 

on the magnitude of the parameters in Gv . The character of these constraints will 

become apparent when. specific control systems are studied in subsequent sections. 

The accuracy of a mathematical analysis is measured by comparing the 

actual behavior of the physical system with the predicted behavior based on the 

equations which are used to model the system. Since every physical system is 

distributed, it is impossible to exactly model it with a finite set of differential 

equations. However, the solution of a finite set of equations may be sufficiently 

close to the actual solution for a restricted set of inputs to provide a useful pre­

diction of actual vehicle performance. Increasing the bandwidth of a control syster 

results in the excitation of vehicle dynamics (such as bending modes) which lead to 

significant differences between predicted and actual behavior. As a result a more 

refined-mathematical model must be used if a valid analysis is required. 

3. 5 Lateral Control System-Synthesis and Performance Limitations 

A general synthesis procedure which defines limitations on the bandwidth 

*0 and the open loop gain G0 1 is now illustrated by application to the synthesis of 

a lateral position control system. A control system may be separated into fixed an 

variable sections. In the case of the lateral control system the transfer function 

relating lateral displacement y to desired roll 'Pd is assumed to be fixed and is 

designated Gfy.This transfer function is shown in Fig. 3. 5. 1. 
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Fig. 3. 5. 1 Magnitude and phase characteristics for the lateral 

position control system. 
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2Gfy d [ (3. 5-1) 

The second area contains all the elements which the designer can modify to improve 

performance within the constraints discussed in se&tion 3. 4. In this case the trais­

fer function relating cPd to y is subject to variation and is designated Gvy 

Kis 1 (3. 5-2) 

vy y y s y Ta 

vWhile the structure of equation (3. 5-2) is assumed to be fixed variation is made 
possible by changing the values of the parameters Ky, K_, K.. and K. 

y ly 

In the case of an automatic landing system the lateral position response to 

atmospheric disturbances is of prime importance. Response to disturbances and 

system stability is determined by the feedback component of the control law (3. 2-5). 

Therefore attention shall now be focussed on the definition of the adjustable feed­

back parameters. A subsequent section will discuss the specification of a suitable 

reference trajectory. 

Consider the limitation imposed on bandwidth by stability. The lateral con­

trol system is stable if the criteria imposed by equations (3. 4-3) to (3. 4-5) are 

satisfied. These criterias are satisfied if 

arg GVy > - arg Gfy -180 W = WUy (3. 5-3) 

1The value of w0y is determined by the intersection of I Gvy Iand IGfy1- . Bandwidth 

maximization is achieved by moving wOy as far to the right as possible by manip­

ulating atg Gvy. It is apparent from the structure of (3. 5-2) that the bandwidth is 

maximized if the break frequency wjy associated with the Gvy is at zero frequency. 

This would imply that K = 0, an unsatisfactory solution. Thus some compromise 

is required between maximizing oy while maintaining a reasonable value for wly. 

Assuming that ly <<. w2y= Ta the following relationships exist between the 

gains Ky, K. and K..: 
y y 

(2y = (3. 5-4) 

a 

Wly 1/2y. (3. 5-5), 

K 
K*- _Y (3, 5-6)y ( Y 

K. 2 giyKy (3.5-7) 

y tJty 
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where t ly is the damping coefficient associated with the second order break fre­

quency t ly" A reasonable compromise is achieved by setting w ly = 0. 2 rad/sec. 

The yalue of w 0y is then approximately 2. 0 rad/sec. The corresponding gains for 

ly are= 1..00 

K = 1. 13 degrees/fty 

K. = 11. 3 degrees/ftY 

K.. = 28.3 degrees/ft/sec 2 	 (3.5-8) 
y
 

The response characteristics of a lateral control system using these 'gains will be 

The values inunsatisfactory as a result of the oscillatory nature of the system. 

provide a well defined upper limit on the parameter magnatudes.(3. 5-8) do, however, 

Sensor noise introduces a further limitation of open loop gain and bandwidth 

by placing direct restrictions on the size of the adjustable parameters Ky, K. and 

K... 
y 

While the general solution for the exact value of mean square control move­

ment is extremely complicated, requiring precise knowledge of the statistical 

characteristics of all the disturbances acting on a system and the internally gen­

erated design purposes using the following theorem. 

Theorem: 	 Let a,- an be any set of variables possessing finite auto­

correlation and cross-correlation functions. Then the 

mean square value of their sum exists and is bounded 

nn 

Ea 	 ) < 2 E(a i) (3. 5-9) 

A proof of this theorem is given in Appendix B. 

square aileronReferring to chapter 5 of reference 26 and equation (3. 2-9) the mean 


deflection may be ,bounded
 

E(a) < 2 2 E(y) 2 + K.. 2 E()
 

- I) y 4-
 E() + K YE(3. 5-10) 
K2

4E(p)] 2K.2 E(%) 

where
 

E(x) is the mean square value of the variable x
 

Kx are control system parameters 
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A typical set of worst case noise parameters for the newlateral control system is 

E(y) = 400. 0 ft 2 

E(y) = 25.0 ft2 /sec 2 

4.0 ft2 /sec 
4 

E(y) = 

E(c) = 0.01 deg2 

E($) = 0.01 deg 2/sec2 

Suppose that the maximum permissible mean square aileron deflection is 
E(6a) = 2500.0 deg 2 

and the parameters associated with the gains are 

K = 1.0 
(P 

K. = 2. 0 sec 
OD 

Wly = 0.200 rad/sec 

1.00 
y 

The corresponding maximum set of gains may then be computed using eqs. (3. 5 -5), 

(3. 5-7) and (3. 5-3). It is apparent that the terms in equation (3. 5-10) contributed 

by roll and roll rate are comparatively small. Thus attention is focussed on the 

first three terms which are simplified using equation (3. 5-5) and (3. 5-6) to eliminate 

K. and K..* 
y y 

E(6) < 10800 K2
 

a y
 

therefore 

K2 E(a)max (3. 5-11) 
y max 10800 

Ky,0. 481 degrees/ft 

K. 4.81 degrees/ft/sec 
y 

Ky 12.02 degree/ft/see 2 (3. 5-12) 

Since the gains in (3. 5-12) are less than the gains in (3. 5-8) limitations on 

bandwidth and open loop gain are imposed by noise in this example. 

The integral compensator gain Kiy may now be selected. Since the integral 

compensator always introduces phase lag the break frequency W= Kiy must be 

selected so that the phase shift and magnitude effects introduced by the compensator 
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at the crossover frequency are small. This condition is satisfied if 

K. 	 <W
iy i0Y
 

Thus the value of K. should be less than 0. 20. 
ly 

The final gains in table 5. 2-1 are based on the values in (3. 5-12) which 

were modified during simulation to achieve satisfactory transient response charac­

teristics. The actual control system configuration is described in chapter 5. 

3. 6 Vertical Control System Synthesis and Optimization 

Conventional vertical position control systems utilize vehicle pitch to effect 

changes in the vertical plane. Thus the transfer function of the fixed elements Giz 
in the control system relates vertical position z to desired pitch angle 0 d (eq 3. 2 -4). 

This transfer function is delineated in Fig. 3. 6. 1. The bandwidth limitations imposed 

by stability and noise are explored by plotting [Gvz -1, - (arg Gvz + 180) and the 

control lay characteristics Gvz imposed by the structure in equation (3. 2-6). This 

leads to the following conclusions 

1. 	 The maximum crossover frequency w00z lies between 1. 0 and 10.0 rad! 

sec as a result of the phase restrictions on Gv. 

2. 	 The slopeofiGiz -1 is approximately 40 db/decade'for 1. 0< w <10. 0. 

Since the maximum slope of Gvz is 40 db/decade any increase in wOz 
in this frequency range, by acceleration feedback occurs at essentially 

constant open loop gain IGvz Giz 1= 1.0. 

3. 	 The break frequency wiz should be as high as possible to maximize the 

gain KZ' 

As a result of 2 the application of acceleration feedback to increase bandwidth will 

not lead to a significant decrease in sensitivity to environmental disturbances Thus 

acceleration feedback may be eliminated and the control law reduced to 

GvzGv= Lz = [Kz s K.s 	 (3. 6-1)I 

Assuming that the integral compensator has a negligible effect at woz the maximum 

value of wOz is approximately 2 rad/sec. The value of wiz may be computed from 

the relation 
w.=K OLz 	 (3.3 6-2)Wiz = Kiz < f-	 62 

The integral compensator must produce negligible phase shift at w0z. This con­

dition is satisfied if 
K <0z (3. 6-3)

iz <10 
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Fig. 3.6. 1 Magnitude and phase characteristics for the vertical 

position control system. 
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The upper bound on mean square elevator effector activity is estimated 

using the relationship 

K2 ' 2
E(5 ) < 2 [Kz 2 E(z) - E( )] K 0 

2 [K 0
2 E(S) + Kb E(5) (3. 6-4) 

where K,KA are gains associated with the pitch autopilot described in reference 26 

and E(x ) is the mean square value of the variable x. The second term in equation 

(3. 6-4) is comparatively small and may be neglected. 

Substituting 

E(6 e) max = 900 degrees2 

E(z) = 100 ft 2 

E(l) = 25 ft2/sec
2 

K. 
z 

= 0.2 K 
z 

(from equation 3.6-2) 

K = 7.10 

yields 

Kz < 0. 351 degrees/ft 

This value of Kz is much larger than the level imposed by stability considerations 

(K z < 0. 287 degrees/ft). Thus the control system is stability limited and a value 

of Kz < 0. 287 must be used. 

As a result of the limited performance improvement attainable using the 

conventional vertical control configuration the conventional approach was abandoned 

and a new technique which utilizes direct lift control adopted. The results of this 

investigation are presented in section 3. 7. 

3. 7 Improving Vertical Control System Performance by Direct Lift Control 

While vertical position control is not as critical as lateral position control 

an improvement in vertical trajectory accuracy, particularly during the final landing 

phases, leads to important reductions in longitudinal touchdown dispersion. Inves­

tigations in the past have dealt with the synthesis of a vertical path controller which 

uses pitch angle as the primary control variable. The sequence of phenomena which 

occur when a change in vertical path is effected by a pitch attitude modification may 

be summarized as follows 

1. An upward deflection command is fed to the elevator. 

2. The lift produced by the horizontal stabilizer decreases as the elevator 
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deflects up producing a positive pitch moment about the y axis. 

Since the SST horizontal stabilizer provides a significant portion of 
the total lift the vehicle begins to sink. 

3. 	 The positive pitch moment leads to an increase in pitch angle which 

increases the angle of attack of the wing, increasing the lift. 

4. 	 In response to the increase in lift the vehicle begins to climb. 

It is apparent that vertical control by means of pitch attitude is subject to two im­

portant disadvantages. 

1. The required elevator deflection produces an undesirable control re­
versal at the initiation of the vertical maneuver. (This is a particularly 

serious problem during a landing abort maneuver.) 

2. 	 The relatively slow response of the pitch control system compared to 
the response of the vehicle effectors severely limits the bandwidth of 

the vertical position control loop. 

The disadvantages described above may be circumvented by effecting vertical con­

trol using the direct lift spoilers. The direct lift spoilers are aerodynamic devices 

mounted on the top surface of the vehicles wings which may be deflected to disturb 

the air flow over the wings. This disturbance results.in a change in the total lift 
force. By operating with the spoiler deflection at a fraction of their maximum. 

deflection during the approach, positive or negative increments in lift may be generated 

by appropriate spoiler motion. The effect of spoiler operation is revealed by exam­

ining the linearized vehicle equations for angle of attack a and pitch rate q given on 

page 234 of reference 26. The transfer function relating a to direct lift spoiler Jisd 

deflection is derived in Appendix A. If the spoiler effector is modelled by a simple 
time lag with a 0.05 second time constant Tsd the transfer function between z and 

the spoiler command Jsdc may be written 

G,-z - 1 FVP 
IZ5 -T s+i I s s (3.-)

sdc sd+ q = 0 s 

This transfer function is shown in Fig. 3. 7. 1. The bandwidth limitations imposed 

by stability and sensor noise are investigated using the techniques in section 3. 5. 

The control structure is defined by equation (3. 2-6). Referring to Fig. 3.7. 1 it is 

apparent that 

1. 	 The maximum possible bandwidth is approximately uOz - 20 rad/sec 

compared to o0z 4 rad/sec for the conventional system. 

2. 	 The break frequency wlz should be as high as possible to maximize 

the position gain Kz but wiz cannot be much larger than 1 rad/sec if 
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critical phase considerations are to be satisfied. 

3. , The application of lagged acceleration feedback only produces a 

minor improvement in bandwidth and open loop gain (w < woz). 

As a result the dcceleration gain K. is assumed to be zero. The control law in 

equation (3. 2 6) then reduces to 

sdc= [Kz s + K.s z (3. 7-2) 

The integral compensator gain K.z must be selected so that phase shift introduced 

by the integral compensator is negligible at w0 z" This condition is satisfied if 

lz< "G -. (3. 7-3)K <%J10. 0 

The breaki frequency w1z is calculated from the relation 
K 

W - -Z (3. 7-4)tli K' 

The mean square spoiler motion as' a result of externally and internally 

generated stochastic disturbances may be bounded using theoren 1 in section 3. 5. 

E(sd ) < 2K2 E(z) + Ki2 E] (3. 7-5) 

Assuming that break frequency wiz is 1 rad/sec K. is equal to K. and 

E(6 sdc ) <2 K 2[E(z) + E( )] (3. 7-6) 

Substituting 

E(6 sdc) max 100.0 

= 100 ft2 
E(z) 

= 25 ft2/sec2 
E( ) 

gives 

Kz = Kz < 0. 63 degrees/ft 

This yields approximately 30 degrees of phase margin and acceptable transient 

response characteristics. Thus the final gain selection in once again based on 

effector noise considerations. 

While the direct lift technique improves the bandwidth of a vertical position 

control system its application presents a number of practical difficulties. 
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1. 	 The spoilers produce high drag. Thus it is desirable to operate 

as close to the reference setting as possible 

2. 	 The variation in z that can be achieved using spoilers is limited by 

magnitude restrictions on spoiler deflection. 

As a result of these problems a hybrid solution which combines the satisfactory 

low frequency response characteristics of the vertical controller based on pitch 

with the desirable high frequency properties of direct lift control is adopted. A 

system based on this configuration is presented in section 5.3 

3.8 	 Summary 

The performance limitations imposed on a linear control systems by fixed 

vehicle and effector characteristics, structural properties of the control law and 

mean square effector activity have been explored. The results of this investigation 

have been applied to the synthesis of lateral and vertical position control systems 

for the SST. While the properties of the linear controllers have been studied in 

depth nonlinear characteristics which have a profound impact on The nature of the 

vehicles path must now be considered. 
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CHAPTER 4
 

OPTIMIZING TRAJECTORY PERFORMANCE
 

4. 1 Introduction 

In chapter 3 it was demonstrated that the application of corrected inertial 

position, velocity, lagged acceleration data and direct lift control permits a signi­
ficant improvement in position control system bandwidth. As a result the sensi­

tivity of the regulated position trajectory to ambient atmospheric disturbances was 

reduced and the ability of the controller to precisely follow a desired trajectory 

was increased. Bandwidth cannot be increased indefinitely as a result of consider­

ations such as stability, noise and system nonlinearities. The most important 

vehicle nonlinearity during landing is saturation. Saturation occurs in all the 

aerodynamic effectors which produce translational forces and rotational moments 

on the vehicle. Additional saturation limits are imposed oh variables such as roll 

angle, roll rate and'vertical acceleration by human factors such as passenger 

comfort. The implications of saturation nonlinearites in control system design 

ar.e now considered. 

4. 2 Trajectory Characteristics and Saturation 

The most common form of saturation occurs in the effectors which produce 

the moments and forces requited to effect changes in vehicle state. All the aero­

dynamic effectors of the SST have magnitude and rate limitations. Effector 

saturation is particularly serious, tesuiting in an essentially open-loop condition 

as long as it persists. The effect of saturation is studied by examining the transfer 

functions of a system linearized about its current operating point. Consider the 

block diagram in Fig. 3. 3. 1 and let G1 represent the effector transfer function. 

Saturation in effector output magnitude or rate modifies G, to 

G1 = 0 (4.2-1) 

As a result, the transfer functions relating C to R and C to D become: 

C/R = 0 (4.2-2) 

C/D = G 2 (4.2-3) 
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Thus reference control is momentarily lost and the sensitivity of the system to. 

disturbances is increased by the factor 1 ±Go G1 G2 H. It is therefore desirable to 

eliminate or prevent saturation. 

Saturation may be excited by three sources 

1. 	 Reference commands to the control system. 

2. 	 External disturbances acting on the vehicle. 

3. 	 The combination of reference commands and external 

disturbances. 

Saturation arising from disturbances is controlled by reducing the magnitude of 

the open-loop transfer function. Thus the magnitude of the environmental dis­

turbances imposes further restrictions on open-loop gain. Saturation resulting 

from reference inputs is restricted by processing the reference signal. This 

aspect is now considered in detail. 

4. 3 Nonlinear Trajectory Generation 

The problem of input signal processing may be formulated within the 

Theory of Optimal Control. For example, consider the linearized dynamical 

system 

:=f x f mni 	 (4.3 i) 
x m 

where 

x is an n-dimensional state vector
 

m is an m-dimensional input
 

f is an n x n matrix
 
x 

f is an n xm matrix 
m 

The state vector is subject to a set of limits of the form* 

1x[ < Lx 	 (4.3-2) 

11 5 L. 	 (4. 3-3) 

L 	 and L. are n-dimensional vectors. The absence of a limit on a particular
x x 

element of x is signified by setting the corresponding element of Lx equal to . 

The problem may be defined as follows: 

*The inequality sign signifies that lxii LxL i 1, 2" n 
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Problem' Definition: Find a control m and the corresponding trajectory x, which 

minimizes the integral performance index 

T 

J ,' Mx dt (4.3-4) 

0 

suiject to the noninilnnrnic constraint 

x = f x+f m (4.3-5) 

and the hard constraints 

lx < L 

< LI(4.3-6)1c1< L 2 J 

where 

L 1 < L x 
(4.3-7) 

L2 < L­
x 

The matrix M is positive semi-definite. 

The object of the optimization is to transfer the vehicle to the vicinity of a 

terminal state while satisfying the limits imposed by Eq (4.3-5) The inequalities 

(4.3-6) are introduced to allow for the effects of disturbances on the system by 

providing some range between undisturbed operating values and saturation con­

straints.
 

The solution of this problem is complicated by the presence of the magnitude 

constraints. As a result, a two-point boundary problem must be formulated and 

solved. While the optimal control approach produces the best answer, the resulting 

computational complexity usually leads to a solution which requires a special­

purpose, hybrid computer if real-time control is desired. These problems have 

discouraged the application of optimal-control techniques. 

To circumvent the computational difficulties the following approximate 

technique for generating solutions to the problem defined above is presented. The 

method is particularly suited to vehicle control problems. Consider the simplified 

vehicle control system shown in Fig. 4.3. 1. The desired terminal state may be 

set equal to 
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Fig. 4.3. 1 Illustrative model of a trajectory control system. The value of x l 
should follow the value of md closely. 



x I = m c (4.3-8) 

x2 -=0 (4.3-9) 

The control input is the variable ind. The effector output x2 is subject to saturation 

Jx2 1 - L0 (4.3-10) 

<1 " 2]x L (4 . 3I - 1 1 ) 

These limits imoly constraints on the vehicle state of the form 

1'l1 -- ILoKII (4,3-12) 
°1*' 1 LIK11 (4.3-13) 

Suppose that the natural frequency of the system in Fig. 4.3. 1 

= K1] 1 
(4.3-14) 

is large compared to the bandwidth of the input inm, and the damping ratio 

1 1 (4.3-15) 

is greater than 1. Then the output satisfies 

x 1 mn d 

(4.3-16) 
rnd
 

x2 K1 

provided that 

LK (4.3-17) 

fInd L I (4.3-la8)LK1 1 
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The 	variable md may be identified with the trajectory r. Thus the limits on the 

state variable x imply corresponding constraints on r if saturation within the 

control loop is to be avoided. A requirement is consequently established for a 

device which 

1. 	 Controls the bandwidth of the input signal 

2. 	 Modifies the input signal by constraining the maximum 

amplitudes of its first and second derivatives. 

A device having the desired properties is illustrated in Fig. 4.3. 2. The device 

will be referred to as a nonlinear trajectory generator. A linearized model of 

the NTG is obtained by removing the magnitude limits. The transfer function 

then 	becomes 

md K1 (4.3-19) 
m 2 

c s + K2 KIs +K 1 

The bandwidth of the transfer function is modified by varying the natural freqhency 

Wt and is normally equal to the crossover frequency of the open-loop transfer func­

tion of the control system. The natural frequency depends upon the value of K1 

- K11 2 	 (4.3-20)t 

The 	damping ration t is normally larger than 1 

K2K 1/2
 
K2 2 (4.3-21)
 

or 

K2 1/2 	 (4.3-22) 

The 	limits impose the following constraints on the outputs of the NTG 

ImdI- O 	 (4.3-23) 

(4.3-24)rnd S 1 

(4.3-25)IndH_ S2 

Saturation of md automatically sets rAd equal to zero; similarly, saturation of md 

sets md to zero. Thus the requirements imposed by saturation are satisfied. 
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Fig. 4.3. 2 Block diagram representation of a second-order nonlinear trajectory 
generator (NTG). 



The availability of first and second derivatives of the output plays an important 

role in the construction of control systems capable of precisely following a tra­

jectory, as is shown later in the sections on vertical and lateral control system 

synthesis, 

4. 4 	 Generalized Trajectory Control 

The effectiveness of the approximate solution described in section 4. 3, 

depends upon the ability of the controlled system to precisely follow the generated 

trajectory. Trajectory precision has already been improved by 

1. 	 Increasing the bandwidth of the control system. 

2. 	 Controlling the bandwidth, damping ratio and saturation limits 

of the Nonlinear Trajectory Generator. 

The closed-loop transfer function between the reference input R and the controlled 

output of Fig. 3.2, 1 was stated earlier to be 

C_ GOGI G2 (4.4-1) 

R I + G0 GG 2 H 

It is of interest to consider the asymptotic behavior of this transfer function as 

the magnitude of the open-loop transfer function varies. Two cases are of interest 

(a) GoGIG 2 H << 1 

(4.4-2) 
Ci 	 GOGIG 2
 

(b) GoGIG 2 H >> 1 

(4.4-3) 
C 1 
R H-

In the first case it is apparent that the advantages of feedback are lost if the 

open-loop magnitude is significantly less than one. In the second case the output 

C will not equal the input R unless H is identically one. This problem may be 

avoided by operating on the input with H so that Eq (4.4-1) becomes 

C= GoG 1G2 H 	 (4.4-4) 
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Consequently, precision trajectory control is achieved by producing a modified 

control signal which is a linear transformation of the desired trajectory. Typically, 

H has the form 

H = 1 K s + K.ns 2 (4.4-5)x 

where K, and K.. are constants. The form of H in the present application implies
x x 

that the first and second derivatives of the reference signal must be generated to 

provide the correct compensation. However, differentiation of the input can be 

avoided by utilizing the signals available from the nonlinear trajectory generator. 

The signals from the nonlinear trajectory generator are shown in Fig. 4.3. 2 and 

this utilization is indicated in Fig. 4.4-1. The input R e to the control system has 

the required form 

Rc = Rd Ki Rd + KxR d 

= (1 +K- s +±K-a2) Rd (4,4-6) 

- HRd 
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Fig. 4.4. 1 Block diagram of a control system incorporating generalized 

trajectory control. 



CHAPTER 5 

LATERAL AND VERTICAL CONTROL SYSTEM CONFIGURATIONS 

5. 1 Introduction 

Chapters 3 and 4 have discussed the theoretical considerations associated 

with inertially stabilized position control system analysis and synthesis, The task 

of the designer is to amalgamate these various concepts in a final design configuration. 

This chapter presents up to date modernized control system block diagrams and 

response characteristics. 

5. 2 Lateral Position Control System" 

Lateral control is effective while the vehicle is acquiring and tracking the 

localizer center plane. During the decrab maneuver lateral position control is 

abandoned and lateral control responsibility is shifted to the Decrab Controller. * 

Lateral control is again resumed by the Rollout Control System* after touchdown. 

Rollout control has not been investigated to date. 

Lateral position control is achieved by turning the vehicle in a coordinated 

fashion (6 --0) using roll angle cp as the primary control variable based on the re­

lationships 

g 	tanp (5( 2-1) 
v 

Vp sin cD 	 (5.2-2) 

Since the maximum amplitudes of cp and 4 are normally less than 45 degrees during 

the acquisition maneuver the response characteristics of the lateral control system 

and the linearized model shown in Fig. 5. 2. 1 are quite similar. The properties of 

the roll autopilot are described in appendix D. The parameter values associated 

with the control law are given in table 5. 2-i. Bode diagrams of the open and closed 

loop position controllers are shown in Figs. 5. 2. 2 and 5. 2. 3. One characteristic 

problem associated with the lateral control system is evident in Fig. 5. 2. 2. Since 

--See reference 26. 
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Table 5. 2-1 Lateral Control System Parameters 

GAINS 

Ky 

K. 

K.. 
y 

K. 
ly 

CONSTA NTS 

T a 

SATURATION LIMITS 

y 

y 

NTG PARAMETERS 

6aq 


aq 


INTEGRAL COMPENSATOR 

Liy 

Lateral position gain 

Lateral velocity gain 

Lateral acceleration gain 

Integral compensator gain 

Lateral acceleration filter 
time constant 

IMPOSED BY 
VEHICLE LIMITS 

-244 000 ft/sec 

* 18. 60 ft/sec2 

±± 30. 000 degrees 

± 43. 790deg/sec 

± 21. 890deg/sec 2 

Acquisition roll limit 

Acquisition roll rate limit 

Acquisition roll accelerationlimit 

LIMITS 

y integral compensator limit 

0. 080 deg/ft 

0. 800 deg/ft/sec 

2. 000 deg/ft-/sec2 

0.050 rad/sec 

0.100 seconds 

IMPOSED BY
 
NTGOR CSP
 

±E244. 000 

± 8. 000 ft/sec2 

± 30. 000 degrees 

± 10.000 deg/sec 

± 10. 000 deg/sec 2 

20. 000 deg 

7. 500 deg/sec
 

7 500 degsec 2
 

2.0 degrees 
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Fig. 5. 2. 1 Linearized model of lateral control system. 
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the phase angle associated with the open loop transfer function approaches -270 

degrees as w approaches zero the lateral position control system is CONDITIONALLY 

STABLE. Control system stability depends upon the location of the crossover fre­

quency w y. The value of w0 y depends upon the gains Ky, K,., Ky Kiy and the 

magnitude characteristics of the roll control system. If WOy is sufficiently small 

the lateral control system will be unstable. While it is possible to adjust the control 

system parameters to obtain system stability saturation and trigonometric nonline­

arities may effectively reduce the open loop gain to a level where a substained 

oscillation can occur. This problem is circumvented by limiting the output of the 

integrator in the proportional plus integral compensator so that the integrator will be 

in hard saturation whenever large values of roll are commanded. Integrator satu­

ration effectively removes the integrator from the system reducing the phase lag to 

a safe maximum of 180 degrees at low frequencies. The step response of the line­

arized system appears in Fig. 5. 2. 4. The effect of generalized trajectory control, 

discussed in section 4. 4, on closed loop bandwidth and step response is also shown. 

The wide bandwidth to reference inputs ensures that the lateral control system will 

be able to follow the desired trajectory precisely (in the absence of disturbances). 

The lateral position control system performs a sequence of distinct tasks 

during an automatic landing. The important features are identifed as 

1. 	 Acquisition of the ILS Localizer center plane. 

2. 	 Tracking the ILS Localizer center plane 

3. 	 Momentary termination of lateral position control during the 

decrab maneuver. 

4. 	 Resumption of position control during rollout. 

In order to accomplish these tasks the control system must transfer the aircraft 

from a linear path inclined with respect to the localizer reference plane to a path 

in the plane. The vehicle remains on this second path until rollout is completed. 

Lateral position control is subject to important limitations imposed by 

passenger comfort, These limitations apply to roll and roll rate. The trajectories 

generated by NTGy must reflect the effects of these limitations. A convenient 

approach to lateral reference trajectory generation is based on the theory of time 

optimal control. A complete discussion of the synthesis of quasi-time-optimal tra­

jectories is presented in chapter 6 of reference 26. The reference trajectories 

shown in Fig. 5. 2. 5 satisfy the relationships 

-	 (5.2-3)IPcI Paq < WPmax 

lc$cI aq < ;max 	 (5.2-4) 

64 



--- ----- 
o-
1. 

-- . ---. 
o~/ 

CL / 

1.0/ 

TIME 30 sec 

Fig. 5.2. 4 Response of the linearized lateral position control system 

to step inputs in position error (solid lines) and desired position (dotted 

lines) with feedforward compensation. 
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the localizer beam from a broad range of initial flight path headings. 



where cmax and 0ma x are the largest permissible roll and roll rate magnitudes 
respectively. aq and aq are constants. The absolute inequality in equations 

(5. 2-3) and (5. 2-4) provide a roll angle and angular rate margin for counteracting ­

the effects of environmental disturbances, tracking errors and inertial data correc­

tions which are gradually applied during acquisition as shown in section 2. 5. The 

character of the trajectory and the wide bandwidth of the control system to reference 

inputs ensures that the aircraft follows the desired trajectory with a high degree of 

precision as shown in Fig. 5 2. 6. Thus, if the environmental disturbances are 

moderate, the aircraft is able to fly the y reference path without exceeding the maxi­

mum roll angle and roll rates. If the disturbances are very large, however, the 

commanded values pc and $c may exceed the maximum permissible values Wmax 

and ;max* In order to prevent excess roll and roll rate a nonlinear Command 

Signal Processor CSP is utilized. The structure of CSP is illustrated in Fig. 
4. 3. 2. The natural frequency of the CSP defined by equation (4. 3-20) and is adjusted 

so that linear response bandwidth of the CSP is much greater than the bandwidth of 

the roll control system. As a result the output rod of CSP is essentially equal to 

the input (c subject to the constraints 

I °dI < max (5.2-5) 

( 2-6)ICdl < C max 

Thus, in absence of saturation, the CSP introduces neglibible effects on the linear 

response characteristics of the position control system It should be emphasized 

that CSPCo will normally operate in an unsaturated state thus ensuring minimum 

sensitivity to disturbances A comprehensive schematic diagram of the lateral posi­

tion control system is shown in Fig. 5. 2. 7. 

5. 3 Vertical Position Control System 

Vertical control is maintained during all the phases of an automatic landing 

prior to touchdown. 

Vertical position control is achieved by modifying the vehicle pitch 0 and 

angle of attack a using the pitch angle control system and direct lift spoilers. The 

basic vertical plane relationship is 

; v sin(a- 0) (5. 3-1) 

The analysis of the vertical control system is based on the linearized model shown 

in Fig. 5. 3-1.' Since the perturbations in & and -yare small during the landing pro­

cedure the response characteristics of the actual control system are quite similar to 
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Fig. 5.2.7 Improved lateral position control system with nonlinear trajectory 

generation, roll command signal processing and inertial stabilization. 
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the linear characteristics. Magnitude and phase characteristics of the open and 

closed loop transfer functions are shown in Figs. 5. 3. 2 and 5. 3. 3. The step re­

sponse of the linearized model appears in Fig. 5. 3. 4. The control system parameter 

values are given in table 5. 3-1. Pitch autopilot design is described in section 5. 11 

of reference 26. The important characteristics of the pitch regulator are illustrated 

in appendix D. The application of direct lift spoilers is illustrated in section 3. 7. 

As indicated in section 3. 2 the analysis of the vertical control system in based 

on the assumption that the perturbation in airspeed u is zero. Thus a critical part 

of the vertical control system is the automatic throttle. The automatic throttle 

utilizes airspeed information to generate an engine thrust command which maintains 

essentially constant airspeed thus satisfying the requirement (u - 0) for validity of 

the longitudinal transfer functions derived in appendix C of reference 26, The anal­

ysis and design of an automatic throttle, of conventional configuration, is given in 

appendix E. 

The 	vertical trajectory may be divided into a three distinct segments 

1. 	 Transition to the altitude h at which the localizer beam center 
aq
 

is intersected during the acquisition maneuver.
 

2. 	 Vertical flight path modification from a level trajectory h =haq 

to a descending path tangent to the glideslope centerplane. 

3. 	 Reduction in vertical velocity from approximately 10 ft/sec to 

2. 5 	ft/sec during flareout. 

This 	reference trajectory is shown in Fig. 5. 3.5. In order to limit vertical accel­

eration and position errors during transitions 1 and 3 particular care must be 

exercised in forming the trajectory. Let the vertical path be subject to the con­

straints
 

1 Zmax 	 (5. 3-2) 

1z] "<- Zmax 	 (5. 3-3) 

Assuming that precise control is exercised over vertical velocity and acceleration 

during acquisition and referring to Fig. 5. 3. 5 it is apparent that the following re­

lationships hold for a smooth transition which satifies (5. 3-2) and (5. 3-3). ­

zd[- 2'aq < Zmax 	 (5. 3-4) 
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Table 5. 3-1 Vertical Control System Parameters 

GAINS 

Kz Vertical position gain 0. 063 deg/ft 

K. 	 Vertical velocity gain 0. 126 deg/ft/sec 
z 

gain 0.000 deg/ft/sec
Vertical accelerationK.. z 

K. 	 Integral compensator gain 0.050 rad/sec 
1z 

50. 000 
Spoiler lead network gainK s 

CONSTANTS 

T Vertical acceleration filter 0. 100 seconds 
a - time constant 

T 	 Spoiler lead network time 5.000 seconds 
constant 

SATURATION LIMITS IMPOSED BY IMPOSED BY NTG 
VEHICLE LIMITS 

z 

-	 ±14. 600 ft/sec 

±12. 500 ft/sec
2
 

±25. 1 ft/sec 2 

0 

0 5. 90 deg/sec 	 ­

± 4. 92 deg/sec 2 

NTG PARAMETERS
 

(Cz NTG
2 

natural frequency 0. 500 rad/sec
 

1.000NTG z damping ratio 
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Fig. 5.3. 2 Open-loop transfer function of the linearized vertical control system 
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Fig. 5.3. 3 Closed-loop frequency response characteristics to errors in position 

(solid lines) and reference inputs (dotted lines) with feedforward compensation. 
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Fig. 5.3. 4 Response of the linearized vertical control system to step inputs 

in position error (solid lines) and reference position (dotted lines) with 

feedforward compensation. 
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~2
 

Ah aq Fagsx 	 (5. 3-5)2 " J 
aq 

(xaq2 Xaq Ah (5. 3-6) 
gs 

.2 
x aL 

Xaql gaq2 (5. 3-7) 
aq
 

where 

ma Z 	 are the maximum permissible vertical velocity 

and acceleration 

aq 	 is the desired vertical acceleration during 

acquisition 

atg s 	 is the glideslope path inclination 

xis the absolute vehicle velocity in the x
 

direction.
 

Xaq, Xaq2 XaqlAh are defined in Fig. 5. 3. 5 , 

The value of xaq - xaq is approximately 700 ft. Thus the path transition 1 should 

be initiated approximately 3 seconds before the termination of acquisition at time 

Taq. The 4 bsolute inequality in equation (5. 3-4) provides an acceleration range for 

overcoming the effects of atmospheric disturbances, inherent tracking errors and 

vertical position corrections which are gradually applied as shown in section 2. 5. 

Reference trajectory vertical position velocity and acceleration serve as inputs in 

the complete control system shown in Fig. 5. 3, 7, As a result of the broad bandwidth 

of the vertical regulator to reference inputs precise tracking of the desired vertical 

path is assured. 

Initial deviations from the path described above are corrected using the 

nonlinear trajectory generator shown in Fig. 4. 3. 2. The errors in vertical position 

and velocity are introduced as initial conditions on zp and p. The resultant outputs 

of the trajectory generator are added to the reference values zn shown in Fig. 5. 3. 7. 

Thus the initial values of zd and zd will correspond exactly to the estimated values 

of z and E. The response characteristics of the perturbation generator are shown 

in Fig. 5. 3. 6. 

The flareout trajectory may be synthesized in a similar fashion. As a re­

sult of the importance of vertical velocity and acceleration regulation it is common 
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to terminate altitude control during flareout. A detailed discussion of flareout may 

be found in chapter 7 of reference 26 

5. 	4 Summary 

Block diagrams and performance data illustrating the current status of the 

lateral and vertical position control system designs have been presented. The 

performance of these position controllers will now be compared with the perform­

ance of the conventional position control systems presented in appendix C. 
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CHAPTER 6 

A PERFORMANCE COMPARISON OF CONVENTIONAL 
AND MODERNIZED POSITION CONTROL SYSTEMS 

6. 	1 Introduction
 

The significance of the innovations which have been introduced in the pre­
ceding 	chapters can only be measured by comparing the perfornmance of the mod­
ernized 	control systems in chapter 5 with a set of conventional -control systems. 
Therefore an effort was directed towards the development of a conventional set of
 
control systems for the SST which reflect the current state of the art in automatic
 
landing 	system design. The conventional systems have been optimized using the 
same criteria applied to the inertially stabilized systems (with the exception of 
effector noise level criteria). The performance achieved by the conventional 
systems is representative of the capability of systems which provide path control 
utilizing position information derived from the ILS signal and velocity information 
based on heading angle for lateral control and beam rate for vertical control. A 
discussion of conventional path controllers is found in appendix C. 

The preceding chapters have shown that significant improvements in per­
formance can be expected in two-areas as a result bf the application of integrated 
sensor information and modern control theory. These areas are 

1. Reduced sensor noise levels. 

2. Decreas6d sensitivity to environmental disturbances. 

The following sections will introduce criteria for measuring the performance in­
crease. The application of these performance measures will demonstrate that 
significant improvements are indeed achieved by the application of modern tech­
niques. 

6.2 Sensitivity to Sensor Noise 

The integrated ILS Inertial Sensor described in section 2. 4 provides correcte 
position, velocity and lagged acceleration information. as a result of theHowever 
effect of the correction algorithm the velocity and position data is corrupted by ILS 
noise components superimposed on the corrected position and velocity. The noise 
components are nonstationary in the statistical sense as indicated in section 2. 6. 
Stationarity may be reestablished by dividing corrected position and velocity by the 
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The 22 noise 

is quantized by comparing E(a ), E(yc /r ) for position and E(& ), E(c 2/ry2 ) 

for velocity while the vehicle is flown on a path y = y = 0. The pertinent signals ay 
yI Yc/ry and c/ry are recorded in Fig. 2. 7. 1. The beam noise is shown in Fig. 

appropriate distance•.2 to the terminal navigation2 2 system antennae. 2 sensor 

2. 6. 1. The mean square values are tabulated in table 6. 2. 1. These results show 

the dramatic reduction in noise amplitude achieved by inertial-ILS integration. 

Sensor noise in a conventional automatic landing system is particularly 

serious as a result of its relatively large amplitude and the absence of any natural 

attenuating factor such as vehicle inertia which is very effective in the case of 

atmospheric disturbances. The importance of sensor noise may be inferred from 

the large perturbations which occur in the vehicle trajectories shown in Figs. 6. 2. 1 

and 6. 2. 2 as a result of beam noise. 

The effects of sensor noise may be quantized by evaluating the statistical 

averages of the noise generated errors. As a result of the unstationarity indicated 

above the signals must be divided by the appropriate vehicle to ILS antenna 

distance. The values of E(+) and E( Z - zd) were generated during.simulation and 
y z 

are tabulated in Table 6.2-2. To facilitate the comparison the inertially stabilized 

variables are identified by the subscript "is" while the conventionally controlled 

quantities are subscripted "cs". 

The reduced sensor noise permits the application of higher feedback gains 

in the inertially stabilized control system loops compared to the gains in the con­

ventionally stabilized system with similar response characteristics. Increaged gains 

would tend to cancel the effects of sensor noise reduction, however, the important 

decrease in noise level still leads to a system which is comparatively free from 

beam noise generated tiajectory errors as shown Figs. 6. 2. 1 and 6. 2. 2.. 

6. 3 Sensitivity to Random Atmospheric Disturbances 

The relationship between controlled output C and disturbance D of the con­

trol system in Fig. 3.'3. 1 is given by 

C (6.3-1)D I + Go0G1G2 G2 H 

desired between the responses of two diffei-ent controlSuppose that a comparison is 

systems characterized by variable element transfer functions of the form 

(6.3.2)Gv a = G 0aH a 

(6.3.3)Gvb = GObHb 
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Table 6.2-1 

Mean Square Integrated Sensor Parameters 

e(q y) deg 0.224 

e (L )deg 0.100 
y 

"e(& ) deg 0.224 

e( )deg 0.00511 

e(Le)/e (a 0.446 

e( C ) e('y) -0.022 
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The responses of the control systems to a disturbance D are given by 

c-2 	 D(6 3-4)
a 1 + G 0aG 1 G2 Ha( 

G
2
 
C = 	 1 4 GOaG1G2H a D (6. 3-5) 

The ratio of the responses is then 

C a 	 1 4- GObG1G 2 Hb 11 - GolI b 
iblG 0 GG 2 H a 1 + Gol 2 a  (6.3-6) 

Notice that the ratio of the responses is independent of the characteristics of the 

disturbance D. 

Suppose that CaICb is plotted. Some general conclusions may be derived 

from the resultant curve. 

1.I 	 Ca/Cb > 1 the response magnithde of system b is 

smaller than that of system a 

.2. IHa"1 = *1 the response magnitudes of the two 

systems are equal 

3 	 jCa/C b < 1 the response magnitude of system a is 

less than that of system b 

As a result it is possible to compare the relative magnitude response characteristics 

of two systems. 

The statistical characteristics of the vehicle response to random disturbances 

play a key role in system performance valuation. If the spectral characteristics of 

the noise are assumed to be constant the ratios 

e(Ca) e(Cb) 
(6. 3-7) 

e(D) e(D) 

and the relative performance criterion 

e(C) 
a)(6 3-8) 

e(C b ) 
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Table 6.2-2 
Mean Square Values 

Quantity Inertially Stabilized Conventional 
System System 

e(a y) deg 0.114 0.114 

e(--Y) deg 0.038 0.180 
y 

e(a z ) deg 0.105 0.105 

e( -- ) degr 
0.038 0.120 

z 

Derived quantities: /Ycs\/ eYis 

=4.7 

y y 
ze Zis) 

e(-r s)/e ( r) = 3.2 

E(Y.)/E (ay) = 0.10 

y 

Efycs/E(, = 2.50 
y 

E(zs/E = 0.14 

W=(az) 1.30 
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Fig. 6.2. 1 Lateral control system response to localizer beam noise. 

(e(ay)1 o0.114 degrees) 
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may be evaluated. Quantities (6. 3-7) permit the general evaluation of response 

characteristics once e(D) is defined. The value of (6. 3-8) is very useful for com­

paring different systems. The calculation of (6. 3-7) and (6. 3-8) is conveniently 

performed during simulation. 

The spectral performance of the lateral position control systems is compared 

in Fig. 6. 3. 1. A corresponding comparision for the vertical position regulators is 
shown in Fig. 6. 3. 2. The response of the vehicle to environmental noise (see chapter 

8 of reference 26) is illustrated in Figs. 6. 3. 3 to 6. 3. 6. The root mean square 
values of the controlled variables are summarized in tables 6. 3-1 and 6. 3-2. 

6. 4 The Effect of Windshear 

Windshear is defined as the derivative of the mean wind velocity with respect
 

to altitude. Shear perpendicular to the runway centerline has a particularly adverse
 
affect on the performance of the lateral position control system. The crosswind w


Y
 
is normally countered by the establishment of a crab'angle so that
 

v sins =-wy 	 (6.4-1) 

Since 4 is small the following approximation is valid 

v 4, - wy 	 (6. 4-2) 

Windshear is perhaps the most serious disturbance encountered by the 

lateral position control system. In order to counteract the change in wind velocity 
with altitide, equation (6. 4-2) must be satisfied at all times. This implies that 

v - (6.4-3) 
p 

The heading rate is related to the roll angle rp by the relation 

grP 	 (6.4-4) 
v 

p 

Thus the required roll angle is given by 

w 

. 4-5)_X(6. 

Since y and * are small during the localizer tracking phase 

(6. 4-6)K 	 [5s K] y
I8y y 
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Fig. 6.3. 1 Spectral performance of the lateral control systems. 
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Fig. 6. 3. 2 Spectral performance of the vertical control systems. 
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'Fig. 6.3. 3 Lateral position control system responses to aerodynamic disturbance. 
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Fig. 6.3. 4 Lateral position 	control system responses to aerodynamic disturbance. 
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Table 6.3-1 

Root Mean Square Lateral Control System Parameter Values 

From Aerodynamic Noise Tests 

Quantity Inertially Stabilized Conventional 
System 

e(w n )ft/sec 2.15 2.15 

e(y) ft 0.494 1.11 

e(i) ft/sec 0.192 0.297 

e(F)ft/sec 2 0.132 0.162 

e(6a) deg 0.607 0.492 

Derived quantities: 

e(ycs) ­
=___2.25 

e(yis)
 

E(yis) 2 
=S 0.053 see 

E(Wn) 
­

E(ycs) 2 
secE(Wn) - 0.266 
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Table 6. 3-2 
Root Mean Square Vertical Control System Parameter Values 

From Aerodynamic Noise Tests 

Quantity Inertially Stabilized Conventional System
System
 

e(wvn ) ft/sec 2.22 2.22
 

e(ez ) ft 3.77 11.81
 

e( ) ft/sec 1.00 
 1.70 

e(be) deg 0. 656 1.0s 

e(6sd) deg 2.25 

Derived quantities: 

e(ez
e(e zs)

) 

= 3.14 

E(ezis 2 
E(w ) = 2.87 sec 

n 

Ezcs) 

E(wn) = 28.3 sec 
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multiplying both sides by s and transposing 

s -i 	 (6. 4-7)
KyK.y 	 '- s 1) 

ly 

It is apparent that the steady state value of y will be zero. The time required for 
the value of y to decay to 0. 372 of its initial value is equal to Ky - The maximumittiiiaevleaseqauteKi 

perturbation in y due to windshear is bounded. An upper bound is given by 

fi max :5(6.4-8) 

if the response to a step change in wind acceleration is overdamped. Thus the 

performances of two lateral control systems to windshear are conveniently compared 
-by evaluating (6. 4-8) and Kiy . The results of this comparision are contained in 

table 6. 4-1. The responses of conventionally and inertially stabilized systems are 

compared in Fig. 6. 4. 1. 

Windshear in the x direction w produces errors in vertical position inx 

similar fashion. If'the perturbation in angle of attack a is assumed to be small 

and the airspeed is constaht the flight path inclination may be approximated by 

v0
 
P (6.4 9)

V 4-w p x 

The corresponding pitch angle 0 is given by 

'y(v 4w0=- P Wx) (6. 4-10)
Vp
 

The path inclination angle y is determined prior to flareout by the constant elevation 

angle of the glideslope reference plane. Thus the value of 8 is constant in the absencE 

of windshear. In the modernized control system the constant component of Ais 

generated explicitly and applied as a control input as shown in equation 3.2-6. If the 

acceleration of the air mass in the x direction is not zero the pitch rate must obey 

the relation 

_Y x(8. 4-11) 

p 

Suppose that wx is constant. Then the pitch command must contain a component 

which changes linearly with time in order to satisfy equation (6. 4-11). In the 
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Fig. 6.4. 1 Vehicle responses to a step acceleration in air mass, of 0.25 ft/sec 

which could result from windshear near the earthts surface. Note the different 'scales. 

The positive y perturbation is due to a minute initial lateral drift velocity. The 

steady state error is due to roll control system characteristics which are ignored 
in the linear analysis. 



absence of integral compensation the varying component of 0d would be produced 

by a corresponding change in vertical error. With integral compensation the 

error is bounded and is given by the expression 

(z - zd) = v K K. (6.4-12) 
p z 1z 

The vertical windshear errors of the conventional and modernized control systems 

are conveniently compared by computing (z - zd/Wx) as shown in table 6. 4. 1. 

6. 5 Touchdown Dispersion 

A most important performance index, measurbs the error between the de­

sired and actual touchdown points. Touchdown errors result from sensor errors 
(due to noise and inaccuracies) and aerodynamic disturbances. The variation in 

touchdown in conveniently investigated by considering the fluctuations in the lateral 
and longitudinal touchdown components independently. 

6. 6 Lateral Totichdown Dispersion 

The variation in lateral touchdown point presents the simpler analytical 

problem. The errors may be divided into two components, a deviation due to beam 

and aerodynamic noise effects and a contribution due to windshear. If the various 

components are uncorrelated the mean square error may be expressed in the form 

E(eytd) = R({, a) E(y)-rytd2 + R(y, a)E(wn ) - R(y, ly) E(Xy) (6.6-1) 

where eytd is the lateral position at touchdown 

rytd is the distance from the localizer antenna at touchdown 

R(u,v) = E(u)/E(v) 

wn is the stochasitc component of wind velocity. 

The first term on the right hand side of equation (6. 6-1) is the mean square value 

of the lateral position error resulting from localizer beam noise. The second 

term reflects the effect of turbulence in the atmospheric environment while the 

effects of windshear are introduced by the last term. 

A statistical windshear model was formulated assuming that the wind grad­

ient is constant between h = 200 and h = 0 ft altitude. The mean square value of 

the deviation in y resulting from windshear may then be inferred from Fig. 6.4-1. 
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R(y, !) 9.0 4 
0. 0625 144.0 sec conventionally stabilized 

system 

1.0 "4.0 16.0 sec inertially stabilized system 
0. 0625 -60sc iet 

In order to present the preceding results ina clear fashion the value of E(W) is 

assumed to be related to E(wn) by an expression of the form 

E( y) =k E(wn ) (6. 6-2)
y WY n 

The value of ky was set equal to 1.000. Equation (6. 6-1) may then be rewritten
WY 

Eytd) = ry a/yoE(et)= R(y ,ay)[rytd' E(a]y 

+ [R(y., ) + kyR(y, )] E(wn )  (6. 6-3) 

If it is assumed that the mean square value E(ay) of the localizer noise is 0. 10 
ydegrees 2 (reference 2) equation (6.6-3) may be plotted as a function of E(wn 

using the coefficient values in tables 6.2-2 and 6.3- 1. Curves illustrating the 

variation in E(eytd) as a function of Wn2 are shown in Fig. 6.6. 1. 

6. 7 Longitudinal Touchdown Dispersion 

The analysis of longitudinal touchdown variation presents a more difficult 

problem. Touchdown occurs at the termination of the flareout maneuver which is 
generally initiated by sensing elevation above the runway using a radio altimeter. 

To simplify this investigation it shall be assumed that the error in longitudinal 
contact point is entirely due to the fluctuations in vertical path as a result glide­

slope beam noise, aerodynamic disturbarees and radio altimeter error. Assuming 

that the beam noise, atmospheric disturbances and altimeter error are uncorre­
lated and the system response to the disturbances is linear the mean square value 

of the longitudinal contact error may be written in the form 

E(e 2xtd) = )E(az) rf 2 a-2 

-E(ehf) 2 (6. 7-1)2 
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Table 6. 4-1 

Windshear Comparisons 

Quantity Modernized 
- System 

Conventional 
System­

(9K )-s 2 22.2 87.0 
-1 

K. 
ly 

Isec 20.0 200.0 

V 
p 

K. 
z iz 

sec 2 0.873 0.057 

Derived quantities: 

(gK YYi 
(gI()

(gK y)c s 

= 393.92 

'yis = 10.0 
Kiy cs 

(K z .)i 

z izis 15.3 
(K z Kiz1cs 
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Fig. 6.7.1 Longitudinal touchdown mean square error versus mean 

square turbulence intensity. 
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where 

extd 	 is the difference between the desired and actual touchdown 

points along the runway. 

rf is the distance from the glideslope antenna at the initiation 

of flareout. 
ags is the glidepath angle. 

w n 	 is the stochastic component of wind velocity. 

ehf 	 is the radio altimeter error. 

Ztd 	 is the nominal vertical velocity at touchdown. 

The first term on the right hand side of (6. 7-1) is the mean square error resulting 

from glideslope beam noise; the second term is the contribution due to atmospheric 

disturbances while the last term represents the contribution as a result of altimeter 

error. 

The properties of equation (6. 7-1) may be illustrated by setting 

a = 0. 0437 radians. 
gs 

rf = 1500 ft 

E(e2hf) = 4.0 ft2 

2 2 

Ztd = 6.25 ft2/sec 
2 

The above values may then be used to generate values of 6.7-1 as a function of 

wn which are then summarized in Fig. 6.7. 1. 

6. 	8 Root Mean Square Touchdown Area 

The results presented inthe preceding sections may be applied to illustrate 

the touchdown performance of an automatic landing system in a graphic fashion. 

The root mean square touchdown area is defined by a width equal to 2e(eytd) and a 

length equal to 2e(extd). These areas may be drawn using the plotted data in Figs. 

6. 6.1 and 6.7.1 as shown in Fig. 6.8.1. 

Assuming that the deviations in touchdown point are normally distributed 

the following probability relationships may be written 
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P 	 (eytd e(eytd)) = 0.68 

P 	 (eytd 2.0Oe(eytd)) = 0. 96 

P 	 (eytd 2.58e(eytd)) = 0. 99 (6.8-1) 

Thus, we are assured that an aircraft performing landings in a stationary (in the 

statistical sense) environment will land within the root mean square area 68% of 

the time. The maximum permissible deviations in y and x at touchdown are nom­

inally defined as 50 ft and 1000 ft, respectively. In the example presented in sections 

6. 6 and 6. 7 lateral error is the critical parameter. The modernized control system 

performs 99% of the time with root mean square turbulence velocities in excess of 

10.0 ft/sec. The conventional system,on the other hand,falls to achieve a satis­

factory landing 32% of the time at a modest value of e(wn ) = 4.0. 

6. 9 	 Summary and Conclusions 

The-preceding sections of chapter 6 provide the basis for some general 

conclusions concerning the development status of the NASA /MIT automatic landing 

system. The lateral control system will be discussed first followed by the vertical 

position regulator. 

If the-results in sections 6. 2, 6. 4 and 6. 6 are studied, it is apparent that 

the most important factors which lead to large lateral touchdown dispersions in a 

conventional lateral control system are 

1. 	 High levels of ILS induced noise in the vehicle position
 

and velocity data.
 

2. 	 Sensitivity to windshear. 

By integrating inertial navigator and ILS information a very significant 

reduction in measured position and velocity noise components was achieved. As a 

result the root mean square perturbations in lateral trajectory due to beam noise 

are 	reduced by a factor of 4.73 as shown in table 6.2. 1. 

The lag-free nature and low noise characteristics of the corrected inertial 

lateral position and velocity data added to the availability of lagged lateral accel­

eration information provided the basis for a new lateral position control system 

design which features important increases in the position feedback gain Ky, the 

velocity gain K , the integral compensator break frequency K.y and a new loop 

closure on lagged inertial acceleration through a gain K" . By carefully tailoring 
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the 	desired trajectory of the vehicle to prevent effector and/or flight envelope 
saturation, maximum advantage can be derived from the increased open loop gains 
and 	response bandwidth to minimize the effects of atmospheric disturbances 
Satisfactory lateral reference trajectories are currently synthesized using the 
nonlinear trajectory generation techniques presented in chapter 6 of reference 26. 
The 	combination of increased gains and nonlinear trajectory generation resulted 
in an approximately 2 times reduction in the root mean square amplitude of the 
lateral path perturbations due to atmospheric turbulence. The most-important 
reduction occurred in the lateral perturbation at touchdown from windshear. The 
inertially stabilized system reduced the effect of windshear by a factor of 12. 

In section 6. 7 it was shown that the dispersion in the location-of the touch­
down point along the runway centerline is primarily caused by
 

1. 	 Errors in the altitude at which the flareout maneuver is initiated. 

2. 	 Deviations in the vertical trajectory as a result of atmospheric 

disturbances. 

A reduction'in the first source of error is limited by the accuracy of the 

instrument (usually a radar altimeter) which provides the automatic landing system 
with runway surface referenced elevation data during the terminal phases of the 
landing. This error may be reduced by improved instrument accuracy and/or 
inertial system-altimeter integration using the techniques presented in chapter 2. 
The work to datehas not covered this facet of the landing problem. The effects of 
the secdnd dispersion generating factor, atmospheric turbulence, may be reduced 
by increasing the open loop gain and bandwidth of the vertical position control 
system. The gain and bandwidth of the conventional system are limited by the 
noise levels in the measured vertical position and velocity data and the inherent 

physical characteristics of the vehicle. The first limitation is circumvented by 
combining inertial and ILS information. Sensor integration reduces the root mean 
square noise in position and velocity by 2 and 45 times respectively (table 2. 6-1). 
By applying auxiliary direct lift control the limitations imposed by vehicle char­
acteristics are eased and the vertical control system open loop gain and bandwidth 
may be improved. The root mean square vertical deviations that result from stochastic 
components in the atmosphere are reduced by a factor of 3 by the improved open 

loop 	gain and bandwidth. 

The combined improvements in the vertical and lateral position control 
systems result in a landing system which is able to perform successfully in a 

much broader range of ambient turbulence and windshear as shown in section 6. 8. 
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CHAPTER 7
 

AREAS FOR FURTHER INVESTIGATION
 

7. 1 	 Areas for Further Investigation 

In the course of the program summarized in this report an attempt has been 

made to elucidate and solve some of the basic problems associated with automatic 

landing systems. The results presented in the preceding chapter indicate that 

some major improvements are feasible if inertial and terminal ILS navigation 

system data is properly combined and the control system design is revised to re­

flect the improved character of this information In addition to these concrete 

results many significant problems have been revealed which could not be fully 

investigated as a result of time and funding limitations. Among the tasks particu­

larly appropriate for future investigation are: 

1. Investigate the affect of inertial system quality on landing system 

,performance. Determine the lower limits on inertial system accu­

racy for satisfactory landing system performance. 

2. 	 Study the practical problems introduced by disparities between the 

locations of the vehicle center of gravity and the inertial navigator. 

3. 	 Apply inertial-ILS-DME* filtering techniques to generate improved 

information along the glidepath. 

4. 	 Utilize inertial system data to detect terminal navigation system 

failure and/or interference caused by overflight. 

5. 	 Investigate the feasibility of extrapolating the reference glidepath 

using inertial navigator information during periods of terminal 

navigation system failure and/or interference. 

6. 	 Study the application of longitudinal direct force generators 

(dive brakes) to improve the performance of the automatic 

throttle. 

7. 	 Redesign the automatic throttle to incorporate inertial acceleration 

data. 

8. 	 Improve the lateral control system by the application of side force 

generating effectors, 

*DME is not available at some facilities. 
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9. 	 Optimize the landing abort procedure using variational techniques 

and design a landing abort control system. 

10. 	 Refine the flareout control system design presented in reference 

26 to include the latest improvements in vertical control systen 

structure and inertial-radio altimeter data processing. 

11. 	 Synthesize an optimal "decrab" maneuver trajectory using mathe­

matical optimization techniques and redesign the decrab control 

system. 

12. 	 Model the vehicle in the rollout configuration and design a rollout 

control system. 

13. 	 Investigate the application of inertial information to monitor and 

control aircraft takeoff and takeoff abort. 

14. 	 Perform flight tests to validate the results obtained using the 

simulation. 

The availability of an on board inertial navigation system offers unique possi­

bilities for flight testing new automatic landing system concepts. Landing system 

tests have historically been performed at low altitudes utilizing installed ILS facil­

ities. As a result a certain degree of danger has existed in the initial test phases 

an absoluteas a result of proximity to the ground. Since an inertial system provides 

geographic reference a hypothetical runway may be defined at an elevation above 

ground. The geometry of the runway, an instrument landing system, DME etc. may 

The location of the test vehicle relative to the imaginary airport is thenbe defined. 

defined by comparing the aircraft's inertial position to the geometrical coordinates of 

the runway complex. Computations may also be performed to generate the signals 

received from the simulated ILS and DME (including ILS and DME noise). Thus 

the aircraft could perform all the phases of an automatic landing at a safe altitude. 

The effects of turbulence are easily evaluated by locating the runway complex in an 

unsteady atmospheric environment. Simulation of the effects of wind or windshear 

is easily accomplished by translating the geographic coordinates of the hypothetical 

The absence of ground effect and, touchdown dynamics would contribute theairport.. 


primary source of error. Once the landing system is operating satisfactorily at
 

high altitudes low altitude tests could be performed using actual ILS and DME
 

information.
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APPENDIX A 

SPOILER TRANSFER FUNCTION 

Derivation of the transfer function relating angle of attack to direct lift 

spoiler deflection follows 

The equations relating aand q to the elevon deflection 6e and the direct 

lift spoiler deflection 6sd are given in reference 26. 

C.& =C. + 06 C. a + CCqA- + 
a au &q aa C&axe 

C 6s'd e 86sd (A.1-1) 

C Cu + Cq - C ox + C4166 e C,6s 'sd (A.1-2) 

where 

is a constant 

C . is a constant relating a to the variable x 

ax 

u is the perturbation in airspeed 

a, q are perturbations in the angle of attack and pitch rate respectively 

6e' rsd are the deflections of the elevons and direct lift spoilers respectively 

Assuming that u is zero as a result of the control effected' by the automatic throttle 

the equations reduce to 

C ,c& C qq + C 06 + C&, a -C& 6e 4- C 6 d S A I 3e 

&+& 0 a4C~ C e &C. %d e 
6 

6 sd (A.1- 3) 

C q = C.qq + C a - C 6e % + C Fsd6d (A. 1-4) 
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It is desirable to eliminate the pitching moment due to spoiler deflection. This 

goal is achieved if the elevon is deflected so that 

6e =-C eL a + N sd J (A. 1-5) 

As a result it is possible to set q and 0 equal to zero in equations (A. 1-1) and (A.1-2). 

Substituting for 6 e in equation (A.1-l) gives 

1a a c Celc. 
Ca Fc. - C&6eCUjl Cqal a 

+[C 6sd C L e Cq5sd 0sd 

c.v Ccsd sd (A.1-6) 

Rewriting the equation in Laplace transform notation and rearranging terms yields 

rCe - C&al a=C'&6 6sd (A.l-7) 

or 

= c&/ &as-l (A 1-8) 

Using the stability derivatives 

C. 4.630 

C. 3.235 
am 

C 0.288
 
e
 

C. s - 0.731 

C = - 0.079 

C. = - 0.043 
qa 

C.q6 sd = 0.000 

and equation (A. 1-5) gives 
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C..
C, 
 = 3. 080 

C d = - 0. 731 

The 	transfer function (A. 1-7) is then 

Sd] 1 0. 237 (A.-- 1 .510s 4- 1.000(A I ) 

q=0 
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APPENDIX B
 

B.1 Proof of Theorem 1-

Let the time average be defined 

22(x limit Q 
T 

2 dt (B.) 
,0 

and let the time averages of the squares and cross products of the elements a. 
i = 1, n exist. Consider the first two elements of the sequence. 

1- -((a a2)2)= t(al 2 ) + 6(a 2 
2 )4 2g(ala 2 )  (B.2) 

-F((a,- ai)2) &(al) 2 +-0(a 2
2 ) . 29(ala 2 ) (B.3) 

Since the left hand sides of B.2 and B. 3 are positive semi-definite 

-e(al2 ) +6(a 2 
2 ) _2&(ala 2 ) (B.4) 

Therefore, 

(a, ±4-a 2 )2) 2(e(a1 2) 4- (a 2 2)) (B.5) 

Now suppose that the theorem holds for the first k terms (k<n) so that 

6 ai ) 5 2? (ai 2) (B.6) 

Then for k + 1 terms 
( k 12) k+1 k 

e 1ai+ak 2 e(a ) kil) F k+.l) a.) 

>0 (B.7) 
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k4 1 2 2 k 
a. - a,, 2 

i 
(a)

I=iia 
-(ak6(a

k4-1 
-
-, 

> (B.8) 

therefore: 
6((k4- a j> 2 k C(a) (B.9) 

then, by mathematical induction: 

,in 1 2 = 

QED. 
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APPENDIX C 

CONVENTIONAL AUTOMATIC LANDING SYSTEM DESIGN 

C.1 	 Introduction
 

The most common type of automatic landing system 
uses information derivedfrom the ILS localizer and glide-path receivers to provide'the position error datarequired for acquisition and flight along the reference line defined by the intersection
of the ILS localizer and glide-slope center planes. Conventional systems provideessentially linear position control relative to this reference line. This appendix
describes lateral and vertical control system designs which are based on the 
conventional approach. 

C.2 	 Conventional Lateral Position Control System 
In the lateral channel the coupler output provides the reference input to theroll autopilot. Roll angle serves as the lateral control variable, since the heading
 

rate 
 iis roughly proportional to roll angle q 

Sg tan (C.2-) 
V 

'p
and the lateral Velocity y is proportional to heading angle relative to the path (in 
the absence of a cross wind). 

S= Vp sinai (C.2-2) 

where g is the gravitational constant and vpis the path velocity. A schematic diagram 
of a conventional LATERAL control system is shown in Fig. C,2. 1 where: 

Ky 	 is an adjustable position feedback gain. 

K. 	 is an adjustable rate feedback gain.y
 
Kiy is the integral compensator gain,
 

T is the ILS Receiver Time Constant. 
r .
 

TV is the velocity lead network time constant.
 

dloc 	 is the estimated distance to the localized antenna. 
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Fig. C.2. 1 Conventional lateral position 6ontrol system 



Position information relative to the localizer beam center is obtained by 
multiplying the angular deviation (radians) provided by the localizer receiver by 
the distance dlo c to the localizer antenna. This position information is multiplied 

by the gain K y to close the position control loop. 

The integral compensator operates on y to provide a roll command which 

maintains the correct crab angle when the aircraft is operated in a varying cross 
wind as well as correcting for any individual errors in trim. 

The lead network generates a, signal proportional to the rate of change of 
lateral position; this signal provides dynamic response compensation as indicated 
above. This compensation may be augmented by heading feedback due to the relation 
in Eq (C.2-2). 

The open-loop transfer characteristics of the control system are shown in 
Fig. C. 2. 2, 'which uses the linearized vehicle transfer functions in Appendix B, ref 26, 

the roll angle control system in Appendix D and the parameter values in Table C. 3-1. 
The closed-loop transfer function is shown in Fig. C.2. 3. A linearized response 

appears in Fig. C.2.4. 

C. 3 Conventional Vertical Position Control System 

Vertical position control is achieved by applying the output of the vertical 
coupler as a reference input to the pitch autopilot as shown in Fig. C. 3. 1 

where
 

K z is an adjustable position feedback gain. 

K. is an adjustable velocity feedback gain.z
 

Kiz is an adjustable integral compensator gain.
 

T is the ILS receiver time constant.
r
 

Tv is the velocity lead network time constant.
 

dgs is the estimated distance to the glide-slope antenna.
 

a gs is the angular deviation from the glide-path center. 

zgs is the vertical coordinate of the glide-path center. 

x is the distance to the glide-slope antenna. 

z is the vertical distance between the aircraft and the glide-path center. 

The vertical component of velocity is approximately proportional to the pitch 0. 

Z -v 0 
P 
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The vertical distance between the aircraft and the glide-path center is obtained by 

multiplying the angular deviation (radians) from the ILS glide-slope receiver by the 

estimated distance to the glide-slope transmitter. This is then multiplied by a 

gain K z to close the position loop. 

The integral compensator provides the constant component of 0 which is 

required for flight down an inclined path with zero position error as well as cor­

recting for trim. The velocity lead network provides a signal proportional to the 

rate of change of vertical position for dynamic compensation. 

The open-loop transfer function of the control system is shown in Fig. C. 3. 2 

and is generated using the vehicle transfer function in Section C. 5, the pitch angle 

control system in Section 5. 11 and the parameter values in Table C. 3-1, of ref 26. 

The closed-loop transfer function is shown in Fig. C. 3.3, and the unit-step 

response of the linear model appears in Fig. C. 3.4. 

Table C.3-1 Parameter Values for Conventional ILS Coupler 

GAINS 

*y lateral position gain 0. 0205 deg/ft 

K- lateral velocity gain 0.410 deg/ft/sec 
y 

K. y intrgral compensatorly gain 0.005 sec 

K vertical position gain 0. 041 deg/ft 
Z 

vertical velocity gain 0. 205 deg/ft/sec 

K. z integral compensator
1z gain 0. 005 sec 

CONSTANTS
 

T ILS receiver time 
r constant 0.40 sees 

Tv velocity filter time 
constant 1.00 secs
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APPENDIX D
 

ATTITUDE 'CONTROL SYSTEMS
 

D. 1 Introduction 

As indicated in chapter 3 control of roll angle cp and pitch angle 0 plays an 

essential role in the construction of the lateral and vertical position control systems. 

A complete discussion of roll and pitch control is found in chapter 5 of reference 26. 

The roll and pitch control system designs are summarized here for completeness. 

D. 2 Roll Angle Control System Design 

A linearized model of the roll control system is shown in Fig. D. 2. 1. The 

open and closed loop magnitude and phase frequency domain characteristics are 

shown in Figs. D. 2. 2 and D. 2. 3 and the linearized system step response is shown 

in Fig. D. 2. 4. The complete roll control schematic in Fig. D. 2. 5 includes a lateral 

Stability Augmentation System (SAS) which generates the rudder deflections required 

for turn coordination. (0 = 0) Since the control system, with integral compensation 

(Ki # 0), is conditionally stable and the roll control system is subject to saturation 

the integral compensator output must be limited to ensure stable operation. The 

parameter values associated with Fig. D. 2. 4 are given in Table D. 2-1. 

D. 3 Pitch Angle Control System Design 

The pitch angle control system appears in linearized form in Fig. D. 3. 1. 

Phase and magnitude frequency domain characteristics of the linearized model are 

shown in Figs. D. 3. 2 and D. 3. 3. The step response of the linearized system is 

shown in Fig. D. 3. 4. The complete pitch control system is shown in Fig D. 3. 5. 

The parameter values associated with Fig. D. 3. 5 are shown in table D. 2-1. 
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Table D. 2-1 Roll and Pitch Angle Control System Parameters 

PARAMETER VALUE
 

K(4 1.000 

K2. 000 

Kio 0.000 

K1 3.000 

K2 0. 170 

K 3 0. 374 

K4 2. 000 

,K5 2.000 

K6 3. 000 

K7 2.000 

K8 0. 666 

K9 0. 534 

T 1 1.000 

T2 0. 500 

T4 2.000 

T 1.000 

1 10.000 

K 0 7. 100 

K4 16. 250 
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APPENDIX E 

AIRSPEED CONTROL SYSTEM 

E. 1 Introduction 

The basic nonlinear vehicle equations were derived in chapter 8. Linear­

ization about the nominal operating condition provides for application of the tech­

niques of linear control system analysis and synthesis. 

E. 2 Derivation of the Airspeed-Thrust Transfer Function 

The longitudinal variables u, a, q are related by a coupled set of linear 

differential equations in the perturbation quantities as follows: 

C.6= C- u + C6 a.+ Cu0 + C%6 6T (E. 2-1)
uu uU u uO UTT 

C a C. u + C. a + C. q + C0e 

+C>se 5 e A- CSTST (E. 2-2) 

Cj = Ca C + Cq q + C'qC~u + e. e 

+ C'&q + CT 6 (E. 2-3)
qa q 

where, for example, C. is the coefficientof the u.pertu.rbation in the C equation. 
uu 

Airspeed control is achieved by throttle manipulation; the resulting thrust variation 

couples into the pitch and lift equations. To obtain an approximate transfer function 

relating u and 6 T' the longitudinal equations are simplified for the moment by 

assuming that the pitch control system maintains a zero pitch rate through elevator 

manipulation. 

The simplified equations are: 

* = C. u + C. a 4-C 5TT 
u uu u u T (E.2 4). 

C = CauU a aC6T T +aC+S 6e (E..2 5) 
E-e 
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60 = C. u + C. a + C..& + C. T + C 6 (E. 2-6)
qu qae qr q6TTa ee 

These equations may be rewritten in Laplace notation in the form 

Guuu + Guaa = GUT 6 T (E. 2-7) 

eG u + Gaa + Ga6 = Ga6T 6 T (E. 2-8) 

"quu + Gqa + Gqbe6e - Gq6T5T (E. 2-9) 

where the Guu, Gu .... are polynomials in s. 

Defining the characteristic polynomial . 

= G qa]A Guu[Gaa Gq6 e - Ga6 e 

QuaFGs Gq - G6 Gn 

L q6 e Ca6equ]a[au 

permits a simultaneous solution of (E. 2-7, 8, 9) for the transfer function 

-uT[G Gqe G6eGqj] -Guce[GaTq6e Ga6 eGq6T] 
- u6u

,T q =0 

E. 3 Numerical Value of Airspeed-Thrust Transfer Function 

The numerical value for the transfer function developed in the previous 

section incorporating coefficient values appropriate to the Boeing B2707-200 is 

F u 1 0.0000824 (s + 0.668)
LTq=0 (s + 0.653) (s +0.053) 

E. 4 Airspeed Control System Design 

The design of the airspeed control system is shown in block diagram form 
in Fig. E. 4. 1. Airspeed and a lagged acceleration are the feedback signals supplied. 

The first blocks in the forward loop comprise a proportional plus integral network 
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to provide compensation. A first order filter is provided to limit high frequency 

throttle activity and a first order equation models the turbine engine thrust lag. 

The engine time constant was assumed to be 4 seconds. The time constants in the 

filter and the acceleration feedback loop were each set at 1/10 second. 

The root locus for the inner (acceleration) loop is shown in Fig. E. 4. 2. The 

closed loop poles were chosen on the real axis, as shown, and the corresponding 

value for the gain was 

K, = 10,200
U 

With this value for K- and with K. = 0 the root locus for the outer loop is 
U U 

shown in Fig. E. 4. 3. The dominant closed loop poles were selected to give a 

damping ratio of about r = 0.7. The corresponding value for Ku was 

K u = 5,650 

The control system was incorporated with the above gains into the digital 

simulation, which includes the full nonlinear aircraft equations of motion, and 

subsequently no changes were found to be necessary. The simulation also deter­

mined that a satisfactory compromise value for the P + I compensation gain was 

K. = 0.02iu 

E. 5 Airspeed Control System Transfer Functions 

Define 

G = sl _eq 

K. K.s 
sH{K[ [ +U]u] 

u G i K] 
d 1+GH s u 

For the design gains, a computer program has factorized the above transfer 

functions and developed the corresponding Bode plots. 
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Fig. E. 4. 2 Root locus of the inner (acceleration) loop 
of the airspeed control system. 
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Fig. E 4.3 Boot locus of the airspeed control system with K. =10, 200 
and K. =0. (Root loci not to scale)
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0.000206 (s + 0.668)
G (s + 10) (s +0.25) (s +0.653) (s - 0.053) 

H 107,650 (s + 0.02) (s + 0.5) 

s(s + 10) 

. u 1.162 (s + 0.02) (s + 0.67)(s 110) 
Ud (s -p0.0194) (s + 0.253 + 0. 253i) (s + 0.65) (s + 8.40) (s +11.38) 

The vehicle transfer function, G, is plotted in Fig. E. 5. 1, the feedback 
function, H, in Fig. E. 5.2, and the closed loop transfer function, u/ud' in Fig. 

E. 5. 3. The unit step response of the transfer function u/u d is shown in Fig. E.5. 4. 
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