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RESULTS OF TESTS FOR ADHESION IN AIR AND IN

VACUUM OF TITANATE COATINGS APPLIED TO 321-STAINLESS-

STEEL BRAYTON PARASITIC-LOAD RESISTORS

by Jack H. Shank

ABSTRACT

Tests were run to determine the adhesion of a high-emissivity

plasma-sprayed coating of either iron titanate or calcium titanate to

the 321-stainless-steel surface of the Brayton Parasitic Load Resistor

during operation of the Parasitic Load Resistor in air and in a

vacuum in the temperature range of 1700° R to 20000 R. Iron titanate

did adhere during operation in a vacuum, but iron titanate did not

adhere during operation in air. Calcium titanate adhered during operation

both in a vacuum and in air.
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RESULTS OF TESTS FOR ADHESION IN AIR AND IN

VACUUM OF TITANATE COATINGS APPLIES TO 321-STAINLESS-

STEEL BRAYTON PARASITIC-LOAD RESISTORS

by Jack H. Shank

Lewis Research Center

SUMMARY

Iron titanate was selected as a coating for the Brayton Parasitic

I;

Load Resistor to provide a hi^-emissivity surface for radiating heat

in a vacuum. The Parasitic Load Resistor must operate both in air and

in a vacuum. Previous experience with iron titanate as 'an-emissive
i

coating had been limited to small samples in a vacuum.

After the Parasitic Load Resistor contractor had'e-xperienced poor

t

adhesion of iron titanate to the 321-stainless-steel surface of the Para-

p
•	 y

sitic Load Resistor during operation in air, •the•, NASA . Lewis • Research
:i

Center initiated a program to re-evaluate iron-titanate,:and to evaluate

calcium titanate as candidates for this application.
•
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A resistor element fro4i the Parasitic Load Resistor was coated with

iron titanate and heat cycled both in vacuum and in air. Previous results

were confirmed in that the iron titanate coating performed adequately in

a vacuum and in that it. "flaked off" during the first cool-down period in

air.

A resistor element from the Parasitic Load Resistor was coated with

x calcium titanate and heat cycled both in vacuum and in air. The calcium

titanate adhered during the heat cycles under both atmospheric conditions.

INTRODUCTION

The NASA. Lewis Research Center is currently engaged in a Brayton-

cycle space-power technology program. The Brayton power conversion system

being developed is. ex cted to have applicability for solar ,, nuclear- reactor,

and radioisotope space power systems in the net power range of 2 to 10 We at

1200 hertz.
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compressor overhung on one end and a turbine overhung on the ocher end of

IF
	

the single shaft.

The constant rotational speed is maintained by a frequency-sensitive

parasitic-load type of speed control on the electrical output of the

alternator. As the net shaft input power from the turbIcne varies r..^ as

the demand for useful vehicle load varies, the speed control maintains a

constant shaft speed by dissipating the excess generated power into an

electrical parasitic load. Therefore with a constant input power to the

alternator, the electrical load on the alternator is maintained constant

by varying the amplitude of the parasitic load so that the sum of the

useful vehicle load and the parasitic load is constant.

The parasitic Load Resistor consists of nine sections. Each section

is capable of dissipating 2 kilowatts of electric power by radiating the

heat to space. A complete description of the Parasitic °Load Resistor

program is available in reference 1.

Iron titanate was selected as an emissive coating to increase the
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emissivity to 0.88 (ref. 2) from the 0.40 which is the emissivity of oxidized

321-stainless steel (ref. 3). The iron titanate coating "flaked off" during

the cool-down period following the first application of electrical power for

5 koia.rs to the iron- titanate-coated Parasitic Load Resistor in air at the con

trHutor I s ,fRoility. .

As a result of this failure of the iron titanate coating to adhere to

the 321-atninless-steel casing of the Parasitic Load Resistor, tests were

r.an at ` be NASA Lewis Research Center to reevaluate iron titanate and to

evaliaate calcium titanate as candidates for this application.
I

BACKCROLTI'7

We Parasitic Load Resistor is shown in figure 1. The selection of a.

unit which radiates its heat to space is s departure frog SNAP- 8 for which

the heat is removed by immersion in a Liquid coolant.

Tale b sic resistive element used in the Parasitic Load Resistor consists

)f a N c:?-.come V wire inside a 321-stainless-steel casing with magnesium oxide

is

Sacked between the wire. and the casing. The casing has an outside diameter of 0:500

t
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inch (1.27 cm), a wall thickness of 0. 065 inch (0.156 cm), and a nominal

length of 31 inches (78.7 cm). The Nichrome V wire is spiral wound and

centered along the length of the casing. Both the centering and the pitch

of the spiralled wire are carefully controlled during manufacture, The

magne slum- oxide powder is packed into the casing around V e wire so ;.hat

no voids are visible when the completed resistive element is x-rayed in

various planes. The ends of the N'ichrome V wire are welded to end connec-

tions v1ich contain pure nickel terminals. As with all radiating surfaces,

the operating temperature of the Parasitic Lead Resistor at rated power is

dependent upon the emissivity of its surface. At rated power and with the

emissivity of 0.40 for oxidized 321 stainless steel, the Parasitic Load

Resistor has a maximum case temper^ture of 1940 0 R. The addition of the

iron-titanate coating would raise the emissivity to 0.88 and lower the 	 f

max:Lm= case temperature to 1710° R

Calcium titanate appeared to be an equally appropriate emissive
	 I	 i

I

Coating, but iron titanate was selected because of its intended use in
r

r

F



the heat scuxoes of the Brayton power conversion system.

The properties of the iron titanate as well as the preparation and

application procedures were in all instances in accordance with the work

performed in reference 2.

A proWl ype section of the PRrasit;ic Load Resistox, was plasma coated

with i-- c►M: titanate by the contractor, and rated electrical power was

applied with the prototype section in air at ambient conditions. After

fiviz., hom-s application of electrical pacer, the power was removed and the

section ldar allowed to cool. As the section cooled the iron titanate

coating flaked and fell from the prototype section of the Parasitic Load

Resistor.

m

WES9'IGAfi _'Ia AT NASA LEWIS RESEARCH? CMU R

The 1.1"l.i.tial step in the investigation at the NASA Lewis Research

Cen• er t,s`cC) of the problems associated with. the adhesion of iron

titanate. coating to the Parasitic Load Resistor was to confirm the experi-

ence of the contractor under controlled conditions.

x

{.	 A

t

z

Y

y

3



1I

'A'wo obvious possibilities were considered which would contribute

to the failure of the iron titanate to adhere;

(l) iron titanate of improper composition and/or purity,

(2) Improper plasma coating technique.

Aexeei'orea a Parasitic Load Resistor element having a 32l-stainless-:steel,

casing was coated at Lewis Research Center by a controlled technique using

i.xon titanate of known composition and purity as evolved under XAS.A Contract

NAS3-4,1 4 (,ref.2).

Rated electrical power was applied to the iron-titanate-coated Parasitic

Load Resistor element in air for 35 minutes. Power was then removed, and the

element was allowed to cool by natural convection. Approximately 9 minutes

after the electrical power was removed (i.e. ) after the cooling cycle had

been it tiated), the iron-titanate coating began to flake from the Parasitic

Load Pesistor element, the flakes literally jumping from the Parasitic Load

Resistor element. Within 19 minutes after initiation of the cooling cycle,

very little of the iron-titanate coating remained on the Paresitic Load

Resistor element.

ME -Ona 1 11

,v	
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These results under controlled conditions substantiated the results

obtained by the Parasitic ;Goad Resistor contractor. Therefore, it was decided

to investigate other possible high-emissivity coatings for the Parasitic

Toad Resistor.

Cals:ium titEmate was also a candidate emissive coating for this appli-

cation because of the previous experience with it (ref. 2). A Parasitic

Toad Resistor element (element 40) was coated with calcium titanate and

subjected to a series of heat cycles both in air and in a vacuum. Another

Parasitic Load Resistor element (element 104) was coated with iron titanate

to check iron titanate l s performance under vacuum conditions.

The parasitic Toad Reaistor element has an effective heater length of

approxirastely 21 inches (53 cm) with approximately 4 inches (10 cm) of

unheated length- at each end where the electrical terminal is attached.

Five thee—nocouples were attached to each element as shown in figure 2.-

Two thermocouples were placed near the center of the length of each element

and the other three thermocouples were placed between this center section

c

.ar



and one end of the element. Each element was suspended by its two electri-

cal leads so that the only conductive paths for heat removal were the elec-

trical leads and these were attached to the coldest portions of the element.

A "run" in these tests consisted of a heating period followed by a

cooling period. Rated electrical power was applied to the parasitic road

Resistor element until well after temperature readings had stabilized.

The calcium-titanate-coated element in vacuum averaged 18 minutes, the

calcium-titanate-coated element in vacuum averaged 16 minutes, and the iron

titanate in vacuum averaged 13 minutes in order for the hot-spot temperature
	 )I

to stabilize. In general, electrical power was applied for 35 to 40 minutes.

Then the electrical power was removed, and the element was allowed to cool

to ambient conditions.

The first six runs were conducted on the calcium-titanate-coated

element JAM air. The calcium titanate adhered for these six runs in air,
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During the heating portion of the first of these six runs (run 1),

the center 19 inches (48 cm) of the length of the calcium-titanate-coated

element changed color from its normal charcoal gray to a pale yellow as the

temperature surpassed approximately 1260 0 R. The remaining 5 inches (13 cm)

on each end did not reach a -temperature of 1260 0 R. and there was no color

change in these end sections. There were no furthur color changes during

runs 1 through 6 in air.

Table l tabulates the stabilized temperatures on the calcium-titanate-

coated element for runs 1 through 6 which were conducted in air. Tempera-

tore measurements where color change did not occur (T 1 and T2 ) were rela-

tively consistent for the six runs. Where change in color had occurred

(T3, T4.. and T5 ), the stabilization temperatures decreased, from run 1

through run 4.

The next five runs were made on the same calcium-titanate coated

l

element but in a vacuum chamber rather than in air. The vacuum level

ranged fzom 16"5 to 16-
7 tors.

F
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On run 7 (the first run in vacuum after six runs in air), the center

19 inches (48 cm) of the calcium-titanate-coated element changed color from

the pale yellow back to the original charcoal gray as temperatures exceeded

12600 R. This first run in a vacuum apparently reversed the process which

caused the center section of the calcium-titanate-coated element to turn

pale yellow on the first run in air. No further color changes occurred

during the five runs in the vacuum chamber.

Table 2 tabulates the stabilized temperatures on the calcium-titanate-

coated element for runs 7 through 11 which were conducted in the vacuum

chamber.	 Temperature measurements where color change did not occur (T1 and

T2 ) were relatively consistent for the five. runs. Where a change in color

had occurred (T3, T4, and T5 ), the stabilization temperatures decreased

from run 7 to run 9. The emissivity at T4 and T5 was calculated for run 11

and found to be 0.85.

After the five runs In the vacuum chamber, five additional runs were

made in air on the same calcium-titanate-coated element.

_ R	 -- 	 _;\
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On run. 12, the first rerun in air, the pale yellow color again

appeared on the portion of the calcium-titanate- coated element that

exceeded 12600 R. As in the earlier runs in air, no further changes in

color o ,-.curved on subsequent ru-is in air.

Table 3 tabulates the stabilized temperatures on the calcium titanate.-

coated L-lement for runs 12 through 16 which were reruns conducted in air.

Temperatwre measurements where color change did not occur (T 1 and T2 ) were

relatively consistent over the five runs. Where a change in color had

occurred (T T, and T5 ), the temperatures showed less change then in

the initial air runs and in the vacuum chamber runs, but this time the 	 w

changes were upward rather than downward.

;X'-ray diffraction readings were made for six different conditions

of the calcium titanate with results as shown below.
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,Sample Examined	 CaTiO3	 TiO2	 CaO

1. Calcium titante powder	 Strong	 Medium	 Strong
prior to being applied to
element.

2. Sprayed calcium titanate Strong	 'a'race-.	 ----
pri6r to application of
heat (;sample scraped from
element))

3. Calcium titanate heat	 Strong	 ---
	 Medium

changed to pale yellow
color after run 1 in air.
Sample taken after run 6

4. Calcium titanate that	 Strong	 -=--
	 Weak

did not change color
during runs 1 through 6.
Sample taken after run 6

5. Calcium titanate heat	 Strong	 --
	 Medium

char_ged back to charcoal
gray from pale yellow
duri-n,g run 7 in vacuum.
Sample taken after run 11.

6. Calcium titanate that	 Strong
	

Medium
charged to pale yellow
color after run 12 in air.
Sample taken after run 16.

T'he Ca2Al2SiO7 and/or Ca3Mg(SiO4) 2 
is probably from the asbestos

and glass which were present in the vacuum chamber with the element.

'These compounds are missing after the succeeding runs in air.

NORR2	 a

Y
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Evaluation of these analyses did not provide any conclusive evidence

regarding the change in color of portions of the calcium titanate coating

or its significance.

In order to have a complete picture, a Parasitic 'load, Resistor element

(element 104) was plasma coated with iron titanate for three runs in the

vacuum chamber. The results tabulated in table 4 verified that the iron

titanate will adhere to the 321-stainless-steel element if used only on

runs in  vacuum. The emissivity' at T 4 and T for run 19 was calculated

and found to be 0.79.

Tn table 5, the results from the final run for each of the four condi-

tions (Calcilam titanate run in air, calcium titanate run in the vacuum

chamber, clacium titanate rerun_ in air, and iron titanate run in the vacuum

chamiber) are shown for comparison_. The temperatures for the iron-titanate-

coated e_.ement are higher because more heat was being dissipated by this
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of the calcium-titanate-coated dement.
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CoNC,1,Uu't'ONS

The purpose of these limited tests was to determine the adhesiveness

of calcium titanate and iron titanate to the 321- stainless-steel surface

of the Parasitic 'Load Resistor elements during a normal operational cycle

both in air and in a vacuum.

Me following conclusions were reached as a result of these tests:

(1) iron titanate will not adhere for even one heating and

cooling cycle in air. This confirmed the findings of the

contractor.

(2) Iron titanate will adhere at least for three cycles in

a v2c°aum chamber. This confirmed previous work on iron "U'Lanate

coatings in a vacuum as reported in reference 2.

(3) :Cron titanate is not satisfactory for this application_.

O Calcium titanate will adhere at least during limited

:x
3 *S

i
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to assure that it will perform adequately over a five-year period.

I /	 For example ,, the significance of the color change whet calcium

titanate is used in air and in a vacuum must be determined.

Lewis Research Center
i

Cleveland, Ohio
i

VU"e 18, 1969	 kaw
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Figure 1. - Parasitic load resistor.
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