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ABSTRACT

Two new methods for obtaining control and stability deriv-
atives from observed flight data are developed. The first method
is based on a quasilinearization procedure and is applicable in
parameter identification problems where the plant is modeled by
a system of linear differential equations, and noisy measurements
of state and control variables are available. Computationally,
this method is equivalent to a modification of the Newton-Raphson
method. The second, a "directed random search" method is based

on a concept called evolutionary programming, and is also applica-

ble for nonlinear problems. Using X-15 flight test data, the
two methods are compared and stability and control derivatives
for the lateral motion of the X-15 are given.
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FOREWORD

This research on computational methods for calculating
stability derivatives from observed flight test data was
sponsored by the National Aeronautics and Space Administration
Flight Research Center in Edwards, California, under Contract
No. NAS4-1280. The NASA project monitors were Mr. Lawrence
W. Taylor, Jr. and Mrs. Harriet J. Smith.

These studies were performed by Decision Science, Inc.,
San Diego, in the period December 1967 through September 1968.

The principle investigator was Dr. George H. Burgin. Dr. M. J.

Walsh served as a technical advisor throughout this research.
Mr. George Kurata wrote most of the digital computer programs
developed under this contract.
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TWO NEW METHODS FOR OBTAINING STABILITY DERIVATIVES
FROM FLIGHT TEST DATA

By George H Burgin
Decision Science, Inc

SUMMARY

Two new methods for calculating stability and control deriv-
atives from flight test data are developed Digital computer
programs for both methods have been written and tested out with
actual flight test data delivered by NASA Flight Research Center,
Fdwards

The first method s applicable whenever the system is repre-
sented by a set of l1inear differential equations and the error
criterion is that of minmmizing the squared error integral It
uses parameter sensitivity functions (qradients) to obtain an
algoriythm which minimizes the error function This method shows
very good convergence and can be extended to certain nonlinesr
differentval equations It s shown that a modification of the
Newton-Raphson method w111 result 1n the same computational
algorithm

The second method s a direct search method 1n the space of
the unknown system parameters The search proceeds by changing
one parameter at a time, progressing stepwise to points in the
parameter space which yield lower and lower error function values
The most likely successful next step 1s determined by a finite-
state machine, which, n ftself, 1s obtained by a search procedure
called evolutionary proqramming

Obtaining stabir)lity derivatives from flight test data 1s a
special case of the process parameter 1dentification problem and
modifications of these two methods are applicable whenever the
problem of obtaining system parameters from measured {(and there-
fore noisy) state and control variables has to be solved

The analysis of flight test data of an X-15 flight shows
that the first method 1s computationally more efficient than
the second one Evolutionary programming may have advantages
1n the case of process i1dentification problems dealing with
nonlinear differential equations or with nonquadratic error
functions The first method permits obtaining error estimates
for the unknown parameters and the experiments with the qiven
X-1% flight test data indicate that these error estimates are
of realistic size

It 15 suggested that these methods be extended to attack
the problem of obtaining stahility derivatives of airplanes with
non-neqglicctable nonlinear properties

'



- SYMBOLS

coefficient matrix for the state vartiables
(stabt1ity matrix)

element of A

coefficient matrix for the control variables
(control matrix)

element of B
inverse of the normal equations

= 1 (aL) dimensional stability derivative

T, \3/ parameter

= 1 (aL ) dimensional control derivative

x 38, J parameter
Lare
NB. dimensional stability or control derivative
parameters analoguos to the preceding defin-
Y‘ ition

1inear vector function for the derivatives
of the state variables

= 3z partial derivative of the cost function
3aj with respect to the j-th unknown par-
ameter

(M+1) = number of observed data points
number of control varivables

number of state variables

roll rate, radians/second

yaw rate, radirans/second

time, seconds

&“(

SYMBOLS (concluded)

observation period, seconds

total number of unknown systems parameters
control variahle

weighting factor

state variable, calculated

state variable, observed

cost function

angle of attack, radians

j-th unknown system's parameter

s1deslip angle, radirans

(in connection with evolutionary programming
change 1n the cost function)

ailleron deflection, radians
rudder deflection, radians
dummy control variable

Kronecker delta

standard deviation

bank angle, radians

Superscripts

transpose ot vector or matrix
nominal condition, reference trajectory

trajectory obtarned 1n k-th 1teration

a dot denotes the time derivative




INTRODUCTION :

Determination of stability and control derivatives from
flight test data 1s a special problem from the more general
arca of systems i1dentification, a field which has recewvved
a great deal of consideration during the last few years A
short summary and additional references to earlier methods of
determining stabirlity derivatives from flight test data can
bhe found 1p a recent paper by Lawrence Taylor (ref 1) and in
an article by Peter Younqg (ref 2)

The work described 1n this report was performed under
contract NAS4-1280 bv Decision Science, Inc 1in San Dieqo
for the NASA Flight Research Center at Edwards, California
The purpose of this contract was to use a new computer
technique, called evolutionary programming (ref 3) for the
determination of Stability derivatives and to compare the
computational efficiency of this method with the efficiency
of other, more analytical, methods The analysis of the
possible mathematical techniques showed that a very efficient
computatiornal algorithm can be derived by either using a
quasilinearization technique or a modification of the class-
1cal Newton-Raphson method In addiiton to its efficiency,
this method permits estimates of the variances of the
calculated stability and control derivatives.

Both methods have been 1mplemented 1n digital computer
progqrams {for a CDC 3600 and an IDM 360/40 computer) and ob-
served X-15 flight data have been analysed The assistance
of Lawrence Taylor and Harriet Smith, both of NASA Flight
Research Center, n conducting this wort 1s qreatly apprecirated

Statement of the Problem

In theNproblem of parameter 1dentification of a linear
system., the process 1s assumed to be governed by the linear
matrix differential equation

x = Ax + Bu (n

where x  1s a vector of n state variables and u a
vector of m control variables, A a coefficient matrix
(stability derivatives) with dimension (n x n) and B
a coefficient matrix (control derivatives) with dimension
(n x m) It 1s assumed that some or all of the elements of

A and B are unknown and to be determined. Unless otherwise
stated, these elements will be assumed to be time 1nvartant

In order to obtain estimates of the elements of A and

B, measured time histories of the state variables x and
the control variables u, and possibly of their time deriyv-
atives, are given The problem consists now in finding
a‘J‘s and blj‘s which w111, when substituted into the
differential equations, match the obhserved time histories

1f the differential equations are solved with the correct
ini1tial conditions and the measured control variables u(t)

N In the case of the determination of stability and control
derivatives from flight data, 't can be assumed that the time
historves have been obtained i1n carefully planned experiments
The accuracy and the confidence limits of the calculated para-
meters depend a great deal on the proper choice of the forcing
functions, which are, for the lateral motion, rudder and
atleron deflection These two functions not oniy have to
be linearly independent but must have am amplitude which
compromises between a large value (therefore obtaining a
good signal to noise ratio i1n the measured data) and a
small value {(therefore obtaining a motion with negligible
nonlinear effects) (ref 4)

1f a time history 1s generated by a process which is
governed exactly by a linear differential equation of form
(1), and 1f no noise or errors are 1ntroduced in the measure-
ment of x{(t). x(t) and u(t), the n(n + m) wunknowns can
be found by formulating n(n + m) linearly independent
cquations using observed values at (n + m) different time
points, and then solving this exact system of linear equations
for the unknown parameters

It values for the derivatives of the state variables
are not obtainable by measurement, yet the state variables
themselyes are medsured with sufficrent accuracy, numerical
differentration of the ~state variables gives estimates of
the x(t) and 1t s, 1n principle, again possible to
formulate as many }inear equations as there are unknowns.

However, since the di1fferentiation 15 a process which
introduces noisc. more reliable results can be obtained by
setting up morce linear equations than there are unknowns
and then Lo sulve these equations by a least square procedure.
A comprehcnsive summary of least squares methods can be found
in reference %, and a short summary of the computational
procedure tor obtaining least squares estimates of the




stap1lity and control derivatives is given in the next section
2* tn1s report. The least squares technique is used 1n both
tne methods described here to obtain a set of starting values
for the unknown parameters.

So far, 1t has been assumed that time histories obtained
from processes which can be exactly described by a linear
ssstem of differential eauations of form (1) are analysed
In most practical situations, however, equation (1) 1s only 2
first order approximation to a really nonlinear process
This, of course, 1s exactly the case 1f the lateral motion
of an airplane 1s approximated by a system of linear differ-
ential equations Already the existence of purely lateral
motion 1s a simplifying assumption, the exact form of the
equations of motion for airplanes shows that there 1s
coupling between the lateral and longitudinal motion, as
can be seen for instance in reference 6. Purely latere)
motion described by a linear system of differential equations
also neglects the product terms between roll and yaw and the
nonlinear aerodynamic forces produced by the control surface
deflections.

An attempt to estimate the error bounds on the calcu-
Yated stability and control derivatives must take finto
account the errors introduced by noisy measurement and the
error in using a linear model of a nonlinear process

The Linearivzed Equations of Lateral Motion
The following system of differential equations 1s used

n determining stabili.y and control derivatives for the
lateral motion (reference 10}

* LsA“A * LsR R+ Lo
A R +

* NGAS * NGR § No

+ Yy

v (2)

[

Tne tast volumn of constants are multiplied by a constant
con**nl force of constant magnitude one These "dummy
derivatives® allow for compensation of drift of the null
point of the measuring devices

The A and B matrices follow
A
Lp L, Lg 0
0
Np Nr N8
“° ']
v8 VO
1 0 0 0
B
Lea Lsr Lo
Non NsR No
0 4] Yo
0 0 0
The vlement 4,y represents the angle of attack of the

airplane during the flight test When performing a lateral
maneuver, the pilot attempts to keep the angle of attack
constant Since o can be measured, it is not considered
as one of the unknours of the elements of the A matrix,
in the calculation, the actually (and slightly varying)
measured value of the angle of attack 15 used

The
known quantity 50 that there are 14 unknowns to be determined

value of Yo 15 also measured and therefore a




THE LEAST SQUARES METHOD

The least squares method 1s based on the fact that the
different1al equations (2) are valid at every time instant.
Substituting measured values of p, r, g and ¢ and of
their derivatives wnto the differential equations permits
forming swnultaneous Tinear algebraic equations Setting
up more linear equations than there are unknowns yields
an overdetermined system of linear equatyons, the solution
of which gives the estimates o the unknown parameters

In the general case where the mode)l of the system is
given by a differential equation of form (1), the following
four steps aré required-to obtain least square estimates

Step 1 In this preliminary step, obtain numerical
approxymations to those derivatives of the state variables
which are not available from-measurements ' If the observed
values of the state variables are not too contaminated by
norse, the following approximation can be sufficient.

x,(t) = [;u(ﬁm) - ;1“0(-1)] Mty = Y

If the observed values are unequally spaced or are very
nevsy, higher order approximations may have to be used

Gcod results can be obtawned by smoothing and i1nterpolation
with spline functions (ref 7)

Step 2 Number the unknowns i1n consecutive order, for
instance

an T oay

3 = a,
3an = “(n#n)
by, -

%(nan) + )

hnm “(nen) + (nem)

Step 3 Each time 1nstant, at which measured values
of the state variable.. ?i 1=1 n and the control
variables u 121 m and values of the derivatives of the
J .
state variables x, 1=1 n are available allows {by
substitution into the differential equaﬁions) the formulation
of n Yinear equations, 1n which the X, are the coefficients

of the unknown parameters a,, k=1  nen, the u, are the
coefficients of the unknowns aps k=(nen)+1 n*n+m) The

values of the derivatives of the state variables form the
right hand sides of these equations The form of these
equations 1s 11lustrated for a specific case with three
state variables and one control variable 1n equation 3 1t
1s clear from the form of these equations that they can be
separated 1nto n independent systems, one separate system
for every state var-atle, and therefore for the unknown
parameters of one row of the A and B matrix

Step 4 The overdetermined system can now be solved
by the classical least squares method and the estimates of
the unknown coefficients as well as their variances can be
determined

If some of the elements of the A or B matrix are
assumed to be known, the overdetermined system of linear
equations s obtained by subtracting the products of the
qiven parameters with their corresponding coefficrents from
the right hand side

In order to show how the variances are calculéted. write
the vverdetermined system of equations in the form

A a = b - (‘)
(ane such system for each state variable)
Assume a vector «" , for which
A = ¢
and denote the difference vector between b and ¢ with v
v=>b-c¢ T
The least squares sniution requires v v = minimum and it 1s
obtained by solving
AT hum = AT b (5)
- 9
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Equations (5) are called Lhe normal equations, and their
solution can be expressed as

- -1
a® = (ATA)  ATb (6)
The variance of the total fit error 1s given by
[ vTv
o
(M+1)-n (7}

where M+1 is the total number of equations (see eq (3)) and
n 1s the number of unknowns. The quantity M+i-n is called
the degree of freedom

The standard deviation for the i-th unknown parameter can
be calculated as

1 (8)

where €y, 18 the 1-th main diagonal element of the inverse
of the normal equation

c = (aTay"!

The value of vTv can be obtained wn two ways Obviously,
by backsubstituting the solutions found for the a° into
equation (4), then summing the squares of the residuals

(b, - c})? yields the scalar quantity vTv Computationally
more cfficient 1s the following way

T

viv = bTb - (ATb) u°

The correctness of this expression can be seen as follows

(Aa’ = b)T(Aa® - b)

(o TAT 26Ty (Au” - 1)
T

o T(aTs 2 ATh) bTAat + bTh

The first term vanishes due to the normal equations (5) and
therefore

<
<
"

T

bo- (ATp)T. {9)

vTv b




$ r.e tne elements ATb are already known as the right
2+ si1des of the normal equations, this calculation
rezJires only the calculation of two scalar products

Finally, a remark about linear dependencires seems
in order Consider first linear dependencies between
individual equations {(row dependencies) As long as the
total number of equations minus the number of linear de-
pendencies 1s greater than the number of unknowns, the
linear dependencies are irrvelevant for obtaining parameter
estimates Consider now linear dependencies between state
or control variables (column dependencies) 1f the mathe-
matical model expressed by equation (1) is adequate, linear
dependencies between the state variables are impossible
However, linear dependencies between control variables
are possible and 1f two or more control variables are
linearly dependent over the entire period of observation,
two or more columns 1n the overdetermined system, and
therefore also 1n the normal equations will be lfnearly
dependent In this case, 1t is not possible to determine
all the unknown parameters n the B matrix, only ratios
between parameters can be calculated

In a process 1denti“*ration problem, where the time
historves are obtained by performing carefully planned
experiments, linear dependencies between control variables
can always be avoided For the determination of the stabil-
1ty and control derivatives of the lateral motion of an
airplane, linearly 1ndependent ai1leron and rudder deflections
will quarantee a nonsingular coefficient matrix of the
normal equations -

12

THC METHOD OF QUASILINEARIZATION

The method developed in this section results 1n an
algorithm which s computationally equal to the one described
by Taylor 1n his paper "A Modified Newton-Raphson Method for
Determining Stabrlity Derivatives From Flight Data” (ref 1)
It 1s 1nteresting to note that the same procedure for cal-
culating stability derivatives can be obtained by two quite
different approaches

The basic 1dea 1s to find coefficients 1n the A and
B matrix which permit fitting the observed time histories
(which are assumed to be solutions to the differential
equation (1)) As criterion of fit the integral of the
weighted squared differences between calculated and observed
time histories 1s chosen The following cost function 1s
therefore defined

T
2= % ow S [0 - 70)] e (10)
0

=1

1t reliable measurements of the derivatives of the state
variables are available, a different posstble cost function
could be taken as

T

2z« Y v, f [xI(t)-I]('t)]“ dt

1= 0

" T
+ Z wf'f[x,(t) - %] et )
1=1 0

It 1+ also possible to include only certain derivatives
tn the second sum, ey p and r It seems that the choice
of the tost function deserves additional attention

As weighting factors the inverse of the root mean square
of the observed state variable gives a reasonable balance
between the four observed state variables Different choirces
for the weighting factorc are, ov course, possible and may
take the 1elative accuracies of the measurements into consider-
ation {tor 1nstance, roll and yaw rates can often be measured
more accurately than bank and sideslip angle )

13




In the following deriyvation, a cost function of form
1) 1s assumed and for simplicity of notation, the weight
ractors are all assumed to be one

As a preliminary step 1n deriving the algorithm it
s shown how the sensitivaty functions (here the partial
derivatives of the state variables with respect to the
unknown parameters) can be calculated Rewrite equation
(1) n the following form

x = F(x, u, a, t) (12)

where F 1s a vector function and all unknown parameters
are combined into a row vector a, such that

a3, a|"—.0| Gn

an, ] —=3 a
‘n n+! 2n
etc

Differentiate equation (12) with respect to some a,
say a., and write the i-th component of the vecte. ( a

assuined to be independent of time)

¥ s Fy(x.u, a, t)
OuJ ‘NJ
aF 2 e F
?f; AR DA
=1 3Xk BGJ k=1 auk BOJ
+ ?EJ
auJ {13)

Since the control variables arc independent of a, the second
sum vanishes Under the usual assumption that the second
partial derivatives are continuoug, we can i1nterchange the
order of differentiation and obtain

n

L :FJ Ix aF1
't y 7 X auJ (14)

Equation (14) 1s a linear differential equation for the
influence coefficient
ax,

Juj

Specifically, for a system of form (1) with four state
v:r1ables and three control variables, the sensitivity
equations can be written as

y - i=1 4
k] ‘
d ( "L) DI x 8 kel 4
dt 3akJ v=1 k) 3=1 4
axy " ax i=1 .4
d - - .o
dt ()b_kj) -z 3y nB,, * oYy fg Kele. 8

(18)
where Sip 18 the Kronecker delta

There are 108 linear differential equations, which
can be solved simultaneously with the four equations (1).
Therefore, a system of 112 differential equations is
obtained The i1nitial conditions of the influence coef-
ficients

k)
1 and x4

\akJ lka

are all zoro because the parameters are independent of
the initial conditions of the state and control variables
tquation {195) i1ndicates how the sensitivity functions are
obtainced as solutions of a linear system of differential
equations

It 1s now shown how these influence functions can be
used to obtain corrections to the unknown coefficients
Obtain a first approx.mation to the unknown (constant)
coefficients bv applying the least squares technique as
described in the precceding section Then solve the differ-
ential equations for the state variables together with
the equations for the paramter 1nfluence coefficients

15




At each point at which observed values of the state
variables are available, expand around the reference
014t obtained with the present values of the coefficients
the solution of the state variable 1n a Taylor series

as a function of the unknown parameter corrections, 1 e.,

L'(ﬂ + Au, t) = X': (u-t) + H§M) nx‘ { t)a
J=1 DuJ e nJ (lP)

+ higher order terms
In the above expression, consider X‘(a*Aa.t) as the desired

. ~ 0
value {(equal to the observed value of xi(t). x‘(u.t) the

value of the presently computed reference solution and the
summation as the desired correction This clearly gives a
linear equation for the AaJ. For each state variable, and

for each point t, one such equation 1s obtained When

the reference solution s carried out over the entire ob-
servation 1nterval, n(M+1) linear equations can be formulated
and solved by a least square method This solution yirelds
corrections to the present values of the parameters Adding
these corrections to the parameters will give a2 new reference
trajectory, closer to the one of the observed data This
process can be repeated unty) the corrections become neglig-
tble.

3~

One way of looking at the problem of obtaining corrections
'\uJ requires that the n integrands n

" u X —~ ?
=3 /[xi(-\.t) > a-“; (avt)ha, - x,(t)] dt  (17)

1=1

(U s the total! number of unknowns) - ‘
vanish In other words, try to satisfy the following equation

ax -
Z ! (a.t)Aa = X, - X‘O(u.t)
=y e J ! 1=1 4 (17a)

Formulating these equations for t=t°. t] N tm ytelds an

overdetermined system for which the normal equations are of
the forwm

16

an IBM 360/40 computer Four to five iterations were
?ggu:ned to get the corrections to about 1/10,000 of the
value of the coefficient Using approximately 120 time
points required approximately one minute computer time
on the CDC 3600 to calculate 15 unknown parameters with
5 1terations The differential equations are solved by
a fourth order Runge Kutta method

Estimates of the variance of the unknown parameters
are obtained i1n the following way .

The  variance of the total fit error can be expressed as

M
ot Z:| " ' \,zzo[x‘(tv) - ;l(tv)] //("”-U) (19)

and estimates of the variances of the individual parameters
are calculated as

" = [\ 'C (20)

where cJJ 1s the j-th main diagonal element of the inverse
of the normal eguations (18)

18




. ax ? “ M oax ax
i i 1
;‘ \gau‘ (t")Aul + ‘Z Z—;-—(tv) E—(t“)/\u,+

StovEe '
i " R ax,
. " & v}:o [ Ftepx )] 5a (%)

i=1 v o 1 v=0 2
“ M
3ax
- 5 - 1
. = ; [xi(t\:) xi(tv)] 3a (t,)
vJ0
.
.
L )
.
L )
n M M M
L3S X ax Ix
1 i 1 1
1=1 vgo\tlu(tv)oul(tv)l\ul + =1 ‘§-_lu(tv)a_;:(tv)l\u7 +

n

M .
1; ;ol"i(tv)"i(‘u’] ““ﬁ(t‘)

(18)

The soluttion to these normal eauations yrelds the corrections
hey which are sdded to the old values of the o, and then

da solution of the differentiral equations for the state varta-
bles and sensitivity functions using these new parameters

is performed This process 1s 1terated unti1l the corrections
become negligible

A computer program which allows up to 15 parameters
assumed to be unknown was written and run both on a CDC 3600

NEWTON-RAPHSON'S METHOD AND ITS MODIFICATION

This section shows how the same computational algorithm,
which 1s given 1n equation (18) can be obtained by a modi-
fication of the Newton-Raphson method and that it might be
worthwhile to program the unmodi1fied Newton-Raphson method
After a short general exnosition of how the Newton-Raphson
method can be used in optimization problems, it is shown
how the necessary partial second derivatives of the state
variables with respect to the unknown parameters can be
calculated in a manner similar to the one applied for ob-
taining the first order sensitivity coefficients It is
then shown how the second order partial derivatives of
the cost function with respect to the unknown parameters

are obtained and used to minimize the cost function

First, consider the problem of minimizing a function
of several independent variables with no constraints
Let

2= Fla o) = F3) (21)

where o denotes the vector with elements o a,

A necessary condition that 2z has a local minfmum s

22
Dt
J

=0 for all j

Since Newton's method 1s really a procedure to find zeros

(not extrema) of functions, 1t 1s used to find values of
« which will satisfy the above condition Let

-y _ Az
) "J(u) = “‘j
and expand HJ(&) around some point a” 1nto a Taylor
series
u
N
-~ T = __J_ ~o
Hj(.. +oan) “_,(" ) 2 .; Ta, (a®)ra,

+ higher order terms
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Nealecting the higher order term; and requiring that

HJ(&n + Aa) = 0

yrelds a system of U llnéar equations for the U unknown
y .)HJ
{a"Yra, = - H_{a°)
§| xhlk k J J=l U

Newton's method consists 1n solving the above syster of
Vinear equations. Since the higher order terms have been
neqlected, "J(u" + Aa) will not be exactly zero but, 1f the

starting point was close enough to the zero of HJ.

]NJ(& + )l will be smaller than IHJ(S“)| The process
1s repeated and converges to the zero of Hj with quadratic
convergence Remembering now that HJ 1s the first partial

derfvative of the function to be minimized with respect to

. the 3-th unknown parameter, the elements 1n the coefficient
matrix 1n the above equation are the second partial deriv-
atives of the function to be minimized with respect to the
unknown parameters In order to obtain the second order
partial derivatives of the cost function, consider first
the procedure to obtain second partial derivatives of the
state variables Write the differential equation which
governs the state variables in the following form

x1 = G‘ (X(c-x). a, U, t)

The {vector) function G may be nonlinear Then

n n o
2 (dx])= ; Gy oy R Z: Gy By
Yy dt - 239 JuJ Th vy an

14
+ 19t

. L T * 3a
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S

(23)

(24)

Assuming the control variables independent of a, the
second germ vanishes and since the a are assumed to
be time independent, the third term drops out Inter-
changing the order of differentfation, we obtain the
well known result

n N
d (“) T S, %
dt I\uJ k=1 alk an

Differentiating again and 'mmediately changing the order
of differentiation on the left-hand side gives

d(a?"i ) ) U { i 226, ax, axy . 326, a_x_k_ .
dt daj30, gl €0 X 3%, da, Fay T 303X %a
22x 2G 3’6 ax 376
oLy e
auJau! 3xk, aJ xk o, °j a,

This -ystem of differential equations, together with the
differential equations for the state variables and the first
order sensitivity functions allows the calculation of

the second order partial deriyvatives It may be emphasized
again that the above derivation _made no assumption about
Tinearity of the functions GI(u. X, U. t).

The total number of second partial derivatives and
therefore of differential equations of form (25) required

in the Newton-Raphson method 1s nuz

for the special case where the functions G‘ are u

lincar and of the form

n
G, (x, a) = Z aleJ(t) + ﬁb,JUJ(t) /

3= 3

ceverdl simplafications can be made
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0 for all s and t
= 0 for all s ¢t

0 for al) a t

1
- - = 0 for all w «x
ﬂaw ab

= S5 Sk

35 ax- = 0 for all w X

and

and v

and x

and 2
s

]

The differential equations for the second partial
derivatives are

" ox n VX a K X
ﬁl (‘d ) W ) Tk a kna AR »ev t e oat
st “uv \ st"uv st "Tuy
n » X
d (I x ) ‘
—— = q -
dt pa_ab ; 1k nastﬁ
( 1-x ) n a’xk
— = a ot e pem——
dt SF;xaByz ;Z; 1k awaabyz (26)

In all of the above expressions, 1, s, t, u, v, w, and y
run from 1 ton, x, and z from 1 to m

[t is appropriate to make a remark about the order of
magnitude of the task of calculating the second order partial
derivatives needed in the Newton-Raphson method Assume
n=4 and m =3 and assume 7 wunknown parameters in the
A and 7 wunknowns in the B matrix Due to the symmetry

2 n
3_1i““ . a’x1
Jajaak Bukan

a total of 4+14+)5/2 = 420

second partial derivatives are required, which means that

a system consisting of 480 (linear) differential equations

(4 state variables, 56 first order partial derivatives and
420 second order partial derivatives) has to be solved Con-
sidering the siwnple form of the riqht hand sides of these
equations, 1t is feasible to solve them on a digital computer
with typically 32,000 words of core storage

The above derivation showed haow the second partial
derivatives of the state variables with respect to the un-
hnown parameters can be found The necessary groundwork
1s now laid to consider the problem of determining stability
derivatives using Newton's method




lLet

" T
IRV (i) -xn]’
ldentrfy 101 df[x.' X] t)] dt (27)

n T
u‘J z‘géflx](t.ﬁ) . 'i'](t)] ::J' at (28)

with the function HJ(u) nf the first paragraph
Let agarn a' be a point i1n the parameter space close to

a local minwmum of z(a) Then t
k he n linear equ
obtaining the A“J are {see equation 23) quations for

L N T
J - 3
g’lk {2 ;”![x‘(“"'t) - ?](t)] 5:§ (a°,t) dt}l\cuk

n T
. - - x|
B [ - R ] G a
0 J
(29)
. J=1 u
Carrying out the differentiation
under the sum
stgn and dropping the constant factor 2 g]:esand tntearal
RIR
S oo™ G 2o
o't o : X ) a0
k= 3o {"k ( )"‘J (ert) *["(' - x'(t)]‘"k":‘.}(u"t)
n T Ix
d - - ' X '
t K 'Zfll’(u .t) -x,(t)J .q‘ (u .t) dt
[ J
=1 u (30)
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the coefficients 1n the matrix for the linear equations can

be obtained by an i1ntegration of known functions Also the

e¢lements of the right hand side vector can be obtained by. an
integration of known functions

The Modified Newton-Raphson Method

If theintegrals in equation (30) are approximated by
sums and 1f the second partial derivative term is neglected,
the following equations are obtained

Ix

=1 (t ). (t ) A, =
=1 IEI v=lauk hd 3“1 v k

¢

i_‘f i;[x*,“v)-u“v)]::—:(tv)
for 3=1 1] (3n)

Comparison of equation (31) with equations (18) shows
that the two systems of equations for obtaining the corrections

,“k are 1dentical

Thi1s demonstrates that the applicatron of the Newton-
Raphson method to the minimization of the cost function (10)
gives the same result as the method of quasilinearization it
the second partial derivatives are neglected The possibility
of modifying the Newton-Raphson method by neglecting the second
partia) derivatives was mentioned the first time by Balakrish-
nan 1n reference 8
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DIRECT SEARCH BY EVOLUTIONARY PROGRAMMING

Basic Concepts of Evolutionary Programming

Evolutionary programming is described in detail 1n
the book "Artificial Intelligence Through Simulated Evolution"
by Fogel, Owens and Walsh (ref 3) In order that a reader
unfamiliar with the concept of evolutionary programming might
understand the direct search method described 1n the next
section, a short summary of evolutionary programming 1s
presented

Consider first a Moore-machine, a triplet (l,.,f), where
1 represents an input alphabet with a finite number of ele-
ments, 1 a set of states and f a transfer function from
I x » to the set of states When an element of the i1nput
alphabet is received by a Moore-machine, 1t will transfer
from one state to the next state 1n accordance with the rule
laid down by the transfer function f The program used for
the determination of stability derivatives 1s capable of
handling Moore-machines with up to five states and with an
input alphabet size of 60 Once the vnput alphabet and the
number of states are specified, the transfer function f
is given in tabular form specifying for each state and for
each 1nput symbol the next state reference

Evolutionary programming works essentfally with finite
state machines which can be described by a quintuplet
(1,»,f,0,g), where again | denotes an input alphabet, =
a set of states, f the next state transfer function, O
an output alphabet which may or may not be i1dentical with
I (wn the application for stability derivatives, 0 con-
tains only 6 different elements), and g an output
function For a given output alphabet (0 the specificacion
of g will uniquely determine a finfte-state machine

Evolutionary programming s a method to find finite-
state machines which will produce, for a given sequence of
ireut symbols a sequence of output symbols which will minwimize
a certain cost function Evolutionary programming consists
essent1ally of three basic procedures, an environmental
comparison procedure, a mutation and selection procedure,
and an output determination procedure
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FIGURE 1

EXAMPLE OF A FINITE-STATE MACHINE

3 internal states, 3 symbol input alphabet, 2 symbol output
alphabet

Figure 1 shows a finite-state machine with three states,
three 1nput symbols and two output symbols Assume that the
finite-state machine is initially 1n state A and receives
the input sequence 0 0 2 O The following sequence of
events will then take place

Present State A B B C B [+ A
Input Symbol 0 0 2 0 2 2 1
Next State B B c 8 C A A
Qutput Symbol 0 1 0 0 0 1 0

The output determination algorithm draives the Moore-machine
with the given sequence of input symbols and determines those
outputs (to each branch) that will minimize a grven cost
functron The outputs are obtatned n a deterministic manner
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The mutation and selection procedure generates an off-
sotanag by vandomly performing one of the following mutatyons
ctothe present fantte-state machaine

Adding a state

Deleting a state

Changing a next state reference
Changing the start state

When a state 1s added, some next state references to
previously existing states are changed randomly to conndct
the new state with the rest of the machine. The newly
added state obtains as many next state references as there
are i1nput symbols These next state references are added
randomly When a state 1s deleted, all the next state
references which referred to that state are deleted and
randomly connect to some other states

The two remaining mutations are self-explanatory The
output determination routine determines now the proper output
symbols to this mutated machine

A comparison 1s made whether the parent or the offspring
obtains a lower value of the cost function and that finite-
state machine yielding the lower value is kept as a new
rarent machine

As more and more information becomes available {larger
and larger recall) over which the fini1te-state machines can
be exercised, finite-state machines are generated which re-

flect, with increasing fidelity, the logic of the underlying
process

28

Evolutionary Programming Applied to Function Minimization

The basic 1dea of evolutionary programming 1s to find
finite-state machines which refiect in some sense the logic
'n the behavior of a system This may be an independent
system or a system which interacts with fts model and whose
behavior, therefore, 15 dependent on the evolutionary program
As an example of the first class, consider the problem of
finding finite-state machines describing the logic of the
changes 1n ocean temperature Clearly, the ocean temperature
15 1ndependent of the logic found by the evolutionary program
The problem of function optimization fs an example of the
second kind, such a process can be viewed as being a game
between the evolutionary program and the cost function. The
behavior of the value of the cost function in the past is now
dependent on what "moves" the evolutionary program made, this

15 the 1nteraction between the two "players” There is of
course a clear distinction between the cost function and the
“values of the cost function” The cost function itself is

certainly 1ndependent of the optimization method used, but

the "values of the cost function" depend on the path taken

by the optimization procedure It may be mentioned here that
Wilde, 1n his book on optimum seeking methods (ref 9) also talks
about the "Opening Gambit" and the "End Game"”. The purpose

of the evolutionary program 1n an optimum seeking procedure

can be summarized as being the device which indicates which
sequence of changes 1n the free parameters will be the most
promising to reduce the value of the cost function This fis
done presently in the following way

Each free parameter can be changed 1n four different
wadys, in a positive or negative direction with either a
large or small step size Consider now an 1nput alphabet
(o{ consisting of four times as many symbols as there are

unknown free parameters fach of these symbols represents a
unique change in one of the parameters An evaluation of the
cost function using this changed parameter will yield a new
value of the cost function Designate the change in the cost

function by 8., therefore, R] =z, -2,y Negative values

1°
of b correspond to 'mprovements 1n the set of parameters, while
a positive value means a degradation 1n the set of parameters
Clearly, 1t 1s desirable to make B as small as possible

{this corresponds to a large improvement) Define the follow-
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1ng ntervals
3 < 833 €0 < 33 <y

and define a corresponding output g where
g =1 if B < a,

g =, if a,<B < a,

g = ,f a,<igo .
p=nf 0 <B < a;

Fo=vaf aJ(ﬁSau

=« 1f a,<B

For the given set of parameters there corresponds exactly
onc output symbol ¢ to one input symbol a

Assume now that there exists a finite past history of
pairs of (uk. “k) Clearly, the game of minimizing the cost

function with respect to the given parameters consists now
tn choosing an LI which will produce a Bysy 95 small

as possible It is here the evolutionary program comes into
play Suppose that there 1s a finite-state machine which
w11l "f1t" the sequence (a,, en). n=1,2 k Fit here

means that i1f the finite-state machine is driven by the se-
quence of the apns 1t wi1ll produce the output sequence B8

Then at the k-th move, that finite-state machine is in a
certain state, say SJ A1l possible inputs 8 will have a

unique output associated with them It seems logical to assume
that, since the finite-state machine was a perfect fit over

the past, this finite-state machine contains information

about the outcome associated with any given next i1nput symbol
Scanning all possible outcomes and searching for the lowest
possible, the 1nput symbol associated with the lowest output
symbol can be determined Call the l.west p0551312 output
symbol .E:?d The symbol associated with Rﬁzs 1s now con-
sidered to be the evolutionary program's next move Note that
severa) different input symbols may produce the =me lowest
value for the output symbol If this 1s the case, one among
all the candidates for producing the lowest output symbol fis
chosen randomly for actual usage The parameter change assoc-
1ated with thys symbol apey 1 performed and a new evaluation

of the payoff function occurs At this point, the two newly

and h:i% {which corresponds to the

n

generated symbols e
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actual change 'n the cost function), are added to the list
of {input/output pairs If the actual output, B:f%. was a 3

or smaller, the game proceeds in the same way as described
above, the recall being now one event longer If the output
was 4 or more, the evolutionary program is considered as
having made an action error. This case is described later
in this section.

It is shown above how, 1n principle, a finfte-state
tholhine with a perfect fit over the past history s used
as an “acting player” It s appropriate at this point to
add some additional important details First, for any
reasonable length of the sequence of the past moves, called
the recall, it is unlikely that a finite-state machine with
a perfect fit wil)l be found For this, and other reasons,
more than one finite-state machine are carried as possible
players in the evolutionary program, speciffcally, for the
problem solved here there are three finite state machines
which are restricted in size. Machine 1 is a simple one-state
machine while machines 2 and 3 can have any number of states
between 2 and 5. Before a move is made., the “"best" one
of the three possible machines is selected as “player". Best
means that machine with the lowest fit score The fit score
is obtained in the following way. Given k pairs of input/
output symbois, a,, B),, a,, 8, ags Bys drive the finite-

state machine with the &k nputs and for each move form the
difference lsm - sal. where 8y 1S the output predicted by

the machine and 8, the output that actually occured Divide

J
the sum giﬂen | by k and define this quantity
as the fit score If the actual output °:i§ is qreater

than or equal to three {a degradation in the cost function)

the evolutionary program is considered to have made an error

or a ‘'vad action” has occurred Machines 2 and 3 are now mutated
Mutation means that with probability

Py a start state is changed
Py a next state reference is changed
P3 a state 1s added

Ps a2 state is deleted




where, of course

. LA

v=l
if the mutanl hds dlvcady the maximum number of states,
py sautomatically 15 set to zero and analogously Py equals

2ero vf the machine has only 2 states Machine 1 15 not
mutated, because the only possible mutation would be to
add a state, but the intention 1s to keep machine 1 a one
state machine

The offspring machine 1s driven over the recall and 1ts
fit score 1s evaluated [f the f1t score 1s worse than that
of the parent machine, the offspring 1s replaced by the
parent and another mutation i1s tried A parameter tn the
program limits the number of trials for obtaining a better
machine After machines 2 and 3 have been mutated (or at
least an attempt has been made to mutate them), the machine
with the best fit score of the three machines 1s chosen as
the actor and the game proceeds in 1ts normal way

~ Two mportant details of the evolutionary program have
not yet been discussed, the setting of the outputs and the
treatment of the unexercised state-transitions First note
that the mutations affect only the structure of the finite-
state machines but not their outputs It 1s clear that for

a finite-state machine with a given structure and a given
start state, there exists at least one setting of the outputs
which will minimize the fit score Assume first that no
state transition s exercised more than once during the
recall Then, each one of the exercised state-transistions
1s assigned a unique output symbol {namely the one corres-
ponding to the actual occurred output symbol during the
transition) and the fit score will obviously be zero, because

for all 3, =1 k, ﬂ: = ﬁ% More mportant 1s the case

where some state-transitions are exercised more than once
duryng the recall It 1s possible that, 1n order to fit the
actual data, different symbols would be required each time

the transition 1s exercrsed In such a case, the output
symbol 15 set to some weighted average {rounded to the near-
est integer) of the desired outpul <ymbols Also a new fat
score 1s detined, which 1s equal to the fit score as described
above divided by the number of times that non-unique state-
transitions have occurred, this 1s called the normalized fit
sctore and 1L 1s thys normalized fit score on which the choice

.
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of the acting player 1s based. The third possibrlit, is
that a state-transition is never exercised during the
recall and therefore the output symbol associated with
this state-transition has no influence on the fit score
It proved to be advantageous from a programming point of
view to assign a special symbol tc those outputs An
output of zero now designates an unset output value

A last point to discuss 1s the procedure used if
analyzing the agting player, a move that will produce an
improvement in the cost function cannot be found, or
expressed in the alphabet of the evolutionary program,
1f in & given state no input symbol will produce a pre-
dicted R of 3 or better. If this occurs, the evolution-
ary program is not used to generate a symbol for the next
move The next move is obtained by scanning the past moves
and finding the most recent move which produced a 8 of
3 or less If at any move, an actual output of 4 or
greater is generated, the evolutionary program is said
to have made an action error If this occurs, the next
move or next moves will not be determined by the evolution-
ary program, but rather by a subprogram which essentially
tries out whether a step 1n the reverse direction is better
and 1t keeps trying until it again finds a successful move,
always restoring the coefficients to their old value after
an unsuccessful move Details about this subroutine can be
obtained from the flow chart i1n Figure 2 This subprogram
alspo guarantees that at the end, a local minimum of the
cost function within the specified levels of changes in the
parameters has been found, because only after an exhaustive
unsuccessful search over all possible single changes in
the parameters 1S the run terminated A second way to
terminate the run 1s by limiting the number of moves After
termination, the final value of the coefficients are printed
together with the complete sequence of input/output pairs
Since the evolutionary program requires some environment in
the past, initially, to start the program, a separate sub-
routine generates a prescribed number of input symbols and
the corresponding output symbols are calculated. This is
called the initial environment The moves which generate the
in1tial environment are performed 1n a stochastic manner

Summarized, the features of the present version of the
evolutionary program for the determination of stability and
control derivatives are as follows

(text continued on page 37)
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START

RLAD PARAMETERS FOR EVOLUTIONARY P
READ OBSERVED FLIGHT DATA
READ INITIAL VALUES OF COEFFICIENTS

[GENERATE STARTING ENVIRONMENT |

[SET THE OUTPUTS OF ALL THREE MACHINES BY
FITTING THEM OVER STARTING ENVIRONMENT

~ d
D OBTAIN OPTIMAL INPUT 941

WITH LOUEST NORMALIZED FITSCORE

FROM MACHINE

1

<<E;VB?:?d (a,)) €3 :> NOI|REPLACE e4q BY THE
LAST SUCCESSFUL a

Y

UPDATE FITSCORE OF
ALL THREE MACHINES

GO TO A

]

[E:> 4‘:Lt\(ss

PERFORM PARAMETER CHANGE
ASSOCIATED WITH a4

CALCULATE ACTuAL 823¢%

PRINT THIS MOVE
(TF DESIRED BY PRINT INTERVAL)

FIGURE 2
FLOUCIHART OF 1 VOLUTIOHARY PROGRAM FOR

FUNCTION MINIMIZATION

RESTORE PREVIOUS SET
OF PARAMETERS

4

IF MUTATION INTERVAL REQUIRES,
MUTATE MACHINES 2 AND 3

Il

USE SUBROUTINE “LOGIC" TO
DETERMINE NEXT INPUT SYMBOL

FIGURE 2 (CONTINUED)




ENTRY
SUBROUTINE LOGIC

&

FLAG PREVIOQUS STEP
AS UNUSABLE

~

JCOUNT = 1

REDUCE
STEPSIZE

Bact

CALCULATE 825}

JCOUNT -= Number of
Unused Steps

UPDATE FIT

[ocounT = JcounT + 1 ]

FLAG THIS STEP
AS UNUSAGLE

RESTORE OLD VALUES
0f PARAMETERS

WAS LAST STEPSIZ

\ LARGE

A1l possible

parameter changes

have been tried

WAS OTHER
DIRECTION

b SCORE OF ALL ——-p@ -
THREE MACHINES

1S JCOUNT
NSYM

CHOOSE RANDOMLY AN
INPUT WHICH HAS NOT

NO

YET BEEN FLAGGED AS

UNUSABLE

NSYM = Number of

FIGURE 2 (CONCLUDED)
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Input Sym-
bols = 60

differential Equation x = Ax + Bu where

A is of dimension (4,4)
B 1s of dimension (4,3)

Zwicf(x-x)zdt '

ay)y 335 8,3 3¢ 37 833 331 333

Cost Function-

Free Parameters

‘

by bya byy by by; byy b3y

Number of Finite-

State Machines: 1 one-state machine

2 2 to 5 state machines
“Input Symbols 60
Output Symbols 6

Input to the Program

Initial configuration
Initi1al start state
Maximum recall length

For each machine

Probability distribution for
the 4 types of mutation probability of.changing

start state

Py = probability of changing
next state reference

-y

Py = probability of adding a
state
' Py = probability of deleting a
state

Maximum number of moves

Print interval.

Number of errors allowed before a mutation occurs

Maximum number of machines tried at a mutation

For all 60 input symbols the change 'n the coefficient assoc-
fated with this input symbol

The interval Timits for the determination of the output symbol,

L i=1 . 4.

The nitial values of the 28 elements of the
The observed time histories
The 1ntegration step size

A and B matrix.




Results

some hey results dre listed below for a typical run of
the evvolutionary program on the CDC 3600 computer

Running time 6 minutes

Initia) environment length 50

Total number of moves of the evolutionary

program 400

Tota) number of function evaluations 750

Value of z initially 18N
after 1n1t 50 moves 1 038
after 100 moves of Evol Pr 0O 564
after 200 moves 0 49)
after 400 noves 0 463

Input Symbols The 60 symbols of the 1nput alphabet represent
changes of
+2%, -2%, +0 2%, -0 2%
of the coefficients

B0 3y, 3y Bags Bans B0 35,0 35,

bll’ bl,‘ b]3' bzl‘ b:z' b?!' b33

in this order ~
Intervals for output symbols

Qutput Symbol Corresponds to
1 F<-501073
2 7<-5010"
3 <0
4 §F < 10103
5 i < 1010° -
6 i > 1010

The inityal coefficients were those found by the least squares
ptocedure and are given n the following two matrices

A
-0 0999 0 595 -22 48 0
0 00641 0,0668 1 036 0
0 1147 -1 0 0238 0 00698
1 0 0 0

38

]
12 99 15 11 0.361
0 487 -1.764 0.00731
0 0 -0.00272
0 0 0

Note that in this experiment a;, was considered das one
of the unknown parameters.

The coefficients at the end of the run were

A
-0 153 0.163 -21.67 0
0.00615 0.0642 1108 |O
1.216 -1. -0.0190 { 0.00698
1 0 0 0
8
13 2§ 14 53 0 378
0.551 2 06 -0.00221
0 0 -0.00261
0 0 0

Note that the first eleven moves of the evolutionary program
(move 51 through 61) produced all outputs of 1, which {s
quite remarkable, considering that the longest string of

"1 yn the first fifty moves was only of length 3 (see Table 1)

Although the optimization method using the evolutionary
program works satisfactorily in its present form, there exist
possibilities to wmprove its performance. A first improvement
consists 1n preventing the evolutionary program from qetting
“trapped"” in a long string of input symbols which all produce
an output 3 (a very slight improvement in the cost function)
If unlimited computer time were avairlable, these long strings
of outputs of 3 would be all right, but in the interest of
of saving computer time, an attempt should be made to find
parameter changes which will 1mprove the cost function more
rapidly. Such values may be found more quickly if after a
string of outputs 3 with some given fixed length, a random

(text continued on page 42)
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TABLL I - INPUT - OUTPUT WISTORY OF THE FIRST 150 MOVES
OF THE EVOLUTIONARY PROGRAM
MOVL INPUT ouTPUT (a) MOVE INPUT ouUTPUT (a)
NUMBER synboL | sympor 2 NUMCER SYMBOL | SYMBOL
1 37 1 39 52 !
2 31 3 a0 22 6
3 16 2 41 43 1
4 51 6 42 26 6
5 52 1 43 25 2
6 35 5 a4 56 2
7 36 2 45 z4 6
8 28 5 46 23 1
9 27 2 47 25 6
10 1 6 a8 26 4
n 12 ) 49 27 4
12 8 3 - 50 - 28 ~ 3 -
13 3 3 51 54 1.
14 22 6 52 12 1o
15 21 1 53 52 1o+
16 10 1 54 54 1.
17 16 2 55 52 1
18 48 2 56 54 1o+
19 19 5 57 54 1
20 20 2 58 52 1o
21 38 6 59 54 1.
22 37 1 60 23 1«
23 59 3 61 10 1.
24 36 2 62 52 2 *
25 25 1 63 4 1+
26 2 5 64 12 4 *
27 1 2 65 N 4
28 25 1 66 37 2 *
29 54 1 67 52 4
30 48 2 68 51 2
31 49 6 69 52 4
32 50 1 70 51 2
33 ) 2 n 54 1.
34 7 4 72 54 2 o+
35 8 3 73 23 3 »
36 53 6 74 37 6 *
37 54 1 75 38 !
38 25 ] 76 a1 5

TABLE 1 (CONCLUDED)

MOVE | INPUT | OUTPUT MOVE | INPUT | OUTPUT
NUMBER | symBoL | symsoL (2 NUMBER | symgoL | symsoL (2)
77 42 6 14 49 o
78 a3 3 115 a9 6
79 23 2 * 116 50 6
80 a1 6 * N7 51 4
81 a2 5 118 52 3
82 43 3 119 49 6 +
83 44 4 120 50 6
83 10 6 * 12) 5) 4
85 9 5 122 52 a
86 n 2+ 123 38 5
87 54 2« 124 3 2 .
88 54 s 125 38 5 o«
89 53 5 126 7 5
90 -| 55 a 127 39 a
91 56 3 128 30 4
92 54 5 o+ 129 1 2 .
93 53 5 130 12 4
94 55 a 131 N 4
95 56 3 132 a8 4
96 a1 6 * 133 a7 2 .
97 a2 5 132 10 6 ¢+
98 43 3 135 9 6
99 43 2 136 1 4

100 50 6 * 137 12 4
101 a9 1 138 a9 5
102 52 4 * 139 50 6 *
103 51 ‘3 140 51 2 .
104 54 1. 141 54 1 .
105 52 5 142 54 2 .
106 51 2 143 54 5
107 21 2 o« 184 53 5
108 38 ) - 145 55 3
109 38 2+ 146 54 5 e
110 54 2 » 187 53 5
M 10 6 + 148 55 a
12 9 6 149 36 a
13 1 2 150 38 2

“ap

was determyned by the evolutionary program

3 An asterik after tac output symbol wndicates that this move

An asterik after the output symbol indicates that this move
was determined by the evolutionary program
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search procedure similar to the one used to generate the
tniti1al starting environment, 1s used for o given number
of moves

A second wmprovement would, as the search procedure
approaches the mintmum of the cost function, automatically
change the magnitude of the changes in the coefficients
(say reduce them by a factor of 10) and aiso reduce the
values of Ja,] through }a,] This latter change would

1nLredse the sensttivity of the evolutionary program to
changes 1n the cost function
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EXPERIMENTAL RESULTS AND COMPARISON OF THE TW0O METHODS

Two computer programs were developed, one implementing
the quasilinearization method and the other one the direct
search method using evolutionary programming

The first experimental runs with these programs were
made with data which did not originate from actual flight
tests, but which were obtained from solving four simultaneous
differential equations of form (1) on a hybrid computer and
using the measured and digitized data from these runs. Clear-
ly, since these data originated from a process described
exactly by a differential equation of the form considered
hece, and since the only errors were roundoff errors in the
digitized data, the coefficients were found quite accurately
and the observed time histories were matched by the calculated
time histories with the same accuracy as the originally gtven
time history data (three to four significant digits).

The next case analysed the flight test data of an X-15
flight. Measured data of p, r, B, ¢, and of § amwd v vere
available at 0.025 second intervals for a total observation
time of 6 seconds. For the calculatfon, every second point
of these time histories was used.

A first approximation to the unknown coefficients was
obtained using the least squares method In the experiments
with the program using the quasilinearization method, for
the element a;, the observed angle of attack has been used.

By the least squares method the following parameters and
estimates of their variances were obtained.

A
-0.10140 0N 0 539%0.213 -22.43%0 15 ]
0 006420 001 0 0619£0.019 1.036$0.01 0
| 0 11420 0019 -1 -0.05840.021 0 00698
L 0 0 0
8
12 9940 40 15 15%0.38 0.359%0.006
0 49810 035 -1 760%t0.034 -0.0074%0.00058
0 (] 0.014820.0013
0 0 0
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After five 1terations with the quasilinearization

method, the following coefficients and error estimates .
were obtained (see aiso Figure 8 for comparison)
A
-0 19140 04 2 85320 75 -24 0810 24 0
0 004120 0028 -0 12640 06 0 97410 025 0
ult) -1 - 0 02030 035 0 00698
] 0 0 0
B
14 2131 45 19.3741 72 0 40610 025
0 709+0 128 -1.951+0 159 -0 00230 002
0 - —0 -0 0012%0 0008
0 0 0

It was beyond the scope of the work performed under this
contract to develop methods for obtaining error bounds on
the calculated stability and control derivatives Nevertheless,
the methods used to find numerical values for the variances 1in
the calculated derivatives seem quite reasonable and they allow
at least an estimate of the expected relative accuracy of the
parameters. For i1nstance, looking at the value of a,z(Lr

and its estimated variance 1in the pure least squares solution
indicates that this parameter was determined with very little
accuracy Indeed, the a,, found after the f1fth iteration

differs from the a,, fromthe least squares solution by a

factor of about five, and again, the estimate of the error
after the fifth 1teration 15 st11l fairly large On the other
hand, looking at 313("8 )the relative small variance 1n the

Jeast squares solution is an indication that this parameter can
be determined relatively accurately and the final valuve of

a,,; after five 1terations differs only about 67 frem the value
found by the pure least square procedure

Fiqures 3 through 6 show the observed roll and yaw cates
and the srdesVip and bank angles On the same graphs are shown
the time histories obtained using the coefficients of the pure
least squares solution and the trajectories obtained with the
coefficients after five 1terations of the combined gradient-
least squares method Figure 7 shows the corresponding aileron
and rudder deflectians

( text continued on page 51)
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Roll Rate,
p, radians/second

40

Time, seconds

FIGURE 3.
OBSLRVED AND CALCULATED ROLL RATCS OF X-15 FLIGHT TEST.

a - Observed roll rate -

b - Calculated roll rate using coefficients found with
pure least squares procedure

¢ - Calculated yaw rate using coefficients found with
5 vterations of the quasilinearization method.




r, radians/ second

Yaw Pate,
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FIGURE 4
OBSIRVID AMD CALCULATED YAW RATES OF X-15 FLIGHT TEST

a - Observed yaw rate

b - Calculated yau rate using coefficients found with
pure least squares procedure

¢ - Calculated yaw rate using coefficients found with
% 1terations of the quasilinearization method
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FIGURE 5.
OBSERVED AND CALCULATED SIDESLIP ;NGLE OF X-15 FLIGHT TEST.

; - 2b:er:ed sideslip angle.
- Calculated sideslip angle using coeffic
. g:;gu}::sz s?:ares procedure. S fents found with
- ed sideslip angle using coefficients found
5 1terations of thequasilinearizatien method. ound with




Bank Angle,
o, radians
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ERLL

0 1 2 3
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FIGURE 6 :
OBSCRVED AND CALCULATED BANK ANGLE OF X-15 FLIGHT TEST

a - Observed bLank angle

b - Calculated bank angle using coefficients found with
pure least squares procedure

¢ - Calculated bank angle using coefficrents found with
5 1terations of the quasilinearization method

Aileron and Rudder deflection,

4A and 48R, radians

06

.04 - - -
&R
02
/,,—"_1
A
0 = Z

-.04 3 y: -

Time, seconds

FIGURE 7
ATLERON AHD RUDDER DEFLECTION OF X-15 FLIGHT TEST

8A - Arleron deflection.
8R - Rudder deflection
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FIGURE 8
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The experimental results of the evolutionary program
were discussed in the section “Oirect Search By Evolutionary
Programming*.

Figure 8 compares the values of the coefficients obtained
by the least squares method with those obtained by quasilinear-
1zation, as wel) as the corresponding estimates of the var-
1ances The fact that the estimated variance in the least
squares method is smaller than 1n the quasilinearization method
should not be taken as an indication that the least squares
coefficrents are closer to the true values than the ones
obtained by the quasilinearizationm method It seems that the
parameter estimates obtained by the least squares method are
not unbiased, and as pointed out earlier, the estimates of the
variances, as developed in this report merely indicate the
relative accuracy between the different coefficients

At this point, 1t seems appropriate to compare the per-
formance of the two methods. Judging only according to
efficiency in computer time, the method of quasilinearization
1s clearly superyor to evolutionary.programming for a problem
with linear differential equations and quadratic cost function.
In about one minute computer time (COC 3600) five iterations
on a time history with about 150 measured points can be per-
formed These five 1terations yteld a set of coefficients
which minimize the cost function. The coefficients are accur-
ate to four to five significant figures and as a2 by-product,
the estimates of the variances are obtained

On the other hand, 2 six minute run on the same computer
using the evolutionary programming technique yfelded a final
value of the cost function sti1ll about twice the size of
the trueminimum value Furthermore, no estimates of the error
bounds are available with this method The evolutionary
programming technique of minimizing functions with a relative-
ly large number of unknowns may have advantages 1n system
1dentification problems where a nonlinear model of the plant
15 required or where a nonquadratic error criterion has to
be used The combination of a general numberical 1i1ntegration
technique (such as for i1nstance Runge-Kutta) and evolutionary
programming allows quick changes both n the differential
equations of the model and of the form of the cost function




CONCLUSIONS AND RECOMMENDATIONS

The results of this report show that the method of
quasilinearization results in an efficient digital computer
program which allows determining those values of the stability
and control derivatives which minimize the integral of the
weighted squared difference between the observed time
history and the one obtained by solving the differential
equations using the observed control variables and the para-
meters to be determined. A few 1terations (typically three
to five) will yield the correct values (the ones which min1-
mize the cost function) of the unknowns and estimates of their
variances can be obtained

The second method which 1s based on evolutionary program-
ming cannot compete successfully in the case of linear
di1fferenti1al equatirons and a quadratic error function, but 1t

may have advantages 1n nonlinear process i1dentification problems

., The fact that a method is available that solves the
minimization problem of a given cost function for a given
form of the systems' differential equations (here linear)
should not lead to the conclusion that the problem of deter-
mining stability and control derivatives from flight data 1s
solved in 1ts widest engineering sense A number of important
questions are stil]l open, for instance:

(1) How does the inclusion or omission of a fi1t of the
observed yaw and rol) rate derivatives influence the
coefficients and their variances?

~

(2) wWhat criterion should be applied in choosing the
weighting factors?

(3) 1Is 1t possible to give variances which are theoreti-
cally more solidly founded and which distinguish between
errors due to measurement noise and inadequacy of the
- mathematical model?
The analysis of the X-15 flight data shown in this report
seems to indicate that the assumed mathematical model may not

he quite adequate Especially the fit to the roll rate suggests
that there are certain terms missing 'n the roll moment equation,

these might be unsteady flow derivatives

The experiments suggest that additional work on tﬁe choice
of the mathematical model with alternative forms of the equations
of motion (possibly nonlinear equations) be performed Experi-

ments, where stabylity and control derivatives obtained from
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one flight test may indicate which mathematica: models give
the most consistent results and therefore are the most
realistic ones Computational methods and computer proqrams
are now available which may help to advance the state of the
art in the determination and possibly the usage of stability
and control derivatives

Decision Science, Inc
‘'San Diego, September 25, 1968.

53




»

10

REFERENCES

Taylor, Lawrence W., and 11iff, Kenneth W A Modified
Newton-Raphson Method for Determining Stability
Derivatives from Flight Data. Paper presented at
the 2nd International Conference on Computing Methods
1n]0pt{gggation Problems, San Remo, Italy, September
9-13, .

Young, Peter C Regression Analysis and Process Parameter
Estimation. .A Cautionary Message Simulation, Vol.
10, No. 3, March 1968. Pages 125-128.

Fogel, Lawrence J , Owens, A. J., and Walsh, M, J - Artr-
ficial Intelligence Through Simulated Evolution, John
Wiley and Sons, Inc. 1966

Howard, S The Determination of Lateral Stability and
Control Dervvatives from Flight Data. Canadian Aero-
nautics and Space Journal, March 1967. Pages 127-134.

Smyth, Gene A. The Theory and Applications of Least
Squares. NASA TM X-63127, 1967.

Etkin, B. Dynamics of Flight Stability and Control. John
Wiley and Sons, July 1959

Reinsch, Christian H.. Smoothing by Spline Functions.
Numerische Mathematik 10, 1967. Pages 177-183.

Balakrishnan, A. V. Communication Theory McGraw-Hill
Book Company, Inc 1968

Hilde, D J Optimum Seeking Methods. Prentice-Hall,
Inc. 1967

Anon Dynamics of the Aiyrframe Report AE-61-411,
Northrop Corporation, Norair Division, September, 1952.






