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ABSTRACT

Two new methods for obtaining control and stability deriv-
atives from observed flight data are developed. The first method
Is based on a quasll1near1zat1on procedure and 1s applicable In
parameter Identification problems where the plant 1s modeled by
a system of linear differential equations, and noisy measurements
of state and control variables are available. Computationally,
this method 1s equivalent to a modification of the Newton-Raphson
method. The second, a "directed random search" method 1s based
on a concept called evolutionary programming, and Is also applica-
ble for nonlinear problems. Using X-15 flight test data, the
two methods are compared and stability and control derivatives
for the lateral motion of the X-15 are given.
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FOREWORD

This research on computational methods for calculating
stability derivatives from observed flight test data was
sponsored by the National Aeronautics and Space Administration
Flight Research Center in Edwards, California, under Contract
No. NAS4-1280. The NASA project monitors were Mr. Lawrence
W. Taylor, Or. and Mrs. Harriet J. Smith.

These studies were performed by Decision Science, Inc.,
San Diego, in the period December 1967 through September 1968.
The principle investigator was Dr. George H. Burgin. Dr. M. J.
Walsh served as a technical advisor throughout this research.
Mr. George Kurata wrote most of the digital computer programs
developed under this contract.
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TWO NEW METHODS FOR OBTAINING STABILITY DERIVATIVES

FROM FLIGHT TEST DATA

By George H Burgin
Decision Science. Inc

SUMMARY

Two new methods for calculating stability and control deriv-
atives from flight test data are developed Digital computer '
programs for both methods have been written and tested out with
actual flight test data delivered by NASA Flight Research Center,
Fdwards

The first method is applicable whenever the system Is repre-
sented by a set .of linear differential equations and the error
criterion Is that of minimizing the squared error integral It
uses parameter sensitivity functions (gradients) to obtain an
algorithm which minimizes the error function This method shows
very good convergence and can be extended to certain nonlinear
differential equations It n shown that a modification of the
Newton-Raphson method w i l l result in the same computational
algorithm

The second method is a direct search method in the space of
the unknown system parameters The search proceeds by changing
one parameter at a time, progressing stepwise to points In the
parameter space which yield lower and lower error function values
The most l i k e l y successful next step is determined by a finite-
state machine, which, in Itself, is obtained by a search procedure
called evolutionary programming

Obtaining stability derivatives from flight test data is a
special case of the process parameter identification problem and
modifications of these two methods are applicable whenever the
proMem of obtaining system parameters from measured (and there-
fore noisy) state and control variables has to be solved

The analysis of flight test data of an X-1S flight shows
that the first method is computationaltv more efficient than
the second one Evolutionary oroqramming may have advantages
in tho case of process identification problems dealing with
nonlinear differential equations or with nonquadratlc error
functions The first method peimits obtaining error estimates
for tlu> unknown parameters and the experiments with the given
X - 1 S f l i g h t test data indicate that these error estimates are
of r e a l i s t i c «; i 7e

It is suqnusti'11 tli<it these methods he extended to attack
the problem of obtaining s t a b i l i t y derivatives of airplanes with
IIOII-IHMJ I < i Labi c nonlinear properties



SYMBOLS

u

6A

Lr' Lu' L«R'

Hp« V V

' YBf

coefficient matrix for the state variables
(stability matrix)

element of A

coefficient matrix for the control variables
(control matrix)

element of B

Inverse of the normal equations

TT (tt)
A

dimensional stability derivative
parameter

dimensional control derivative
parameter

dimensional stability or control derivative
parameters analogues to the preceding defin-
ition

linear vector function for the derivatives
of the state variables

32 partial derivative of the cost function
3oj with respect to the j-th unknown par-

ameter

(M+l) = number of observed data points

number of control variables

number of state variables

roll rate, radians/second

yaw rate, radians/second

time, seconds

SYMBOLS (concluded)

T

U

u

w

x

X

2

u

"J

B

I

60

'S1k

observation period, seconds

total number of unknown systems parameters

control variable

weighting factor

state variable, calculated

state variable, observed

cost function

angle of attack, radians

j-th unknown system's parameter

sideslip angle, radians

(in connection with evolutionary programming
change in the cost function)

aileron deflection, radians

rudder deflection, radians

dummy control variable

Kronecker delta

standard deviation

bank angle, radians

Superscripts

transpose ot vector or matrix

nominal condition, reference trajectory

Irajoctory obtained in k-th iteration

a dot denotes the time derivative



INTRODUCTION

Determination of stability and control derivatives from
fl i g h t test data is a special problem from the more general
area of systems identification, a field which has received
a great deal of consideration during the last few years A
short summary and additional references to earlier methods of
determining stability derivatives from flight test data can
be found in a recent paper by Lawrence Taylor (ref 1) and in
an article by Peter Young (ref 2)

The work described in this report was performed under
contract NAS4-1280 bv Decision Science, Inc in San Diego
for the NASA Flight Research Center at Edwards, California
The purpose of this contract was to use a new computer
technique, called evolutionary programming (ref 3) for the
determination of stability derivatives and to compare the
computational efficiency of this method with the efficiency
of other, more analytical, methods The analysis of the
possible mathematical techniques showed that a very efficient
computational algorithm can be derived by either us,1ng a
quasi 1inearization technique or a modification of the class-
ical Newton-Raphson method In addnton to Its efficiency,
this method nermits estimates of the variances of the
calculated stability and control derivatives.

Both methods have been implemented in digital computer
programs (for a CDC 3600 and an IRI1 360/40 computer) and ob-
served X-15 flight data have been analysed The assistance
of Lawrence Taylor and Harriet Smith, both of NASA Flight
Research Center, in conducting this work is greatly appreciated

Statement of the Problem

In the problem of parameter identification of a linear
system, the process is assumed to be governed by the linear
matrix differential equation

x = Ax * Ru (1)

whore x is a vector of n state variables and u a
vector of in control variables, A a coefficient matrix
(stability derivatives) with dimension (n x n) and B
a coefficient matrix (control derivatives) with dimension
(n x DI) It is assumed th.it some or all of the elements of

A and B are unknown and to be determined. Unless otherwise
stated, these elements will be assumed to be time invariant

tn order to obtain estimates of the elements of A and
B, measured time'histories of the state variables x and
the control variables u, and possibly of their time deriv-
atives, are given The problem consists now In finding

ij
and b .'s which w i l l , when substituted Into the

differential equations, match the observed time histories
if the differential equations are solved with the correct
i n i t i a l conditions and the measured control variables u(t)

In the case of the determination of stability and control
derivatives from f l i g h t data, it can be assumed that the time
histories have been obtained in carefully planned experiments
The accuracy and the confidence limits of the calculated para-
meters depend a great deal on the proper choice of the forcing
functions, which are, for the lateral motion, rudder and
aileron deflection These two functions not only have to
be linearly independent but must have an amplitude which
compromises between a large value (therefore obtaining a
good signal to noise ratio in the measured data) and a
small value (therefore obtaining a motion with negligible
nonlinear effects) (ref 4)

If a time history is generated by a process which 1s
governed exactly by a linear differential equation of form
(1), and if no noise or errors are introduced in the measure-
ment of x(t), x(t) and u(t), the n(n + m) unknowns can
be found by formulating n(n » in) linearly independent
equations using observed values at (n * m) different time
points, and then so l v i n g this^exact system of linear equations
for the unknown parameters

If values for the derivatives of the state variables
are not obtainable by measurement, yet the state variables
thfMiisrl ves are measured with sufficient accuracy, numerical
d i f f e r e n t i a t i o n of the "state variables gives estimates of
the x(t) and it is, in principle, again possible to
formulate as many tmear equations as there are unknowns.

However, since the differentiation is a process which
introduces noise, more reliable results can be obtained by
setting up more l i n e a t equations than there are unknowns
and then Lu solve these equations by a least square procedure.
A comprehensive summary of least squares methods can be found
in refcreurt; 5, and a short summary of the computational
procedure lor obtciuiing least squares estimates of the



s t a b i l i t y and control derivatives Is given 1n the next section
.•" tins leport. The least squares technique 1s used in both
trie methods described here to obtain a set of starting values
for the unknown- parameters.

So far. it has been assumed that time histories obtained
from processes which can be exactly described by a linear
system of differential equations of form (1) are analysed
In most practical situations, however, equation (1) is only a
first order approximation to a really nonlinear process
This, of course, is exactly the case if the lateral motion
of an airplane is approximated by a system of linear differ-
ential equations Already the existence of purely lateral
motion is a simplifying assumption, the exact form of the
equations of motion for airplanes shows that there is
coupling between ihe lateral and longitudinal motion, as
can be seen for fnstance in reference 6. Purely lateral
motion described by a linear system of differential equations
also neglects the product terms between roll and yaw and the
nonlinear aerodynamic forces produced by the control surface
deflections.

An attempt to estimate the error bounds on the calcu-
lated stability and control derivatives must take Into
account the errors introduced by noisy measurement and the
error In using a linear model of a nonlinear process

The Linearized Equations of Lateral Motion

The following system of differential equations is used
in determining s t a b i l i t y and control derivatives for the
lateral motion (reference 10)

p = Lp p + Lr r «R

r =SN P

= Of. P -

(2)

T''e l.iit lolumn uf constants are m u l t i p l i e d by a constant
con-'ol force of constant magnitude one These "dummy
derivatives41 allow for compensation of drift of the null
point of the measuring devices

The A and B matrices follow

A

LP
"p
'1

1

Lr

Nr

-1

0

L6

N6

\

0

0

0

Y*
0

SA

N«A

0

0

L5R

N6R

0

0

Lo

No

Yo

0

The element ajl repiesents the angle of attack of the

airplane during the flight test When performing a lateral
maneuver, the pilot attempts to keep the angle of attack
constant Since a can be measured, 1t Is not considered
as one of the unknours of the elements of the A matrix,
in the calculation, fie actuall> (and slightly varying)
measured value of the angle of attack is used

Tho value of YO is also measured and therefore a
known quantity '>o that there are 14 unknowns to be determined



THE LEAST SQUARES METHOD

The least squares method is based on the fact that the
differential equations (2) are valid at every time instant.
Substituting measured values of p, r, 0 and 4, and of
their derivatives into the differential equations permits
forming simultaneous linear algebraic equations Setting
up more linear equations than there are unknowns yields
an overdetermined system of linear equations, the solution
of which gives the estimates o* the unknown parameters

In the general case where the model of the system 1s
given by a differential equation of form (1). the following
four steps are required' to obtain least square estimates

S|eP_! '" f"s preliminary step, obtain numerical
approximations to those derivatives of the state variables
which are not available f rom-measurements ' If the observed
values of the state variables are not too contaminated by
noise, the following approximation can be sufficient.

If the observed values are unequally spaced or are very
noisy, tnqher order approximations -nay have to be used
Grod results can be obtained by smoothing and interpolation
w-ith spline functions (ref 7)

Step 2
Instance

Number the unknowns in consecutive order, for

ann " "(n*n)
b i i ~ a * \ ,1 ' (n*n) + 1

n(n*n) + (n*m)

Step 3 Each time instant, at which measured values
of the "state variable.- 7. i = l n and the control
variables u i=l
state variables x')
substitution Into the differential equations) the formulation

"~ are the coefficients

and values of the derivatives of the
=l n are available allows (by

of n linear equations, in which the
of the unknown parameters o, k=l

i
run , the u are the

coefficients of the unknowns a. , k=(n*n)+l n*(n+m) The
values of the derivatives of the state variables form the
right hand sides of these equations The form of these
equations is illustrated for a specific case with three
state variables and one control variable in equation 3 It
is clear from the form of these equations that they can be
separated into n independent systems, one separate system
for every state var'atle, and theiefore for the unknown
parameters of one row of the A and B matrix

Step 4 The overdetermined system can now be solved
by the classical least squares method and the estimates of
the unknown coefficients as well as their variances can be
detet nn ned

If some of the elements of the A or 8 matrix are
assumed to be known, the overdetermined system of linear
equations is obtained by subtracting the products of the
qiven parameters with their corresponding coefficients from
the right hand side

In order to show how the variances are calculated, write
the uverdeternn ned system of equations in the form

(4)

(one such system for each state variable)

Assume a vector (1" , for which

A ,.' = c
and denote1 the difference vector between b and c with v

v = b - c r
The least squares solution requires v v = minimum and It is
obtained l>y solving

AT A.,' = AT b (5)



Equations (5) are called the normal equations, and their
solution can be expressed as

T
(A'A)

T
A'b (6)

The variance of the total fit error is given by

(M+l)-n (7)

where M+l Is the total number of equations (see eq (3)) and
n is the number of unknowns. The quantity H+l-n Is called
the degree of freedom

The standard deviation for the 1-th unknown parameter can
be calculated as

(8)

IK

l«

where c?l is the i-th main diagonal element of the Inverse

of the normal equation

C * (ATA)-'

The value of v v can be obtained in two ways Obviously,
by backsubstituting the solutions found for the n" Into
equation (4), then summing the squares of the residuals

? T
(b, - c,) yields the scalar quantity v v Computationally

more efficient is the following way

vTv = bTb - (ATb) a"

|M
The correctness of this expression can be seen as follows

vTv = (A,,1 - b)T(A,," - b)

= („ TAT -bT) (A,," - b)

- „ r(ATA ' - ATh) bTAn° * bTb

The first term vanishes due to the normal equations (5) and
therefore

vTv bTh - (ATb)T., (9)

10 n



5 --^e tne elements A b are already known as the right
i'c sides of the normal equations, this calculation

'•e^jires only the calculation of two scalar products

F i n a l l y , a remark about linear dependencies seems
in order Consider first linear dependencies between
i n d i v i d u a l equations (row dependencies) As long as the
total number of equations minus the number of linear de-
pendencies is greater than the number of unknowns, the
linear dependencies are Irrelevant for obtaining parameter
estimates Consider now linear dependencies between state
or control variables (column dependencies) If the mathe-
matical model expressed by equation (1) Is adequate, linear
dependencies between the state variables are Impossible
However, linear dependencies between control variables
are possible and if two or more control variables are
linearly dependent over the entire period of observation,
two or mote columns in the overdetermined system, and
therefore also in the normal equations w i l l be linearly
dependent In this case, it Is not possible to determine
all the unknown parameters in the B matrix, only ratios
between parameters can be calculated

In a orocess Vaenti'-'ilion problem, where the time
histories are obtained by performing carefully planned
experiments, linear dependencies between control variables
can always be avoided For the determination of the stabil-
ity and control derivatives of the lateral motion of an
airplane, linearly independent aileron and rudder deflections
w i l l guarantee a nonsingular coefficient matrix, of the
normal equations ---'

TNi: METHOD OF QUASIL1NEARIZATION

The method developed in this section results in an
algorithm which is computationally equal to the one described
by Taylor in his paper "A Modified Newton-Raphson Method for
Determining Stability Derivatives From Flig h t Data" (ref 1)
It is interesting to note that the same procedure for cal-
culating stability derivatives can be obtained by two quite
different approaches

The basic idea is to find coefficients in the A and
B matrix which permit fitting the observed time histories
(which are assumed to be solutions to the differential
equation (1)) As criterion of fit the integral of the
weighted squared differences between calculated and observed
time histories is chosen The following cost function is
therefore defined

T

(10)

If r eliable measurements of the derivatives of the state
v a t i a b l e s are a v a i l a b l e , a different possible cost function
could be taken as

, / r
L

dt (11)

It i •, also possible to include only certain derivatives
in thr second sum, eg p and r It seems that the choice
of the tost function deserves additional attention

As w e i g h t i n g factors the inverse of the root mean square
of the observed state v a i i a b l e qives a reasonable balance
between the four observed state variables Different choices
for the weighting factor1" aie. or course, possible and may
take the i f l a t i v e accuracies of the measurements into consider-
ation (lor instance, roll and yaw rates can often be measured
more accurately than bank and sideslip angle )

13



In the following derivation, a cost function of form
,1^ is assumed and for simplicity of notation, the weight
rai,tots aie all assumed to be one

As a preliminary step in deriving the algorithm it
is shown how the sensitivity functions (here the partial
derivatives of the state variables with respect to the
unknown parameters) can be calculated Rewrite equation
(1) in the following form

x = F(x. u, a, t)

where F is a vector function and all unknown parameters
are combined Into a row vector a, such that

(12)

etc

Differentiate equation (12) with respect to some
say n , and write the 1-th component of the vectu (
assumed to be Independent of time)

ax. F, (x. u, a, t)

(13)

Since the control variables arc Independent of a, the second
sum vanishes Under the usual assumption that the second
pa i t l a l derivatives are continuous., we ran interchange the
order of differentiation and obtain

it
.F, nx 3Fi

Dn, (14)

14

Equation (14) is a linear differential equation for the
influence coefficient

"j
da t

Specifically, for a system of form (1) with four state
variables and three control variables, the sensitivity
equations can be written as

d /3x t \
dt \ 3a~/

'" iv

* Vu

+ UJ 6U

1=1
k = l

J"l

1 = 1

k-1.

J-1

4

4

4

.4

.. 4

.3

where is the Kronecker delta

There are 108 linear differential equations, which
can be solved simultaneously with the four equations (1).
Therefore, a system of 112 differential equations 1s
obtained The i n i t i a l conditions of the Influence coef-
ficients

(15)

and
>b t

arc all zero because the parameters are Independent of
thu i n i t i a l conditions of the state and control variables
Lquation (Ib) indicates how the sensitivity functions are
obtained as solutions of a linefli system of differential
equations

It is now shown how these influence functions can be
used to obtain collections to the unknown coefficients
Obtain a first app'ox .mation to the unknown (constant)
coefficients bv a p p l y i n g the least squares technique as
described in the preceding section Then solve the differ-
ential equations for the state variables together with
the equations for the paramter influence coefficients

15



At each point at which observed values of the state
variables are av a i l a b l e , expand around the reference"
,-oirft obtained with the present values of the coefficients
the solution of tha state variable in a Taylor series
as a function of the unknown parameter corrections, i e. ,

X., (n + A.I t) = X, (u.t)
n(n-

* t

n+m)

(u.t)An. (16)

+ higher order terms

In the above expression, consider x^a+Ao.t) as the desired
t ^ o

value (equal to the observed value of x^ft), x.,(a,t) the
value of the presently computed reference solution and the
summation as the desired correction This clearly gives a
linear equation for the AO . For each state variable, and
for each point t, one such equation is obtained When
the reference solution is carried out over the entire ob-
servation interval, n(H+l) linear equations can be formulated
and solved by a least square method This solution yields
corrections to the present values of the parameters Adding
these corrections to the parameters w i l l give * new reference
trajectory, closer to the one of the observed data This
process can be repeated until the corrections become neglig-
ible.

One way of looking at the problem of obtaining corrections
requires that the n integrands in

= £ /[*,<••.
1 = 1 0 '

t) i,t)Aa, - 7, dt (17)

vanish
(U is the total numbet of unknowns)

In other words, try to satisfy the following equation

2-1 , ' (,..t)Aa = x~ - X "(o.t)
j=i3"j J ' ' 1=1 4

Formulating these equations for t=t , t, , t yields an
ovcrdeterminod system for which the normal equations are of
the form

(17a)

16

and an IBP ,*60/40 computer Four to five Iterations were
•eq u i i e d to get the corrections to about 1/10,000 of the
\a\ue of the coefficient Using approximately 120 time
points required approximately one minute computer tAroc
on the CDC 3600 to calculate 15 unknown parameters with
5 iterations The differential equations are solved by
a fourth order Runge Kutta method

Estimates of thr variance of the unknown parameters
are obtained in the following way

The' variance of the total fit error can be expressed as

(19)

and estimates of the variances of the individual parameters
are calculated as

,g JJ

where c is the j-th main diagonal element of the Inverse

(20)

of the normal equations (18)

IB



flo +
2

(18)

The solution to these normal eauations yields the corrections
-,., , which arc uddeU to the old values of the n. and then
d solution of the differential equations for the state varia-
bles jnd s e n s i t i v i t y functions using these new parameters
is performed This process is iterated until the corrections
become n e g l i g i b l e

A computer program which allows up to 15 parameters
assumed to be unknown was written and run both on a CDC 3600

17

NEWTON-RAPHSON'S METHOD AND ITS MODIFICATION

This section shows how the same computational algorithm,
which is given in equation (IB) can be obtained by a modi-
fication of the Newton-Raphson method and that 1t might be
worthwhile to program the unmodified Newton-Raphson method
After a short general exnositlon of how the Newton-Raphson
method can be used In optimization problems. It Is shown
how the necessary partial second derivatives of the state
variables with respect to the unknown parameters can be
calculated 1n a manner similar to the one applied for ob-
taining the first order sensitivity coefficients It 1s
then shown how the second order partial derivatives of
tbe cost^ function with respect to the unknown parameters
are oVtalne'd a'nd used to minimize the cost function

First, consider the problem of minimizing a function
of several Independent variables with no constraints
Let

o) = F(i) (21)

where » denotes the vector with elements o , au

A necessary condition that z has a local minimum 1s

nz
nn. = 0 for all j

Since Newton's method is really a procedure to find zero.s
(not extrema) of functions, it is used to find values of
» which will satisfy the above condition Let

and expand II (.«) around some point a" into a Taylor
J

-» higher order terms

19



Meolecting the higher order terms and requiring that

H (a" + Au) =• 0

yields a system of U linear equations for the U unknowns

•',J (n")Aa, = - H («")
k J

(23)

Newton's method consists in solving the above syster of
linear equations. Since the higher order terms have been
neglected. II («n + An) w i l l not be exactly zero but, if the

starting point was close enough to the zero of H ,

|Hj(u * \u)| w i l l be smaller than |h" (a°)| The process

is repeated and converges to the zero of H. with quadratic

convergence Remembering now that H is the first partial

derivative of the function to be minimized with respect to
the j-th unknown parameter, the elements in the coefficient
matrix in the above equation are the second partial deriv-
atives of the function to be minimized with respect to the
unknown parameters In order to obtain the second order
partial derivatives of the cost function, consider first
the procedure to obtain second partial derivatives of the
state variables Write the differential equation which
governs the state variables in the following form

X, = G, f x(a), a, U, tj

The (vector) function G may be nonlinear Then

„ /d.,V

...j Vdt ) ,xk ,aj

1G, at
't Du.

36,

3-a. (24)

20

Assuming the control variables Independent of a, the
second term vanishes and since the a are assumed to
be time Independent, the third term drops out Inter-
changing the order of differentiation, we obtain the
well known result

at r 'GIM. 3*k
Differentiating again and immediately changing the order
of differentiation on the left-hand side gives

(
i
''"1 .>ir.

3*6, 3'G,

32x, 36, 376, 3x. I
_*. _ 1 A j^ ni.̂ }-̂ -.— - \

3a aa 3xki Do Sx^ 3a4 J
(25)

This cystem of differential equations, together with the
differential equations for the state variables and the first
order sensitivity functions allows the calculation of
the second order partial derivatives It may be emphasized
again that the above derivation made no assumption about
l i n e a i i t y of the functions G^fi, x, u. t).

The total number of second partial derivatives and
therefore of differential equations of form (25) required
in the Newton-Raphson method is nU

for the special case where the functions GI are
linear and of the form

biJuj(t)

'L-vcrdl simplifications can be made

21
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3ast3auv

3asta"bwx

3?6

3'G,

for all s and t

for all s t u and v

= 0 for all a t w and x

for all M x y and z

41s 6tk

for all w x and s

The differential equations for the second partial
i vo 11 ves at e

is .1 a

d
dt V:>'

d
dt lk 3bwx3b"yz (26)

In all of the above expressions, i, s. t, u, v. w,
run from 1 to n, x, and z from 1 to m

and y

It Is appropriate to make a remark about the order of
magnitude of the task of calculating the second order partial
derivatives needed 1n the Newton-Raphson method Assume
n = 4 and m - 3 and assume 7 unknown parameters 1n the
A and 7 unknowns in the B matrix Due to the symmetry

32x 3'x

!5i - a3X$ IS

a total of 4*14*15/2 = 420

second partial derivatives are required, which means that
a system consisting of 480 (linear) differential equations
(4 state variables, 56 first order partial derivatives and
420 second order partial derivatives) has to be solved Con-
sidering the simple form of the right hand sides of these
equations, it 1s feasible to solve them on a d i g i t a l computer
with typically 32,000 words of core storage

The Above derivation showed how the second partial
J e i l v a t i v e s of the state variables with respect to the un-
known parameters can be found The necessary groundwork
is now l a i d to consider the problem of determining stability
derivatives using Newton's method
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Let

Identify

dt

dt

(27)

(2B)

w i l h the function H,(") tne first paragraph

Let again <!' be a point in the parameter space close to
a local mi n i in u in of z(~i) Then the n linear equations for
obtaining the An are (see equation 23)

dt
(29)

C a i r y i n q out the di f f e> ent la t ion under the sum and integral
sign and dropping the constant factor ? gives

'.t)

Jt 'k

J = l (30)
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the coefficients in the matrix for the linear equations can
be obtained by an integration of known functions Also the
elements of the right hand side vector can be obtained by. an
integiation of known functions

The Modified Newton-Raphson Method

If the integrals in equation (30) are approximated by
sums and if the second partial derivative term Is neglected,
the following equations are obtained

U n H 3

5 V V-
fa *S\*

(31)
for j=l U

Comparison of equation (31) with equations (18) shows
that the two systems of equations for obtaining the correction-*
'•«,, are identical

This demonstrates that the application of the Newton-
Haphson method to the minimization of the cost function (10)
gives the same result as the method of quasi 1 Inearlzatlon H
the second partial derivatives are neglected The possibility
of modifying the Newton-Raphson method by neglecting the second
partial derivatives was mentioned the first time by Balakrlsh-
nan in reference fl
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DIRECT SEARCH BY EVOLUTIONARY PROGRAMMING

Basic Concepts of Evolutionary Programming

Evolutionary programming 1s described In detail in
the book "Artificial Intelligence Through Simulated Evolution"
by Fogel , Owens and Walsh (ref 3) In order that a reader
unfamiliar with the concept of evolutionary programming might
understand the direct search rc°thod described in the next
section, a short summary of evolutionary programming is
presented

Consider first a Hoore-machine, a triplet (I.L.f). where
I represents an Input alphabet with a finite number of ele-
ments, i a set of states and f a transfer function from
I x ) to the set of states When an element of the input
alphabet 1s received by a Moore-machine, it w i l l transfer
from one state to the next state in accordance with the rule
laid down by the transfer function f The program used for
the determination of stability derivatives 1s capable of
handling Poore -machines with up to five states and with an
input alphabet size of 60 Once the input alphabet and the
number of states are specified, the transfer function f
is given in tabular form specifying for each state and for
each input symbol the next state reference

Evolutionary programming works essentially with finite
state machines which can be described by a quintuplet
(I,),f,0,g), where again I denotes an input alphabet, E
a set of states, f the next state transfer function, 0
an output alphabet which may or may not be identical with
I (in the application for stability derivatives, 0 con-
tains only 6 different elements), and g an output
function For a given output alphabet 0 the specification
of g w1l> uniquely determine a finite-state machine

Evolutionary programming is a method to find finite-
state machines which wi l l produce, for a given sequence of
ir""t symbols a sequence of output symbols which w i l l minimize
a certain cost function Evolutionary programming consists
essentially of three basic procedures, an environmental
comparison procedure, a mutation and selection procedure,
and an output determination procedure

/O

FIGURE 1

EXAMPLE OF A FINITE-STATE MACHINE

3 Internal states, 3 symbol Input alphabet. 2 symbol output
alphabet

Figure 1 shows a finite-state machine with three states,
three input symbols and two output symbols Assume that the
finite-state machine is in i t i a l l y in state A and receives
the input sequence 0 0 2 0 The following sequence of
events w i l l then take place

Present State
Input Symbol
Next State
Output Symbol

C
0
B
0

B C A
2 2 1
C A A
0 1 0

The output determination algorithm drives the Moore-machine
with the given sequence of input symbols and determines those
outputs (to each branch) that w i l l minimize a given cost
function The outputs are obtained in a deterministic manner
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The iiuil.it ion diul se lect ion procedure generates an o f f -
-v- i lui l>\ i .iiuloml y pot f orm inq one of the fo l low ing muta t ions
or tho iMo««Mil f i n i t o - s t a t e machine

Addinq a state
Deleting a state
Changing a next state reference
Changing the start state

When a state is added, some next state references to
previously existing states are changed randomly to connect
the new state with the rest of the machine. The newly
added state obtains as many next state references as there
are input symbols These next state references are added
randomly When a state is deleted, all the next state
references which referred to that state are deleted and
randomly connect to some other states

The two remaining mutations are self-explanatory The
output determination routine determines now the proper output
symbols to this mutated machine

A comparison is made whether the parent or the offspring
obtains a lower value of the cost function and that finite-
state machine yielding the lower value 1s kept as a new
paient machine

As more and more information becomes available (larger
and larger recall) over which the finite-state machines can
be exercised, finite-state machines are generated which re-
flect, with increasing fidelity, the logic of the underlying
process

Evolutionary Programming Applied to Function Minimization

The basic idea of evolutionary programming is to find
finite-state machines which reflect 1n some sense the logic
in the behavior of a system This may be an Independent
system or a system which Interacts with Its model and whose
behavior, therefore, is dependent on the evolutionary program
As an example of the first class, consider the problem of
finding finite-state machines describing the logic of the
changes in ocean temperature Clearly, the ocean temperature
is independent of the logic found by the evolutionary program
The problem of function optimization Is an example of the
second kind, such a process can be viewed as being a game
between the evolutionary program and the cost function. The
behavior of the value of the cost function In the past Is now
dependent on what "moves" the evolutionary program made, this
is the interaction between the two "players" There 1s of
course a clear distinction between the cost function and the
"values of the cost function" The cost function Itself Is
certainly independent of the optimization method used, but
the "values of the cost function" depend on the path taken
by the optimization procedure It may be mentioned here that
Wilde, in his book on optimum seeking methods (ref 9) also talks
about the "Opening Gambit" and the "End Game". The purpose
of the evolutionary program in an optimum seeking procedure
can be summarized as being the device which Indicates which
sequence of changes in the free parameters will be the most
promising to reduce the value of the cost function This Is
done presently 1n the following way

Each free parameter can be changed in four different
ways. In a positive or negative direction with either a
large or small step size Consider now an input alphabet
( af ) consisting of four times as many symbols as there are

unknown free parameters Each of these symbols represents a
unique change 1n one of the parameters An evaluation of the
cost function using this changed parameter will yield a new
value of the cost function Designate the change In the cost

function by it , therefore, f< = z - z , Negative valuesi-l

of t> correspond to improvements in the set of parameters, while
a positive value means a degradation in the set of parameters
Clearly, it is desirable to make B as small as possible
(this corresponds to a large Improvement) Define the follow-
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i no i nterval s
d! < a2 < o < a3 <ai,

and define a corresponding output 8 where
S = i if 6 < a,
P = > if a, < i < a?
t < = ( i f a : , < B < o
H = ii 1 f 0 < B < a 3

i< = •. if a j < it < a,,
u = , if a i, < p

for the given set of parameters there corresponds exactly
one output symbol i'. to one input symbol a

Assume now that there exists a finite past history of
pairs of {.<k, Kk) Clearly, the game of minimizing the cost
function with respect to the given parameters consists now
in choosing an «L+I which w i l l produce a Bk + ]

 as small
as possible It 1s here the evolutionary program comes into
play Suppose that there is a finite-state machine which
w i l l "fit" the sequence Un, Bn) , n = 1, 2 k Pit here
means that if the finite-state machine Is driven by the se-
quence of the a , it w i l l produce the output sequence 6n

Then at the k-th move, that finite-state machine Is In a
certain state, say S All possible inputs B will have a
unique output associated with then It seems logical to assume
that, since the finite-state machine was a perfect fit over
the past, th-.s finite-state machine contains information
about the outcome associated with any given next input symbol
Scanning all possible outcomes and searching for the lowest
possible, the input symbol associated with the lowest output
symbol can be determined Call the lowest possible output
symbol i k + l U The symbol associated with B^^d is now con-
sidered to be the evolutionary program's next move Note that
several different input symbols may produce th-c '-me lowest
value for thr output symbol If this is the case, one among
all the candidates for producing the lowest output symbol 1s
chosen randomly foi actual usage The parameter change assoc-
iated with this symbol uk<., is performed and a new evaluation
of the payoff function occurs At this point, the two newly
generated symbols «^\ and hj + i (which corresponds to the
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actual change in the cost function), are added to the list
of Input/output pairs If the actual output, B"*, was a 3
or smaller, the game proceeds in the same way as described
above, the recall being now one event longer If the output
was 4 or more, the evolutionary program is considered as
having made an action error. This case is described later
in this section.

It 1s shown above how, in principle, a finite-state
ii.-_hine with a perfect fit over the past history is used
as an "acting player" It is appropriate at this point to
add some additional important details First, for any
reasonable length of the sequence of the past moves, called
the recall, it is unlikely that a finite-state machine with
a perfect fit will be found For this, and other reasons,
more than one finite-state machine are carried as possible
players in the evolutionary program, specifically, for the
problem solved here there are three finite state machines
which are restricted in size. Machine 1 1s a simple one-state
machine while machines 2 and 3 can have any number of states
between 2 and 5. Before a move is made, the "best" one
of the three possible machines is selected as "player". Best
means that machine with the lowest fit score The fit score
is obtained in the following way. Given k pairs of Input/
output symbols, a,, 8,, a?, B^. «k. 6k. drive the finite-

state machine with the k inputs and for each move form the
difference lBm - 6al. where em is the output predicted by

the machine and ua the output that actually occured Divide

the sum lBn - "a by k and define this quantity

as the fit score If the actual output act is greater

than or equal to three (a degradation in the cost function)
the evolutionary program Is considered to have made an error
or a'bad action" has occurred Machines 2 and 3 are now mutated
Mutation means that with probability

PI a start state is changed
P£ a next state reference Is changed
P3 a state is added
P« a state is deleted
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where, of course

1

II I lie mutant has d l i e a d y the maximum number of states,
l> . automat leal 1 y i*> sot to zero and analogously p. equals
/cro if the machine has only i states Machine 1 is not
mutated, because the only possible mutation would be to
ail'l a state, but the intention is to keep machine 1 a one
state machine

The offspring machine is driven over the recall and its
fit score is evaluated If the fit score is worse than that
of the parent machine, the offspring is replaced by the
parent and another mutation is tried A parameter in the
program l i m i t s the number of trials for obtaining a better
machine After machines 2 and 3 have been mutated (or at
least an attempt has been made to mutate them), the machine
with the best fit score of the three machines is chosen as
the actor and the game proceeds in its normal way

Two important details of the evolutionary program have
not yet been discussed, the setting of the outputs and the
treatment of the unexercised state-transitions First note
that the mutations affect only the structure of the finite-
state machines but not their outputs It is clear that for
a finite-state machine with a given structure and a given
start state, there exists at least one setting of the outputs
which w i l l minimize the fit score Assume first that no
state tiansition is exercised more than once during the
retail Then, each one of the exercised state-transistions
is assigned a unique output symbol (namely the one corres-
ponding to the actual occurred output symbol during the
transition) and the fit score w i l l obviously t><» zero, because
for all j, j = 1 k, nj = v? More important is the casea m
whore some state-trans 111ons are exercised more than once
during the retail It is possible that, in order to fit fhe
actual data, different symbols would be required each time
the transition is exorcised In such a case, the output
symbol is sol to some weighted average (rounded to the near-
pst integei) of the desired output symbols Also a new fit
score is defined, which is equal to the f-,t score as described
above divided by Uio number of tines that non-unique state-
t i a n s i t i o n s have occurred, this is called the normalized fit
seine and il is this normalized fit score on which the choice
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of the acting player is based. The third possibility Is
that a state-transUion fs never exercised durfng the
recall and therefore the output symbol associated with
this state-transition has no Influence on the fit score
It proved to be advantageous from a programming point of
view to assign a special symbol tc those outputs An
output of zero now designates an unset output value

A last point to discuss is the procedure used If
analyzing the Acting player, a move that wi l l produce an
improvement In the cost function cannot be found, or
expressed 1n the alphabet of the evolutionary program,
if in £ given state no input symbol will produce a pre-
dicted n of 3 or better. If this occurs, the evolution-
ary program is not used to generate a symbol for the next
move The next move is obtained by scanning the past moves
and finding the most recent move which produced a B of
3 or less If at any move, an actual output of 4 or
greater 1s generated, the evolutionary program Is said
to have made an action error If this occurs, the next
move or next moves will not be determined by the evolution-
ary program, but rather by a subprogram which essentially
tries out whether a step in the reverse direction Is better
and it keeps trying until it again finds a successful move,
always restoring the coefficients to their old value after
an unsuccessful move Details about this subroutine can be
obtained from the flow chart in Figure 2 This subprogram
also guarantees that at the end, a local minimum of the
cost function within the specified levels of changes In the
parameters has been found, because only after an exhaustive
unsuccessful search over all possible single changes 1n
the parameters is the run terminated A second way to
terminate the run is by limiting the number of moves After
termination, the final value of the coefficients are printed
together with the complete sequence of input/output pairs
Since the evolutionary program requires some environment 1n
the past, ini t i a l l y , to start the program, a separate sub-
routine generates a prescribed number of Input symbols and
the corresponding output symbols are calculated. This 1s
called the i n i t i a l environment The moves which generate the
ini t i a l environment are performed in a stochastic manner

Summarized, the features of the present version of the
evolutionary program for the determination of stability and
control derivatives are as follows

(text continued on page 37)
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E>

j START ]

"
RLAU PARAMETERS FOR EVOLUTIONARY P

READ OBSERVED FLIGHT DATA
READ IHITIAL VALUES OF COEFFICIENTS

[GENERATE STARTING ENVIRONMENT

SET THE OUTPUTS OF ALL- THREE MACHINES BY
FITTING THEM OVER STARTING ENVIRONMENT

OBTAIN OPTIMAL INPUT a1 + 1 FROM MACHINE

WITH LOWEST NORMALIZED FITSCORE

ES

REPLACE *1 + ) BY THE

LAST SUCCESSFUL a

PERFORM PARAMETER CHANGE
ASSOCIATED WITH o1+1

CALCULATE ACTUAL 8 ™

PRINT THIS MOVE
(IF DESIRED BY PRIMT INTERVAL)

UPDATE FITSCORE OF
ALL THREE MACHINES

YES

*
9

[ GO TO A

RESTORE PREVIOUS SET
OF PARAMETERS

IF MUTATION INTERVAL REQUIRES.
MUTATE MACHINES 2 AND 3

USE SUBROUTINE "LOGIC" TO
DETERMINE NEXT INPUT SYMBOL

FIGURE 2

HOUCIIAIM OF I V O L I I T I O H A R Y PROGRAM FOR FUNCTION MINIMIZATION

FIGURE 2 (CONTINUED)
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ENTRY
SUBROUTINE LOGIC

FLAG PREVIOUS STEP
AS UNUSABLE

.1COIIHT Jj
JCOUNT— Number of

4

REDUCE
STEPSIZE

—

• fl,
REVERSE STEP |

J
il

CALCULATE fl*J* j

^
A,. \YES . 5
1̂*1 -' / ' TH

1 NO

IJCOUNT • Jcout,T + i |

1
FLAG THIS STEP
AS UNUSABLE I

1
(RESTORE OLD VALUES I
1 OF PARAMETtRS 1

-

YES/ WAS LAST STEPSIZE\NO ^

UPDATE FIT /—
CORE OF ALL M A
REE MACHINE! >-

ST

All possible
parameter changes
have been tried

;

UAS OTHER \VFC / tt
DIRECTION ) K is

LRE^DY USED/ \

- |NO

CHOOSE RANDOMLY AN
INPUT WHICH HAS NOT „

1 YET BtEN KAGGtU Ai «
UNUSABLE

\ -

OP

YES

JCOUN1
NSYM

NO

NSYM • Number of
Input Syo
bo is - 60

FIGURE 2 (CONCLUDED)
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differential Equation

Cost Function*

Free Parameters

Number of Finite-
State Machines-

Input Symbols
Output Symbols

E

x « Ax + Bu where

A Is of dl
B is of dimension (4
A Is of dimension (4,4)

.3)

a!3 *22 «23

b?2 633

1 one-state machine
2 2 to 5 state machines

60
6

For each machine

Input to the Program

Initial configuration
Initial start state
Maximum recall length

Probability distribution for
the f types of mutation p, = probability of-changlng

start state
p, = probability of changing

next state reference
p, = probability of adding a
J state

p. = probability of deleting a
* state

Maximum number of moves
Print Interval .
Number of errors allowed before a mutation occurs
Maximum number of machines tried at a mutation
For all 60 Input symbols the change in the coefficient assoc-

iated with this Input symbol
The interval limits for the determination of the output symbol,

4.

The initial values of the 26 elements of the
The observed time histories
The integration step size

A and B matrix.
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Results

som*1 key results are listed below for a typical run of
'ho evolutionary program on the CDC 3600 computer

Running time 6 minutes
I n i t i a l environment length 50
Total number of moves of the evolutionary

program 400
Total number of function evaluations 750
Va1ue of z i n i t i a l l y 1 811

after init 50 moves 1 038
after 100 moves of Evol Pr 0 564
after 200 moves 0 491
after 400 moves 0 46}

Input Symbols The 60 symbols of the input alphabet represent
changes of

+2%, -2%, +0 2%, -0 2*
of the coefficients
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a , , , a ,,, a , ,,

bn, b,,. b,3.

1n this order
Intervals for output symbols

Output Symbol

1

2

3

4

5

6

a,,.

b.n-
^

a „

b
?

-•

2'

a

b

r 3*

73'

Corresponds

P

F

?

e

V

p

<

<

<

<

<

>

-5

-5

0

1

1

1

0

0

0

0

0

10

10

10

10

10

a

b

to
-3

-4

-3

-2

-2

The I n i t i a l coefficients were those found by the least squares
piocedure and are given in the following two matrices

A
-n 099')
0 00641
0 1 147
1

0 595
0,0668

-1
0

-22 48
1 036
0 0238

0

0
0
0 00698

0

38

12 99
0 487
0

0

15 11
-1.764

0
0

0.361
0.00731

-0.00272
0

Note that 1n this experiment
of the unknown parameters.

a 31 was considered as one

The coefficients at the end of the run were

-0 153
0.00615
1.216
1

0.163
0.0642

-1.

0

-21.67
1 108

-0.0190
0

0

0

0.00698
0

13 25
0.551
0

0

14 53
2 06
0

0

0 378
-0.00221
-0.00261

0

Note that the first eleven moves of the evolutionary program
(move 51 through 61) produced all outputs of 1, which Is
quite remarkable, considering that the longest string of
"1" in the first fifty moves was only of length 3 (see Table I)

Although the optimization method using the evolutionary
program works satisfactorily In Its present form, there exist
possibilities to improve Its performance. A first Improvement
consists in preventing the evolutionary program from getting
"trapped" In a long string of Input symbols which all produce
an output 3 (a very slight improvement In the cost function)
If unlimited computer time were available, these long strings
of outputs of 3 would be all right, but In the Interest of
of saving computer time, an attempt should be made to find
parameter changes which will improve the cost function more
rapidly. Such values may be found more quickly If after a
string of outputs 3 with some given fixed length, a random

(text continued on page 42)
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TAULL I - IHPUT -, OUTPUT HISTORY OF THE FIRST ISO MOVES
OF THE EVOLUTIONARY PROGRAM

MOVL
NUMUER

1
2
3
4
G
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

• 28
29
30
31
32
33
34
35
36
37
38

INPUT
SYMbPL

37
31
16
51
52
35
36
28
27
11
12
8
3

22
21
10
16
48
19
20
38
37
59
36
25
2
1

25
54
48
49
50
1
7
8

53
54
25

OUTPUT . .
SYMBOL (a>

1
3
2
6
1
5
2
5
2
6
1
3 ~
3
6
1
1
2
2
5
2
6
1
3
2
1
5
2
1
1
2
6
1
2
4
3
6
1
1

MOVE
NUMBER

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

IHPUT
SYMBOL

52
42
41
26
25
56
24
23
25
26
27
28- -
54
12
52
54
52
54
54
52
54
23
10
52
41
12
11
37
52
51
52
51
54
54
23
37
38
41

OUTPUT , ,
SYMBOL *"'

1
6
1
6
2
2
6
1
6
4
4
3 - -

2
1
,4
4
2
4
2
4
2
1
2
3
6
?
5 *

An jstcrik after tno output symbol indicates that this move
was determined l-y the evolutionary program

TABLE I (CONCLUDED)

^OVE
NUMBER

77
78
79
80
81
83
83
84
85
86
87
88
89
90 -
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
11 1
112
113

INPUT
SYMBOL

42
43
23
41
42
43
44
10
9

11
54
54
53
55
56
54
53
55
56
41
42
43
44
50
49
52
51
54
52
51
21
38
38
54
10
9

11

OUTPUT , .
SYMBOL *•'

6
3
2 *
6 *
5
4
4
6
5
2
2
4
5
4
3
5 *
5
4
3
6 *
5
4
2
6 *
1
4 *
3
1
5
2
2
1
2
2
6
6
2

MOVE
NUMBER

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

INPUT
SYMBOL

49
49
50
51
52
49
50
51
52
38
37
38
37
39
40
1

12
11
48
47
10
9

11
12
49
50
51
54
54
54
53
55
54
53
55
36
38

OUTPUT
SYMBOL

1
6
6
4
3
6
6
4
4
5
2
5
5
4
4
2
4
4
4
2
6
6
4
4
5
6
2
1
2
5
5
3
5
5
4
4
2

(a)

*

*

*

*

*

*

*

*

*

*

*

*

*

*

An astcnk after the output symbol Indicates that this move
was determined by the evolutionary program
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*earch procedure similar to the one used to generate the
i n i t i a l starting, environment, is used foi J given number
of moves

A second improvement would, as the search procedure
approaches the minimum of the cost function, automatically
change the magnitude of the changes in the coefficients
(say reduce them by a factor of 10) and also reduce the
values of |o,| throuqh |a,,| This latter change would

increase the sensitivity of the evolutionary program to
charicjus in the cost function
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EXPERIMENTAL RESULTS AND COMPARISON OF THE TWO METHODS

Two computer programs were developed, one Implementing
the quasi linearization method and the other one the direct
search method using evolutionary programming

The first experimental runs with these programs were
made with data which did not originate from actual flight
tests, but which were obtained from solving four simultaneous
differential equations of form (1) on a hybrid computer and
using the measured and digitized data from these runs. Clear-
ly, since these data originated from a process described
exactly by a differential equation of the form considered
hece, and since the only errors were roundoff errors In the
digitized data, the coefficients were found quite accurately
and the observed time histories were matched by the calculated
time histories with the same accuracy as the originally g-tven
time history data (three to four significant digits).

The next case analysed the flight test data of an X-15
flight. Measured data of p. r, 6, *, and of 0 »w*T-were
available at 0.025 second Intervals for a total observation
time of 6 seconds. For the calculation, every second point
of these time histories was used.

A first approximation to the unknown coefficients was
obtained using the least squares method In the experiments
with the program using the quasi 11near1zat1on method, for
the element a31 the observed angle of attack has been used.

By the least squares method the following parameters and
estimates of their variances were obtained.

-0.101*0 Oil

0 0064*0 001

0 114*0 0019

1

0 539*0.213

0 061910.019

-1
0

-22.43*0 15

1 .03610.01

-0.058*0.021

0

0
0
0 00698

0

12 99*0 40

0 498*0 035

0

0

15 15*0.38

-1 760*0.034

0

0

0.359*0.006

-0.0074*0.00058

0.0148*0.0013

0
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After five iterations with the quas1 linearization
method, the following coefficients and error estimates
WPIO obtained (soi* a I so Figure 8 for comparison)

-0 191*0 04

0 0041*0 0028

u(t)

1

2 853*0 75

-0 126*0 06

-1
0

-24 08*0 24

0 974*0 025

- 0 020±0 035

0

0
0
0 00698

0

14 21*1 45

0 709+0 128
0

0

19.37+1 72

-1.951+0 159

- o
0

0 406+0 025
-0 002*0 002
-0 0012*0 0008
0

It was beyond the scope of the work performed under this
contract to develop methods for obtaining error bounds on
the calculated stability and control derivatives Nevertheless,
the methods used to find numerical values for the variances in
the calculated derivatives seem quite reasonable and they allow
at least an estimate of the expected relative accuracy of the
parameters. For instance, looking at the value of a)2(Lr )

and Its estimated variance In the pure least squares solution
Indicates that this parameter was determined with very little
accuracy Indeed, the a)? found after the fifth iteration

differs from the a , 7 from the least squares solution by a

factor of about five, and again, the estimate of the error
after the fifth iteration is still fairly large On the other
hand, looking at a,3(N6 )the relative small variance m the

• least squares solution is an indication that this parameter can
be determined relatively accurately and the final value of
a2i after five iterations differs only about 61 from the value
found by the pure least square procedure

Figures 3 through 6 show the observed roll and yaw rates
and the sideslip and bank angles On the same graphs are shown
the time histories obtained using the coefficients of the pure
least squares solution and the trajectories obtained with the
coefficients after five iterations of the combined gradient-
least squares method Figure 7 shows the corresponding aileron
and rudder deflections

( text continued on I'dqc 51)

44

- 80
2 3

Time, seconds

FIGURE 3.
OBSERVED AND CALCULATED ROLL RATES OF X-15 FLIGHT TEST.

a - Observed roll rate _"
ti - Calculated roll rate using coefficients found with

pure least squares procedure
i - Calculated yaw rate usinq coefficients found with

'j iterations of the quasi linearization method.
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FIGURE 4
O U S I R V I t ) AND CALCULATED YAH RATES OF X - 1 5 FLIGHT TEST

a - Observed yaw rate
b - C a l c u l a t e d yax/ rate using coef f ic ients found w i th

pure least squares procedure
c - Ca lcu la ted yaw rate using coe f f i c ien ts found w i th

', i terat ions of the quasi li nean ration method
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FIGURE 5.
OBSERVED AND CALCULATED SIDESLIP ANGLE OF X-15 FLIGHT TEST.

a - Observed sideslip angle.
b - Calculated sideslip angle using coefficients found with

pure least squares procedure,
c - Calculated sideslip angle using coefficients found with

5 iterations of thequasiUneirt zatlon nethod.
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FIGURE 6

OIISCRVtD AND CALCULATED BANK ANGLE OF X-15 FLIGHT TEST

a - Observed bank angle
l< - Calculated bank angle using coefficients found with

pure least squares procedure
c - Calculated bank angle using coefficients found with

5 iterations of the quasfl linearization method
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FIGURE 7

AILERON AI10 RUUDER DEFLECTION OF X-15 FLIGHT TEST

<A - Aileron deflection.
«R - Rudder deflection
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The experimental results of the evolutionary program
were discussed in the section "Direct Search By Evolutionary
Programming".

Figure 8 compares the values of the coefficients obtained
by the least squares method with those obtained by quasilinear-
ization, as well as the corresponding estimates of the var-
iances The fact that the estimated variance in the least
squares method is smaller than in the quasil inearization method
should not be taken as an indication that the least squares
coefficients are closer to the true values than the ones
obtained by the quasi 1Inearization method It seems that the
parameter estimates obtained by the least squares method are
not unbiased, and as pointed out earlier, the estimates of the
variances, as developed in this report merely indicate the
relative accuracy between the different coefficients

At this point, it seems appropriate to compare the per-
formance of the two methods. Judging only according to
efficiency in computer time, the method of quasilInearization
is clearly superior to evolutionary.programming for a problem
with linear differential equations and quadratic cost function.
In about one minute computer time (CDC 3600) five iterations
on a time history with about ISO measured points can be per-
formed These five iterations yield a set of coefficients
which minimize the cost function. The coefficients are accur-
ate to four to five significant figures and as a by-product,
the estimates of the variances are obtained

On the other hand, a six minute run on the same computer
usinq the evolutionary programming technique yielded a final
value of the cost function still about twice the size of
the true minimum value Furthermore, no estimates of the error
bounds are available with this method The evolutionary
programming technique of minimizing functions with a relative-
ly large number of unknowns may have advantages in system
identification problems where a nonlinear model of the plant
is required or where a nonquadratlc error criterion has to
be used The combination of a general numberical integration
technique (such as for instance Runge-Kutta) and evolutionary
programming allows quick changes both in the differential
equations of the model and of the form of the cost function

o
o

o
o
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CONCLUSIONS AND RECOMMENDATIONS

The results of this report show that the method of
quasi 1inearlzation results in an efficient digital computer
program which allows determining those values of the stability
and control derivatives which minimize the integral of the
weighted squared difference between the observed time
history and the one obtained by solving the differential
equations using the observed control variables and the para-
meters to be determined. A few iterations (typically three
to five) will yield the correct values (the ones which mini-
mize the cost function) of the unknowns and estimates of their
variances can be obtained

The second method which is based on evolutionary program-
ming cannot compete successfully in the case of linear
differential equations and a quadratic error function, but it
may have advantages in nonlinear process identification problems

, The fact that a method 1s available that solves the
minimization problem of a given cost function for a given
form of the systems' differential equations (here linear)
should not lead to the conclusion that the problem of deter-
mining stability and control derivativps from flight data is
solved In its widest engineering sense A number of important
questions are still open, for Instance:

(1) How does the inclusion or omission of a fit of the
observed yaw and roll rate derivatives influence the
coefficients and their variances7 „
(2) What criterion should be applied in choosing the
weighting factors7

(3) Is it possible to give variances which are theoreti-
cally more solidly founded and which distinguish between
errors due to measurement noise and Inadequacy of the

- mathematical model7

The analysis of the X-1S flight data shown in this report
seems to indicate that the assumed mathematical model may not
tie quite adequate Especially the fit to the roll rate suggests
that there are certain terms missing in the roll moment equation,
these might be unsteady flow derivatives

The experiments suggest that additional work on the choice
of the mathematical model with alternative forms of the equations
of motion (possibly nonlinear equations) be performed Experi-
ments, where stability and control derivatives obtained from
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one flight test may indicate which mathematical models give
the most consistent results and therefore are the most
l e a l i s t i c ones Computational methods and computer proqrams
are now available which may help to advance the state of the
art in the determination and possibly the usage of stability
and control derivatives

Decision Science, Inc
' .' San Diego, September 25, 1968.
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