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PARTICLES OF LUNAR ORIGIN

I. DETERMINATION OF ELEMENTS OF GEOCENTRIC ORBITS
OF LUNAR PARTICLES IN THE SPATIAL CASE

%‘ Astronomicheskiy Vestnik, iﬁéﬁ by V. P. Orlov
vV 7 ~Fom 3, No.2,. s&r, 76-81, Astronomical Observatory
‘Izdatel'stvo "NAUKA", 1969 of the Odessa University
¢ ﬁﬁb"f |
. ’ o }{A # 4%‘

Elements are derived of geocentric orbits of par-
N ticles ejected from the Moon by shock explpsions of meteo-
A rites as a function of primary conditions of ejection:
selenocentric longitude A, and latitude ¢,; initial velo-
rity V,, azimuth A, and the zenithal distance J; of the di-
rection of ejection.

It is shown that the lines of nodes of geocentric or-

bits of particles of lunar origin are concentrated near the
position of the Moon at time of particle ejection.

The region of the lunar surface is determined, from
which vertiealmotion of particles toward the Earth is possible.

*
* %
Part of the lunar matter ejected by the impact of a metegritic body

returns to the Moon, while the other drifts away in outer space [1, 2].

A certain fraction of lunar particles probably hits the meteoric ring

around the Earth which is disposed along the entire lunar orbit [3].

We shall examine the spatial motion of lunar particles of dimension
greater than 10"* cm with the help of the approximate method of spheres of

influence. In this case the trajectory is found by conjugation of the Kgpler

(*) [Translated by request through GSFC Procurement].



selenocentric orbit in the sphere of influence of the Moon with the Kepler
geocentric orbit in the sphere of influence of the Earth [4, 5].

The Moon (L,), with the part of the sphere of influence of radius
Linf = 102,000 km surrounding it, is shown in Figure 1 hereafter. From a cer-
tain part of the lunar sur-

- face MO(AO, ¢,) the particle
escapes in the direction MOMO'.
The vertical (radial) direc-
tion of motion is preserved
through the particle's flying
out of the sphere of influence
of the Moon. It is evident
that in this case the seleno-
centric coordinates of the point
of emergence on the sphere of

influence of the Moon will be

as follows:

Ay = Ay — Ag, (1)
¢, = do- (2)

The longitude A, has changed

because during the flight time
Fig.l. Trajectory of the lunar particle M,

in the sphere of influence of the Moon tv of the particle in the sphere

of influence of the Moon, the

latter moved away along the orbit by an angle Ay, which is equal to
At = U)Ltv, (3)
where wy, is the angular velocity of the Moon (¥ig.2).

If the particle 1ea233,the Moon in any direction, for example MyD for an
azimuth A, and a zenithal distance z,, the point M of escape from the sphere
of influence of the Moon will be displaced by a substantial distance from the

'
corresponding point M, of the radial trajectory.



Fig.2. Scheme of transformation of selenocentric
outgoing data (Vy, Ay, ¢y, ry) on the boundary of
Moon's sphere of influence into the geocentric
entrance data (Vp, &y, Ry, Up, dip, Q,7)

The elements of the selenocentric orbit are determined by the formulas
of the problem of two bodies: the constant Cy, of the area law, the orbit parame-
ter Py, the major semiaxis aj; the eccentricity ey, the true anomaly of the

particle in the positions My; and M correspondingly to v, and vy.

!
From the polar spherical triangle M;NM we have

sin 4
A=M+mwmp~loﬁﬂm—%”; (4)
cos @y
then
p == }u == Ai,
(5)
v == arc &in |sin @o cos (v — Lo) — €08 o &in (1 — vo) cos Ag]. (6)

The escape velocity(Qr rate of discharge) V,, of the particle from the

sphere of influence of the Moon is determined from the energy integral

V. = V7o — 5545, (7)

where Vy and V, are expressed in km/sec.



The angle of the rate of discharge (or of the éscape velocity) relative
to radius L M is found with the help of the constant of area law:

Sy == arc sin ;:-i{,‘: (8)
Computation shows that the outgoing angle is quite small; for example,
even at horizontal flying out (z, = 90°) with initial velocity V, == 2.5 km/sec,
the dngle zy is equal to about 3° and at z; == 45° the angle zy constitutes
about 2° [1]. Such an insignificant difference in the direction of emergence
from the sphere of influence of the Moon from the radial allows us to admit
particles with radial direction of escape for the basic ones, and the more
so since, as follows from the theory of explosive processes, only particles
having escaped vertically during the explosion and upward, are endowed with

maximum velocity [21.

Consequently, the entire combination of particle trajectories, when these
escape from any point of the surface of the Moon in any direction and with any
velocity, may be represented at the boundary of the sphere of influence of the
Moon in the form of a ''spherical hedgehog', in which every radial 'needle" is
the corresponding selenocentric outgoing or escape  velocity V, (Fig.3). It
represents schematically the
system Earth- Moon. The

sphere of influence around

the Moon is described by
the radius LM, == ry. On its

surface velocity vectors Vy

are plotted along the radii.

If we sort the particles
which leave the Moon with
identical velocity V, (see

(7)), they also intersect

the sphere of inflience with

Fig.3. Transformation of the sphere of identical velozity Vy. The

outgoing selenocentric velocities Vy into

the sphere of entrance geocentric velocities
VT ' outgoing velocities from the

ends of the '"meedles' of the



surface of a sphere of radius LN;,. Let us now separate from the sphere of
velocities the velocity cone LN,P, on the selenocentric latitude ¢. When
passing from the selenocentric to geocentric system of coordinates it is im-
perative to take into account the relative velocity of Moon displacement along
the orbit Vy = 1,02 km/sec, 1. e. to sum up geometrically the selenocentric
escape  velocity Vy with the lunar VL, which would »ield the ent.ance

geocentric velocity

;\7.1, == VV + V'L‘ (9)
We shall then obtain the cone of entrance geocentric velocities L'PINZ,
of which the base will be distant from that of the selenocentric cone by a
quantity Vi in the direction of motion of the Moon, while the summit L' is
shifted in the opposite direction. The shift LL' == b is easy to find from
the similitude of the triangles LL'MZ and M,N,P,:

/ vy,
) w2 )y 1:}";“. (lo)
Evidently, the same can be referred to the entire sphere of entrance geo-
centric velocities, the center Q being displaced relative to the center L of
the sphere of selenocentric estape velocities by the quantity Vi and the
point of "'emergence" L' of all velocities Vp being distant from the center

of the Moon by the quantity b.

Let us consider the particle M which leaves the sphere of influence of
the Moon on the selenocentric longitude Ay and latitude ¢y (Fig.2) along the
selenocentric radius LM = ry. The magnitude of the geocentric radius Ry is

easily found from the triangle TLM:

Ry = Ya* + 1 — 2ar, cos @y cos Ay, (11)
where a is the mean distance TL between the Earth and the Moon.

The geometrical summing up of velocities V; and Vi yields the magnitude

of the entrance geocentric velocity Vq:

Vp = L7+ V17— 2V, V; cosdy sinky (12)

The longitude of the ascending node QT of the geocentric orbit relative

to the direction toward the Moon at time of particle emergence from the sphere



&}

of action of the Moon is

Qp = arc tg b/a, (13)
or, taking into account (10),
Vi \
OT-_umtg[::( Z»Jj, (14)

Since Vi ¥y /a 1is comstant for all the considered orbits, fip depends
only on the magnitude of the inital velocity V,.

-
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Fig.4. Determination of the argument of the perigee
wr of the geocentxic orbit of particles M and M

o5
¥

In order to determine the longitude of the asecnding node {;p relative
to the straight line uniting the Earth and the Moon, one must subtract at
time of particle breakaway from the surface ot the Moon QT from the angle Ap

determined by formula (3):

Ryp = S — Ay | (15)

As the initial escape velocity V, increases, the longitude §,p decreases
and coincides at node line limit with the direction Earth - Moon. For example,
when the initial radial velocity dincreases from 2.4 to 1l km/sec, the longi-
tude decreases from 4.64 to 0.02°. Consequently, the node lines of grocentric
orbits of particles of lunar origin concentrate near the direction Earth-Moon

at time of particle escape from the surface of the Moon.



After a series of elementary transformations, from the triangle TL'P
we find the angle 2 between the entry geocentric velocity and the geocentric
radius Ryp:

2 G [ (ﬂ.‘“wv COé ?uu """ rr‘ll,, sin ?.p) COR@Q, =T, ‘.u ]
Joe ZETm arc 'y ’S * » e WED L -;vz‘t T T weT RERIWER WS w o sreeshms
r = RV i (16)

The area law constant is

Cr = RTVTSin zZy. (17)

From the triangle MKM' we obtain the inclination of the geocentric orbit
to the orbit plane of the Moon:

iy = arcsiu( L R T > (18)

The orbit parameter is

(19)
wher. Yp = k*m the gravitational parameter of the Earth.
The orbit's major semiaxis is
pplty (20)
oap == et
Ul — g
The orbit's eccentricity is
T Py
/,',' =2 Vl — --—£—~ '
ar (21)

The position of the particle on the orbit i3 determined by the latitude
nxgument up, which is the angle measuring the distance of the particle from the
ascending node §) o The angle up wvaries from O to 360° in the direction of par-
ticle motion.

The argument of the latitude uyp of the particle at the boundary of the
sphere of action of the Moon at the point M is obtained from the triangles
TMK, MKM', 1MM':

) ‘ ’n Sin o
Uq- —— arc S‘lll \ 1.{ - R .é,i,,v; g__' R
LY nilr

(22)



The tyue anomaly vy, which is measured by the angle between the orbit
perigee and the radius-vector of the particle counterclockwise from 0 to 360°
is found with the aid of the well known formula

e e [ 1 1 Pr . )J
m".mJ,LW\Rw 1)1, (23)

The last element, that is, the argument of the perigee Wrp s is measuged

by the angle between ihe ascending node {) and the perigee in the direction of
motion of the particle.

o L s G From Fig.4 it is obvious that

10 ,
Wy ~ ug £ vy (24)

whereupon «¢.-» is for ¢, > O (position
of M),

and «—» is for ¢V < 0 (position of M,).

e ek *'”*“*“W"J“““‘ In the case when the latitude argu-

Fig.5. Region of the lunar ment up is smaller than the true anomaly

surface from which the ver-

tically escaping particles
hit the Earth.

vr, we have
where ¢° < 0.

On the basis of the derived elements of the geocentric orbits we could
determine the region of the lunar surface from which a vertical escape of par-
ticles hitting the Earth is possible (on the condition that the perigee dis-
tance Ry < 6,500 km). The region of vertical rise is represented in seleno-
centric coordinates A,, ¢, in Fig.5. This is the part of the lunar surface
in the western hemisphere, cut out by spherical sector with aperture angle
of 21.4°, symmetrical relative to lunar equator. In this case the northern

and éoﬁthern boundary curves are described by the formula

o :
tg ¢, = tg 10.7°+sin A, (26)

To the Fast of the longitude A, = 140 — 144° part of the sector does not
satisfy the hitting the Earth, for in these conditions partdfles drift away



all the time from Earth along hyperbolic trajectories, though formally their
perigee Rp € 6,500 km,

The maximum width of the sector is attained at longitude A, = 90°
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