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I. DETERMINATION OF ELEMENTS OF GEOCENTRIC ORBITS

OF LUNAR PARTICLES IN THE SPATIAL CASE

Astronomicheskiy Vestnik,	 by V. P. Orlov
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ABSTRACT

Elements are derived of geocentric orbits of par-
;,	 ticles ejected from the Moon by shock explosions of meteo-

rites as a function of primary conditions of ejection:
selenocentric longitude as and latitude ^o', initial velo-
city Vo, azimuth Ao and the zenithal distance 6 0 of the di-
rection of ejection.

It is shown that the lines of nodes of geocentric or-
bits of particles of lunar origin are concentrated near the
position of the Moon at time of particle ejection.

The region of the lunar surface is determined, from
which vest cal motion of particles toward the Earth is possible.

Part of the lunar matter ejected by the impact of a meteoritic body

returns to the Moon, while the other drifts away in outer space [1, 21.

A certain fraction of lunar particles probably hits the meteoric ring

around the Earth which is disposed along the entire lunar orbit [3].

We shall examine the spatial motion of lunar particles of dimension

greater than 10- `' cm with the help of the approximate method of spheres of

influence. In this case the trajectory is found by conjugation of the Kepler

(*) [Translated by request through GSFC Procurement]
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selenocentric orbit in the sphere of influence of the Moon with the Kepler

geocentric orbit in the sphere of influence of the Earth [4, 5].

The Moon (L o ), with the part of the sphere of influence of radius

rinf 102,000 km surrounding it, is shown in Figure 1 hereafter. From a cer

tain part of the lunar sur -
face M o (a o , gyp) the particle

M v^ ' 	escapes in the direction MOMo
y	

V

The vertical (radial) direc-

tion of motion is preserved

through the particle's flying

out of the sphere of influence
I',	 I	 of the Moon. It is evident

\'	 I	 ^V	 that in this case the seleno`,	 I
centric coordinates of the point

^1!\	

N^^n7 D	 -	 Uv	 of emergence on the sphere of
^^^•	 j A `^ zo ^,^^

	

'N	 t,	 influence of the Moon will be

^
r.

^ '.n^hf,1 ti°	 as follows:

^v _ ^O •	 (2)

The longitude a o has changed
r

because during the flight time
Fig.l. Trajectory of the lunar particle MO

in the sphere of influence of the Moon	 to 
of the particle in the sphere

of influence of the Moon, the

latter moved away along the orbit by an angle A t , which is equal to

A t ` WLt.v ,	 (3)

where wL is the angular velocity of the Moon (Fig.2).

If the particle leaves the Moon in any direction, for example Moll for an

azimuth AO and a zenitha:( distance z o , ' the point M of escape from the sphere

of influence of the Moon will be displaced by a substantial distance from the

corresponding point M O of the radial trajectory.
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Fig.2. Scheme of transformation of selenocentric
outgoing data (Vv, Xv, ^v, rv) on the boundary of
Moon's sphere of influence into the geocentric
entrance data (VT, ST) RT , UT, iT , QoT)

The elements of the selenocentric orbit are determined by the formulas

of the problem of two bodies: the constant CL of the area law, the orbit parame-

ter PL ; the major semiaxis al,, the eccen tricity eL, the true anomaly of the

particle in the positions Mo and M correspondingly to vo and vv.

From the polar spherical triangle MoNM we have

sits A 0	 (4 )
X ^Xo-{-az^c sin ^--	 sin (v„—zo),;

cos cf„

then

^v	 ?^	 Ail

(s)

(pv = are 4in (sW yo cos (v u --- Lo)	 cos (po ,sin (v, — too) cos Ao].	 (g)

The escape velocityor rate of discharge) Vv of the particle from the

sphere of influence of the Moon is determined from the energy integral

v

where Vv, and Vo are expressed in km/sec.
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The angle of the rate of discharge (or of the dscape velocity) relative

to radius LM is found with the help of the constant of area law:

CL
wv == are sic  ^r	 (S)

t^ v

Computation shows that the outgoing angle is quite small; for example,

even at horizontal flying out (z o := 90') with initial velocity V o — 2.5 km/sec,

the angle zv is equal to about V and at zo 	 45 ° the angle zv constitutes
about 2° [1)	 Such an insignificant difference in the direction of emergence

from the sphere of influence of the Moon from the radial allows us to admit

particles with radial direction of escape 	 for the basic ones, and the more

so since, as follows from the theory of explosive processes, only particles

having escaped vertically during the explosion and upward, are endowed with

maximum velocity (21,

Consequently, the entire combination of particle trajectories, when these

escape from any point of the surface of the Moon in any direction and with any

velocity, may be represented at the boundary of the sphere of influence of the

Moon in the form of a "spherical hedgehog", in which every radial "needle" is

the corresponding selenocentric outgoing or escape

	

	 velocity Vv (Fig.3). It

represents schematically the

iL system Earth- Moon: The

sphere of influence around
the Moon is described by

the radius LM, :_% rv. . On its

surface velocity vectors Vv

are plotted along the radii.

If we sort the particles

which leave the Moon with

identical velocity Vo (see

(7)) , they .ilso intersect

41) r
Fig3.. Transformation of the sphere of
outgoing selenocentric velocities Vv into
the sphere of entrance geocentric velocities

T

the sphere of ini: 1 fence with
identical velo ¢ii.ty Vv. The
ends of the "needles" of the
outgoing velocities from the
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surface of a sphere of radius LN 1 0 Let us now separate from the sphere of

velocities the velocity cone LN 1P 2 on the selenocentric latitude c. When

passing from the selenocentric to geoce ► tric system of coordinates it is im-

perative to take into account the relative velocity of Moon displacement along

the orbit VL — 1,;.02 km/sec, i. e. to sum up geometrically the selenocentric

escape velocity Vv with the lunar VL , which would 7ield the ent .since

geocentric velocity

	

VT — Vv + VI	 ( 9)

We shall then obtain the cone of entrance geocentric velocities L P1N2,

of which the base will be distant from that of the selenocentric cone by a

quantity VL in the direction of motion of the Moon, while the summit L ' is

shifted in the opposite direction. The shift LL' r- b is easy to find from

the similitude of the triangles LL M 2 and M2N2P2:

	

li _ >>,,'r, .	 (10)

Evidently, the same can be referred to the entire sphere of entrance geo-

centric velocities, the center Q being displaced relative to the center L of

the sphere of selenocentric esinape velocities by the quantity VL and the

point of "emergence" L' of all velocities V T being distant from the center

of the Moon by the quantity b.

Let us consider the particle M which leaves the sphere of influence of

the Moon on the selenocentric longitude Xv and latitude ^v (Fig.2) along the

selenocentric radius LM-- rv. The magnitude of the geocentric radius RT is

easily found from the triangle TLM:

	

R,r	 ya2 +' - 2firu 	 cos (P" cos Xv,	 (11)

where a is the mean distance TL between the Earth and the Moon.

The geometrical summing up of velocities V^ and VL yields the magnitude

of the entrance geocentric velocity VT:

VT	 v + VL ,_ 2VvVL cosh sin v	 (12)

The longitude of the ascending node 52,
E 

of the geocentric orbit relative
to the direction toward the Moon at time of particle emergence from the sphere
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of action of the Moon is

PT	 arc tg b/a,
	

(l3)

or, taking into account (10),

1	 } 1 "r.^'" (14)

Since VLrV /a is constant for all the considered orbits, SS T depends

only on the magnitude of the inital velocity Vp.

Fig.4. Determination of the argument of the perigee
WT of fhe geocentric orbit of particles M and M1

In order to determine the longitude of the asecnding node QoT relative

to the straight: line ;,;niting the Earth and the Moon, one must subtract at

time of particle breakaway from the surface of the Moon PT from the angle At

determined by formula (3);

QoT = ST — rl t .	 (15)

As the initial escape velocity Vo increases, the longitude POT decreases

and coincides at node line limit with the direction Earth - Moon. For example,

when the initial radial velocity increases from 2.4 to 11 km/sec, the longi-

tude decreases from 4.64 to 0.02°. Consequently, the node lines of geocentric

orbits of particles of lunar origin concentrate near the direction Earth-Moon

at time of particle escape from the 'surface of the Moon.

A
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Afte-. a series of elementary transformations, from the triangle TL'P

we find the angle z  between the entry geocentric velocity and the geocenLrie

radius RT:

-- ore cc's

The area law canstant is

OT — R fVTsin ZT
	

(17)

From the triangle MKM' we obtain the inclination of the geocentric orbit

to the orbit plane of the Moon:

C91

The orbit parameter is

(l9)

whet•	 11T
— k2m tAe gravitational parameter of the Earth.

The orbit's major semiaxis is

(20)

The orbit's eccentricity is fl. 
F,

ar	 (21)

The position of the particle on the orbit is determined by the latitude

nrgument uT , which is the angle measuring the distance of the particle from the

,oend ng node SJ o The angle uT varies froin 0 to 360 0 in the direction of par-

ticle motion.

The argument of the latitude uT of the particle at the boundary of the

sphere of aC-fion of the Moon at the point M is obtained from the triangles

TMK., MKM ` , LMM

	

l'„	 sill (PU

	

are si , 
l?r	 y si.;i iT ).
	

(22)
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The true anomaly vT , which is measured by the angle between Lhe orbit

perigee and the radius-vector of the particle counterclockwise from 0 to 360*

is found with the aid of the weal known formula

PT	
(23)

The last element, that is, the argument of the perigee WT I is mensu4ed

by the angle between the ascending node 0q and the perigee in the direction of

motion of the particle.

)000	
From Fig.4 it is obvious that

WT	 UT :L vT	 (24)

0	 0	 s	 whereupon	 is for ^v 5 0 (position
01 of M)I

and ;t— s) is for v < 0 (position of Md.

In the case when the latitude argu-
Fig.5. Region of the lunar	 ment uT is smaller than the true anomaly
surface from which the ver-	 vT, we havetically escaping particles

hit the Earth.	
WT am 27t + uT — vT	 (25)

where ^, < 0.

On the basis of the derived elements of the geocentric orbits we could
determine the region of the lunar surface from which a vertical escape of par-
ticles hitting the Earth is possible (on the condition that the perigee dis-
tance Rp N< 6,500 km). The region of vertical rise is represented in seleno-
centric coordinates XOP ^ 0 In Fig.5. This Is the part of the lunar surface
in the western hemisphere, cut out by spherical sector with aperture angle
of 21.4', symmetrical relative to lunar equator. In this case the northern
and southern boundary curves are described by the formula

t$ ^ 0	 i tg 10.7 0, sin X 0	 (26)

To the East of the longitude X 0	 140 — 144 * part of the sector does not
satisfy the hitting the Earth, for in these conditions partal,^les drift away

V

V	 I

6"MOMMM
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all the time from Earth along hyperbolic trajectories, though formally their

perigee Rp E 6,500 km.

The maximum width of the sector is attained at longitude X a M 900

*** T H E E N D ***
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