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EFFECT OF STRESS RATIO ON FATIGUE-CRACK GROWTH IN
7075-T6 AND 2024-T3 ALUMINUM-ALLOY SPECIMENS

By C. Michael Hudson
Langley Research Center

SUMMARY

Axial-load fatigue-crack-growth tests were conducted on 12-inch-wide (305-mm)
sheet specimens made of 7075-T6 and 2024-T3 aluminum alloy. These tests were made
at stress ratios R (ratio of the minimum stress to the maximum stress) ranging from
-1.0 to 0.8 and at maximum stress levels ranging from 5 to 50 ksi (34 to 340 MN/m2) to
study the effects of stress ratio on fatigue-crack growth.

The experimental results were analyzed by using the stress-intensity method. For
a given positive stress ratio, the fatigue-crack-growth rate was a single-valued function
of the stress-intensity range for both 7075-T6 and 2024-T3 aluminum alloys. For R 20
the crack-growth rates varied systematically with R for both materials; the higher
stress ratios produced higher rates of fatigue-crack growth for a given stress-intensity
range.

Fatigue cracks in the 7075-T6 aluminum alloy grew at the same rates in all tests
with R £ 0 when the same maximum stress-intensity factor was applied. In contrast,
fatigue cracks in the 2024-T3 aluminum alloy grew faster in the tests with R = -1 than
in the tests with R =0 when the same maximum stress-intensity factor was applied.

Empirical equations developed by Forman et al. (in Trans. ASME, Ser. D: J. Basic
Eng., vol. 89, no. 3, Sept. 1967), by Erdogan (in NASA CR-901), and by Paris (in book
entitled "Fatigue — An Interdisciplinary Approach,' Syracuse Univ. Press, 1964) were
fitted to the data. Forman's equation produced an excellent fit to both the 7075-T6 and
the 2024-T3 data. Erdogan's and Paris' equations showed good correlation with the test
data except at the higher growth rates for the 7075-T6 alloy.

INTRODUCTION

Fatigue cracks frequently initiate early in the life of cyclically loaded structural
components. Consequently, a major portion of the useful life of these components is
spent in the crack-propagation phase of fatigue. Fatigue-crack propagation has been
shown to be dependent upon the applied stress-intensity range and upon the stress



ratio R (ratio of the minimum stress to the maximum stress). While much informa-
tion has been obtained for various stress-intensity ranges, much less information is
available with regard to stress ratio. Accordingly, an investigation has been conducted
to determine the effects of a wide range of R values and stresses on fatigue-crack
growth in 7075-T6 and 2024-T3 aluminum-alloy sheet specimens. These materials were
selected because of their frequent use in aircraft construction.

The data were analyzed by using the stress-intensity method. Figge and Newman
(ref. 1) showed that by this method the data from simple sheet specimens could be used
to predict fatigue-crack-growth behavior in simulated structural configurations. Empir-
ical equations developed by Forman, Kearney, and Engle (ref. 2), by Erdogan (ref. 3), and
by Paris (ref. 4) were fitted to the data generated in this investigation by using least-
squares techniques.

SYMBOLS

The units used for the physical quantities defined in this paper are given both in
U.S. Customary Units and in the International System of Units (SI) (ref. 5). The appendix
presents factors relating these two systems of units.

a one-half of total length of a central symmetrical crack, inches (mm)
ag half-length of crack immediately prior to rapid fracture, inches (mm)
aj half-length of crack at onset of slow crack growth, inches (mm)

C,C1,Co constants in fatigue-crack-growth equations

ke critical stress-intensity factor at failure, psi-inl/2 (MN/m3/2)

Kmax stress-intensity factor corresponding to maximum cyclic stress (with
tangent-formula width correction), ksi-in1/2 (MN/m3/2)

Kmin stress-intensity factor corresponding to minimum cyclic stress (with
tangent-formula width correction), ksi-inl/2 (MN/m3/2)

Ak range of stress-intensity factor (with tahgent-formula width correction),
Kmax - Kmin, ksi-in1/2 (MN/m3/2)

m,n,p exponents in fatigue-crack-growth equations



number of cycles
amplitude of load applied in a cycle, kips (newtons)
load on specimen immediately prior to rapid fracture, kips (newtons)
load on specimen at onset of slow crack growth, kips (newtons)
mean load applied in a cycle, kips (newtons)
maximum load applied in a cycle, kips (newtons)
minimum load applied in a cycle, Py, - Py, kips (newtons)
ratio of minimum stress to maximum stress
alternating stress, Pa/wt, ksi (MN/m2)
mean stress, Pm[wt, ksi (MN/m2)
maximum gross stress, Pmax/wt, ksi (MN/m2)
minimum gross stress, Pmin/wt, ksi (MN/m2)
specimen thickness, inches (mm)
specimen width, inches (mm)
length of crack starter notch, inches (mm)
correction for finite width of panel
SPECIMENS, TESTS, AND PROCEDURES

Specimens

The materials were taken from the special stocks of 7075-T6 and 2024-T3

aluminum-alloy sheets retained at Langley Research Center for fatigue testing. The
fatigue properties of these materials are discussed in reference 6. Tensile properties
were obtained in this investigation by using standard American Society for Testing and



Materials (ASTM) tensile specimens and are listed in table I. Also listed in table I are
the tensile properties obtained in 1949 on the same stocks of material. The tensile
properties of the materials did not change significantly over the 19-year interval. The
specimen configuration used in the crack propagation and in ancillary residual-static-
strength tests is shown in figure 1. Sheet specimens 12 inches (305 mm) wide, 35 inches
(889 mm) long, and with a nominal thickness of 0.090 inch (2.28 mm) were tested. A
notch 0.10 inch (2.54 mm) long by 0.01 inch (0.25 mm) wide was cut into the center of
each specimen by an electrical discharge process. Only very localized heating occurs
in making notches in this manner. Thus virtually all of the material through which the
fatigue crack propagates is unaltered by the cutting process. All specimens were made
with the longitudinal axis of the specimens parallel to the rolling direction of the sheets.

A reference grid (ref. 7) was photographically printed on the surface of the speci-
mens to mark intervals in the path of the crack. Metallographic examination and tensile
tests conducted on specimens bearing the grid indicated that the grid had no detrimental

effect on the material.

Testing Machines

Four axial-load fatigue-testing machines were employed in this investigation. The
capabilities of these machines are listed in the following table:

Maximum load .
Machine tvoe capability Operating frequency Machine
yp description
1bf kN cpm Hz

Subresonant . . . . . . . . 20 000 89 1800 30 Reference 8
Hydraulic . ... ... .. 100 000 | 445 1200 20 Reference 9
Hydraulic .. ... .. .. 120 000 | 534 30 0.5 Reference 10
Combination:

As subresonant unit . . . | 105000 | 467 820 14 } Reference 11

As hydraulic unit . . . . 132 000 587 40 to 60 | 0.7to 1.0

Loads were continuously monitored on these machines by measuring the output of a
strain-gage bridge attached to a dynamometer in series with the specimens. The maxi-

mum error in loading was +1 percent of the applied load.

Test Procedure

Axial-load fatigue-crack-propagation tests were conducted at stress ratios R
ranging from -1.0 to 0.8 for 7075-T6 aluminum alloy and from -1.0 to 0.7 for 2024-T3
aluminum alloy. Generally, tests were conducted at a number of maximum stress



levels Smax for a given stress ratio. The alternating and mean loads were kept con-
stant throughout each test. Duplicate tests were conducted at each stress level.

Fatigue-crack growth was observed through 10-power microscopes while illumi-
nating the specimen with stroboscopic light. The number of cycles required to propagate
the crack to each grid line was recorded so that crack-propagation rates could be deter-
mined. Approximately two-thirds of the crack-propagation tests were conducted to fail-
ure. The remaining one-third were stopped before failure, and the cracked specimens
were used in residual-static-strength tests.

In all the tests (crack growth and residual static strength), the specimens were
clamped between lubricated guides in order to prevent buckling and out-of-plane vibra-
tions during testing. Light oil was used to lubricate the surfaces of the specimens and
the guides. None of this oil was observed to enter the crack during testing. Conse-
quently, the oil was not expected to affect the crack growth. A 0.125-inch (3.2-mm) slot
was cut across the width of one guide plate to allow visual observation of the crack.

Axial-load residual-static-strength tests were conducted at a load rate of
120 000 1bf/min (8.9 kN/s) on unfailed crack-propagation specimens. A 70-mm
sequence camera operating at 20 frames per second was used to obtain slow-crack-
growth data. The cracked section of the specimen and the image of a load-indicating
device were photographed on each frame of film by using an optical prism. From this
film, the load at which the crack first started to grow statically and the load and crack
length immediately prior to final failure were determined.

METHOD OF ANALYSIS

The fatigue-crack-growth data were correlated by the stress-intensity method. It
was hypothesized in reference 4 that the rate of fatigue-crack propagation was a function
of the stress-intensity range; that is,

da
N - f(Ak) (1)

where
For centrally cracked specimens subjected to a uniformly distributed axial load,

Kmax = @SmaxVa (3)



and
Kmin = Ofsmin\fé (4)

The term o is a factor which corrects for the finite width of the specimen and is given
by

o=~ tan 2 (5)
na W

The term Spax is the maximum gross stress in the cycle and Spjp is the minimum
gross stress in the cycle. In presenting the results, the experimental values of da/dN
were plotted as functions of Ak (eq. (2)).

RESULTS AND DISCUSSION

Fatigue-Crack Growth

The results of the fatigue-crack-growth tests on 7075-T6 and 2024-T3 specimens
are presented in table II. This table gives the average number of cycles required for the
crack to grow from a half-length a of 0.10 inch (2.54 mm) to the specified half-lengths.
Fatigue-crack-propagation rates da/dN were graphically determined from the crack-
growth curves defined in table IIL

Typical fatigue-crack-growth curves for 7075-T6 and 2024-T3 specimens tested
under identical loading conditions are shown in figure 2. For these identical conditions,
two to four times as many cycles were required to reach a given crack length in the
2024-T3 alloy as in the 7075-T6 alloy.

Effect of Stress Ratio

Data for R 2 0.- The fatigue-crack-growth data from the tests with R =0 are
presented in figure 3 as plots of rate as a function of the stress-intensity range Ak.
For a given positive stress ratio, rate was a single-valued function of Ak for both
7075-T6 and 2024-T3 alloys. Crack-growth rates varied systematically with R for
both materials; the higher stress ratios produced higher rates of fatigue-crack growth

for a given value of AK.

Data for R = 0.- The crack-growth rate in the 7075-T6 alloy was a single-valued
function of Ak for all negative stress ratios when the compressive portion of the
loading cycle was neglected in calculating Ak (fig. 4). That is, for R <0, Ak in
equation (2) became kmax- These data for negative R fell into the same scatter band
as the data for R =0 (for which Ak also equals kmax), indicating the compressive




portion of the loading cycle did not significantly affect fatigue-crack growth in 7075-T6
alloy.

The crack-growth rate in the 2024-T3 alloy was nominally a single-valued func-
tion of Ak for the negative stress ratios (e.g., see fig. 5). (Rates do appear to be
slightly higher in the low-frequency tests than in the high-frequency ones for this set of
data.) However, fatigue cracks in the 2024-T3 alloy grew faster in the tests with R = -1
than in the tests with R = 0 (see fig. 6). Here again, Ak =kpax for boththe R=0
and R = -1 data. These higher rates in the R = -1 tests for the same tensile stress-
intensity range indicate that the compression portion of the loading cycle accelerated
crack growth in the 2024-T3 alloy.

Illg and McEvily (ref. 12) reported similar findings for 7075-T6 and 2024-T3 spec-
imens testedat R=0 and R =-1. They proposed that cracks in the 7075-T6 alloy
closed completely at zero load and that the material behaved as though no crack existed
under compressive loading. Thus, the compressive portion of the loading cycle in the
tests with R < 0 would do virtually no damage to the material at the tip of a crack, and
the crack would propagate as though it were experiencing an R =0 loading only. Illg
and McEvily (ref. 12) further observed that cracks in 2024-T3 alloy do not close com-
pletely when zero load is reached in the tests with R = -1 because of plastic deforma-
tion at the crack tip. Thus, the compressive loading in the tests with R = -1 would
tend to close the cracks and, in doing so, would do additional fatigue damage to the mate-
rial immediately ahead of the crack tip. This additional damage could be manifest as the
higher fatigue-crack-growth rates observed in this investigation.

Correlation of Data With Fatigue-Crack-Growth Equations

Empirical fatigue-crack-growth equations developed by Forman, Kearney, and
Engle (ref. 2), by Erdogan (ref. 3), and by Paris (ref. 4) were fitted to the test data.
Least-squares techniques were used to determine the appropriate constants for these
three equations. (It should be noted that the constants given in this report for these
equations are for U.S. Customary Units.) In fitting these equations, all the data from the
R < 0 tests for 7075-T6 alloy were assumed to apply to the R =0 tests since all the
data for R =0 fell into the same scatter band. The data for 2024-T3 alloy with R = -1
were not used in fitting the equations since there was no method of calculating the effec-
tive stress-intensity factor for a crack which is open for an indefinable portion of the
compressive loading.

Forman's equation (ref. 2), relating da/dN, Ak, R, and k¢ (the critical stress-
intensity factor at failure), produced an excellent fit to both the 7075-T6 and the 2024-T3
data (fig. 7). This equation has the form



da _ C(AK)" (6)

dN (1 - R)ke - Ak

where C and n are empirically determined constants. The values of k. for
7075-T6 and 2024-T3 alloys were obtained from the auxiliary residual-static-strength
tests. This factor is related to the load at rapid fracture Py, the associated crack
length ajf, and the width-correction factor «, as follows:

ke = a(Pf/wt)\lé_f (7)

Average values of k. of 40 400 psi-inl/2 (44.4 MN/m3/ 2) for the 7075-T6 alloy and of
56 600 psi-inl/2 (62.2 MN/m3/2) for the 2024-T3 alloy were found in these tests

(table III). The constants C and n in equation (6) were determined to have the fol-
lowing values:

Material C n
7075-T6 . . . . . 2.13x10-13 | 3.21
2024-T3 . . . . . 3.22 x 10-14 | 3.38

The equation developed by Erdogan (ref. 3) was also fitted to the test data (see
fig. 8). This equation has the form

da m
= - C1kmax AKP (8)
where Cy, m,and p are empirically determined constants. In fitting equation (8) to

the test data, these constants were determined to have the following values:

Material 1 Cq m p
7075-T6 . . . . . 1.00 x 10-19 | 1.33 | 2.37
2024-T3 . . . . . 1.04 x 10-19 | 1.15 | 2.44

The curves computed by equation (8) are shown in figure 8. This equation showed good
correlation with the test data except at the higher growth rates for the 7075-T6 alloy.

Paris (ref. 4) proposed the following relationship between the rate of fatigue-crack
growth and the stress-intensity range (in the notation of the present paper):

da _ 4
2 - cyak) (9)



In equation (9) Cg is a constant which is proposed to incorporate the effects of mate-
rial, mean load, loading frequency, and environment. This equation also showed good
correlation with the test data except at the higher growth rates for the 7075-T6 alloy (see
fig. 9). Separate values of the coefficient Cg had to be computed for each value of R
since R is not a function in equation (9). These coefficients are listed in the following
table:

Material R Ca
7075-T6 . . . . . . 0 5.52 x 10-21
.2 6.44
.33 | 1.00 x 10-20
5 1.80
i 3.95
.8 6.84
2024-T3 . . .. .. 0 2.14 x 10-21
.33 | 5.40
.5 7.75
i 1.24 x 10-20

The 7075-T6 data in figures 7 to 9 fell into an "'S" shape or reflex type of curva-
ture. A reflex curvature is also obtained from Forman's equation; it is induced by Ak
approaching (1 - R)kc in the denominator of equation (6). This intrinsic shape is the
primary reason for the excellent fit to the 7075-T6 data obtained by using Forman's
equation. The data for the 2024-T3 alloy would probably have had a reflex curvature
had tosts been conducted at sufficiently high stress-intensity ranges (such that Ak
approached (1 - R)kc). A separate investigation of crack-growth behavior at very high
rates is currently being conducted.

Erdogan's and Paris’ equations do not provide for this reflex curvature. Conse-
quently, these equations cannot fit the 7075-T6 data at the high growth rates as well as
Forman's equation did (see figs. 7 to 9) and probably would not fit the 2024-T3 data as
well as Forman's equation if there were additional data from tests at high stress-
intensity ranges.

CONCLUSIONS

Axial-load fatigue-crack-propagation tests were conducted on sheet specimens
12 inches (305 mm) wide and nominally 0.090 inch (2.28 mm) thick made of 7075-T6 and
2024-T3 aluminum alloys. These tests were at stress ratios R (ratio of the minimum
stress to the maximum stress) ranging from -1.0 to 0.8 and at maximum stresses



ranging from 5 to 50 ksi (34 to 340 MN/mz) to study the effect of R on fatigue-crack
growth. The test results were analyzed by using the stress-intensity method and were
correlated with three empirical relations, The following conclusions can be drawn from
this study:

1. For a given positive stress ratio, rate was a single-valued function of stress-
intensity range for both 7075-T6 and 2024-T3 alloys.

2. For R z (0 fatigue-crack-growth rates varied systematically with R for both
materials. The higher stress ratios produced higher rates of fatigue-crack growth for a
given stress-intensity range.

3. Fatigue cracks in 7075-T6 alloy grew at the same rates in all tests with R £0
when the same maximum stress-intensity factor was applied. These equal rates indicate
that the compressive portion of the loading cycle did not significantly affect crack growth
in this material.

4. The fatigue cracks in 2024-T3 alloy grew faster in the tests with R = -1 than
in the tests with R = 0 when the same maximum stress-intensity factor was applied.
Apparently, the compression portion of the loading cycle accelerated crack growth in this
material.

5. For identical loading conditions, two to four times as many cycles were required
to reach a given crack length in 2024-T3 alloy as in 7075-T6 alloy.

6. Empirical equations developed by Forman et al. (in Trans. ASME, Ser. D:
J. Basic Eng., vol. 89, no. 3, Sept. 1967), by Erdogan (in NASA CR-901), and by Paris
(in book entitled "Fatigue — An Interdisciplinary Approach,' Syracuse Univ. Press, 1964)
were fitted to the data. Forman's equation produced an excellent fit to both the 7075-T6
and the 2024-T3 data. Erdogan's and Paris' equations showed good correlation with the
test data except at the higher growth rates for the 7075-T6 alloy.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., May 29, 1969,
126-14-15-01-23.
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APPENDIX

CONVERSION OF U.S. CUSTOMARY UNITS TO SI UNITS

The International System of Units (SI) was adopted by the Eleventh General Con-
ference of Weights and Measures, Paris, October 1960, in Resolution No. 12 (ref. 5).
Conversion factors for the units used herein are given in the following table:

To convert from
U.S. Customary Units

Multiply by —

To obtain SI units

1bf
in.
ksi
cpm

4.448222
2.54 x 10-2
6.894757 x 106
1.67 x 10-2

newtons (N)
meters (m)
newtons/meter2 (N/m?2)
hertz (Hz)

Prefixes and symbols to indicate multiples of units are as follows:

Multiple Prefix Symbol
10-9 nano n
10-3 milli m
103 kilo k
106 mega M
109 giga G

11
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TABLE III.- CRACK AND LOAD MEASUREMENTS AND VALUES OF k. FROM
RESIDUAL-STATIC-STRENGTH TESTS

(a) 7075-T6 alloy

16

3j af P; Py ke
in, mm in, mm kips kN kips kN ksi- ml/2 MN/m3/2
1.72 43.69 1.85 46.99 23.4 104 29.9 133 39.2 43.1
1.59 40,39 1.80 45,72 17.7 79 30.4 135 39.2 43,1
1.53 38.86 1.79 45.43 20.0 89 30.4 135 38.5 42.3
1.94 49,28 2,36 59.95 16.5 73 27.2 121 39.8 43.7
1.02 25.91 1.16 29.46 -———- -—- 38.5 171 38.0 41.7
.98 24.89 1.19 30.22 -——- -—- 38.8 173 39.7 43.7
.91 23,11 .96 24.38 e -—- 43.1 192 38.0 41.7
1.01 25.65 1.09 27.69 -—-- —— 41.7 185 41.4 45.5
1.05 26.67 1.15 29.21 29.2 130 3.7 168 38.4 42.2
.78 19.81 .94 23.88 32.8 146 44.5 198 41.6 45.7
1.31 33.27 1.75 44 .45 19.2 85 32.0 142 40.2 44.2
1.90 48.26 2.19 55.63 15.7 70 25.0 111 35.4 39.0
.52 13.21 .13 18.54 32.8 146 50.4 224 40.4 44 .4
1.22 30.99 1.53 38.86 25.8 115 35.9 160 42.0 46.2
1.76 44.70 2.10 53,34 18.3 81 30.2 134 41.8 45.9
1.40 35.56 1.73 43.94 26.8 119 32.3 144 41.0 45.0
1.17 29.71 1.43 36.32 29.2 130 36.4 162 40.2 44,2
.54 13.72 .71 18.03 33.3 148 49.8 222 38.5 42.3
1.51 38.35 1.65 41.91 24.0 107 39.0 173 417.6 52.3
2.25 57.15 2.73 69.34 12.3 54 24.3 108 41.0 45.0
2.47 62.74 2.81 71.37 14.0 62 22.8 101 39.0 42.9
1.78 45.21 2.13 54.10 14.8 66 27.1 121 39.0 42.9
.70 17.78 .93 23.62 -—=- -—- 47.1 210 43.4 47.7
.53 13.46 .78 19.81 29.4 131 48.4 215 40.3 44.3
1.07 27.18 1.20 30.48 30.0 133 39.0 173 48.2 52.9
1.12 28.44 1.37 34.80 30.0 133 36.0 160 39.4 43.3
.55 13.97 12 18.29 -—-- - 41.5 211 37.6 41.3
(b) 2024-T3 alloy
aj afg Py Pg ke
in. mm in. | mm (a) Kips kN ksi-inl/2 MN/m3/2
1,98 50.3 2.82 71.6 32.0 142 55.9 61.4
2,70 68.6 3.24 82.3 26.8 119 52.8 58.0
2.58 65.5 3.28 83.3 28.2 125 55.8 61.3
2.45 62.2 3.30 83.8 29.5 131 56.9 62.5
2.43 61.7 3.06 M. 30.0 133 55.8 61.3
1.56 39.6 2.42 61.5 36.8 164 58.0 63.7
1.83 46.5 2.72 69.1 34.7 154 59.0 64.8
2.25 57.2 2.88 73.2 31.7 141 56.3 61.9
2.23 56.6 3.24 82.3 29.8 133 58.7 64.5
1.5% 39.9 2.32 58.9 36.8 164 54.8 60.2
1.80 45.7 2.58 65.5 34.2 152 55.5 61.0
1.52 38.6 2.38 60.5 37.5 167 58.7 64.5
2.02 51.3 2.48 63.0 34.4 153 54.9 60.3
1.58 40.1 2.28 57.9 39.7 177 57.5 63.2
2.56 65.0 3.22 81.8 27.7 123 54.1 59.5
1.52 38.6 2.32 58.9 38.0 169 57.8 63.5
1.50 38.1 2.38 60.5 37.0 165 59.0 64.8

4Could not be determined from film.
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Figure 1.- Specimen configuration. (All dimensions are given first in inches and parenthetically in mm.)
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(a) 7075-T6 alloy.

Figure 3.- Variation of fatigue-crack-growth rate with Ak for R 2 0.
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Figure 5.- Variation of fatigue-crack-growth rate with &k for R = -1 in 2024-73 alloy. (Data are for two loading frequencies.)
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Figure 6.- Variation of fatigue-crack-growth rate with Ak for R =0 and R=-1 in 2024-T3 alloy.
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Figure 7.- Correlation of experimental fatigue-crack-growth rates at various stress ratios with Forman's equation (ref. 2).

24




AKMN/m2 AK,MN/m™®
0 10 20 30 400 10 20 30 40
10 ' ' ' ' ' ' N
1 [ 0
lo.s- B R=0.33
[ 11 Q0"
T 1 Rate,
Gt L nm/cycle
Rate, b ‘|03
in/cycle E .
10°r i
I ] qi0°
10°r -
- Jio
10-7 —_— 1 ! 1 —
IO-? T L L] 1 T L L]
_ ]|05
oM R=0.5 - R=07
1 o’
1 Rate,
|0-4— - nm/cycle
Rate, - ‘|03
in/cycle :
10°r -
. W
10°%F i
- “10
=T . 1 " 1 o N N 1 :
oKs; 615 20 25 30 35 520 25 30 35
Ak ksi-in"® Ak, ksi-in?

(b} 2024-73 alloy.

Figure 7.- Concluded.
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Figure 8.- Correlation of experimental fatigue-crack-growth rates at various stress ratios with Erdogan's equation (ref, 3).
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Figure 9.- Correlation of experimental fatigue-crack-growth rates at various stress ratios with Paris' equation (ref. 4).
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