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ABSTRACT
 

This document is the Phase I Report of a two-phase program to
 

investigate the interference effects of radiation emitted by a
 

plutonium-dioxide-fueled Radioisotope Thermoelectric Generator
 

(RTG) on scientific instruments carried onboard an RTG-powered
 

spacecraft. A review of scientific instruments commonly
 

carried in spacecraft was performed and the elements of the
 

instruments most suceDtible to the RTG radiation were identified.
 

These elements, which included semiconductor detectors, plastic
 

scintillators, CsT scintillators and a number of other radiation
 

detectors were exposed to a SNAP-27 fuel capsule assembly The
 

resultant spectral response of each detector was determined along
 

with the effects of various separation distances, capsule
 

orientations, and different shielding materials and thicknesses
 

A detailed analysis of the nuclear radiation emitted from the
 

SNAP-27 fuel capsule was also performed, including the effect
 

of fuel form age on the source spectrum.
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I. INTRODUCTION AND SUMMARY
 

This is the final report on Phase I of a study to investigate RTG
 
Science Instrument Radiation Interaction for Deeo Space Probes. The work
 

was performed for the National Aeronautics and Soace Administration under
 

contract NAS 2-5222 durinq the period from 4 February to 30 June 1969.
 

During the decade of the 70's NASA isplanning several scientific
 

soacecraft missions into deep space to explore the outer planets and
 
asteroid belts. These missions will be of long duration and encompass
 

distances up to 30 astronomical units from the sun. At these distances
 
the solar flux is greatly diminished. As a result, solar cell power supplies
 
become heavy compared to the Radioisotope Thermoelectric Generators (RTG's)
 
and, therefore, reduce the weight available for the scientific payload. RTG
 
power sources are, therefore, being considered for deep space probes
 
However, RTG's have a potential disadvantage because the radioisotope heat
 
sources used to Power the RTG's emit gamma and neutron radiation. This
 
radiation may interfere with operation of some of the on-board radiation
 

detection instruments.
 

A typical spacecraft for deep space missions includes a variety of
 
radiation measuring instruments. These instruments cover a wide spectrum
 
of radiation ranging from high energy solar and cosmic particles to low
 
energy X-rays, ultra-violet rays, and infrared radiation. For some of
 
these instruments, the radiation produced by the RTG provides a constant
 
background which is superimposed on the measured signals. However, the
 
extent of this interference is difficult to predict with confidence on a
 

theoretical basis.
 

This program was designed to investigate the possible modes of RTG
 

fuel capsule radiation interference with typical instrumentation found
 
in deep space probes and experimentally measure the effects that the
 
RTG will have on the radiation sensitive elements of the instruments.
 

To accomplish this objective, a combined analytical and experimental
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approach was adopted which included the acquisition and use of a SNAP-27
 
fuel capsule loaned to TRW by the AEC for radiation interference testing.
 
The program was divided in two phases. The first phase was aimed at
 
providing some of the most obvious and needed data required to evaluate
 

the problem by studying the response of radiation sensitive elements of
 
the spacecraft instruments individually. Phase II will extend the study
 

to investigate the radiation effect on instrument systems and also
 
includes the assessment of the radiation interference in terms of mission
 

objectives.
 

The selection of radiation sensitive elements to be studied in
 
Phase I was based on a survey of over a hundred previous spacecraft
 

experiments. The radiation sensitive elements were identified and
 
categorized, and the most commonly used detector types and sizes were
 
selected This resulted in a set of 26 radiation detectors which were
 

evaluated in the RTG radiation field.
 

To provide a basis for comparison between the data obtained with the
 
SNAP-27 fuel capsule and other RTG's, a detailed study of SNAP-27 fuel
 

capsule gamma and neutron radiation spectrum was performed alonq with
 
an analysis of spectral changes as a function of fuel age. Also,
 
radiation dose rates around the RTG and the possibility of radiation
 
damage and neutron activitatlon of spacecraft components were considered.
 

The report is presented in six sections. Section 2.0 is a review
 

of program objectives and summary of major tasks that were performed
 

during Phase I. Section 3.0 describes the instrument survey and performance
 

study and the selection of radiation sensitive elements for radiation
 

interference tests. Section 4.0 gives the SNAP-27 fuel capsule radiation
 

characteristics. Section 5.0 describes the experiments that were performed
 

using the selected detectors, their response to SNAP-27 fuel capsule
 

radiation, and the effects of countermeasures such as separation, shielding,
 

and detector orientation in relation to the RTG. Section 6.0 gives several
 

conclusions and recommendations for further studies.
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The severity of RTG radiation interference will depend on the design
 
and objectives of each instrument. However, ina general way, it is
 
possible to make the following observations regarding the magnitude of
 
the interference:
 

Type of Measurement 


Cosmic ray and solar charged

particles
 

Energy > 100 Mev 

Energy 10 to 100 Mev 


Trapped Radiation 


Plasma and low energy 

electrons, energy < 1 Kev 


UV 


IR 


Effect of RTG Radiation
 

Minor
 
Moderate, may require shielding
 
(-1 ib) 

Significant during interplane­
tory flight, will require

shielding (Ito 5 Ibs).
 
Moderate to minor in vicinity
 
of planets.
 

Moderate, may require some
 
shielding (-l lb)
 

Minor
 

Minor
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2. PROGRAM OBJECTIVES AND TASK SUMMARY
 

2.1 General
 

The RTG/Science Instrument Radiation Interaction Study was designed to
 

provide the experimenters using scientific instruments onboard RTG powered
 

spacecraft with basic data to assess the radiation interference caused by
 

the radiation emanating from the RTG. The program had a dual purpose:
 

o 	To provide data for an immediate requirement concerning
 

the RTG radiation interference with science instruments
 

selected for the upcoming Pioneer F/G spacecraft
 

missions.
 

o 	To provide data to assess RTG radiation interference
 

with science instruments selected for future
 

scientific spacecraft programs.
 

To satisfy these requirements, a two-phase program was initiated.
 

Phase I, reported herein, was a five-month effort designed to study
 
238puO2 RTG fuel capsule radiation interference with a complement of
 

radiation-sensitive detectors and elements. This part of the program
 

consisted of identifying the most sensitive detectors and elements,
 

defining RTG radiation characteristics, and empirically measuring the
 

response of eaoh sensitive element (primarily radiation detectors) to
 

the 238puO2 radiation. In Phase II it is planned to extend these
 

measurements to complete science subsystems and two other potentially
 

radiation sensitive elements which were not included in Phase I. This
 

phase also includes plans to set up a cooperative experimental program
 

with experimenters that intend to fly instruments on RTG-powered spacecraft
 

to test their prototype flight hardware with an RTG radiation field
 

To fulfill the requirements for a suitable RTG radiation heat source,
 

TRW acquired, on loan from the AEC, a SNAP-27 fuel capsule. This source
 

is roughly representative of the type and amount of radioisotopic fuel
 

that would be used for a deep space probe mission employing an RTG. The
 

source is fueled with 45 Kilocuries of 238pu02 (1500 thermal watts)
 

contained in a superalloy capsule.
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Pioneer F/G and Viking will use approximately twice this amount,
 
whereas TOPS will be four or five times larger. However, the SNAP-27
 

can be used to simulate thest sources by multiplying the results
 
obtained with the SNAP-27 by appropriate factors because the neutron/
 
gamma ratios and spectra will be nearly identical for all these fuel
 

capsules
 

2.2 Task Summary
 

To satisfy the above requirements, the program was divided into
 
several tasks which were accomplished sequentially. These tasks, a
 
schedule, and other milestones are shown in Figure 2-1 and are summarized
 

below.
 

* TASK I - Instrument Survey and Performance Study 

The primary purpose of this task was to review the scientific
 

instrumentation used in spacecraft and identify the instruments
 

and/or elements of instruments that showed the most
 

susceptibility to interference by the radiation from the RTG.
 
Since early in the program it became apparent that most problems
 

will occur with instruments that are designed to measure space
 
radiation itself, the majority of Phase I effort was concentrated
 

on the study of RTG radiation effects on radiation detectors
 

themselves. To select the radiation sensitive elements for a
 

detailed study in Phase I, a general survey of instruments
 

commonly used in spacecraft science payloads was performed.
 
This survey included instruments that have been flown in the
 
past as well as instrument designs proposed specifically for
 

the Pioneer F/G spacecraft and consisted of a review of more
 

than 100 experiments designed to perform radiation measurements
 

in space. Tabulations of the detector types, sizes, and where
 

possible, specific makes (manufacturer and part number) were
 

made and the instrument configurations and the way they are
 
used in the science subsystems were also noted. From this
 

tabulation, the most frequently used detectors and detector
 

sizes were identified.
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PROGRAM SCHEDULE
 

F M A M J J A S 0 N D 

TASK 

CONTRACT START 

RECEIVE SNAP-27 FCA 
PIONEER F/G EXPERIMENTS SELECTED BY NASA 

A 

A 

A 

PHASE I 

SNAP-27 OPERATIONS PLAN 

INSTRUMENT SURVEY AND PERFORMANCE 
STUDY 

SOURCE CHARACTERISTIC STUDY 

EXPERIMENT DESIGN 
RADIATION COUNTERMEASURE INVESTIGATION 
RADIATION INTERFERENCE EXPERIMENT 
FINAL REPORT 

PHASE II 

PIONEER F/G INSTRUMENT STUDY 
EXPERIMENT DESIGN 
PIONEER F/G RADIATION INTERFERENCE 

EXPERIMENT 
FINAL REPORT 

- -

A SCHEDULE A COMPLETED 

FIGURE 2-I 



To complete the list, several detectors that are not necessarily
 

commonly used in spacecraft but represent particular detector
 

types which are of interest for closer study of the RTG fuel
 

capsule radiation characteristics or else are anticipated to be
 

used on future missions (e.g., Nal (Ti) scintillator and
 

channeltrons) have been added. This effort resulted in the
 

selection of 26 different radiation detectors tabulatdd in
 

Table 2-1. All of these detectors were procured, exposed to
 

the radiation from the SNAP-27 fuel capsule, and their spectral
 
responses and detection efficiencies measured. The results
 

gave differential spectra expressed in counts/sec-cm2-Kev
 

versus energy for each detector. Also, the effectiveness of
 

various shielding materials and the effects of detector
 

orientation in relation to the RTG heat source were measured.
 

The detectors selected for the study included Csl scintillators,
 

plastic scintillators, Cherenkov detectors, semiconductor
 

detectors, gas detectors, Nal scintillators, a channeltron
 

and several other detectors. This list of detectors includes
 

the majority of detector types and sizes commonly found in
 

spacecraft science payloads, including Pioneer F/G. The various
 

thickness detectors allow interpolation to predict the spectral
 
response and number of detected counts for virtually any
 

detector size.
 

* TASK II - Source Characteristic Study
 

The objective of this task was to characterize the nuclear
 

radiation environment produced by the SNAP-27 fuel capsule.
 

The task included the assembly and cataloging of current data
 

on the spectrum and field produced by a 238PuO fueled SNAP-27
 
source (obtained from Oak Ridge National Laboratory). These
 
data were compared with the characteristics of a bare 238PuO2
 

source to determine the effect of the fuel encapsulation
 

materials. Also, the characterization included the effects
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AECTM 64 	 t p7tt ~f l I/*TE'Pr[#M10TV 	 YTONY 

ITEM DESCRIPTION 
PROPORTIONAL COUNTER HARSHAW G-15 
GEIGER TUBES EON 6213 

EON 7302 
PLASTIC SCINTILLATORS I THICK, DIAMETERmm 1YZI" 

3m " " 
10mmSOmm " "1 

Gsl SCINTILLATORS 	 1mm THICK, 1I2" DIAMETER 
3mm 
lOmm " 

l'z" THICK, 1?I" DIAMETER 
Nal SCINTILLATORS 1Y" THICK, 11z"DIAMETER 

Imm THICK, 1/4" DIAMETER 

TABLE 2-1
 



/AVCOJ1tJ 4ftlfoTof [0 476' /#TRPCC#Ot YT6VY 
CONTINUED 

ITEM DESCRIPTION 
OHERENKOV DETECTOR 1mm THICK, 1Yz" DIAMETER 

1Omm 
30mm 

SEMICONDUCTOR DETECTORS .050mm THICK, 1cm 2 AREA
.200rm " 

.5 mm THICK, .5cm2 AREA
"
" 
2. mm " 

PHOSWICH PLASTIC 2mm +OsI 5mm THICK 
SEMICONDUCTOR TELESCOPE 2 SEMICONDUCTOR DETECTORS 
PHOTOMULTIPLIER TUBES RCA 6199 

RCA 4440 
CHANNELTRON BENDIX 4028 

TABLE 2-1 CONTINUED
 



of 	different fuel impurities and age. The results of this
 

analysis were compared with the measured data obtained during
 

the Radiation Experiment Task using the SNAP-27 fuel capsule
 

and were found to be in agreement.
 

Additionally, the Source Characteristic Study task included a
 

study of the potential activation of the science instrument due
 

to long term exposure to the RTG radiation field environment.
 

This was found to be an insignificant problem.
 

o 	TASK III - Experiment Design 

The task of experiment design consisted of the following
 

activities:
 

o 	Establishing test procedures.
 

o 	Design and construction of test fixtures, detector
 

containers, shields, cables, etc.
 

o 	Selection, testing, and calibration of electronic
 

components used for the tests.
 

o 	Assembly of radiation detectors.
 

o 	Detector check-out and calibration.
 

The equipment selected for the radiation interference testing
 

of each detector system is described indetail in Section 5.
 

@ 	TASK IV - SNAP-27 Operations Plan 

This task consisted of the majoritv of the documentation and
 
preparation of procedures which were required for the SNAP-27
 

fuel capsule acquisition and operations in the Radiation
 

Research Facility at TRW Systems, Redondo Beach, California.
 

Included in this task were a detailed Radiological Safety
 

Plan, Training Plan, and Emergency Procedures which were
 

subsequently presented to both the TRW Radiation Safety
 

Committee and the Operational Safety Division of the AEC.
 

They were approved by both bodies (copies of these documents
 

were transmitted to NASA/AMES).
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An 	on-site inspection of TRW facilities by the AEC OSD/ALO was
 
made on 12 March 1969. On 14 March 1969, a training course was
 
arranged at Sandia Laboratories for TRW personnel responsible
 

for SNAP-27 fuel capsule operations. The course included
 
procedures for unloading and loading the fuel capsule from
 
the Ground Shipping Cask (GSC) as well as the health physics
 

and emergency procedures associated with this operation.
 

This task was completed by documenting and publishing a manual
 

describing the detailed operational test procedures for
 

operations with the SNAP-27 fuel capsule at TRW Systems.
 

o 	TASK V - Radiation Countermeasure Investigation 

The radiation countermeasure investigation was performed
 

primarily as part of the Radiation Interference Experiment
 

described in Part VI and contained measurements of­

o 	Effects of various shielding materials.
 

o 	Effects of distance between fuel capsule and detector.
 

o 	Effect of detector orientation with respect to the
 

fuel capsule.
 

o 	Effect of fuel capsule orientation with respect to
 

detectors.
 

o 	Effect of coincidence shields.
 

o 	Measurements of fuel capsule spectrum as a function
 

of detector thickness and type.
 

All results performed under this task are included together
 

with other experimental data in Section 5.0.
 

o 	TASK VI - Radiation Interference Experiment 

This task was designed to measure the direct interference of
 
nuclear radiation from the SNAP-27 fuel capsule on the science
 

detectors identified in Task I. The task commenced on
 
24 April 1969 and consisted of the following main areas of
 

effort
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e 	Detector Set-Up and Check-Out - The science detectors and 

support instrumentation were installed at TRW Systems 

Radiation Test Facility and all systems were checked out 

to verify proper operation and calibration. 

e 	Radiation Mapping - The SNAP-27 fuel capsule was placed in
 

the fuel capsule positioning fixture. The gamma radiation
 

from the fuel capsule was measured and mapped as a function
 

of direction in the plane parallel to the long axis of the
 

fuel capsule.
 

a 	Interference Tests - The radiation detectors were exposed to
 

radiation of various intensities utilizing the SNAP-27 fuel
 

capsule and the radiation response characteristics of each
 

detector was measured.
 

e 	Countermeasure Investigation - Tests were performed to
 

evaluate the effectiveness of radiation interference
 

countermeasure techniques. This task included the
 

investigation of shielding and separation between the
 

fuel capsule and radiation detectors
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3. INSTRUMENT SURVEY AND PERFORMANCE STUDY
 

In order to study the effects of the RTG radiation on spacecraft
 

equipment and instrumentation, itwas necessary to survey the instruments
 

commonly found in soacecraft and isolate the sensor elements that
 

appeared to be most sensitive to the RTG radiation. The survey consisted of
 

reviewing the operatinq principles of the instruments and assessinq on
 

a theoretical basis, by considering the possible modes of radiation
 

interactions with each instrument, what effects the RTG may have on its
 

performance. It was not unexpected that the systems most sensitive to
 

RTG radiation are those designed to measure space radiation itself and
 

thus, the malority of the Phase I effort was concentrated on these systems.
 

Other scientific experiments involving measurements such as magnetic
 

fields, Dlasma, detection of meteorites, radio wave propagation, UV, IR,and
 

video TV transmission, appeared to be either totally unaffected or else
 

fell into a "gray" area where some effects appeared possible; however,
 

the exact magnitude could not be clearly established on a theoretical
 

basis. Several of the experiments listed above, where a clear assessment
 

of effects of RTG radiation could not be obtained during the Phase I
 

study, have been included for a detailed experimental evaluation under
 

Phase II.
 

3.1 Space Radiation Measurements
 

Radiation measurement instruments in spacecraft are most commonly
 

designed to measure solar, cosmic and planetary trapped radiation fields.
 

The radiation of interest consists of electrons, protons, aloha particles,
 

and sometimes heavier ions with atomic weights ranging from 6 to 16.
 

Typical radiation measurements include the identification of parti­

cle type, particle flux, energy spectra, and diroction of travel. The
 

energy range of interest for the space radiation is from a few ev to
 

several Bev. The instruments to measure these radiation fields also
 

range in design from very simple detectors that detect only the total
 

ionization caused by the space radiation to very sophisticated charged
 

particle telescopes capable of determining particle type, energy
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range, particle flux, and flux direction. For example, the Pioneer F&G
 

spacecraft contains a wide range of radiation detection systems with the
 

dual function of.
 

* 	Measuring solar and cosmic radiation during transit from
 

Earth to Jupiter.
 

0 
 Measuring trapped radiation belts in the vicinity of Jupiter.
 

Since very dense radiation fields in the Jovian trapped radiation 

belts are anticipated, the RTG radiation contribution to these measure­

ments is very small and should not compromise the experimental objectives. 

However, for determination of belt periphery and during the time of 

spacecraft flight from Earth to Jupiter at the periohery of the trapped 

radiation belts, and after Jovian encounter, the spacecraft will operate 

primarily in a low radiation environment ( - 0.05 particles sec/cm 2) and 

will, therefore, suffer the most interference fror the RTG radiation. 

3.2 Instruments
 

For purposes of assessing the RTG radiation effects, the science
 

instruments may be subdivided into two general categories: sinqle
 

detector systems and multi-detector systems.
 

The effects of RTG radiation on single detector systems are
 

relatively easy to present. The RTG radiation spectrum detected by a
 

single detector system is simply added to the spectrum the detector is
 

designed to measure. The only means of reducing the RTG radiation is by
 

shielding or increasing the lower discriminator setting, or reducing
 

the 	window width, thus rejecting part of the counts contributed by the
 

RTG.
 

Pioneer F&G has several of these single detector systems. Some
 

of these are intended primarily to operate in the Jovian trapped radia­

tion belts and thus are designed to handle very high particle fluxes.
 

This report provides most of the data required to assess the radiation
 

interference caused by the RTG for these detector systems, and at least
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at present, there appears to be no problem in meeting most of their
 

scientific objectives.
 

Multiple detector systems commonly consist of two or more detector
 
elements stacked next to each other in a telescope configuration. The
 

first detector is usually a thin semiconductor radiation detector. For
 
proton, aloha, and other heavy charged particle countinq it is used to
 
detect low energy events when the charged particles have insufficient
 

energy to completely penetrate the first detector. For particles that
 

have sufficient energy, itprovides dE/dx measurement for particle
 
identification and also produces a gating signal to gate the detectors
 

located behind it. Thus, only events that occur in coincidence with the
 

first detector are accepted. If the instrument contains more than two
 

detectors, the coincidence logic demands that the events occurring in
 
the third detector be in coincidence with the first and the second
 
detector, etc However, for detection of electrons, the second (and
 

subsequent) detectors are frequently operated in anticoincidence with
 
the first detector because the electrons do not leave enough energy in
 

penetrating the first detector to register an event.
 

The entire telescope assembly is frequently surrounded by an anti­

coincidence detector causing rejection of counts occurring simultaneously
 

in the telescope elements and in the anticoincidence shield
 

Thus, it appears that the most significant effects of the RTG heat
 
source radiation on typical multiple element radiation detector systems
 

will be as follows
 

a 	 Charged particle detection - background superimposed on the
 

first detector element of the telescope.
 

* 	 Electron detection - background superimposed on the second
 

detector element of the telescope.
 

* 	 Overall detection system capability - background due to
 
accidental coincidence counts in first few elements of
 

the telescope and dead counting time losses caused by various
 

counts detected in all the system detector elements and the
 

anticoincidence shield.
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3.3 Detector Selection Criteria
 

The criteria for selection of radiation detectors for the RTG
 

Science Instrument Interference Study were
 

0 
 Commonality with spacecraft instrumentation detectors used
 

in the past.
 

o 	 Inclusion of at least one detector of each type that is
 

likely to be used in future spacecraft.
 

o 	 The probability that the detector would be used on Pioneer
 

F&G spacecraft.
 

The above criteria were also used to select detector sizes, radia­

tion shields between the RTG and the detector, and the detector operating
 

modes.
 

In order to make the selection, spacecraft instrumentation consistino
 

of more than one hundred experiments concerned with radiation measurements
 

in space was reviewed and the detector tynes, siz-s, and where possible,
 

specific makes as well as how they are used in the system, were
 

tabulated. From the tabulation, the most frequently used detectors and
 

detector sizes were identified and included in the interference study.
 

To complete the list, several detectors that were not necessarily common,
 

but were useful for better determination of the RTG special characteristics
 

(for instance two Nal (Tl) scintillators) were added
 

The review also provided information for selection of radiation
 

shielding materials of various thicknesses which were used to provide a
 

set of known attenuation media between the fuel capsule and the detectors.
 

Additionally, the survey of spacecraft instruments indicated how the
 

radiation detectors should be instrumented so as to provide maximum
 

information on the effects of the RTG radiation on the detectors, as
 

well as provide a means of predicting the effect that the RTG radiation
 

will have on the complete scientific experiment.
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Types of radiation detectors considered as a result of the survey
 

are outlined below-


Ionization Chambers
 

Since no ionization chambers were contemplated for the upcoming
 

missions of RTG powered spacecraft at the time the detector selection
 

was made*, they have been excluded from the list of detectors to be
 

tested
 

Proportional Counters
 

Although proportional counters are not commonly found in spacecraft
 

instrumentation, one proportional counter was tested in the RTG/Science
 

Instrument Interference Study primarily for the purpose of obtaining low
 

energy gamma spectra and their variation as a function of shield type
 

and thickness.
 

Geiger Tubes
 

Geiger tubes are very common in spacecraft instrumentation Among
 

some thirty experiments reviewed that used geiger tubes, eighteen used
 

either Anton 213 or Anton 302 (later known as EON 6213 and 7302, respec­

tively). Thus, the two tubes identified above were selected for testing.
 

Scint111ators
 

Most of the connon scintillator types are used in spacecraft
 

instrumentation. Out of some thirty-five experiments reviewed that
 

incorporated some type of scintillator, CsI and plastic scintillators
 

were used fourteen times each. Nal four times,.and Cherenkov radiators
 

(most frequently lucite) three times. For the sake of completeness,
 

all the scintillator detectors named above were included in the
 

study, in thicknesses of 1 mm, 3 mm, 10 mm, for plastic, CsI, and
 

Cherenkov detectors, 030" and 1.5" for Nal and also one 1.5" thick CsI
 

crystal. Most of these scintillators are 1-1/2" in diameter and are
 

operated with RCA 6199 and/or 4440 photomultiplier tubes.
 

(Verbal communication from NASA AMES.)
 

3-5
 



Semiconductor Detectors
 

Semiconductor radiation detectors are very commonly used in
 

spacecraft instrumentation. Their sizes, types, and the way inwhich
 

they are used vary widely with each experiment. To cover the majority
 

of cases, four semiconductor detectors were selected for this study.
 
2
The detectors are 50 and 200 micron thick I cm area silicon surface
 

barrier and 500 and 2,000 micron, 0.8 cm2 area silicon lithium drift.
 

PM Tubes
 

Seventy-five percent of the photomultipliers that were identified
 

in the spacecraft instrument survey were either RCA 6199 or 4440, or their
 

equivalent. Thus, these two photomultipliers were selected for the
 

exoerimental study and were used with most scintillators in the experiments
 

To see if any significant signals were generated by direct interaction of
 

the tube structure with the RTG heat source radiation, these tubes were
 

also exposed to the RTG radiation without scintillators
 

Coincidence Systems
 

a Phoswich
 

A phoswich is a scintillation radiation detector that is quite
 

common in spacecraft instrumentation. It consists of a sandwich
 

of fast (e.g., plastic) and slow (e.g., CsI) pulse-producing
 

scintillating materials optically coupled together and viewed
 

by a single photomultiplier tube. An electronic circuit
 

separates the fast and the slow electronic pulses and thus can
 

determine if the nuclear interaction took place in the first,
 

the second, or both scintillators. This scheme is frequently
 

used for coincidence counting and discrimination between
 

charged particles and gammas. One such phoswich scintillator
 

consisting of a 2 mm Pilot B plastic scintillator and a 5 mm
 

thick CsI crystal was procured for tests in this study to
 

determine the spectrum of RTG radiation that will be detected
 

in coincidence between the two scintillators.
 

3-6
 



s Coincidence Counts Between Two Semiconductor Detectors
 

Semiconductor radiation detectors in spacecraft instrumentation
 
are very frequently used in sets of two or more and operate in
 

the coincidence mode for charged-particle spectroscopy RTG
 
radiation will cause a certain amount of coincidence counts
 

due to the statistical probability of nuclear interactions
 

occurring simultaneously in the two detectors.
 

The coincidence counts due to this effect are statistically
 

independent and could be predicted by knowing certain electronic
 
parameters and the response of each detector to the RTG
 

radiation separately. However, a certain amount of statistically
 

dependent coincidence counts is also anticipated as a result of
 

nuclear reactions like Compton scattering of gammas occurring in
 
the detector and one component of radiation escaping from the
 

first detector and entering the other, or protons produced by
 

(n,p) reactions and penetrating both detectors, etc. To measure
 

this statistically dependent component of coincidence counts, two
 
semiconductor detectors were arranged in a charged particle
 

telescope configuration and instrumented to measure the spectra
 
of coincidence counts. The spectra of statistically independent
 

components of radiation was measured by physically separating
 

the two detectors with a shield. Both the statistically dependent
 

and independent components were measured by removing the shield
 
and Dlacing the detectors next to each other
 

Channeltrons
 

Channeltrons are very small, reliable, light, and require little
 

power. Therefore, they have become popular in spacecraft instrumentation.
 

Channeltrons are customarily used as electron detectors in electrostatic
 

or magnetic electron spectrometers or for detection of UV radiation.
 

Although it is anticipated that the RTG radiation will interfere
 

very little with the channeltrons, one channeltron (Bendix CEM 4028) was
 

selected for inclusion in this study. The channeltron was operated in
 

the saturated mode, exposed to the RTG radiation and the channeltron
 

output recorded with a pulse height analyzer. 
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4. NUCLEAR ENVIRONMENT AND SOURCE CHARACTERISTIC STUDY
 

4.1 General
 

The purpose of this task was to estimate the expected radiation
 

fields from the radioisotope fuel capsule used in the radiation
 

interference experiments. The information in the current literature
 

was reviewed and the most reliable data selected for use in estimating
 

the radiation fields. Discrepancies in the literature for the gamma
 

radiation source have been found. A discussion of these discrepancies
 

and the expected radiation field from the fuel capsule is presented in
 

this section.
 

In addition, an estimate of the radiation field surrounding a
 

SNAP-27 radioisotope fuel capsule two years after fuel encapsulation
 

was made. Also, two effects that may alter the radiation field
 

surrounding,the fuel capsule were considered. These two effects are
 

attenuation of emitted radiation by air, and neutron-induced activation
 

of materials external to the fuel capsule.
 

A processing report from Mound Laboratory describing the history
 

and characteristic of the fourth SNAP-27 fuel capsule used in this
 

program is included as an appendix to this report.
 

4.2 Discussion
 

4.2.1 Radiation Source
 

The isotope used in the SNAP-27 fuel capsule is plutonium-238.
 

The fuel product obtained from the separation process contains
 

several other plutonium isotopes in fair abundance in addition to
 

the plutonium-238. A typical distribution of isotopes obtained in
 

the plutonium fuel product is given in Reference 1 and is presented
 

in Table 4-1. The fuel form used in the fuel capsule is plutonium
 

dioxide, PuO2. As discussed later, references to gamma and alpha
 

radiation outputs per gram of plutonium may be converted to radiation
 

outputs per gram of PuO 2 fuel form with fair accuracy by using
 

the ratio of the molecular weights of Pu to PuO 2 (0.8816). However,
 

the neutron radiation outputs of Pu and PuO 2 differ by roughly a
 

factor of ten due to the a, n reactions with 018 and other light
 

elements in the oxide fuel form.
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TABLE 4-1: Typical Distribution of Isotopes 
In Plutonium-238 Isotopic Fuel 
(Metal) 

ISOTOPE PERCENT ABUNDANCE (%) 

Pu-236 0.00012 

Pu-238 .81.0 

Pu-239 15.0 

Pu-240 2.9 

Pu-241 0.8 

Pu-242 0.1 

Np-237 0.5 

Th 0.01 

U 0.005 

Others 0.3 

Although Table 4-I shows that plutonium-238 is the predominant
 

isotope in the PuO 2 fuel form, Reference 1 also shows that a 2.6 Mev
 

gamma in the complex plutonium-236 decay chain can result in a
 

considerable gamma radiation field five years after encapsulation.
 

Thus, the relatively small quantity of plutonium-236 in the fuel
 

form is important and must be considered in the analysis of the
 

gamma radiation fields.
 

4.2.2 Gamma Source
 

For times of less than one year after encapsulation, the gamma
 

source associated with the plutonium-238 fuel results mainly from
 

the alpha decay of plutonium-238. However, spontaneous fission,
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fission products, and gamma rays from the alpha-neutron reaction with
 

oxygen-18 also contribute to the gamma source. For longer times
 

after encapsulation, the plutonium-236 and plutonium-241 impurities
 

inthe source may contribute significantly.
 

The alpha and beta activities of the plutonium-238 fuel product
 

are presented inTable 4-2 (Reference 2).
 

TABLE 4-2" 	Alpha and Beta Activities of
 
Plutonium-238 Fuel Product*
 

Contribution to the 

Isotope Abundance, % 
Activity of Pure 
Isotope, d/sec-gm 

Activity of 1 Gram of 
Fuel Product d/sec-gm 

238pu 81 6.35 X 1011 5.14 X io11 ca) 

239pu 15 2.27 X 109 3.41 X 108 () 

240pu 2.9 	 8.38 X 109 2.43 X 108 
 (a) 

241pu 0.8 	 4.12 X 1012 3.30 X 1010 ()
 

242pu 0.1 	 1.44 X 108 1.44 X 105 (a)
 

236pu 0.00012 1.97 X 1013 2.37 X 107 (a) 

To convert to PuO 2, multiply by 0.8816
 

Table 4-2 indicates that the plutonium-238 isotope is the most
 

important alpha source. The alpha emission isaccompanied by
 

gamma radiation whose source strength is found by combining the
 

alpha activity with the yield fractions for the alpha decay
 

process and the branching ratios for the concomitant gammas.
 

The alpha activity reported above for plutonium-238 was based
 

on an alpha-decay half-life of 87.404 to 0.41 years ismeasured
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by Mound Laboratory (Reference 3). The half-lives of 86.7 and
 

89.6 years used by TRW (Reference 4) and Isotope Incorporated
 

(Reference 5) respectively will give slightly different alpha
 

activities.
 

InTable 4-3 are tabulated the gamma activities due to alpha decay
 

of plutonium-238 as calculated by various sources. The activities
 

are based on one gram of plutonium-238 fuel product (Table 4-1).
 

TABLE 4-3. Calculated Gamma Activities
 
(gammas/gm-sec)
 

Gamma Energy LASL, 1967 Mound Lab., 1967 TRW, 1966 Isotopes Inc.,
 
(Mev) (Ref. 2) (Ref. 3) (Ref. 4) 1964 (Ref. 5)
 

. . .. . . .0.0 1 7 6. 7 X 1010 . . . .. 

1.93 X 108 1.49 X I0l 1.92 X 108 
0 043 2.0 X 108 


5.30 X 108 4.02 X 107
4.60 X 107
0.099 4.6 X 107 

6
 

5.10 X 106 2.66 X 107 5.03 X 10

0 150 5.2 X 106 


201 X 104
2.04 X 104 2.12 X 104 
0.203 2.0 X 104 


2.28 X 105 2.66 X 105 2.50 X 105
 
0.760 2.6 X 105 


---- 5.02 X 1049.10 X 104
0.810 ----

1.00 X 105
 ---- 1.06 X 1050.875 ----

Based on 1 gram Pu-238 fuel product with 81% Pu-238. Multiply by 0.8816
 
to convert to grams of PuO2.
 

The data concerning the yield fractions for some of the alpha decay
 

processes and the branching ratios for the concomitant gammas are
 

rather scarce. The decay mode which produces the 0.76, 0.810, and
 

0.875 Mev gammas is the most poorly defined. Earlier experimental

-5 , O,
data (Ref. 6) indicated that the yield fractions were 5 X 10


-55
 
and 2 X 10- 5 , respectively. Reference 3 (1967) reports values of
 

5 X 10-7 , 2 X 10-7 , and 0 respectively for the yield fractions.
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However, private communication with Mound Laboratory (Ref. 7)
 

revealed that the recently measured gamma spectra from a SNAP-27
 

fuel capsule showed little contribution to the gamma spectra at
 

0.810 and 0.875 Mev. In contrast the measured spectra showed a
 

large contribution at 0.760 Mev. Recently, Matlack, Bubernak, and
 

Metz at Los Alamos Scientific Laboratory (Ref. 8) measured the
 

gamma spectra emitted by plutonium-238 metal. Their results are
 

presented inTable 4-4. The activities agree well with the cal­

culated activities for the 0.099, 0.15, and 0.203 Mev gammas.
 

Additionally, the higher energy gammas are clearly defined in
 

energy and activity, clarifying the previously ambiguous values
 

for these gamma energies
 

TABLE 4-4: 	Measured Gamma Activities of Pu-238
 
in Pu-238 Fuel Product* by LASL, 1968
 

Gamma Energy Activity 
(Mev) (gammas/gm-sec) ** 

3.82 X lO7
 
0 0996 


3.50 X 106
 
0.1525 


2.06 X lO4
 0.201 

2.32 X 104
 0 7424 

1.03 X 105
 0 7658 

1.445 X lO4
 0.7858 

3.09 X 1O3
 0 8076 

6.20 X l03
 0 8513 

3.82 X 1O3
 0.8829 

2.58 X 103
 0 9265 

3.10 X 103
 0.9418 

4.4 X 103
 

1.O11 

7.03 X 103
 

1 0418 

5.16 X 102
 1 0851 


Measured 1-1/2 months after fuel purification
 

Based on 1 gram Pu-238 fuel product with 81% Pu-238
 
Multiply by 0.8816 to convert to PuO2
 

4-5
 



Good agreement exists between the calculated gamma activities (Table
 

4-3) for 0.760 Mev and lower energy gammas except for the 1966 TRW
 
calculated values. The yield fractions and branching ratios selected
 

by TRW in1966 for the 0.043, 0.099, and 0.150 Mev gammas were based
 

on older and sparse data which has since been updated. As discussed
 

inthe previous paragraph, the 0.810 and 0.875 Mev gammas show up
 

experimentally with small yield fractions. In light of the previous
 

discussion, the gamma activites measured by LASL (Table 4-4) (Ref. 8)
 
for the alpha decay of plutonium-238 are the best to date.
 

Also, LASL (Ref. 2) calculated the gamma activities of the other
 

plutonium isotopes. These activities are presented in Table 4-5.
 

TABLE 4-5: Gamma Activities of Plutonium Isotopes
 

Isotope Energy, Mev Photons/gm-sec
 
7 

239pu 0 017 (Lx-ray) 3.4 X 1O
4
0.052 2.4 X 1O


240pu Negligible
 

241pu 0.145 -4 x lO4
 

236pu 0.048 -7 x lO7
 

Based on 1 gram Pu-238 fuel product with 81% Pu-238.
 
Multiply by 0.8816 to convert to grams PuO 2.
 

The gamma activities of the plutonium isotopes other than plutonium­
238 contribute little to the total gamma activity as can be seen by
 

comparing the values inTable 4-5 to those inTable 4-3.
 

An additional source of gamma rays results from the spontaneous
 

fission of plutonium-238 and the concomitant fission products.
 
Both prompt fission and fission product gammas are emitted in a
 

spectrum of energies.
 

4-6
 



The spectrum and yield fractions for uranium-235 fission gammas were
 

obtained from Reference 8 and are presented inTable 4-6. The spec­

trum of fission gammas should not vary significantly for plutonium­

238 fission so that the fission gamma characteristics presented in
 

Table 4-6 are considered valid for plutonium.
 

A third source of gamma radiation results from the (a,n) reaction
 

with the oxygen-18 isotope of the PuO 2 fuel form which produces an
 

excited state of Neon-21 that decays by prompt gamma emission.
 

Table 4-7 obtained from Reference 1, shows the gamma rays from the
 

alpha particle interaction with oxygen-18. A comparison of results
 

presented in this table with the gamma ray source associated with
 

spontaneous fission presented inTable 4-6 shows that the gamma
 

source from the (a,n) reaction is about a factor of two greater
 

than the fission gamma source.
 

However, the alpha-neutron gamma ray source is still a factor of
 

about 40 smaller than the gamma ray source from the alpha decay
 

of plutonium-238 and, thus, the alpha decay gamma ray source is
 

usually the most important to consider from a radiation hazards
 

standpoint.
 

Table 4-4, Table 4-5, Table 4-7 and Figure 4-1 give the entire
 

effective gamma ray source for PuO 2 fuel form for times of less
 

than one year after fuel separation. For times greater than one
 

year after separation, the decay gammas from the plutonium-236
 

and plutonium-241 impurities represent an increasingly signifi­

cant gamma source. Gamma rays will result from the radioactive
 

decay of daughter nuclides of plutonium-238 and Dlutonium-241
 

4-7
 



TABLE 4-6: 238Pu Fission- Gamma Spectrum Derived From
 
Measured 235U Fission Gamma Spectrum
 

Energy Median Gammas Gammas per Second
Band Energy Per 
 Per Gram of
(Mev) i!e Disintegration Pu-238 Fuel Product
 

Prompt Fission Gammas
 

0 - 0.75 0.5 3.1 2.76 X 103 

0 75 - 1.25 1.0 1.9 1.69 X 103 
1 25 - 1.75 1.5 0.84 7.48 X 102 
1.75 - 2 25 2.0 0.55 4.90 X 102
 

2.25 - 2.75 2.5 0.29 2.58 X 1o2 

2.75 - 3.25 3.0 0 15 1.34 X 102 

3.25 - 3.75 3 5 0.062 5.51 X 101 
3.75 - 4.25 4 0 0.065 5.79 X 101 
4.25 - 4.75 4.5 0.024 2.14 X 101 
4.75 - 5.25 5.0 0.019 1.69 X 101 
5.25 - 5.75 5.5 0.017 1.51 X I01 
5.75 - 6.25 6.0 0.007 6.2 
5 25 - 6.75 6.5 0.004 3.5 

Fission Product Gammas 
0 - 0.60 0.4 1.61 1.43-X 103 
0 60 - 1.05 0.8 4.84 4.30 X 103 

1 05 - 1.50 1.3 0.496 4.41 X 1O2 

1.50 - 1.94 1.7 0.624 5.55 X lO2
 

1.94 - 2.34 2.18 0 311 2.77 X 102 
2.34 - 2.65 2.5 0.01142 1.02 X 101
 
2.65 - 3 0 2.8 0.01142 1.02 X 101 

TABLE 4-7- Gamma Rays from the (a, n) Reaction in PuO2 

Energy 
 Gammas per Second
 
Me v 
 per Gram of
 

Pu-238 Fuel Product
 
0 0 - 0.5 8.5 X 103
 

0.5 - 1.0 
 0.0
 
1.0 - 2.0 2.59 X 103 

2
2 0 - 3.0 7.7 X i0
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The decay chain for plutonium-236 obtained from Reference 2 is
 

shown below in Figure 4-2
 

236pu 2.85 Y 232U 72 Y 228Th 1 91 Y
 
a a a 

224Ra 3.64 d 220- 52 s 216po 0.16 s
 

anP
a 


212pb 10 6 h 21 60m _208
212Bi
 

34t
 

(66%) 60 m 1 3 m
 

212pP 0.3 us 208Pb t 

a (Stable) 

Figure 4-2. Plutonium-236 Decay Chain
 

The rate-controlling step in the sequence, as far as the formation
 

of gamma-emitting daughters is concerned, is the growth of 1.91
 

year Th- 22 The amount of gamma activity from lead, bismuth, and
 
thallium daughters increases with time after purification of the
 

plutonium fuel product, reaching a maximum in 18 years.
 

The principal gamma rays of these three elements and their abun­

dances are shown inTable 4-8 (obtained from Reference 2) based
 

on Th-228disintegration. This convention is used since these
 

short-lived daughters are nearly always seen in equilibrium with
 

Th-228, and because of the branching decay of Bi-212
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The neutron source from PuO 2 fuel has been calculated and measured
 
by several organizations. Presented inTable 4-11 are the values
 

reported in the literature. The values for the total neutron source
 
are in fair agreement. The low value reported by LASL isbased on a
 
reduced content of oxygen-18 in the oxygen of the PuO 2. The two
 
measured values are direct measurements reflecting source self­
absorption and shielding by cladding materials. The SNAP-27 measure­
ment of 2.2 X lO4 n/gm-sec is then ingood agreement with the source
 
values of 2.6 X 104 and 2.8 X lO4 n/gm-sec calculated by References
 
4 and 1,respectively Presented inFigure 4-3 is the neutron spec­
trum measured by Reference 7 for the SNAP-27 fuel capsule.
 

TABLE 4-11: Neutron Source from Plutonium Oxide
 
(Neutrons/sec-gm)*
 

Source of Data Reference Spontaneous 
Fission 

Alpha-Neutron 
Reactions 

Neutron 
Induced 

Total 
Neutron 

With Oxygen Fission Source 

Isotopes 5 (1964) 2.64 X lO3 3.33 X lO4 

Incorporated 

TRW 4 (1966) 2 6 X 103 1.7 X lO4 6 46 X lO3 2.6 X104 

Savannah River 1 (1965) 1.9 X lO3 1.9 X lO4 6.9 X 1O3 2.8 X lO4 

Laboratories 2.1 X 104** 

Mound 3 (1967) 3 X 103 1.9 X lO4 

Laboratory 
Mound 7 (1968) 2 75 X 103 2.22 X 104*** 
Laboratory 

LASL 2 (1967) 2.1 X 1O3 1.13 X lO4 

Based on 1 gram fuel product Measured Value. Measured Value of SNAP-27
 
Pu-238 Fuel Capsule
 

4.2.4 Gamma Radiation Fields
 
Inthe calculation of gamma radiation fields by various sources,
 

differences have arisen inthe calculated values. The causes of the
 
differences may be attributed to two areas: (1)the selection of
 
gamma source activities and (2)the calculated transport of the gammas
 
through materials.
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Differences in the gamma source activities result mainly from the
 

scarcity of data for some of the gamma yield fractions and branching
 

ratios Additionally, different half-life values for the decay modes
 

have been used in determining the gamma activities resulting in small
 

differences. It can be seen inTable 4-3 that disagreement exists
 

over the yield fractions for the 0.810 and 0.875 Mev gamma. As dis­

cussed in Section 4.2.2, recent experimental data indicate that the
 

yield fractions for these two gamma rays is small. Inclusion of the
 

small yield fractions in place of the previously used larger yield
 

fractions for the 0.810 and/or 0.875 Mev gammas in the gamma source
 

will cause an appreciable change in any calculated gamma field.
 

Differences in the source values for the lowest energy gammas
 

will not change calculated gamma fields since these gammas are
 

almost completely attenuated by self-absorption of the source and
 

the shielding of the fuel cladding materials. Hence inclusion or
 

exclusion of the high intensity low-energy "L"X-ray reported by
 

LASL will not affect calculated gamma fields. Also, the high
 

values of gamma activities used by TRW for low energy gammas
 

should not significantly affect calculated gamma fields.
 

At first glance the gamma activities reported in the literature
 

may seem in disagreement. The activities are reported on the
 

bases of 1 gram pure plutonium-238, 1 gram plutonium fuel pro­

duct (81% plutonium-238) and on I watt of power. Confusion may
 

exist when the activity basis is stated as 1 gram Pu-238. A
 

19% difference exists between the pure Pu-238 and Pu-238 fuel
 

product basis.
 

Another difference in gamma source activities may result from the
 

time dependence of the gamma source. The plutonium-236 and plu­

tonium-241 impurities in the plutonium-238 fuel product cause the
 

gamma activity of the source to increase with time after encap­

sulation of the fuel. Depending on the time after encapsulation,
 

the calculated gamma field will have different values.
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The gamma field calculated using the same gamma source will vary
 

due to differences in cross-section values, buildup factors, and
 

self-absorption values used intransport calculations. Character­

istically, the differences in these values will cause calculated
 
values to differ by a factor of 2 or more. The standard deviation
 

of the cross-section values may alone cause a factor of 2 difference
 

in transported gamma values.
 

The source geometry model used for the transport of the gamma rays
 

may affect calculated results. However, for gamma fields calculated
 

for distances far from the gamma source, all source models will act
 

as a point source with I/R2 behavior.
 

4.2.5 SNAP-27 Fuel Capsule Radiation Fields
 

The radioisotope fuel used inthe SNAP-27 fuel capsule isplu­

tonium-238 in the form of plutonium dioxide microspheres. The fuel
 

iscontained in a cylindrical annulus as shown in Figure 4-4. The
 

capsule produces 1480 watts of thermal power. Utilizing the dimen­

sions given in Figure 4-4 and the fact that one gram of plutonium­

238 produces 0.55 watts, the density of the fuel was found to be
 

5 92 gm/cm
3
 

For purposes of computing the gamma ray fields around the fuel cap­

sule the radiation source was assumed to consist of two line sources 

as shown in Figure 4-5. The line source intensities were scaled by 

the volume fractions of each of the two sections of the fuel annulus 

denoted by the dotted lines in Figure 4-5 (Sections A and B). The 

methods outlined by Case & Zweifel (Ref. 10) for the treatment of 

source self-attenuation were used. The gamma mass absorption 

coefficients for the source region and cladding material are shown 

inTable 4-12. The values were obtained from Reference 11 Gamma 

ray buildup factors to account for scattered radiations in all cal­

culations were taken from Reference 9. The gamma source used in the 

gamma field calculations isshown inTable 4-13 and Figure 4-1. These 

values were derived by utilizing the data presented inTable 4-4, 

Table 4-6, and Table 4-7, corredsponding to the best gamma source 

values available to date. 

4-16
 



SUPERALLOY CLAD 

0.02 

SUPERALLOY\" 

SUP ERALLOY 

Pu-238 FUEL
ANN ULUSS 

02 2.:'9 

FIGURELO4-.SNP27FELCPSL 
4IIlRl7 I I 

15.60" 

FIG38UEL 44 NP27FE ASL 

4-17
 



SECTIONA
 

Pu-238 FUEL
 

ANNULUS
 

SECTION B 

SOURCE B
SOURCE A 


SHIELDING
SOURCE 


Pu-238 
h .NNZ~. 	 ICROSPHERES
 

SUPERALLOY
A ------- -o8 " 
0.04" [0.467" 

SUPERALLOY
 

A
I,,B 

0.08" 

FIGURE 4-5. RADIATION SOURCE MODEL AND SHIELDING
 

4-18 



TABLE 4-12- Mass Absorption Coefficients
 
Energy Group Median Energy 

(Mev) 

1 0.05 
2 0.10 

3 0.15 

4 0.20 

5 0.80 

6 1.0 

7 1.5 

8 2.0 

9 2.5 

10 3.0 

11 4.0 

12 5.0 

13 6.0 

PuO2 Mass Absorption 

Coefficients 


cm2/gim) 


9.902 

1.591 


2.296 


1.148 


0.0953 


0.0756 


0.0553 


0.0480 


0.0458 


0.0437 


0,0427 


0.0432 


0.0436 


Superalloy Mass
 
Absorption Co­
efficients
(cm2/gm)
 

2.289
 
0.9077
 

0.3760
 

0.2257
 

0.0682
 

0.0600
 

0 0487
 

0.0426
 

0.0396
 

0.0366
 

0.0341
 

0.0329
 

0.0321
 

TABLE 4-13- Gamma Source From PuO 2 Fuel for
 
Times Less Than One Year 

Energy Group Median Energy (Mev)* 

1 0.05 

2 0.10 

3 0.15 

4 0.20 

5 0.80 

6 1.0 

7 1.5 

8 2.0 

9 2.5 

10 3.0 

11 4.0 

12 5.0 

13 6.0 

Activity

(gammas/sec-gm)
 

2 00 X108
 

3.82 X 107
 

3.50 	X 1o6
 
4
3.05 X 10


1.60 X 105
 
1.34 X 104
 

3
2.60 X 10

1.61 X 103
 

6.53 X 102
 

3.64 X 1O2
 

6.86 X 101 
3.51 X ll
 

1.72 X 101
 

Median energy isadjusted insome cases to agree with most abundant gamma
 
in group.


** 
Based on 1 gram of Pu-238 fuel product.
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The results of the gamma field calculations are presented in Figure
 

4-6 and Table 4-14, showing the gamma ray spectrum and intensity at
 

one meter from the capsule centerline. The gamma intensity at other
 
2
distances can be found by assuming the field falls off as I/R . This
 

is a good assumption for distance greater than 100 cm. The spectrum
 

shown in Figure 4-6 will be somewhat harder than the actual measured
 

spectrum due to the use of the buildup factor approximation.
 

TABLE 4-14: 	Calculated Gamma Radiation Field of
 
the SNAP-27 Fuel Capsule at One Meter
 

Group Median Energy Gamma Flux 2 Dose Rate 
(Mev) (gammas/sec-cm ) (Roentgens/hr) 

3

1 	 0.05 4.36 X l0 5 72 X l0 - 4
 

4 -3

2 	 0.10 2.04 X 1O 3 16 X 10


3

3 0 15 1.60 X l0 4.21 X l0 - 4
 

4 0 20 2.92 X 101 1.095 X l0 - 5
 

5 	 0.80 1.55 X lO3 2.48 X 10-3 

6 	 1.0 1 54 X 102 2.96 X 10-4 

7 	 1.5 3 39 X 1l 8.92 X l0 - 5 

8 	 2.0 2 27 X 10 7.33 X 10-5
 

9 2.5 9.31 X 100 3.54 X 10-5
 

10 3 0 5.23 X 100 2.22 X l0 - 5
 

-11 	 4.0 9.96 X lO l 5.11 X 10-6
 

- -6

12 	 5.0 5.03 X 1l 3.17 X 10


-6

13 	 6.0 2.44 X 10-l 1.75 X 10


42.82 X lO 7.17 X 10-3 
TOTAL 
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Since the neutron radiation field generated by the SNAP-27 fuel cap­
sule was directly measured by Mount Laboratory (Ref. 7, 1968), the
 
field was not calculated here. The measured neutron spectrum per
 

gram of plutonium-238 fuel product is shown in Figure 4-3. The neutron
 
intensity of 2.2 X 104 n/gm-sec is in agreement with other reported
 
values (Table 4-9) For the 1480 watt (thermal) SNAP-27 capsule,
 

the corresponding neutron intensity is 5.92 X 107 n/sec This value
 
can be used as an effective point source. Then the neutron flux at
 

radial distance R from the center at the capsule can be found from
 
Equation 1
 

FL (R) = 5 92 X l07 n/sec 
2
 

4iR
 

where.
 

FL (R)= Neutron flux at radial distance R (n/sec-cm2
 

R = Radial distance from source (cm)
 

At one meter from the SNAP-27 fuel capsule the neutron flux is471
 
n/sec-cm2 .
 

4 3 SNAP-27 Fuel Capsule Radiation Fields As A Function of Ace
 

The SNAP-27 fuel capsule of interest was assumed to have aged
 
2 years since fuel encapsulation. Given in Section 4.2 is the radiation
 

source for times of less than one year. At two years after fuel encapsu­
lation, there isan added source of gamma radiation from the growth of
 
daughter nuclides inthe Pu-236 and Pu-241 decay chains. Presented in
 
Table 4-15 is the gamma source at times less than one year and at two
 

years (from data presented in Section 4.2)
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TABLE 4-15 AGE EFFECT ON SNAP-27 FUEL CAPSULE 
GAMMA ACTIVITY 

Median Energy Activity 
Group (Mev) (qammas/sec-qm) * 

<1 yr. 2 yrs. 
8 2.38 X 108
 1 	 0.05 2.00 X 10


2 	 0.10 3.82 X 107 3.82 X 1O7 

3 	 0.15 3.50 X 106 3.50 X l0
 

4 5
 
4 	 0.20 3.05 X 1O 1.205 X 10


5
5 	 0.80 1.60 X 10 1.92 X 1O5
 

6 	 1.0 1.34 X lO4 1 34 X lO4 

37 1.5 2.60 X lO 2.60 X 1O3
 

8 3
2.0 1.61 X 1O 1.61 	X 1O3 

9 	 2.5 6.53 X 1O2 3 78 X lO4 

10 	 3.0 3.64 X 102 3.64 X 1o2
 

11 	 4.0 6.86 X 101 6.86 X 101 

12 5.0 	 3.51 X 101 3.51 X 101
 

13 6.0 	 1 72 X 101 1.72 X 101
 

• Based on 1 gram of Pu-238 fuel product
 

Using the source model and methods given in Sedtion 4.Z, and the 

gamma source spectrum at two years ( 4-15 ), the gamma field was calcu­

lated at one-half, one, three, and ten meters from the fuel capsule center­

line. The effect of air attenuation was calculated by using exponential 

attenuation without buildup or scattering. This is a valid assumption as 

even 10 meters of air is equivalent to less than 1/2 a mean free path for 

the lowest energy gammas. It was found that the air attenuation reduced 

the dose rate at one-half meter by 1.6%, at one meter by 3%, at three
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meters by 8.8%, and at ten meters by 26.6%. Presented in Figure 4-7 is
 
the calculated gamma dose rate profile around the SNAP-27 fuel capsule.
 

In Figure 4-8 the gamma dose rate is plotted as a function of radial
 

distance.
 

A check of the exponential attenuation of neutrons by air for the
 
neutron spectrum of the fuel capsule indicated that the air attenuation
 

is negligible for the neutrons. Thus, the neutron field results qiven
 
in Section 4.2 can be used. Presented in Figure 4-9 is the calculated
 

neutron dose rate profile around the SNAP-27 fuel capsule. In Figure
 
4-8 the neutron dose rate is plotted as a function of radial distance
 

along with the gamma dose rate. The necessary dose rate conversion
 

factors were obtained from Reference 9. The total radiation fields
 

(neutron and gamma fields) at one-half, one, three, and ten meters are
 
presented inTables 4-16, 4-17, 4-18 and 4-19, respectively.
 

4.4 Neutron Induced Activation
 

The gamma ray field resulting from neutron induced activation of
 

materials external to the fuel capsule may be significant compared to
 
the gamma ray field generated by the fuel capsule itself. Presented
 

here is an estimate of the relative values of these two components of
 

the gamma field at a selected flux point external to the capsule. The
 

methods and data in Reference 12 were utilized to calculate neutron
 

activitation of several materials. Of specific interest are materials
 
used in construction of scientific instruments. The materials considered
 

here are aluminum, stainless steel, iron alloys, copper, beryllium, and
 

titanium.
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TABLE 4-16:- CALCULATED RADIAL RADIATION FIELD AT ONE-HALF
 
METER FOR A SNAP-27 FUEL CAPSULE*
 

GAMMA FIELD NEUTRON FIELD
 

Energy Gamma Gamma Energy Neutron Neutron 
Interval Flux 2 Dose Rate Interval Flux 2 Dose Rate 

(Mev) (gammas/sec-cm (MREM/HR) (Mev) (N/sec-cm) (MREM/HR) 

0 - 0 075 1.915 	X 104 2.508 X 109 0.2 - 0.6 159.6 9.68 

0.075 - 0.125 7 779 	X 104 1.205 X 101 0.6 - 1.0 256 8 24.92 

0.125 - 0.175 6 334 	X 103 1.678 X 100 1.0 - 1.4 226.8 26 80 

0.175 - 0.50 4.544 	X 102 1.704 X 10- I 1.4 - 1.8 225.2 26 40 

0.50 	 - 0.90 7.517 X 103 1.202 X 101 1 8 - 2.2 244.0 28.80 

X 1020.90 - 1.25 6.17 1.184 	X 100 2.2 - 2.6 245.2 29 00 

1.25 - 1 75 1.351 	X 102 3.563 X 10-1 2.6 - 3 0 195.2 23.64 

1.75 - 2 25 9 07 	 X 101 2.929 X 10- I 3.0 - 3.4 163.2 20.72 

2.25 - 2 75 2.146 	X 103 8.049 X 100 3.4 - 3.8 75.6 10 00 

2.75 - 3.5 2.087 	X 101 8.871 X 10- 2 3.8 - 4 6 56.0 7.84 

- 23.5 	 - 4.5 4.017 X 100 2.129 X 10 4.6 - 6.6 33.0 5.28 

X 10- 2  4.5 - 5.5 2.034 	X 100 1.281 6.6 -13.0 10 9 2.18 

- I 	 35 5 - 6.5 9.89 X 10 7.124 X 10­

3 845 X 101 -_ 1891.48 215.26TOTAL 1.142 	X 105 

* Fuel has been encapsuled for 2 years 



TABLE 4-17 CALCULATED RADIAL RADIATION FIELD AT ONE METER
 

FOR A SNAP-27 FUEL CAPSULE* 

GAMMA FIELD NEUTRON FIFLD 

Energy Gamma Gamma Energy Neutron Neutron 
Interval Flux 2 Dose Rate intorval Flux 2 Dose Rate 

(Mev) (gammas/sec-cm2) (MREM/HR) (Mev) (N/sec-cm2) (MREM/HR) 

0 - 0 075 4 184 X 103 5.481 X 10-1 0.2 - 0.6 39 9 2 42 

0 075 - 0.125 1.978 X 104 3.066 X 100 0.6 - 1.0 64.2 6.23 

0.125 - 0.175 1 557 X 103 4.127 X 10-1 1.0 - 1 4 56.7 6 70 

0.175 - 0.50 1.122 X 102 4.208 X 10-2 1.4 - 1.8 56 3 6.60 

N) 
0.50 - 0 90 1 844 X 103 2 950 X 100 1.8 - 2.2 61.0 7.20 

r~o 
0.90 - 1.25 1.520 X 102 2.919 X 10-1 2.2 - 2.6 61.3 7 25 

1.25 - 1.75 3.355 X 101 8.825 X 10- 2  2.6 - 3.0 48.8 5 91 

1.75 - 2.25 2.250 X 101 7.268 X 10- 2  3.0 - 3.4 40.8 5.18 

2.25 - 2 75 5.338 X 102 2 001 X 100 3 4 - 3.8 18.9 2.50 

2.75 - 3 5 5.193 X 100 2 207 X 10-2 3.8 - 4.6 14.0 1.96 

3.5 - 4 5 9.890 X 10-1 5.246 X 10-3  4.6 - 6.6 8.25 1.32 

4.5 - 5 5 5.000 X 10-1 3.151 X 10-3  6.6 -13.0 2.72 0 545 

5.5 - 6.5 2 420 X 10-1 1.748 X 10-3 

TOTAL 2.823 X 104 9.506 X 100 472.87 53.815 

* Fuel has been encapsuled for 2 years
 



TABLE 4-18" CALCULATED RADIAL RADIATION FIELD AT THREE METERS
 

FOR A SNAP-27 FUEL CAPSULE* 

GAMMA FIELD NEUTRON FIELD 

EnergyInterval Gamma
Flux 2 

Gamma
Dose Rate 

Energy
Interval 

Neutron 
Flux 2 

Neutron 
Dose Rate 

(Mev) (gammas/sec-cm) (MREM/HR) (Mev) (N/sec-cm) (MREM/HR) 

0 - 0.075 4.284 X 102 5.613 X 10- 2 0.2 - 0.6 4.43 0.268 

0.075 - 0.125 2 070 X 103 3.209 X 10-1 0.6 - 1.0 7.13 0.692 

0.125 - 0.175 1.642 X 102 4.352 X 10- 2 1.0 - 1.4 6.30 0.744 

0.175 0.50 1.189 X 101 4.461 X 10- 3 1.4 - 1.8 6.25 0.733 

0 50 0.90 1.994 X 102 3.191 X 10"I  1.8 - 2.2 6.77 0.800 

0.90 1.25 1.646 X 101 3 161 X 10-2 2.2 - 2.6 6.81 0.805 

1.25 1.75 3.656 X 100 9 615 X 10- 3 2.6 - 3.0 5.42 0.656 

1.75 2.25 2.464 X 100 7.959 X 10- 3 3.0 - 3.4 4.53 0.575 

2.25 2.75 5.840 X 101 2.190 X 10-1 3.4 - 3.8 2.10 n.277 

2 75 3 5 5.687 X 10-1 2.416 X 10-3 3.8 - 4.6 1.55 0.217 

3.5 4.5 1.089 X 10"I  5.771 X 10­ 4 4.6 - 6.6 0.916 0.146 

4.5 5.5 5.499 X 10- 2 3.464 X 10- 4  6.6 -13.0 0.302 0.0605 

5.5 6.5 2.669 X 10- 2 1.921 X 10- 4 

TOTAL 2.956 X 103 1.0159 X 100 52.541 5.979 

* Fuel has been encapsuled for 2 years
 



TABLE 4-19. CALCULATED RADIAL RADIATION FIELD AT TEN METERS
 
FOR A SNAP-27 FUEL CAPSULE* 

GAMMA FIELD NEUTRON FIELD 

Energy Gamma Gamma Energy Neutron Neutron 
Interval Flux 2 Dose Rate Interval Flux 2 Dose Rate 

(Mev) (gammas/sec-cm) (MREM/HR) (Mev) (N/sec-cm) (MREM/HR) 

0 - 0.075 4.15 X 101 5.436 X 10-3 0.2 - 0.6 3.99 X 1 -1 2.42 X 10- 2 

0.075 - 0.125 1.819 X 102 2.819 X 10-2 0.6 - 1.0 6.42 X 10- 1 6.23 X 10- 2 

0.125 - 0 175 1.224 X 101 3.243 X 10 - 3  1.0 - 1 4 5.67 X 10- 1 6.70 X 10-2 

0.175 - 0.50 9.010 X 100 3.381 X 10 - 4 1.4 - 1.8 5.63 X 10- 1 6.60 X 10­ 2 

0.50 - 0.90 1.626 X 101 2.603 X 10-2 1.8 - 2.2 6.10 X 0 7.20 X - 2 

0.90 - 1.25 1.361 X I00 2.613 X 10- 3  2.2 - 2.6 6.13 X 10- 2 7.25 X 10- 2 

1.25 - 1 75 3.061 X I0­1 8.050 X 10- 4 2.6 - 3.0 4.88 X 10- 1 5.91 X 10- 2 

1.75 - 2.25 2.079 X 10- 1 6.715 X 10­ 4 3 0 - 3.4 4.08 X 10- 1 5.18 X 10- 2 

2.25 - 2.75 4.970 X 100 1.863 X 10- 3  3.4 - 3.8 1.89 X 10- 1 2.50 X 10- 2 

2.75 - 3.5 4.872 X 10-2 2.070 X 10- 4 3.8 - 4.6 1.40 X 10- 1 1.96 X 10- 2 

3.5 - 4.5 9.372 X 10- 3 4.967 X 10- 5  4.6 - 6.6 8.25 X 10- 2 1.32 X , -2 

4.5 - 5.5 4.763 X 10- 3  3.000 X 10- 5  6.6 -13.0 2.72 X 10- 2 5.45 X 10-3 

5.5 - 6.5 2.322 X 10- 3  1.671 X 10-5 

TOTAL 2.601 X 102 6.950 X 10- 2  4.73 X,100 5 382 X 10-1 

* Fuel has been encapsuled for 2 years 



The activation flux point of interest was chosen at 2 cm from a 5 pound
 

sample of material (a typical weight for a spacecraft instrument). The
 

material sample was assumed for convenience to be located 100 cm from the
 

fuel capsule. For any radial distance from the fuel capsule at which the
 

material sample may be located, the relative contributions of the fuel cap­

sule primary gammas and the neutron induced gammas to the total gamma flux
 

(at 2 cm from the material sample) is approximately constant. This result
 

is due to the I/R2 geometrical attenuation of both the primary capsule
 

generated fields; i.e., the gamma field, and the neutron field which con­

trols the activation gamma source strength.
 

The neutron induced actiV(tion in the materials was calculated using 

the effective activation cross-sections given in Reference 12. These effec­

tive "cross sections" were measured with the ORNL reactor spectrum. The 

reactor spectrum is largely low-energy while the capsule neutron spectrum 

is relatively high-energy with little low-energy neutron contribution. The 

higher energy spectrum will induce relatively more (n, p) and (n,n', y) 

reactions, with concomitant gammas, but will induce relatively fewer (n,y) 

reactions. Hence, the effective "cross-sections" for the higher energy
 

capsule spectrum is conservatively estimated to be of the same order of
 

magnitude as the effective "cross-sections" for the reactor spectrum.
 

Using the effective activation cross-sections given in Reference 12
 

and assuming a point source model for the neutron induced gammas, the
 

neutron induced gamma flux was calculated. Presented in Table 4-20 are
 

the contributions to the gamma field from the activated materials at 2 cm
 

from the activated materials and 100 cm from the fuel capsule. Itcan be
 

seen from Table 4-20 that for the materials considered here, the neutron
 

induced gamma field is two to five orders of magnitude smaller than the
 

primary fuel capsule gamma field (2.8 x l04 gammas/s-cm2). Self attenua­

tion effects, which were not included in the calculation, would reduce the
 

flux still further. Hence, the effect of neutron induced activation can be
 

neglected when estimating the SNAP-27 fuel capsule gamma radiation field.
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TABLE 4-20: 	 NEUTRON INDUCED GAMMA FLUX AT 2 CM FROM 
A FIVE POUND SAMPLE OF VARIOUS MATERIALS 
LOCATED ONE METER RADIALLY FROM SNAP-27 
FUEL CAPSULE* 

Gamma Flux 
MATERIAL (gammas/cm2_sec) 

Aluminum 1 25.5 

Iron (1030 alloy) 30.9 

Stainless Steel (316) 80.4 

Copper 174 

Beryllium 0.2 

Titanium 1.1 

* Flux contribution from the fuel capsule at the same flux point 

is 2.8 X 104 gammas/sec-cm2. 
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4.5 Summary of Results
 

In Section 4.2, a good estimate of the neutron and gamma radiation 
fields emitted by a SNAP-27 fuel capsule was obtained by utilizing the
 

information available from recent measurements of plutonium-238 sources.
 

The neutron field iswell defined by the direct measurement performed on
 

a SNAP-27 capsule reported in Reference 7. The recent measurements in
 

Reference 8 of the gamma rays emitted by plutonium-238 have resolved the
 

differences found in previous estimates of Pu-238 gamma ray source. Of
 

specific importance, the measurements reveal that the yield fractions for
 

the 0.810 and 0.875 Mev gammas are very small and that the 0.760 Mev gamma
 

yield fraction is roughly a factor of 2 less than previously reported.
 

Differences in the calculated gamma field exterior to the SNAP-27
 

fuel capsule will arise depending on the model assumed for the source,
 

the mass attenuation cross sections used for the materials, the buildup
 

factors used for scattering effects, and the method used
 

to account for self-absorption of the source. The source model used is
 

not overly important as any source model chosen will appear as a point
 

source at a sufficient distance.
 

InSection 4.3 the radiation fields at one-half, one, three, and ten
 

meters for a two year old SNAP-27 radioisotope fuel capsule were calculated
 

utilizing the data presented inSection 4.2. Itwas found that the effect
 

of air attenuation reduced the gamma dose rate at one-half meter by 1 6%,
 
at one meter by 3%, at three meters by 8 8%, and at ten meters by 26.6%. The
 

neutron dose rate was unaffected by air attenuation. In Section 4.4 itwas
 

found that neutron induced gamma activation inmaterials (materials typically
 

found in scientific instruments) external to the fuel capsule produced a
 

negligible perturbation of the field surrounding the fuel capsule.
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5. RADIATION INTERFERENCE EXPERIMENTS
 

5.1 General
 

The radiation interference experiments were carried out in a large
 

40' x 40' room with 20' ceiling and a 20' x 20' by 10' deep well in the
 

center of the room covered with a low mass aluminum floor. The fuel
 

capsule and the detectors were located near the center of the well to
 

minimize radiation scattering from the surrounding walls and floor.
 

A typical experimental set-up used during the majority of the
 

testing is illustrated schematically in Figure 5.1-1. Several photographs
 

of the set-up are shown in Figures 5.1-2 and 5.1-3 Before each test, the
 

SNAP-27 fuel capsule was taken out of its storage cask and mounted in a
 

specially designed fuel capsule positioning fixture so it could be moved,
 

by remote means, either up or down or in the horizontal plane. The
 

radiation detectors were installed on a low mass supporting structure and
 

the fuel capsule was moved to the desired distance from the detector.
 

The distance measurements were performed using either a theodolite or a
 

tape measure depending on which was more convenient for the particular
 

set-up. Provisions were made on the detector supporting rack to mount
 

absorber materials or heat shields between the fuel capsule and detector.
 

The heat shields were made out of aluminum foil and were used to avoid
 

overheating the detectors when they were operated in close proximity to
 

the heat source.
 

The general test procedure for testing the detectors was as follows'
 

* 	Set up one detector in the test rack.
 

@ 	Adjust the high voltage and/or amplifier gains to give the
 

desired output.
 

* 	Check system gain usinq one or more calibration sources.
 

a Move the fuel capsule to desired distance from the detector.
 

s Record detector response to the fuel capsule spectrum.
 

* 	Insert various absorbers between the fuel capsule and the detector,
 

and record detector response (usually without moving either the
 

detector or the fuel capsule)
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s 	Change fuel capsule-to-detector distance and record the
 

detector resoonse.
 

o 	Change detector orientation with respect to the fuel capsule
 

(by turning the detector 45' and 900 to the fuel capsule)
 

and record detector response.
 

e 	Check detector calibration to ensure that system has not
 

drifted during test,
 

5 2 Fuel Capsule to Detector Distance
 

Most of the testinq was performed with the fuel capsule positioned
 
vertically and the detectors in the same horizontal plane as the center
 

of the fuel capsule.
 

The distance between the fuel capsule and the radiation detectors
 

was adiusted to suit the count rate of each particular detector system to
 

achieve good statistical data in reasonable counting times. Then the
 

data were adjusted to correspond to a common distance of 36 inches.
 

Figure 5 2-1 illustrates how the theoretical count rate varies with 
distance from the fuel capsule. Experimental data taken during the 

program verified that this count rate versus distance relationship was 

in good agreement for each of the detectors used. 

5.3 Shields
 

To measure the effectiveness of various shielding materials, a
 

set of standard shields was selected and used with each detector.
 

The 	standard shields consisted of:
 

Lead (0.031, 0.062, 0.125, 0.025, 0.5 inch thick or
 

0.90, 1.81, 3.62, 7.25, 14.5 gms/cm2 respectively)
 

Aluminum (0.031, 0.062, 0.125, 0.25, 0.5 inch thick or
 

0.22, 0.43, 0.86, 1.71, 3.43 gms/cm2 respectively)
 

Polyethylene (0.25, 0.50, 1.0, 2.5 inch thick or
 

0.675, 1.35, 2.70, 6.75 gms/cm2 resppctively)
 

Boron loaded polyethylene (with 5%boron) (1.0 inch thick,
 

v2.6 gms/cm2 ) 
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All shields were of the same size, 24" x 24", and were positioned
 

between the fuel capsule and detectors so that the detector was in the
 

center of the shield and 4 to 6 inches behind it. The choice of these
 

large area shields was made on the basis of the best compromise between
 

convenience and experimental objectives. Inpractice for spacecraft
 

applications only small shields just covering the area of the detector
 

or the fuel capsule would be used. However, manufacturing of such shields
 

for each detector used in the tests was beyond the scope of this program
 

and it was chosen to approximate an "infinite" shield using 24" x 24"
 

absorbers The use of this large size shield results in additional
 

scattering and dose build-up seen by the detectors. In fact, in some
 

cases, the count rate at the lower energies (several hundred kev)
 

actually increased above the no-absorber level when a thin polyethylene
 

sheet was inserted between the fuel capsule and detector. However, there
 

is a relation between the measured absorption with the simulated infinite
 

shields and absorbers just large enough to cover the detector. To measure
 

this absorption relationship between small and large area absorbers, a set
 

of small absorbers 3" x 3" was constructed and absorption data for several
 

scintillator detectors was measured and compared with absorption data
 

obtained with the large absorbers. SNIAP-27 fuel capsule spectra taken
 

with 1-1/2 x 1-1/2 Nal scintillator, are illustrated in Figure 5.3-1.
 

Figure 5.3-2 shows spectra taken with small and large absorbers. Also, a
 

correction curve, shown in Figure 5.3-3, was generated and can be used to
 

obtain an approximate correction for the data obtained with large
 

absorbers to what would be seen if small area absorbers were used. As
 

would be expected, the deviation increases with decreasing gamma energy.
 

However, in all cases neglect of this correction factor will result in
 

conservative values of the shielding thickness required to reduce the RTG
 

radiation to the desired level.
 

5.4 Radiation Around the RTG
 

A majority of the data on detector response to the fuel capsule
 

radiation was taken with the fuel capsule positioned with its long axis
 

vertically and the radiation detectors positioned in the horizontal plane
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coincident with the center of the fuel capsule Inpractice, the RTG's
 
on a spacecraft would be oriented insuch a way as to minimize the
 
radiation level at the spacecraft instrument section However, the fuel
 

configurations vary considerably among different RTG designs, as does
 

the axial radiation intensity. To make the study as general as possible,
 

the detectors were positioned broadside to the fuel capsule. This
 
represents the worst case because self-shielding of a cylindrical-shaped
 

fuel capsule inthe direction of the long axis of the fuel element
 

considerably reduced radiation levels.
 

Tests were performed to measure the SNAP-27 fuel capsule spectra as
 

a function of detector position around the fuel capsule inthe plane
 

passing through its longitudinal axis. The test geometry used is
 

illustrated inFigure 5.4-1. Fuel capsule spectra were taken with
 

1.5 x 1 5 inch and 0 03 inch thick x 1 25 dia inch Nal scintillators.
 

The resultant spectra inthe range of 0-600 kev and 0-3 Mev for various
 
angles are illustrated in Figures 5.4-2 and 5.4-3, respectively. As can
 

be seen from the figures, the spectra remain reasonably constant in the
 

range 0 = 0 to 60 degrees but changes markedly in shape and radiation
 

intensity when itapproaches 90 degrees. This change, as anticipated, is
 

especially pronounced at the lower energies (0-1 Mev range) where fuel
 

self-absorption ismost significant.
 

Plots showing the detected number of counts as a function of angle
 

0 between the detector and longitudinal axis of the fuel capsule, at
 

constant distances, and for average energies of 90 kev, 200 kev, 400 kev,
 

1.6 Mev, and 2.55 Mev, are shown in Figures 5.4-4, 5.4-5, 5.4-6, 5.4-7,
 

and 5.4-8, respectively.
 

Inthe range of 9 from 45 to 90 degrees where the most variation
 

ingamma flux exists, additional data were taken with a Geiger tube
 

(EON 7302) by placing it on the low-mass aluminum flooring first
 

directly below the fuel capsule and then moving it along the floor
 

a few inches at a time. The data were corrected for the variation in
 

distance for each position and are given in Figure 5.4-9.
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5.5 Semiconductor Detectors
 

Four silicon semiconductor detectors were selected for testing
 

with the fuel capsule radiation. These detectors were as follows:
 

o 	KEVEX totally-depleted lithium-drift type C80-1/2, 0.5 mm
 

thick, 0.8 cm2 area, 13 kev FWHM resolution for beta Darticles.
 

o 	Nuclear Diodes totally depleted surface barrier detector
 

mounted in a dE/dX mount, type MRde-200-100-25, 200 microns
 

thick, 1 cm2 area, 24 key FWHM resolution for alpha particles.
 

o 	Nuclear Diodes totally-depleted surface barrier detector
 

mounted in a dE/dX mount, type MRde-50-100-40, 0.053 micron
 

thick, 1 cm2 area, 35 key FWHM resolution for alpha particles.
 

Also included in the tests were two semiconductor detectors that
 

belonged to NASA/Goddard Space Flight Center and were of the type to
 

be used in a Cosmic Ray Detector System in the Pioneer F&G spacecraft.
 

These detectors were:
 

o 	5 cm2 area, 3 mm thick totally depleted lithium drift detector
 

(manufactured by KEVEX).
 

o 	0.25 cm2 area, 50 mm thick surface barrier detector
 

(manufactured by ORTEC).
 

The detectors were operated with a Tennelec TC-130 preamplifier
 

and 	Tennelec TC-200 amplifier. Signal integration and differentiation
 

time constants of 0.8 microseconds were used during all the tests. The
 

Tennelec TC-200 amplifier output was connected directly to a pulse
 

height analyzer.
 

The spectral response of these detectors to the SNAP-27 fuel
 

capsule inunits of counts/sec-cm2-kev are given for the energy
 

ranges of 0-1 Mev and 0-5 riev in Figures 5.5-1 and 5.5-2, respectively.
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Data obtained with the 5 cm2 area, 3 mm thick NASA/Goodard detec­
tor are given in Figures 5.5-3 and 5.5-4 for energy ranges 0 to 5 Mev
 

and 0-10 Mev, respectively.
 

Spectra showing the effects of several absorber materials are
 

given in Figure 5.5-5.
 

Absorption plots obtained with the 2 mm thick detector with lead,
 

aluminum and oolyethylene absorbers are given in Figure 5.5-6.
 

Figure 5.5-7 shows the detector response as a function of detector
 

orientation in relation to the fuel capsule.
 

5.6 CsI Scintillator
 

Four CsI scintillators were selected for testing with the SNAP-27
 

fuel capsule. These scintillators were as follows:
 

o Harshaw detector type 6S8-X, 1.5" dia x 1.5" thick CsI (Na).
 

This is an integrally mounted scintillator and photomultiplier
 

assembly designed for general lab use.
 

o Harshaw 1 cm thick x 1.5 inch dia.
 

o Harshaw 3 mm thick x 1.5 inch dia.
 

o Harshaw 1 mm thick x 1.5 inch dia.
 

The 1 cm, 3mm, and 1 mm thick crystals were mounted in Harshaw
 

type H mounts with a 0.001" thick aluminum front window and were
 

operated with RCA 6199 photomultiplier tubes. The scintillators were
 

coupled to the multiplier tubes using silicon grease. The tube bases
 

were of standard Harshaw manufacture which use 470K ohm resistors for
 

the dynode string with .001 jif capacitors for pulse shaping between
 

dynodes 9 and 10 and the anode.
 

The PM tube output was connected to a Harshaw NAil RC clipped
 

amplifier and the amplifier was connected directly to a pulse height
 

analyzer. High voltage power for the photomultiplier tubes was
 

provided by Fluke 408A or Fluke 412A d.c. power supplies.
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The SNAP-27 fuel capsule spectra obtained with CsI scintillators of
 

four thicknesses are shown in Figure 5.6-1.
 

Spectra showing the effect of several absorbers are illustrated in
 

rqgure 5.6-2.
 

The effect of detector orientation in relation to the heat source for
 

a 3 mm thick detector is given in Figure 5.6-3.
 

5.7 Plastic Scintillators
 

Four plastic scintillators, 1.5 inch diameter and 3 cm, 1 cm, 3 mm,
 

and 1 mm thick, were selected for tests with the SNAP-27 fuel capsule.
 

The scintillators were machined from 2"-diameter Pilot B (Pilot Chemicals
 

Division, New England Nuclear Corporation, Watertown, Massachusetts)
 

scintillator stock, polished by hand to have glossy surfaces, and coupled
 

to RCA 6199 photomultiplier tube using silicon grease. The photomultiplier
 

tube scintillator assembly was attached to Harshaw 1-1/2 inch tube bases,
 

and the entire assembly covered with a thin (-.005") and light-tight
 

stainless steel case. The photomultiplier tube output was connected to a
 

Harshaw NA-li amplifier, and the amplifier output was connected to a pulse
 

height analyzer. Power for the photomultiplier tubes was provided by
 

Fluke Model 408A d.c. power supply.
 

The plastic scintillator spectral response to the SNAP-27 fuel
 

capsule radiation is shown in Figures 5.7-1 and 5.7-2 for two energy
 

ranges
 

Since it was difficult to obtain energy calibration for the thin
 

scintillators (land 3 mm thick) due to their very poor energy resolution,
 

the energy calibration was performed using Co60 and Cs137 sources on the
 

3 mm thick detector only. Tests on other size detectors to obtain
 

Figures 5.7-1 and 5.7-2 were performed using the same photomultiplier
 

tube, amplifiers, and other electronics, being careful not to disturb the
 

photomultiplier tube orientation when scintillators were changed.
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At the end of the test, which took less than one hour to complete, the
 

system gain was checked by mounting the 3 	cm thick scintillator and
 
137
repeating the calibration with Co60 and Cs sources. The gain was
 

found to be the same as at the beginning of the test within less than
 

2 percent. Absorption data, effects of detector orientation with respect
 
to the heat source, and count rate as a function of distance from the
 

fuel capsule measurements were obtained at a later time. The energy
 
calibration for these tests was obtained by comparing the data to spectra
 

of Figures 5.7-1 and 5.7-2. Absorption spectra taken with several
 
absorbers are shown in Figure 5.7-3. Absorption plots for lead, aluminum,
 
and polyethylene absorbers for several energy ranges are given in
 

Figure 5.7-4. No significant change in the detected spectra as a function
 

of detector orientation in relation to the heat source was observed.
 

5.8 NaI Scintillators
 

Two NaI scintillator detectors were used to perform measurements
 
with the fuel capsule. The detectors were Harshaw Model 6S8-X, 1.5 x
 

1.5 inch NaI (Tl) and Harshaw Model 5S30 K/Q, 1-1/4" diameter x 0.030"
 

thick NaI (Ti). Both detectors were standard laboratory type detectors
 
and were operated with the same equipment as CsI and plastic scintillators
 

described in Section 5.6.
 

The purpose of using Nal scintillators to measure the SNAP-27 heat
 
source radiation was not because these detectors are frequently used in
 

spacecraft instrumentation. In fact, Nal crystals are quite fragile
 
and, therefore, are difficult to use outside the laboratory environment.
 

However, they provide the best energy resolution that is available with
 

scintillation detectors. Also, radiation detection efficiencies of NaI
 
detectors are well documented so it becomes relatively easy to convert
 
from the radiation response obtained with a NaI crystal to the actual
 

radiation spectra and flux emitted by the SNAP-27 fuel capsule. Spectral
 

response to the SNAP-27 heat source radiation obtained with two detectors;
 

1.5 x 1.5 and a .030 inch thick x 1.25" dia crystals are given in
 
Figures 5.8-1 through 5.8-3 in several energy ranges.
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The spectra of the SNAP-27 fuel capsule obtained with the 1-1/2 x
 
1-1/2" NaI scintillator using various absorbers are given inFigure 5.3-1.
 
The same data taken with the 0.03" thick Nal scintillator are given in
 
Figure 5.8-4.
 

5.9 Cherenkov Detectors
 

Four different thickness Cherenkov radiation detectors were
 

selected for tests with the SNAP-27 fuel capsule. They were 3 cm,
 
1 cm, 3 mm and 1 mm thick and all were 1-1/2 inch diameter. The
 
crystals were machined out of Lucite, polished by hand to have glossy
 
surfaces and coupled to RCA 6199 photomultiplier tube using silicon
 
grease. Since no provisions existed to calibrate the individual tube
 

gains, all tests with the Cherenkov detector were performed using the
 
same photomultiplier tube and electronics. Inthe beginning of the
 
test the tube gain was measured using a Pilot B scintillator and
 
Co60 source, then the Pilot B plastic scintillator removed, and
 
Cherenkov detectors were coupled to the PM tube one at a time, and
 
measurements of the fuel capsule radiation were made. At the end of the
 
test, which took less than one hour to perform, the tube gain was
 
checked using the same Pilot B scintillator and Co60 source and was
 
found to be the same within less than 2 percent. The results are shown
 
in Figure 5.9-1. Since no provisions existed to obtain an absolute
 
energy calibration of the Cherenkov detectors, the data are presented
 

relative to Cherenkov radiation produced by Co60 radiation.
 

5.10 Phototubes
 

Gamma radiation interacts directly with the cathode and dynodes
 
of phototubes and thus contributes unwanted noise counts. To evaluate
 
this effect, two phototubes (RCA 6199 and RCA 4440) without scintillation
 
crystals were exposed to the radiation source.
 

The phototube signal was shaped by.a Hamner NA-li amplifier and
 
passed to a multichannel pulse height analyzer. For calibration, a
 

207
 10 mm CsI (Na) crystal was attached to each tube and Co57 and Bi


spectra were taken. Then the crystal was removed and the spectral
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response of the bare phototube was measured. To provide a basis for
 

comparison with CsI (Na) and other scintillators, the results are
 

presented in terms of energy equivalent for CsI (Na).
 

Figures 5.10-1 and 5.10-2 show the spectral response of the
 

RCA 6199 and RCA 4440 phototubes at 1 foot from the SNAP-27 fuel
 

capsule.
 

5.11 Geiger Tube Experiments
 

Radiation response measurements were performed using the EON 7302
 

and EON 6213 Geiger-Mueller tubes. The purpose of the measurements was
 

to produce plots of the Geiger-Mueller tube responses as a function of
 

distance and as a function of attenuation through lead, aluminum, and
 

polyethylene.
 

The Geiger-Mueller tubes were powered by a Fluke Model 412A high
 

voltage power supply. The signals were passed through a decoupling
 

capacitor to a laboratory counter. The long axis of the detector was
 

oriented at right angles to the fuel capsule axis. Count rates were
 

taken at various distances between the fuel capsule and the Geiger
 

tubes from I to 8 feet. Count rates never exceeded 400 cps and,
 

therefore, dead time effects were negligible. Total counts were maintained
 

above 2200 counts to achieve standard deviations of + 2% or better.
 

The source-to-detector distance, R, was adjusted to 2 feet and
 

absorbers of aluminum, lead, polyethylene, and boron-loaded polyethylene
 

were positioned between source and detector. Thickness ranges of 0 to 2
 

inches for lead, 0 to 1-1/2 inches for aluminum, and 0 to 3 inches for
 

polyethylene were used. Count rates did not exceed 120 cps and total
 

counts exceeded 2200 counts as described in the last paragraph.
 

Figures 5.11-1 and 5.11-2 are plots of the response of the EON
 

7302 and EON 6213, respectively, to the SNAP-27 fuel capsule as a function
 

of 1/R2 where R is distance in feet from the capsule to the Geiger-Mueller
 

tube.
 

Figure 5.11-3 gives the effects of absorbers in reducing the count
 

rate for both tubes tested.
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Ifthe RTG were a point source, the response would follow the
 
straight line indicated on the plot. Since the RTG ismore like a
 
line source, itfollows the function:
 

2Co
C
CR - 20 
R (R+-) 

Where CR isthe count rate at the distance R, Co isan equivalent zero
 
distance count rate, and h isthe source length. For purposes of curve
 
fitting, CO may be calculated by substitution of experimental values of
 

R and CR.
 

The shape of the curve relating distance to count rate for the
 
EON 6213, shown in Figure 5.11-2, isvery similar to the curve obtained
 

with EON 7302 except for the magnitude of the count rates.
 

5.12 Proportional Tube
 

The purpose of this experiment was to measure the response of a
 
representative proportional tube to the SNAP-27 fuel capsule radiation.
 
A Harshaw G-15 proportional tube was operated at 2500 volts with a
 
Tennelec TC-130 preamplifier and Tennelec TC-200 amplifier system which
 
was coupled to a multichannel pulse height analyzer. A special adapter
 
with a decoupling capacitor and load resistor was made to adapt the
 
proportional counter to the TC-130 amplifier.
 

The detector was placed 4 feet from the SNAP-27 fuel capsule
 
with its cylindrical axis parallel to the capsule axis. Spectra from
 
the SNAP-27 fuel capsule were taken at 0-16, 0-100, and 0-300 kev 
full scale. These data are given in Figures 5.12-1, 5.12-2 and 5.12-3.
 

Figure 5.12-4 shows the effect of Pb, Al, and polyethylene
 

absorbers on count rates inthe energy range 0 to 100 key.
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5.13 Channeltrons
 

A Bendix CEM 4028 channeltron was used to measure its response to
 
the SNAP-27 fuel capsule radiation. The purpose of the measurements was
 

to determine the response as a function of distance and absorber thickness.
 

Inorder to provide a vacuum operating environment, the channeltron was
 

sealed inside a glass cylinder and pumped down by a diffusion pump to
 
-
5 x l05 torr. The channeltron was operated inthe saturated mode. The
 

electrical set up used for the tests is shown in Figure 5.13-1.
 

Inorder to determine the proper operating voltage, differential
 
pulse height spectra were taken with a Co60 source at various high
 

voltages. Spectra obtained with a 3700 volt bias as illustrated in
 

Figure 5.13-2. The saturation peak of Figure 5.13-2 isnot as well
 

defined for the Co60 source as itwould be for a charged particle
 

incident on the funnel. The charged particles produce photo-electrons
 
from the funnel only, whereas the Co60 gammas produce photo-electrons from
 

along the entire length of the channeltron.
 

The channeltron funnel was oriented to point parallel to the fuel
 

capsule cylindrical axis and count rates were recorded as a function of
 

distance and absorber thickness.
 

Figure 5.13-3 isa plot of the channeltron response to the fuel
 

capsule radiation attenuated by Pb, Al, and polyethylene. Measurements
 

with boron-loaded polyethylene showed no significant change from data
 

obtained with polyethylene.
 

Figure 5.13-4 gives the channeltron count rate as a function of
 

distance R from the fuel capsule.
 

A channeltron of the type being used for the Pioneer F/G U.V.
 

experiment was provided by Dr. D. L. Judge of the University
 

of Southern California.
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5.14 Semiconductor Telescope
 

To provide a measure of the interference of the fuel capsule
 

radiation with detectors operated in a coincidence telescope configura­

tion, a test unit was built consisting of two semiconductor detectors
 

as illustrated in Figure 5.14-1. A 200 p x 1.0 cm2 surface barrier 

semiconductor detector in a transmission mount was placed adjacent to
 

a 2000 p x 0.8 cm2 lithium drifted detector. The two detectors were 

0.47 cm apart and were operated in coincidence to detect charged
 

particles sufficiently energetic to penetrate the thin detector and also
 

leave charge in the thick detector. The entire detector assembly was
 

mounted in a vacuum chamber to reduce air scattering of Compton electrons.
 

Fiqure 5.14-2 isa block diacram of the electronics used for the
 
coincidence measurements. The transmission mounted detector signals
 

were amplified by a low-noise charge-sensitive preamplifier and amplifier
 

system and passed through a single channel analyzer to provide a
 

gating pulse to a Hamner NA-I] gate. The 2000 micron detector signals
 

were amplified and routed to the input of the gate. The resolving time
 

was set at one microsecond. The gated output was analyzed by a multi­

channel analyzer.
 

A bismuth-207 conversion electron calibration source was used with
 

the transmission-mounted detector to obtain an energy calibration for
 

setting the single channel analyzer threshold level to 96 kev. The
 

SNAP-27 fuel capsule was located at a distance of 1 foot and spectra were
 

taken in the no-coincidence, anticoincidence and coincidence modes in the
 

energy range of 0 to 2.8 key. The accidental coincidence rate was
 

measured to be 0.5 counts per second over this energy range by placing
 

a 3.2 mm Al plate between the two detectors to prevent the Compton
 

electrons of energy less than 2 Mev from passing through both detectors
 

simultaneously. The measured accidental coincidence rate was in good
 

agreement with the calculated value of 0.8 counts per second
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The results of the measurements with the SNAP-27 fuel capsule are
 

presented in Figure 5.14-3. The no-coincidence count rate over the range
 

from 0 to 2.8 key was 776 cps, the anticoincidence rate was 736 cps, the
 

coincidence rate was 43 cps, and the accidental coincidence rate was 0.5
 

cps. The coincidence spectrum represents the SNAP-27 fuel capsule
 

radiation interference that would be superimposed on the spectrum of
 

coincidence charged particles detected by the semiconductor telescope
 

operated with the described parameters of geometry, resolving time, and
 

gating threshold energy.
 

5.15 Phoswich
 

A plastic scintillator (Pilot B) and a CsI crystal sandwich was
 

obtained for testing with the SNAP-27 fuel capsule. However, no data
 

were taken with this detector. Attempts to instrument the phoswich
 

resulted in excessive attenuation of the fast component of the signal
 

(from the plastic scintillator) due to capacitance in the tube base and
 

transmission lines to the electronics. As a result, the separation
 

between the fast and slow rise time pulses was quite poor (approximately
 

20 db) giving poor resolution and excessive coincidence counts. It
 

became obvious that the effort required to obtain a satisfactory phoswich
 

would require improving the frequency response characteristics of the
 

electronics which was not feasible to perform within the scope of the
 

current program.
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6. CONCLUSIONS AND RECOMMENDATIONS
 

The data presented in this report provide a starting point for
 

assessing RTG heat source/science instrument interactions. The RTG
 
background radiation flux and spectra that are superimposed on each
 

radiation-sensitive detector have been presented along with the
 

effectiveness of various absorber materials in reducing these radiation
 

levels and modifying the spectra. The extent of the RTG radiation
 

interference will, of course, depend on the function and objectives of
 

each detector. The data can also be used to scale to other RTG power
 
levels and/or separation distances and the information presented in
 

Section 4 can be used to determine the effects of plutonium fuel form
 
age on the resultant RTG radiation spectrum. As was mentioned earlier,
 

the radiation-sensitive elements included in this program were only the
 

detector elements that, on a theoretical basis, were assessed to be most
 

sensitive to the RTG radiation and also were frequently used in space­

craft instrumentation. There were many other sensors in spacecraft that
 
may also be significantly affected by the RTG heat source, and some of
 

these are scheduled for detailed experimental study in Phase II of this
 

program. However, from the results of this Phase I effort, several
 

important conclusions and recommendations for further testing may be
 

drawn.
 

* 	 The preliminary analysis performed during Phase I revealea
 

that for RTG-to-instrument distances on the order of 8 feet
 

(roughly the configuration presently planned for Pioneer F/G)
 

in general the scientific objectives will not be significantly
 

impaired. However, some shielding (on the order of 1-5 pounds)
 

will be required for the more sensitive radiation detection
 

instruments to reduce the RTG radiation to an acceptable level.
 

a 	 Most of the radiation measurements carried out during Phase I
 

were conducted with the detector facing the capsule broadside,
 

i.e., perpendicular to the longitudinal axis of the capsule
 

However, as illustrated in Figure 5.4-1 both the gamma ray
 

flux and its spectral distribution are very significantly
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affected by the heat source orientation relative to the
 

detectors. Methods for applying these data for different
 

RTG orientation angles should be developed.
 

The radiation levels with the capsule facing the detector
 

end-on were as much as a factor of ten lower than with the
 

broadside orientation. The predicted differences were on
 
the order of a factor of two. These results suggest that
 

the heat source orientation relative to the detectors
 

could be an important consideration in determining the
 

spacecraft design and in locating the most sensitive
 

detectors.
 

The absorption tests made with polyethylene and boron-loaded
 

polyethylene demonstrated that thermalization and absorption
 

of neutrons from the RTG heat source appeared to have very
 

little effect on reducing the detected radiation. However,
 

measurements performed with a neutron probe showed that a
 

significant reduction in neutron flux actually did occur when
 
the polyethylene shields were placed in front of the fuel
 

capsule. This indicates that the neutrons emitted from the
 

Pu238 fuel do not add significantly to the RTG radiation
 
background for the detectors tested in this program.
 

The limited work performed with the semiconductor detector
 

telescope indicates that there are a significant number of
 

coincidence counts generated by the RTG radiation. Therefore,
 

an anticoincidence shield could probably be employed to reduce
 

the RTG background. Of course, the efficiency of such a
 

system is sensitive to the type and physical configuration
 

of the detectors used and also electronic parameters such as
 

coincidence gating speeds and locations of level descriminators.
 

Clearly, additional work is required in this area to adequately
 
determine the potential of this method in reducing the detected
 

RTG background.
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* 	 The utility and applicability of the program is increased
 

by close coordination with spacecraft science experimenters,
 

particularly those involved in Pioneer F/G. This was not
 

completely implemented during Phase I of the program because
 

the detectors were selected and testing had commenced before
 

the selection of Pioneer F/G flight instruments. Toward the
 
end of the program, however, contacts were made with several
 

of the experimenters on the Pioneer F/G Program and three
 

experimenters provided their detectors for testing with the
 

RTG heat source. Valuable information was obtained from
 

discussions with the experimenters on the details of their
 

instrument design, method of operation, and scientific
 

objectives. During Phase II of the program, close liaison
 

should be maintained with the Pioneer F/G experimenters and
 

they should be invited to participate in the test program at
 

TRW.
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TABLE 3 

MICROSPHERE FABRICATION DATES 
(SNWP-27 Fuel Capsule #4) 

Lot #341 - Batches A thru E consist of a mixture of the followLng 
eight batches: 

SP-2 - 11/12/66 to 11/17/66 
57 - 11/19/66 to 11/29/66 
58R3 - 10/30/66 to 12/2/66 
76R - 2/8/67 to 2/14/67 

77 - 2/14/67 to 2/15/67 
79 - 2/17/67 to 2/17/67 
81R - 2/21/67 to 2/23/67 
82R - 2/22/67 to 2/23/67 

Lot #360 - Batches A thru F consi t-of'a mixture of the followarg 
eight batches: 

40 
43 
44 
46 

- 10/22/66 to 10/24/66 
- 10/26/66 to 10/27/66 
- 10/27/66 
- 10/28/66 to 11/1/66 

51R - 11/10/66 to 11/11/66 
53R - 11/14/66 to 11/17/66 
68 - 1/6/67 to 1/11/67 
72 - 1/31/67 to 2/1/67 

Lot #307 - Batches A thru'E consist of a mixture of the following 
ten batches: 

60-1 
3 
6 
8 
11 

- 4/66 
- 4/66 
- 4/66 
- 4/66 
- 4/66 

60-13 
17 
18 
19 
21 

- 7/66 
- 7/66 
- 7/66 
- 7/66 
- 8/66 

Lot #346 - Batch C consists of a mixture of the following 
nine batches: 

37S - 10/16/66 to 10/24/66 
39SPl - 10/22/66 to 10/26/66 
45R - 10/28/66 to 10/31/66 
47 - 10/27/66 to 11/3/66 
48S - 11/4/66 to 11/11/66 

49R - 11/5/66 to 11/8/66 
50R2 - 11/8/66 to 11/10/66 
56 -"11/23/66 to 11/29/66 
67 - 1/11/67 

Batches 106 
133 
144 

- 5/11/67 
- 10/67 
- 10/26/67 

A-4 

146 - 10/26/67 
156 - 3/18/68 



TABLE 4 

CONTRIBUTION OF FUEL BATCHES AND LOTS TO CAPSULE WATTAGE AND WEIGHT 
(SNAP-27 Fuel Capsule #4) 

Liner Lot or Batch % of Total Thermal Output 
Fuel Contribution 
Watts Grams 

First Lot 341 
Lot 360 

52.3 
47.7 

387.10 
353.05 

988.47 
896.33 

100.0 740.15 1884.80 

J 

Second Lot 307 
Lot 360 
Lot 346 
Batch 106 
Batch 133 
Batch 144 
Batch 146 
Batch 156 

59.68 
13.86 
10.43 
0.39 
0.,61 
1.21 
8.52 
5.31 

443.87 
103.10 
77.49 
'2.90 
4.47 
9.00 
63.39 
39.50 

1154.05 
261.68 
196.77 
7.3 

11.19 
22.83 

160.50 
99.09 

100.0 743.72 1913.41 


