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I. INTRODUCTION

In a gaseous squeeze-film bearing. load capacity is generated by oscillating

one of the bearing surfaces at a high frequency. An asymptotic analysis for

large squeeze number was formulated in [1] and the performance for various

squeeze-film bearing geometry was given iu Refs. 2 to 5. It was shown that

in order for the squeeze action to be effective the squeeze number must be

large and the excursion amplitude be comparable to the mean film thickness.

In the literature cited above, the supported mass was assumed to be stationary

disregarding the oscillatory forces imposed by the squeeze motion In reality

the supported mass may respond dynamically with the squeeze action. This was

investigated analytically in [6] by a simplified approach with the response

assumed to be synchronous	 The results indicate that the load capacity may

be considerably affected by the synchronous response depending on the squeeze

frequency and the mass of the float.

The supported mass motion was also studied in [71. For moderately high

squeeze number, numerical solution for tho response was obtained using small

perturbation analysis	 The supported mass respond was found to be synchronous

with the squeeze motion; this was also verified by experimental observai_ion.

Tile dynamic response of a spherical squeeze-film bearing with a tim scale

much larger than that of the squeeze motion was investigated in [8] using

the results of [9].

The purpose of this report is [o investigate the synchronous respons? o'

squeeze-film bearings with very high squeeze number. The geometr y of a

doiible squeeze-film circular disk has been chosen for simplicity. Three

methods of solution are presented and the results compared.
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11. ANALYSIS

Consider a double squeeze-film thrust plate as shown in Fig. 1. When the

supported mass is at its central position, the mean film thickness on

either side is C. Let 2 be the thickness Df the thrust plate, then the

mean distance between the two squeeze surfaces is 2C + 1. Denote the

instantaneous position of the lower squeeze surface, the thrust plate

and the upper squeeze surface by yl, y 2 , and Y3 respectively. We have,

then,

yl = -C e cos w t	 (1)

Y2 = C 6	 (7.)

Y3 = 2C + 2 + C e cos w t 	 (3)

where e is the dimensionless excursion ratio and w, the squeeze frequency.

Normally, if one neglects the dynamic response of the plate due to squeeze-

film actions, the dimensionless displacement 6 would be time-independent.

However, the dynamic response is, in general, not negligible. Therefore, 6

is a periodic function of time. The time-average of 6 should be related to

the stead y -state displacement as follows;

2r
1	 I	 C 6 d (w t) = C - C70	(4)

2n	 J

0

where Flo is the dimensionless steady-state displacement from the central

position; % is defined to be positive for a downward displacement.

The instantaneous film thicknesses of A and B are, from (1), (2) and (3),

11A - Y2 - Yi = C 6 + C e cos w t	 (5)

h B =y3 -y2 - 2 = 2C+C e cos wt -C 6	 (6)



Assume that the squeeze number Q is very high sc that we can apply the

results of an asymptotic approximation. Let T A and TB represent the

asymptotic approximation of (ph) in film A and B 'respectively 	 Using the

results of [1], we obtain

2n	 1/t

jr	 (5 + e cos 'r) 3 d T
TA = Fa C	 0 

2n	
(7)

r0 + e cos T) d 1'

1/2
2 rr	 ^

I(2 + e cos T-	 d r

TB = pa C	 ^_^^_ ._	 (B)
r2n

J	 (2+ecos r- 5) d r
0

The instantaneous pressures in A and B can be easily obtained by

PA	
hA	 C (5 +T e cos T)	

(5)

_ TB _	 TApB	
hB	 C (2 + e cos T	 b)	

(10)

Note that although TA and TB are time-independent, PA 
3nd p B are function;

of time. Furthermore, for a given excursion ratio e, the pressures PA 3-d

p B are not known, because 5 is an unknown quantity. Therefore, one more

equation is needed for 5, which is the equation of motion of the supported

mass,

2
MCW2	b2 = Fy

+pA A - p B A

using Eqs. (7) to (10). Here, M is the mass, A is the bearing area, and F 

is the time-independent external force (positiv? upward)

- 3



T 1.+ 
b + e cos T	 2n

2 rt
dT

2 + e cos T - b
0
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Define

F

F	 PY
	a

B _
	 M C u;2

Pa A

	

J

2rr	 1/2

(b + e cos T ) 3 d T

r 21
b d T

0

	2n	 .1/2
3

	

(2 + e Cos T	 b) d T

r2n
G rr	 J	 b d T

0

then, the equation of motion becomes

I

8 da
l = F Y +	

A	
--

b+ e cos T	 2+ e cos T	 b

Ig

(11)

( 12 )

Integrating (12) over

between F  and a and b.

2n

I	 fFY 	 A 1ZFT
0

a complete squeeze cycle we obtain a relationship

(13,

Wish F  given by (13), Eq. (12) can be considered as the differential

equation for b.	 If we are interested in the steady - state dynamic respnns-^

rather than the transient, the boundary conditions to be satisfied are the

periodicity conditions.
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b (T) = b (T + 2 n)	 (14)

d	 T	 = d 5 (T + 2n)	 (15)
(I T	 d T

It should be pointed out here that Eq. (12) is non-linear in 6.
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III. METHODS OF SOLUTION

A.	 Harmonic Solution

Assume that 6 c . i be expressed by

6= 1- Tlo - X cos T- v sin T	 (16)

where % is the steady-state downward displacement from the central

posit 7.on; a and v are the in-phase and out-c-f-phase components of the

response. The higher harmonics have been truncated in (16). substituting

(16) into Eqs. (11), (12) and (13), we obtain

IA =	 (1 - Ilo) 2
 + 2 2 + v2^

	 1/2

I B =	 (1 + ^l0 ) 2 + 2 [( e + X) 2 + v2]
	 1/2	

(17)

I^	
1 

F	
+- -	 (1 - Teo )	 - (c, - 1) 2	 v2

y 
	 ( 1 + Teo )	 ( E + a.) , v2 I

The equation of motion (12) takes the form

IA
B (Xcos T + •r sin T) = F  + (1	 --

	

-?^o )+(e	 cos T+vsin T

IB

(1 + Tlo ) + (e +	 cos T + v sin T	 (18^

Multiply both sides of (18) by sin T and integrate frim 0 to 2n,

2n sin T d -

rrB v = iA 	 (1	 7^0 ) + (e	 cos T - v si q T
0

tt
sin T d T

- I B	 ---^1 + ^p) + (E + fit) Cos T + v Sin T

0



Exp3nding the interg-ands in power series of ^ cos T and 1" sin T
to	 '10

we obtain

2	 3
IA	

"1

	 3	 3v
TT B v = 1 - 

': ?o ^	 1 - ^o + 4 1 - T^0 ^ 1 - fb ^ + 4 ( 
V

1 - T^ +
' 	 odddf	 J

2 
3	

3
IB	 _	 v	 3	 v	 E + a	

(19)
C1+T10 	1+%	 4 1+ 70 I1+ i10 	4 i1 

y
+T)0) J

Take the first power of v in the right hand side of (19) then

I,

	 2

tB	
B	 1

 (1 -A ^0}` ' + 4 1 - rb l +	 - 1 +1 +Teo " 1+3 1+'^0
 + .^ =0(19a )

1

Since the quantity in the bracket is, in general, not equal to zero , the

only way to satisfy (19a) is V = 0. Furthermore, because the right hand

side of (19) is a converging power series in V we conclude that

	

V ° 0	 (20)

Using (20) and multiplying both sides of (18) by cos - and integrate from

0 to 2-s, we obtain

TrB	 I	 2^	 -2Tr 1-?ln
	 -	 1

 1_ + Mo 	 1
B	

_	
'211I	

2,17

 ^- Tr s+	 )2^	 (1+^0	 !(e+ n)2

which is the equation to be solved for k	 Before we solve Eq. (21)

which is obviously non-linear . let uE first obtain a linearize6

solution.

For the case that

-7
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s	 a < < 11 - no

and	 (??;

1 ^ < 1

we can linearize Eq. (21) and obtain

2

2^B
^"

It is seen that when B = z	 X becomes infinitely large; the response of
1- Tb-

the mass is unbounded according to the linear approximation of a truncated

harmonic analysis. Suppose that 1̂ 0 is positive. i.e., the mass has a steady-

state displacement downward. If B < — 2	 has the same sign as a and

1-1no

the response is in-phase with the squeeze motion of the lower bearing surface.

If B > ^
T
 —, the response is 180 0 out-of-phase with the squeeze motion and

1 l0
the squeeze action is enhanced there.

If condition (22) is not valid, we have to solve the nonlinear Equation (21).

An iterative method may be used taking the linearized results as the initial

guess for the iterative process. The numerical computation has been programmed

on a computer.

B- Exact Numerical Solution

Rewrite Eq. (12) in the form,

a
T = G (b)
	

(24^

e	 (S)	
_1	

'	
IA	 IB	

—1	
(25)where G	 = B	 I F +	 ----	 - ---- -------i y	 6+ e Cos T	 2 I- a Cos T '" s

F y , IA and I B are given by (11) and (13).

An iteration method will be used to solve Eq. (24). Let 6 1 be the i-th

approximation for the solution of (24). 1 - s i be a corr-2ction functio-

bi, so that the sum,

bi+l - Si + u i	 (26)
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will be an improved approximation	 Thus

2	 2

6i + d Tai = G (6 i + u i l	 (26a)

Taking the first two terms of Ta y lor ' s Series expansion of the right hand

side, we have

2 ^.	 2

i +
	 = G ( 6 i ) + ui G` (bi)	 (27)

2	 2or
	 d

i - ui G' (6i) - G (6i) 	
d Zi	

07a)
-?	 T 

Since 5i is a periodic function and so is 6i+1- Eq. (26) *_hen indicates that

ui must also be periodic	 Thus_

ui1 (T) = ui ( - + 2-1

(21')

d ui ( T) _ d 1](T+ 2 rr?
	d? 	 d 

Note that G ( 6i) is a function of 6 i as well as a functional of 6i because

5i is implicitly involved in the definite integrais IA and I B . For the

iterative process, an approximate expression_ for C (6 i ) can be obtained by

treating IA , I  and P, as independent of 5 i . Thus,

_1	 IA	 1B	 I
G'(6i)	 - .	 -	 rB	

(^ cos	 + 6i)^	 (2 + e cos T + 6i)2	
291L 

Since the approximate expression ( 29) is used to determine u i for the next

approximation in 6 i , it would affect the Speed of convergence of the iteraiiv^-

process; however, it would not affect the accuracy of the resulting final

solution

Let there be Q points between 0 and 2rr, then the interval is

2 rr

	

G = Q _ 1	 (30'
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In finite-difference form,

11 2 uiq	 =	 4j q + 1 - 2 u { q + ulq - 1

d T 2	 92

d2 5i 	
=	

61q + 1 - 2 6i  + 5 i
 
	 1

d r2	 p2

The superscripts q, q + 1 and q - 1 indicate stations 	 Substitute into

Eq. (27) ,

+ 1	 - 1	 2u i q 	- 2 u i q + u i q 	-
	
u i q G' (5 i q)

= A2 G (S iq ) - Cbi q + L
	

2 6i  + b l q
 - 1J; 

q = 1,2,..Q-1

Or, in matrix form

1
u.
i

ui
2

I

M	 I I	 I	 -	 1	 v	 i	 (31)

ui	Q - 2	 I

	

u iQ-1	 I

where

	

2- .62 G' ( 5 i 1)	 1	 0	 - - -	 0	 1

1	 -2 - p2 G' ( b i t )	 1	 0	 0

M _	
(32)

1.

0	 0	 1	 _2.. A2 G( 5 i q 2 )1

1	 C	 0	 i	 -2._6`J(5iq 1^
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62 G (6 i 1 ) - [61 2  - 2 b i 1 + 6i0.1

c2 G (bit ) _ [6i3 - 2 bi t + bi11

V =	 (33)

A G (b q-2 ) - [b• q-1 - 2 b q-2 + b•q-3]i	 i	 i	 i

p2G (biq-1) - [bi q - 2 biq-1 + biq-2]

We have used the peroidicity conditions

q	 1	 0	 q-1	 i
b i	 = 5 i	 bi = b i	 (34)

q	 1.	 0	 q-1
u i	 = u i	 ui = u i	 (35)

To start the iteration, the result of the harmonic solution, (16) can be

used as an initial guess. The u i 's can be -2asily calculated from (31) by

inverting the matrix M. Repear the process as indicated in (26) until the

elements of u i 's are less than a specified value.

Typical results are obtained for a squeeze frequency of 18000 rad/sec,

e=0.3, ^o = 0.2. C = 0.001 in, A = i in 
2, 

pa = 14.7 psi and M = 0.1 lb.

Tile 2,r interval is equally divided into 25 parts (Q = 26). The results of

the numerical solution are tabulated as follows:
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t 6	 (t)

0.0000 0.88907
0 2513 0 88694
0.5027 0.88058
0.7540 0.87012
1.0053 0.85578
1.2566 0.83793
1.5079 0.81711
1.7592 0.79412
2.0106 0.77010
2.2619 0 74662
2	 5132 0.72571
2	 7646 0.70975
3 0159 0 70104
3 2672 0	 70104
3.5185 0	 70975
3.7699 0.72571
4.0212 0.74662
4 2725 0.77010
4 5238 0.79412
4.7752 0.81711
5 0265 0 83793
5 2778 0.85578
5	 5291 0.87012
5.7805 0.88058
b.0318 0.88694
6.2831 0 88907

Thus, from Eq. (16)
6(t) = 1 - IO - X COS T

0.8 + 0.0884 COS T

On the other hand, the non-linear ha.mcnic solution y ields X = -0.0884.

The linearized harmonic solution yields an X of -0 035. I: can be easily

seen that only the non-linear harmonic Solution agrees well with the

tabulated numerical solution whereas the linear harmonic solutinn does not

LOAD CAPACITY

We can identify (-F y) as the dimensionless load capacity W of the double

squeeze-film thrust plate. Several expressions for W can be obtained

depending on how the synchronous response is calculated; they are

enumerated as follows;

1) Load capacity without taking the synchronous response into account

can be obtained from Eq. (17) by setting X = 0.



IA	 2 T	
d T	 IB	 2r

2r	 b + e cos T	 2T< f
0

WE
d T

(38)
2 + e cos T - D
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Wo =- Fy° =	 (1	 ^O)2 + 7

2	 3	 2
(1 + %) + 'T e	

(36)

( 1 + %) 2 - e2

2) Load capacity using the harmonic solution for the synchronous response

is directly obtainable from Eq. (17).

W _ F _	 (1 - 10)
2 + j (e	 ^) 2 - (1 + ^l0 ) 2 + j (e + ^)2	

(37)Y
(1 - Ilo )2 	 1.) 2	 (1 + 70 ) 2 	(e + X)2

The load capacity is designated by W  and W  for respectively the linear and

non-linear results of X.

3) Load capac i ty WE can be calculated from Eq. (13) using the exact

numerical solution for b.

Ir. order to visualize the effect of synchronous response of the supported

mass to the load capacity of a squeeze-film bearing, it is illustrative to

normalize the loaO capacity with respect to W 0 . In Figure 2. WE /Wo l WN/Wo

and WL/Wo are plotted against B for e = 0.3 and 70 = 0 2	 It is seen that

when E is large, the three normalized load capacities approach to unity

asymptotically. This indicates that for large B, the amplitude of the

synchronous response is small so that its effect to load capacity is negli-

gibly small. It is interesting to note that in the region where B > 6.

the normalized load capacities are positive and greater than unity; this

is because the response is 180° out_ of phase with the motion of the closer

squeeze surface (the lower surface if ^O is positive). This out-of-phase

response enhances the squeeze action of the lower film A, while decreases

the squeeze action of the upper film B	 Because the lower film is dominating

for positive TAO , the net effect is an increase in load capacity	 However,

if B is small (B < 2, say), the response is in phase with the lower surface

which results in a decrease in load capacity. As seen in Fig 2, the

normalized load capacity becomes negative which is clearly undesirable



- 14 -

The response of the supported mass is seen to be similar to the response

of the forced motion of an undamped spring-mass system. When the frequency

is lower than the critical frequency the response is in-phase with the

forcing function. But, when the frequency is higher than the critical

frequency (super critical), the response is 180 0 out-of-phase with the forcing

function. It is in this supercritical region we should design and operate a

squeeze-film bearing.

In Fig. 2, it is clear that W  is very close to W E , especially in the super-

critical region	 In other words, the non-linear harmonic solution agrees

well with the exact numerical solution. This feature will be utilized in

future squeeze-film bearing analysis (Synchronous Response of Conical and

Spherical Squeeze-film Bearings).

In Figures 3 and 4, WE N, is plotted for e = 0.1 and 0.3 respectively with ^o

as a parameter. Note that in the supercritical region the normalized load

capacity increases with '.. This indicates that the synchronous response

increases not only the load capacity but also the stiffness.



IV. DIECCSSIONS

In the exact numerical solution of the dynamic response of a double-.film

squeeze bearing, periodic boundary conditions for the function and its first

derivative have been assumed at T = 0. In so doing, we have included the

synchronous response and its higher harmonic responses, whereas the sub-

harmonic responses are automatically discarded

In order to investigate the importance of the sub-harmonic responses it is

only necessary to impose the periodic boundary conditions at 0 and n2Tr.

Clearly, for n = 2, for example, the solution would include half-harmonic,

synchronous and higher harmonic responses.

An actual plot is shown in Fig 5 for e=0 3 and TIo _ 2; the solid curve is

for n = 1 and the dotted one for n = 2. Note that although the periodic

boundary conditions are imposed at 0 and 4r for the n = 2 case, the actual

numerical solution shows that it repeats itself from 2n on. Also, the fact

that the two curves being so close together indicates that the response is

mainly synchronous. The computed load capacity, W E /W0 , is 2 831 for n = 1

and 2.906 for n = 2. Therefore, it is not necessary to take the sub-harmonic

responses into consideration

Another point of significance is that the pressure forces in a squeeze film

were ootained by an asymptotic approximation 	 In so doing, the damping part

of the squeeze-film force becomes zero. The damping can be realized by

considering the edge correction of the asymptotic approximation as will be

seen in the following. Starting with the Reynolds' equation of a squeazz^

film thrust plate,

H3	 .1._	 (PR .LP ^ = Q	
PH	 (39.)

R	 aR	 aR	 a T

where P, R and H are normalized quantities-

15

Le t y _ PH	 (40)
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tin asymptotic analysis shows that we can write

* (R, -) = * ,,,,	 (R) + t,., (R , T)	 (41)

Here, 
dw 

(R) is the asymptotic approximation for large Q , and ye (R, T)

is the edge correction, which is important only in a region near the edge;

the extent of which is of the order of 1/ ITT

The governing equation for *e is

2	 2
H	 a ^V	 =	 -^ 	(42)
z	 d 5`	 a T

with boundary conditions

*e (E = o, T) =	 H

*e ---)m :T) =	 * m	 (R = 1)	 (43)

and the periodicity condition

*e (T) = *e (T + 2n)	 (44)

where	 _	 ( I -R)	 (45)

From the structure of (44), it is not difficult to see that if H invol y'-s a

cos T variation in time, *P would have both sin T and cos T terms.

Therefore, when we obtain the instantaneous film pressure from

p (R , T ) _	 - ro(R) + *, (R ' T)	 (46`,

H

is is clear that *2 (R, ;) would contribute to a damping. Thus the

damping occurs only in the edge region and is of the order of 11-F
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The stability of this double squeeze-film thrust plate Las keen considered

using the same approach f.s ^101,i.e. the small parameter ,L tility technique.

Starting from Eq. (12), it is found that (See Appendix I) for e = 0.3

and ^o = 0.2, the bearing would be stable if B > 12. As shown in Fig. 2,

B = 12 is already in the supercritical region. Actually, 1-his stabilit;,

result is conservative b°cause damping has been neglected.



- 18 -

V. CONCLUSIONS

The dynamic response of a double squeeze-film thrust plate has been

analyzed theoretically. based on the results obtained the following

conclusions can be drawn:

1. The dynamic response is mainly synchronous; sub-harmonic

responses are negligibly small in magnitude.

2. Damping of a squeeze-film occurs only --n the edge region

and is of the order of 11-Vra- For large squeeze rumber,

the damping can be neglected.

3. When the squeeze frequency is high (large B), the response

is 1800 out-of-phase with the squeeze action 	 This

enhanc-s the squeeze action, and thus increases the loa%

capacity and stiffness. The converse is true for low

squeeze frequency (-mall B).

4. The harmonic solution for the dynamic response without

linearization agrees well with the exact numerical

solution. The linearized harmonic solution has only

qualitative agreement with toe exact numerical solution.
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APPEhQIX I STABIi.IiY CONSIDERATION

The stability of tFe double squeeze-film thrust plate can he formulated using

Eq. (12) and setting

b = 8  + b'	 (I.1)

where 50 = i - -1)0 and b' is a small perturbation from the equilibrium

position 50.

Substituting (I i) into Eq (12) we have

2
B	 + cA	 6 - 2	 --o—' :1 + 2 I R S	 (2 1 b - 2 F. Cos^- 2 S' =0 ( I 2)

	

C-o	 °	 b	 o	 o

	
( 2
	 `o)0

,Tote that in the above equation. we have neglected non-homogeneous terms

such as	 (1 - Ê cos T) and non-linear terms involving 6' 2 , etc. This
so

is justifieod for a small parameter stability analysis.

Rearranging Eq. (I.2) Eq- (I.2) we can write

2
d — + ( 3 1 + a 2 cos r) b' = 0	 (I.3)
d _2

where

1	 IA	 IBa l = B	 ^02 + G - bo) 2 I^I
_J

(I 41

2	 !A_IR

a2 - - 3	 b -) + (2 -	 )3]0	 0

Clearly, the sign of 3 2 is irrelevant because a;, cos T is only a

simusoidally fluctuating term. Neglecting the squares of o' I A and IE

can oe written as	 t

F
1

f

7



IA = 8 0 + 3 E2

IB = (2 - 60)2 + 2 e2

Thus,

2	 2

a l =	 i + 2 ( 1 s 
c 1! 

+ I + 2 ( +	
1 —

( 1 -5)
7o

2
  

/r
	 f s

a2 = B 1 y	 1 + 2 (
T:fT ^ 

0	
+ 1 +	 11 + 2 ^l + 1 ^] (T•b)

^0	 0 	 o

Note that we have used the asymptotic approximation for large a. In so

doing, the damping in the s q ueeze-film is neglected. The stability

result is therefore conservative.

Results of [10] and [11] indicated that for marginal stability

a l = 0.25 - 0.5 a 2	 (1.7)

If s = 0.3 and ;
j0 

= 0 2, Eq. (I.7) yields B = 12. Therefore, for stable

operation B should be greater than or at least equai to 12.

20 -
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AOMENCLP.TURE

A area

B MOz2/paA

C mean film thickness when bearing is unloaded

e amplitude of excursion

Fv external force

F^, Fy/naA

G defined	 in (25)

hA ,
h 

film thicknesses given	 in (5) and	 (6)

IA ,
I 

defined is	 (11)

;1 mass of float; matrix defined in 	 (32)

p pressure

pa
ambient pressure

P P/pa

r radial coordinate

r o radius or plate

R r/ro

TA , TB asymptctic approximations of ph

v defined	 in (33)

W dimensionless load capacity

Wo without_ supported mass motion

WL , WN , WE capacities with supported mass motion

calculated by linear and non-linear harmonies

solution and by exact numerical solution

y l , y2 ,	 y3 displacements defined 	 in Fig.	 1

and	 Eqs	 (1),	 (2)	 and	 (3).

b dimensionless displacement of supported mass

p defined in (30)

s e/C

110 dimensionless steady-state displacement of supported

mass from central position

v amplitudes of mass motion

N viscosity

- 21
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Q	 squeeze number =	 1 2 u cu	 (_R I2
pa

wt

y	 PH

u	 squeeze frequency



- 23 -

REFERENCES

1. Pan, C.H.T., "On Asympto t ic Analysis of Gaseous Squeeze-Film
Bearings". Journal of Lubrication Technology, Trans. of ASME;
Vol. 89, Series F, No. 3, July 1967, p. 245.

2. Pan, C.H.T., Malanoski, S.B., Broussard, Jr., P.H. and
Burch, J.L.,"Theory and Experiments of Squeeze-Film Gas
Bearings-Part 1 - Cylindrical Jour:Lal Bearing". Journal of
Basic Engineering: Trans, ASME, Vol. 88, Series D. No 1,
March 1966, p. 191.

3. Chiang, T., Malanoski, S B. and Pan, C.H.T., "Spherical Squreze-
Fi.lm Hybrid Bearing with Small Steady-State Radial Displacement"
Journal of Lubrication Technology, Trans. of ASME, Vol. 89,
Series F, No. 3, July 1967, p. 254.

4. Maianoski, S.B. and Pan. C.H.T., "The Solution of Special Squeeze-
Film Gas Bearing Problems by an Improved Numerical Technique".
MTI Technical Report MTI-65TR26, Mechanical Technology Incorporated,
Latham, New York, February 1966.

5. Beck, J.V. and Strodtman, C.L., "Load Support of the Squeeze-Film
Journal Bearing of Finite Length". Journal of Lubrication
Technology, Trans. ASME, Vol. 90, Series F. No_ 1, January 1968,
p. 157.

6. Pan, C.H.T. and Chiang, T., Discussion on 5, Journal of
Lubrication Technology, Trans of ASME Vol. 90, Series F . to
appear.

7. Beck, J.V., Holloday, W.G. and Strodtman, C.L., "Experiment and
Analysis of a Flat Disk Squeeze-Film Bearing Including Effects of

Supported Mass Motion". ASME 68-LubS-35

8. Pan, C.H.T. and Chiang, T., "Dynamic Behavior of the Spherical
Squeeze-Film Hybrid Bearing", ASME 68-LubS--37.

9. Elrod, Jr., H.G.: A Differential Equation for Dynamic Operation
of Squeeze-Film Bearings. Presented at Third Bi Annual Gas
Bearing Symposium, university of Southampton_, April 1967.

10. Bech, J.V. and Strodtman_ C.L., "Stability of a Squeeze-Film

Journal Bearing", J. of Lubrication Technology, Trans. of ASME_
Vol. 89, Series F, No. 3, p. 369, 1967.

11. Stoker, J.J. Vibrations, Interscience Publishers_ Inc..
New York, N. Y. 1950.



FILM e

FM_	 3

p	 yz

FILM A

Fig. 1	 Double Squeeze-Film Thrust Plate

HTL-5201



—
0
 
O
	

O
i3

 i3
	

i3
W

 2
	

J

0
0W
 ^

-
-

i

I
f

r

r
^

00
r

O

vUcoacc
uIjcosNl

a

zN0
0

w

D

m

O

I



0

co

0mavTLUroaro
UcovNC

^

El4Oz

OO

T
.AOP

rt

N

GM
 / 3M

c
e

w



O

D
wN0LWa^LovTLUc
oC
3.

c9

V.
bco

.
t
i

a^NcoEOz

0U
N

O
NO

c

-o
0

I

p"W

^	
G

C110̂
—O

I

N
— 	

O

0M
 ! 3M

n
o

w

a

O
N



S
IN

^r.G
O

-
4

W

v
,
	

C
q
	

c
D

0
	

C
o
	
0
 
0

0
0

1

—
 
N

u
	

^^

C
 
C

I

I
M
 
N

O
 
o

n
	

i^
0

W
 
^

I

f
0

0

ti^--I'gr

N^z1
N

hk
l
^

k
l
^

M

vWCOamvC4uc

N

J-4COEroxitro

NIICUCCE7v
^


	GeneralDisclaimer.pdf
	0016B03.pdf
	0016B04.pdf
	0016B05.pdf
	0016B06.pdf
	0016B07.pdf
	0016B08.pdf
	0016B09.pdf
	0016B10.pdf
	0016B11.pdf
	0016B12.pdf
	0016C01.pdf
	0016C02.pdf
	0016C03.pdf
	0016C04.pdf
	0016C05.pdf
	0016C06.pdf
	0016C07.pdf
	0016C08.pdf
	0016C09.pdf
	0016C10.pdf
	0016C11.pdf
	0016C12.pdf
	0016D01.pdf
	0016D02.pdf
	0016D03.pdf
	0016D04.pdf
	0016D05.pdf
	0016D06.pdf
	0016D07.pdf
	0016D08.pdf
	0016D09.pdf
	0016D10.pdf

