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ABSTRACT

Systems described by parabolic partial differential equations are formu-
lated as ordinary differential equations in a Sobolev space of a given
order. Quadratic cost criteria are then formulated in terms of inner
products on this Sobolev space, Existence of an optimal control is
proved both in the case where the system operator is coercive and in
the case where the system operator is the infinitesimal generator of a
semigroup of operators. The optimal control is given by a linear
state feedback law. The feedback operator is shown to be the bounded,
positive, self-adjoint solution of a nonlinear operator equation of the
Riccati type. This operator can also be represented by an integral
operator whose kernel satisfies a Riccati-like integro-differential
equation. ‘

These results are specialized, in a straightforward manner, to the
case of pointwise control. The optimal pointwise control is given by a
simplified linear control law which depends on the control point lo-
cation. The general results are also specialized to obtain the modal
approximation to the pointwise control problem and to demonstrate
the optimality of output feedback for a particular class of output trans-
formations. The pointwise feedback control laws, in these cases, are
characterized, structurally, by a measurement operation which is in-
dependent of control point location and a gain operation which is di-
rectly dependent on control point location., Several examples relating
to the scalar heat equation are solved,
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CHAPTER I

INTRODUCTION

A great deal of research in recent years has been devoted to the
optimal control of distributed parameter systems. With few exceptions
this work has focus;ed on the use of distributed, rather than lumped,
controls. In many cases of practical interest, however, it is actually
desired to control distributed parameter systems by means of finite -
dimensional controls. Examples of such cases would be the control of
the flexure of a launch b;)oster using only rocket thrust and control of
wing and fuselage flexure in aircraft by means of rudder, flap, a.ileron,
and spoiler manipulatio;x. In both of these éxamples the controls are
"d finite number of point;vise controls, that is, controls applied at |
isolateci points within the spatial domain of definition of the distributed
parameter system. Other examples of systems in which pointwise
control might be applied are heat diffusion systems, systems described
by wave equations such as longitudinally vibrating begms and trans-
‘mission lines,transversely deflecting flexible beams, and mechanically
vibrating systems.

Traditional approaches to solving this type of problem include
solving for an optimal d.istribuéed control and then approximating the
distributed control b.y‘ a finite number of lumped controls, or the modal
approach, as used by .]’ohnson,1 for example, in which the system is
assumed to be adequately described by a finite number of modes and the
resulting finite ~dimensional optimization problem is solved for the

optimal modal control. The former approach becomes inadequate if
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we wish to determine feedback control laws rather than open-loop con-
trols, and the latter fails when the system cannot be described by a
countable number of modes, when the number of modes necessary for
adequate description of the system is prohibitively large, when it is
computationally difficult to determine the eigenvalues and eigenfunctions,
or when it is difficult to judge which modes are indeed the dominant
ones.

The purpose of this research is to formulate the pointwise control
problem as a distributed parameter control problem and to presenta
unified approach to solving this problem within the framework of
existing distributed parameter control theory. The distributed param-
eter systems we shall consider are described by parabolic a.nd- hyper -
bolic partial differential equations. Examples of parabolic partial
differential equations are the scalar heat diffusion equation and the heat
diffusion equation in the plane. Wave equations and‘the equation for
transverse deflection of a flexible beam fall within the category of
hyperbalic partial differential equations. The cost functional is
quadratic in the deviation of the state distribution from a desired
distribution and in the control energy. The choice of such a cost
functional is motivated by the desire to derive, in the distributed
parameter case, resuli;s:';f comparable elegance to those of finite-
dimensional control problems with quadratic cost--namely, linear
feedback control laws and simply expressed quadratic optimal cost
functions. -

"'I_‘fhere are many approaches to the solution ;J'f general distributed

e T

pafé.m‘e'fer control problems.. One of the earliest sjrstema,tic‘api:;roaches

was that of Butkovskii's.” He presents a maximium principle for distri-

buted parameter optimal control problems analogous to Pontryagin's
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maximum principle for lumped parameter control problems. The distri-
buted parameter systems which Butkovskii considers are those de-
scribed by systems of integral equations and the necessary conditions
for optimality which he obtains by variational techniques are also in
the form of integral equations. Since we shall consider systems de-
scribed by parabolic and hyperbolic partial differential equations, our
control problem is not in a form in which the Butkovskii maximum
principle is immediately applicable. There are methods, namely
Green's function techniques, whereby the partial differential equation
description of a distributed parameter system may be trans folrmed to
an equivalent integral equation description, but these techniques tend
to be difficult to apply to the general classes of spatial differential
operators we shall consider.

Wang3 derives a maximum principle for distributed parameter
systems described by partial differential equations by using a dynamic
programming procedure. The necessary conditions he obtains are in
the form of partial differential equations. An unfortunate aspect of
Wang's maximum principle is that, although it is systern’atic in pr~inci-
ple, there is no systematic way of treating boundary conditions. More-
over, in a strict mathematical sense, it is impossible to prove existence
and uniqueness of optimal solutions in the function space in which Wang
formulates his control problems.

A step in the direction of formulating distributed parameter con-
trol problems in a form more amenable to the application of well -known
system theoretic concepts is taken by Ba,lakrishna,n,4 who considers the
state distribution in the distributed system to be a point in some Banach

space and then regards the partial differential equation describing the
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time evolution of the state distribution to be an ordinary differential
equation in the strong topology of the Banach space, He uses the as-
sumption that the system spatial differential operator is the infinitesi-
mal generator of a semigroup of operators, the infinite dimensional
analogy of the transition matrix in finite dimensional systems, and
I;roceeds to solve final value problems and time-optimal problems by
means of well-known functional analytic methods. Fattorini5 works
along these same lines in considering the controllability of distributed
parameter systems containing both distributed control and boundary
control. Unfortunately for the problem we wish to consider, or, more
precisely, for quadratic cost functionals, the Banach spaces used by
Balakrisl';nan and Fattorini are much too general.

There have been several applications of the above technigues.
Egorové’ 7 attacks a problem with both interior and boundary control.
He considers the system partial differential equations and boundary
condition equations as dynamics and introduces appropriate adjoint
variables to obtain a2 maximum principle separated into an interior
inequality and a boundary inequality. ,

Sakawa8 considers linear one-dimensional distributed parameter
systems, with boundary control, as represented by integral equations,
and, using variational techniques, derives integral equation necessary
conditions which are simpler in form, but less general in application,
than Butkovskii's maximum principle.

Yeh and Toug treat systems in which the controlled object moves
continuously through the plant with a constant velocity. With the control
assumed to be constrained in magnitude, the authors minimize a

guadratic criterion via Butkovskii's maximum principle., The optimal
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control is shown to be the solution of a Fredholm integral equation of
the second kind.

Kim and Erzbergerlo also consider the minimization of a quadratic
cost functional, using a dynamic programming approach to obtain a set
of functional equations analogous to the matrix Riccati equation for
lumped systems. They solve these equations by a method based on the
eigenfunction representation of the Green's function.

Axelband*! solves the problem of minimizing the norm of the dif-
ference of a distributed parameter system output from a desired output
by the use of a functional analytic formulation similar to Balakrishnan's.
He obtains an optimal solution by a convex programming algorithm.

S:'LI'.'aze:tdim:nrl2 13

considers a quadratic cost functional and, using
stability theory and dynamic programming arguments, proves the
optimality of a distributed control law which is linear in the state of

the system and derives integro-differential equations for the coefficients
of the optimal cost function. He applies this to the problem of con-
trolling aerodynamic and elastic deformation of an airframe,

Yavin and SivanMr treat the optimal control of longitudinal vibrations
in a flexible rod held fixed at one end. From a partial differential
equation formulation they obtain the proper Green's function for trans-
formation to an integral equation. Using a quadratic criterion and a
control applied at the force end, they obtain necessary conditions in the
form of a Fredholm equation of the second kind. An approximate open-
loop control is obtained by approximating the kernel by a sequence of
degenerate kernels,

In a recent book, Lions]'5 formulates quadratic distributed parameter

control problems in Hilbert spaces in which the terms of the quadratic
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cost functional may be written as inner products. He shows, for sys-
tems described by spatial differential operators satisfying a certain
definiteness condition, that solutions to the system equation exist and
are continuous with vespect to the control in the topology of the Sobolev
space of order equivalent to the order of the system spatial differential
operator. Using these Sobolev spaces, he is able to prove the existence
and uniqueness of an optimal control and to determine the necessary
conditions for the optimality of this control. Moreover, he shows that-
the optimal control is specified by a linear feedback control law and that
the feedback operator satisfies a differential equation similar to the
matrix Riccati equation obtained for finite-dimensional systems.

L.ions' results are the foundations upon which this research is
built. We shall extend the class of system spatial differential operators
considered by Lions to include those which are infinitesimal generators
of semigroups of operators and will show that the results obtained by
Iions for his more restrictive class also hold in the more general case.
A fact of key importance which we shall use is that differential operators
defined on a Sobolev space are closed opsrators in the topology of that
Sobolev space. This is one of the requirements for an operator to be
the infinitesimal generator of a semigroup of operators. Another useful
feature of Sobolev spaces is that boundary conditions become easy to
handle when the state space for the system is a Sobolev space. We
shall also show that distributed systems driven by finite dimensional
controls (the pointwise control problem) fall within the framework of
this formulation and the results obtained for a general class of controls
are specialized to the case of pointwise control in a straightforward
manner. It should be noted that Rus sell16 attacks the problem of con-

strained pointwise control with a minimum system energy cost functional.
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He does not develop a Hilbert space formulation of the problem and he
circumvents the unboundedness of the system spatial differential oper-
ator by assuming that his initial states have bounded spatial derivatives.
By treating our pointwise control problem as a special case of a general
quadratic optirp;ization problem in a Sobolev space, we need not con-
sider any such confining assumptions on the initial conditions.

The organization of the thesis is as follows: Chapter II provides
the mathematical background necessary for the formulation of parabolic
and hyperbolic optimal control problems. The material is presented in
such a form as to point out continually the relationships between
infinite dimensional and finite dimensional system theoretic concepts.
Sobolev spaces of finite order are defined by means of distribution
theory. Elliptic differential operators of the coercive and, more
general, strongly elliptic type are defined on these Sobolev spaces. It
is then shown that parabolic and hyperbolic partial differential equations

may be written as ordinary differential equations in the Sobolev space.

The remainder of the chapter is devoted to semigroups of operators--
their definition, the concept of infinitesimal generator, and the pre-
sentation of a formula analogous to the variation of constants formula
in finite dimensional systems. _

In Chapter III we present the precise mathematical formulation of
the parabolic and hyperbolic optimal control problems, The parabolic
_.control problém is then specialized to the case of pointwise control,

Chapter IV is concerned with the solution of the parabolic optimal
c'ontrol problem in both the case where the system operator is assumed
to be coercive and in the case where the system operator is assumed to

be the infinitesimal generator of a semigroup of operators. The path to

a solution first involves proving that a unique solution indeed exists.



-8~
In the coercive systemn operator case it will be shown that because of
continuity of the optimal state in the optimal control, the optimal con-
trol is given by a linear state feedback law in which the feedback
operator is the solution of a2 Riccati operator differential equation.
Under the assumption that the system operator is the infinitesimal
generator of a semigroup of operators this continuity relation is not
easily demonstrable, but it is shown that if a solution of the Riccati
operator equation exists, then the optimal control is given by a linear
feedback control law. It will then be shown that such a solution does
exist., The remainder of the chapter contains a discussion of the be-
havior of optimal solutions when the terminal time approaches in-
finity and an alternative formulation of bounded operators on a Sobolev
space as integral operators and the subsequent modification of the
Riccati operator equation.

With optimal solutions to the parabolic control problem having beer
determined for general control spaces, we specialize the results to the
case of pointwise-control in Chapter V and show that the optimal feed-
back operator in the pointwise control case is of a simpler form from a
computational point of view. The second part of this chapter is con-
cerned with the infinite terminal time pointwise control problem. It
will be shown that by a judicious choice of the quadratic cost functional
the modal analytic formulation of the pointwise control problem is ob-
tained. This appr_oach will enable us to make conclusions about the
optimality of modal analytic solutions which we are unable to make by
the straightforward techniques of modal analysis alone. We then con-
sider the case where the entire state is not available to be fed back,

but only the outputs of a finite number of measuring devices. It will
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be shown that if the measuring devices are of a certain class, then the
optimal contrel law will consist of feeding back only the outputs of
these devices.

The concluding Chapter VI contains a summeary of the results ob-
tained and recommendations for further research.

It should be stressed that throughout the thesis a general class of
distributed parameter optimal control problems will be solved, and the
results will be specialized so as to obtain results in the pointwise
optimal control problem and to obtain insight into the modal analytic

and measurement problems.



CHAPTER II

MATHEMATICAL BACKGROUND

2.1 INTRODUCTION

The purpose of this chapter is to lay the mathematical foundation
for the discussions and derivations in succeeding chapters. The vari-
ous results stated in this chapter do not exhaustively cover the field of
differential operators and partial differential equations, but serve to
form a relatively complete set of tools to be applied to the problems of
interest. The guiding philosophy for both choice of results to be dis-
cussed in this chapter and direction of theory in the sequel is the at-
tempt to provide results for distributed parameter systems which are
roughly parallel to known vesults in lurmped parameter theory. In
order to acﬁieve this parallelism, related concepts in distributed
parameter the01:y must be provided for such lumped parameter system
concepts as state and state space, matrix operators, equations of state,
transition matrices, and variation of constants formulae.

Section 2.2 is concerned with the concept of state in distributed
parameter systems and the discussion of particular spaces of {general -
ized) functions which serve as state spaces for systems described by
partial differential equations.

The reason for the choice of the spaces in Section 2.2 is made
more clear when spatial differential operators are discussed in
Section 2.3 and it is seen that elements of these spaces have sufficient
smoothness to qualify as elements of the domain of differential oper-

ators. The properties of coercivity and strong ellipticity of differential

-10-
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operators are treated in this section. The distinction between these
two concepts will not be apparent until necessary conditions for optim-
ality are discussed in Chapter IV.

Parabolic and hyperbolic partial differential equations and their
boundary conditions are introduced in Sections 2.4 and 2.5. Emphasis
is placed throughout these two sections on the fact that these equations
serve as equations of state exactly as ordinary differential equations
describe the evolution of finite-dimensional state variables.

In Section 6 the concept of a semigroup of operators, the analog
of the transition matrix in the finite dimensional case, ig defined and
explored. In addition to the properties of these semigroups the manner
in which an operator may generate a semigroup of operators is dis-
cussed, This is further elaborated on in Section 2.7 where strong
ellipticity is shown to be a sufficient condition for a différéntial oper-
ator to be the infinitesimal generator of a semigroup of operators,

The final section of the chapter contains the relation of the semi-

group of operators generated by the system operator of a forced {con-
trolled) system to solutions of this system. This expression for so-
lutions of the forced system corresponds directly to the variation of

constants formula for the state of a finite dimensional forced system.

2.2 DISTRIBUTION THEORETIC CONCEFTS AND
SOBOLEV SPACES

The state of a finite dimensional system can be identified as a
point in a finite dimensional FKuclidean vector space., In distributed
parameter systems the state is a function, at each mstant of time, de-
fined on the given spatial region, or, alternatively, the state is a point
in an infinite dimensional (function} space. ¥or the purpose of pre-

paration for our subsequent study of quadratic performance criteria,
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attention will be focused on the Hilbert space of square integrable func-
tions on the spatial region of definition. As will be shown, this space
is not quite suitable for distributed parameter applications, but certain
subspaces, namely the Sobolev spaces of finite order, are. As a pre-
liminary to the definition of Sobolev spaces, a brief discussion of
distribution theory is required,

Liet us denote by D and 8D the spatial region of definition and
its boundary. The variable 2z is used to denote a point in D. Further
let CGZ(D) be the space of infinitely differentiable functions of compact
support on D. The space of bounded linear functionals on Ca;(D) (i.e.,
the dual of GCOO(D)) is called the space of distributions on D and is

denoted by«¥ (D). An element F ofXJ (D) has the form

F(¢) = ff(z)¢(z}dz 2 q,ec"z(D)
D

where f(.) is some Lebesque integrable function on D. The most
familiar example of a distribution is the Dirac &-function or impulse,

6{z-2'), which is the linear functional
Ald) = fﬁ(z—z')q;(z)dz = $(z")
D

There are several properties of the space of distributions which
we shall exploit. First, the spé,ce of square integrable functions on D,
LZ(D), is a subset of the space of distributions. This is easily seen by
noting the fact that Co(D)SL'D) (any infinitely differentiable function
with compact support in D must be square integrable on D) and,
therefore, the dual space of LZ(D) must be contained in the dual space
of CT;(D), namelyaﬁ {(D}. Since LZ(D) is its own dual the following in-

clasion relation holds
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c";(D)CLZ(D) c o)

The second property of distributions which it is useful to exploit is the
unique specification of the derivative of a distribution. If D is a
region in n-dimensional FEuclidean space and z is the n-tuple

(zl, Zos e s zn), BF/BZi for some Feog(D) is uniquely specified by

L@ [O)4zaz - -ff(z) 92 ()dz = 1(-22) ¥4eC? (D)
i D 1 D 1 i
What, in effect, has been achieved is the ability to specify a meaningful
expression for the operation of differentiation of any distribution, or,
more to the point, differentiation is defined for all elements of LZ(D).
This generalized approach to differentiation can be extended to
more complicated differential operators. Introducing the feollowing

notation, we let
n

4 = (a9, ---q,) lal = > a (2.2.1)

n
i=l
where q is a positive integer for i=1,2,...n, and defining the dif-

ferential operator

a, g q

p9 = D!D,?...D™ , with D. =% (2.2.2)
n i azi

then for each FedJ(D)

pir(y) = (-1)|2 5 ¥ 4eC (D)

Let us make the following definition

Definition 2.1+ The subset ofaﬁ(D), denoted by Hrn(D), with
the property
H™(D) = {Fel (D) . Fel?(D) , DYFelX (D) ¥q , [ql<m)

is called the Sobolev space of order m, with m an integer.



-14-
Moreover, defining the following inner product for F, GEHm(D)

<F,G> - z <pir,pic>,
L (D)

Hrn(D) can be shown to be complete in the topology induced by this
inner product {see Ref.17). Chapter 4), and, therefore, I-Im(D) is a
Hilbert space.

The usefulness of the Sobolev space Hm(D) can be understood
when it is recalled exactly what are the useful pr-operties of finite -
dimensional state spaces. First, any finite dimensional space is com-
plete and any operator {matzrix) on this space is everywhere defined.
The dif.ferential operator Dq, as described above, is everywhere de-
fined on CGZ{D), the space of infinitely differentiable functions with
compact support in D. Unfortunately, there is no norm topology for
which this space has the completeness property of finite dimensional
vector spaces. The second useful property of finite Airnensional
spaces is the fact that all linear operators on these spaces are closed,
If LZ(D) is taken to be the space on which D? is defined (in this case
only densely defined), D% is not a closed operator, If D! is the
closure of DY on LZ(D), then the domain of DI would contain non-
differentiable functions, By the artifice of introducing distributions
we are able to define the derivative even for non-differentiable func-
tions, and it is qasily seen that the non-differentiable functions in the
domain of the closure of DY are those functions F in LZ'(D) for
which DYF is in LZ(D). More succinctly, the domain of the closure
of D% is Hm(D) for some m. With the inner product defined above
for Hm(D) the Sobolev space of order m has the very useful property
of completeness. Thus, it is seen that Sobolev spaces fill the bill as

candidates for distributed parameter state spaces.
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2.3 DIFFERENTIAL OPERATORS

With the introduction of Sobolev spaces as the prototype of a
state space for distributed parameter systems, it remains to be dis-
cussed what exactly are the properties of spatial differential operators,
which play the role in distributed pa,rame.ter systems which matrices
play in lumped parameter systems. Some of these properties were
touched on in the preceding section as part‘of the justification of the
usefulness of Sobolev spaces. It was shown, in essence, that a dif-
ferential operator of order m is everywhere defined (with the aid of
distributic;n theory) and closed on Hm(D). This is, however, all that
linear differential operators have in common with linear operators in
finite dimensional spaces.

The first property which characterizes differential operators is
the fact that they are not bounded. This, aside from the infinite di-
mensionality, is the single most complicating factor in distributed
parameter systems. It causes difficulty in proving existence of so-
lutions to partial differential equations, and, in contradistinction to
finite dimensional systems, necessitates that great pains must be taken
in characterizing these solutions, as will be seen 1n Sections 7 and 8 of
this chapter.

The particular type of differential operators which will be con-
sidered, as indicated somewhat by the operator D? in the preceding
section are those of linear form, composed of part'ial derivatives with
respect to each component of the spatial variable and of a specified
order m., Embellishing the notation of-Section 2, let us introduce the
real functions a'q(z), where q is the n-tuple defined by (2.2.1), and

define the formal differential operator A, of order m
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A = Z aq(z)Dq (2.3.1)

l[a] <m

where D% is the differential operator described in Eq. 2.2.2 and the

notation =ignifies the composite summation
la|<m
Z = z + Z + ... Z
lal<m  q g g
lal=0  lal=1 lal=m

With. D° representing the zeroth order differential, or identity,
operator. Ti’le particular nature of the functions aq(z) will be clari-
fied in the discussions on coercivity and ellipticity.

Just as the formal differential operator A has been defined, it
is a straightforward matter to define the formal adjoint of A, denoted
by A+, as

At Z (-l)lq]:)qaq{z,) (2.3.2)
lg[< m
In general, the formal adjoint A" does not equal the adjoint operator

A¥ where A¥ satisfies

<x, Ay> = A*x, v
H™(D) < >Hm(D)

Indeed, it can be shown, by means of Green's Formula, .that
<x, Ay> = <Ax,y>+C
H™ (D)
where the constant C depends on conditions at the boundary 98D. In
the case of Dirichlet boundary conditions, which will be discussed in
Section 2.5, C=0 and the formal adjoint A equals the adjoint A,
We shall now discuss what is meant by an elliptic differential

operator, and we shall subsequently define the properties of coercivity
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and strong ellipticity of elliptic differential operators, which properties
will play an important role in the optimization results of Chapter IV.
If the functions aq(-) are required to be essentially bounded functions, or,
equivalently, are elements of the space IED(D), then an mth ordex dif-
terential operator of the form specified in Eq. 2.3.1 is said to be elliptic
{see Ref. 18, p. 1704) if the inequality
Z 2,(?) 3 40 for all {eR", zeD
g | =m
is satisfied. Note that this is a condition on the highest order termn of
the differential operator, i.e., the terms containing partial derivatives
of order mm. If we restrict our attention to elliptic differential oper-
ators which contain only even order partial derivatives, we define the

concept of coercivity in the following manner:

Definition 2, 2: If A is an elliptic differential operator of the
form
: — A = Z aq(z)Dq
lal<2p
where aq(z) =0 if |ql #2k, for k=0,1,...,p, then A is said to be

coercive if the inequality

(-1)~ Z aq(z)c:qs-o, Z ¢4 (2.3.3)

lqf=2k lq]=2k

is satisfied for some o> (0, for k=0,1,...p, and for all {;ERn and zeD,

This concept of coercivity arises from the use of this term by
J. L. Lions (Ref. 15, p.22) to describe the property of operators more

commonly referred to as ""negative definiteness'', namely the condition
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for some a > 0 and for all erm(D). It might be noted that just as
negative definiteness of a matrix implies that the eigenvalues of the
matrix lie on the negative real axis, the spectrum of a coercive oper-
ator is a subset of the left half-plane.

The condition for strong ellipticity is not as stringent, and a

strongly elliptic operator is defined by:

Definition 2.3: If A 1is an elliptic differential operator of even

order 2p, then A 1is said to be strongly elliptic if the inequality

(-1)P z aq(z)t..qg—a z ¢4 (2.3.4)

lal=2p . lq|=2p

is.satisfied for some a > 0, and for all LeR® and zeD.

Note that, unlike in the Inequality 2.3.3 for the coercive operator case,

the summation in Inequality 2.3.4 is taken over only the highest order
terms of the operator A. All of the terms of a given order in the coerciv
operator case must satisfy this type of inequality. Thus, coercivity
implies strong ellipticity, but the converse does not hold.

To illustrate coercive and strongly elliptic operators, let us con-~
sider the second order differential operator defined on some subset D

of R®

The coefficients of this operator satisfy Inequality 2.3.3 f or k=0 and

k=1 if we choose a=l, implying that this operator is coercive (and, of
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course, strongly elliptic). If, on the other hand, we consider the dif-

ferential operator

2 2

A =2y 2 4
2 5.2 5%
1 2

we see that Inequality 2.3.3 is satisfied for k=1, but is not satisfied
for k=0, and, thus, the ;)perator AZ is not coercive. However, In-
equality 2.3,4 is satisfied, which implies that AZ is a strongly elliptic
operator.

The fact that we do not consider more general operators than
those described above is a reflection of the state of knowledge con-
cerning differential operators and the fact that there are many physical
systems of interest whose mathematical models have spatial differential

operators falling within these categories.

2.4 SYSTEM EQUATIONS“PARABOI;IC AND HYPERBOLIC
The purpose of this section is to tie together the concepts dis-

cussed in the preceding two sections--namely, state, state space, and

system differential operators--and arrive at a description of a distri-
buted parameter system in the form of one or more partial differential
equations. This, of course, is in direct analogy with the equations of
state in finite dimensional systems. The only ingredient missing up to
now is the time variable.

Let us consider functions x{t) defined on te[0, T] and having
values in the Sobolev space Hm(D), defined in Section 2 of this chapter,
that is, x(t)eH™(D)¥te[ 0, T]. Just as was done in Section 2, these
vector functions x(t) may be considered as points of a function space.
Since emphasis has been placed on considering Hilbert spaces as state

spaces, the space LZ(O,T; I-i:m(D)) is defined:
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Definition 2.4: If x(t)eHm(D) for all te[ 0,T], then the square

inte grable Sobolev space-valued functions are

T
1200, T; HDY) = {x(-)=x(t)eH™(D), ¥ te[ 0, T] andfllx(t) I dt <
¢

H (D)

Note that this is a Hilbert space with inner product

T

= x(t}, d
[ <t > 4

<X(‘):V(')>- 2
L 0 D)

(0, T; HH(D))

Since it is desired to represent physical Jistributed parameter
systems, it is essential to be able to characterize partial differentiation
by timme. With the discussion of the distribution theoretic results in
Section 2 the tools.are on hand to make this a straightforward pro-
cedure. If we consider the space of infinitely differentiable Sobolev
space-valued functions with compact support in [0,T] and its cor-
responding dual space of distributions , which, for convenience, may be
denoted by«J [ 0, T], then the following Sobolev space of Sobolev space-

valued fanctions may be defined (see Ref. 15, p. 115).

Definition 2,5: W{0,T) is the set of Sobolev space~valued func-

tions defined on [0, T] with the property

W(0,T) = {x(-) :x(-) eLX0, T; H™(D)) ; 55 x(-)eL? (0, T; H™(D))}

This, as might be expected, is a Hilbert space with inner product

<=(1.¥() >y 0,1y = <X(')’Y(')>L2(0,T;Hm(D))

at & 71200, v, 5Dy,
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We are now in a position to describe partial differential equations

by ordinary differential equations in Sobolev space-valued functions.

Two types of partial differential equations are considered--parabolic

and hyperbolic. Parabolic equations are of the form:

an%_z) = Ax(t,z) + f(t,z) (2.4.1)

where A is an elliptic partial differential oPerafor in the spatial vari-
able z as described in Section 3. If x(t,z), te[0,T], zeD is as-
sumed to be the element x(t)eW(0,T), Eq. 2.4,1 has the equivalent
formulation as the ordinary differential equation in LZ(O, T; HIn(D))

?1%‘ x{t) = Ax(t)+ f(t) (2.4.2)

where f(.)ELZ(O,T; LZ(D))

As might be expected from knowledge of the finite-dimensional prob-
lem, an initial condition must be given so as to specify an exact so-
lution of Eq. 2.4.2. If the initial data is given by X(O,z):xo(é) where
XO(Z) has the representation XOGHI:(D), then Eq. 2.4.2 has the initial
condition

x(0) = x (2.4.3)

As an example of a parabolic equation, consider the single degree of

freedom heat diffusion equation

2
oxft.z) | M 8 x(t,z) ; M = constant
ot 2
oz
82
where, of course, the operator A is —>, an elliptic operator, and
oz

x(t, z) is a temperature distribution.

T

" This description of distributed parameter systems is, of course, not
complete without the specification of boundary conditions, which will
be discussed in the next section.
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Before discussing hyperbolic equations it is necessary to extend
the previously defined state space to a two-dimensional form con-
sisting of column vectors (xl(t), xz(t)), where, for each value of
te[0,T], xi(t)EHm(D), i=l,2. A more general spatial differential oper-
ator must also be defined, namely, a 2 X2 ma_trix the elements -of
which are spatial differential operators as described in Section 2. 3.
The particular matrix operator to be discussed is:
0 I
&€ = (2.4.4)
A 0
where A is as defined above and I is the identity operator on Hm(D) .
We are now in a position to describe second order hyperbolic
equations in terms of the state variables and state spaces of Section 2.2
Hyperholic equations are of the f-orm

2

8 xt:z) . Ax(t,=) + £, 2) (2.4.5)
ot

where A 1is elliptic, If x(t,z) and 2_3_3_%%_2__21 te[ 0, T], zeD are element
of W(0,T), Eq. 2.4.5 has the first order vector ordinary differential

equation representation:

xl(t) xl(t) 0
d
s -a 4 (2.4.6)
X, (t) x,(t) f(t)
where xl(t) = x(t) xz(t) :%{—E(ﬂ’ and {{.) is assumed to be an

element of LZ(O, T;Hrn(D)) .
Once again, initial conditions are required and this time they

take the form of a Z-vector

E

x.(0)
1
2O =l 0] = x | = %o (2.4.7)
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with X and :'co each being elements of an(D) and representing the
initial Jdata %x{0,z) and gaé-x(t, z)|t=0, respectively.

An example of a hyperbolic equation is the equation which governs

the magnitude of langitudinal wvibrations in a rigid beam

Oxit,n) | a%x(tm)
2 b 2

K = comnstant
ot 9z
where x(t,z) is the transverse deflection of the point z in the beam, at
2
time t. The operator A is again the elliptic operator 5 - It should
oz

be stressed that the operator A is elliptic in both parabolic and hyper-
bolic squations.

These two classes of partial differential equations, though not
ger-leral enough to describe all linear distributed parameter systems,
describe a great number of physical systems, and, such being the case,'
are worthy of being the equations of state considered in a system theo-
retic and, subseguently, control theoretic development. All of the
elements analogous to system description in lumped parameter systems--
namely, state, state-space, system operator, and state equation--have
been introduced. One subject, boundary conditions, which are indigenous

to distributed, but not in lumped, parameter systems, remains to be

discussed in Section 5.

2.5 BOUNDARY CONDITIONS

This section is devoted to the discussion of boundary conditions to
partial differential equations. This is a slight deviation from the stated
purpose of this chapter--the development of a system theoretic ap-
proach parallel to that of finite dimensional systems--but one which is
necessary for the sake of completeness. It will be shown that boundary
conditions can be treated within the framework of the system theoretic

notions developed in the preceding sections. Dirichlet and Neumann
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boundary conditions will be defined and, for the case of Dirichlet
boundary conditions, the compatibility with the state space conditions
already given will be demonstrated in detail . "

If the differential operator A in either the parabolic system
(2.4.2) and (2.4.3) or the hyperbolic system (2.4.6) and (2.4, 7) is
of order m, then the Dirichlet boundary conditions, defined on the

boundary 8D of the region D, are

- 9 . - (5 ] -
x(t) ,aD‘ o= () IBD ==t =0 M tefo0,T]
oD
{2.5.1)
Bk th
where n denotes the normal to boundary 8D and I is the k
gn

derivative normal to, and directed to the exterior of, the boundary.
As an example of Dirichlet boundary conditions, let us consider the

heat equation defined on the unit circle in RZ, that is, the equation

ax(t, z) 8%x(t.z) , 8°x(t,2)
ot 2

= 5 ; B = constant
azl Bzz
“1
where the spatial variable =z is the vector ” ; and the spatial.
2
domain D is
D = {z;eR2 :z;i"-l- z§<1}

The boundary 8D 1is, of course,

2
1

oD ={zeR®:2+ 2% - 1)

The Dirichlet boundary conditions tell us that

x{t, 2) lzeaD =0

or, the temperature on the circle zi + zg =1 is required to be 0,

Moreover, since the order of the system, m, is 2, we have the

remainine condition
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axa(;, z) =§a;%£l C059+3—}£—L'—Zl sinf=0, ¥ 8¢ 0,27]
zedD 1 2€5D 2 zedD

which tells us that the component of the gradient normal to the unit
circle must be 0, i.e., no heat flow outward through the boundary.
In order to incox-'po rate this within the framework of the theory
discussed in Section 2.2, we must first develop the concept of Soholev
spaces of negat'ive and fractional orders. The Sobolev space of

negative order H_In

(D) can simply be looked upon as the dual space
of the Sobolev space of positive order H (D), or (Hrn(D))':H_m(D).
Fractional order Sobolev spaces are defined by means of Fourier an-

alysis., If z is the spatial variable, which is an element of R, then

the Fourier transform of x(z),?x(@) is

F =(t) =fexp(2wj(é-z))x(z)dz (2.5.2)
D

where ({.z) is the usual vector inner product on R'. It is shown™

that the Fourier transform of the differential operator bR operating

on x(z}, :% qu(g) is. of the form

X 2
7 Blx(ty = (ZWJ)Iq'éqﬁxm, ¥ xeL (D) (2.5.3)
where (2 is the product defined in Section 2. This results in an al-

ternative definition of the Sobolev space Hm(D), namely

Hm(D) = {x : Qq,?xeLz(D)Vq with Iq!_(_ m}

or, equivalently,

D) = (x: (14 [L]5PF = ai20)) (25,4
There is no restriction in allowing m to be any real number in Ex-
pression (2.5.4), rather than requiring it to be a whole number in
Section Z. Thus, we have arrived at the specification of fracticnal
order Sobolev spaces. These are again Hilbert spaces with inner pro-

duct given by
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2, m /2 2,m/2,_,
I NS (¢ 14 b B¢ 14 A R 2 O
H (D) LD)
The theorem of the trace, stated and proved by Lions and Magenes,
Ik
yields the information that the normal derivatives —a—;{{
on

given in

aD

Eq. 2.5.1 are elements of the fractional Sobolev spaces th-knl/z(BD),

%

Bnk

0< k<m-1, if x€H (D), and the transformation x—{ , 0K k<m-1’

8D

is a continuous linear surjection of H (D) onto the product space

m-l m-k-1/2
T H (6D). The kernel of this transformation, that is, the
k=0
o 9x a™ Ly
space of xe (D} for which xl = =.,, =———= =0, is
9D On m-1
8D 8n 5D

the closure of the space of infinitly differentiable function of compact

support in D, CT;(D), in the norm of H (D). Dunford and Schwartz
(see Ref., 2.1, p. 1652) denote this closure as HO {D}, so that we have

shown that we can represent this closure of Cd;(D) in the following

manne1: E—
K
HO(D) = {xeH™D) : 2£| =0, 0<k<m-1} (2.5.5)
on

aD

Since Hzn(D) is a closed subspace of Hm(D), and therefore a Hilbert
space (with the inner product of an(D)), it may just as easily be con-
sidered as a candidate for a state space, in the sense of Section 2.2, as
Hm(D). Thus, the additional consideration of Dirichlet boundary con-
ditions does not divert our course from that of developing a system
theory analogous to that of finite dimensional systems.

The Neumann boundary value problem is associated with a second

order elliptic operator of the form
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n I
9 )
A= -Z zazi (a'ij(z) '8—2—;) +ao(z) (2.5.6)
i’—']. le

with the coerxcivity property, Inequality 2.3, 3,requiring that there exist

an a > 0 such that
n n

2 2 2, S no__, -
a.lj(z)?:’,iﬁ,j}_a(gl + §2+...+§n) i for all LeR™ and zel

and ao(z) >a >0 ; for all zeD
The Neumann boundary condition relative to A is

8x

BVA

oD

n n
where o9x = z
ov
A £
i=1

terior of 8D at z€dD, and therefore cos(n, zJ.) is the jth direction

a. . (x) _9x cos‘ (n,2z.), n is the normal to the ex-
ij 8Zj J
=1

i

cosine; g is a specified function. Since by the theorem of the trace,

discussed above for the Dirichlet problem Bx must be an ele-

av |
A GED)
ment of H-l/Z(BD), so must it be true that gEH—l/Z{BD) . In this case

the kernel of the transformation x—-—-—a-x—
BvA

-g 1is not so readily
oD

identifiable as was the case for the Dirichlet transformation, however,

direct use of this kernel itseli will not cause too many analytical
stumbling blocks.
Ellipticity of the system operator for both types of boundary con-

ditions is required to prove existence and uniqueness of solutions for

1T, 20

either parabolic or hyperbolic systems. The property of
strong ellipticity will be used to derive a very useful system theoretic

result in Section 2.7 and optimization results in Chapter IV.
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2.6 SEMIGROUPS OF OPERATORS

This section and the final two sections of this chapter are de-
voted to semigroups of operators and the systems which generate them,
It will complete the system theoretic descripiion of distributed param-
eter systems by giving the distributed parameter analog to transition
matrices and variation of constants formulae of finite dimensional
system theory. In this section we shall consider semigroups of operators
defined on a general Banach space x with range in X . It will be
useful in the sequel to consider these operators as elements of a space
of operators, 5 (X), the space of endomorphisms on the Banach

space x . Let us make the following definition:

Definition 2. 6: A mapping &t) : [ O,m]-——g (j(), denoted by
{(I:(t)}te[ 0,0)’ is called a one-parameter semigroup of endomorphisms

with parameter te[0,»), if for all t 26[ 0,»)

.t

Fleyhty) = B(t)B(Ey) (2.6.1)

Equation 2.6.1 is called the semigroup property, and the set of oper-
ators {@(t)}te[ 0,0) with the semigroup property will be referred to as
a semigroup of operators as a matter of convenience.

Two different types of semigroups of operators may be con-
sidered, depending on the manner in which &{t) converges as t ap-
proaches zero. The convergence may be uniform in the opsrator
topology of g (X), or more specifically, lim “@(t) - $(0) ” = 0, where
the norm is the usual induced operator nor:n*bc{))n j( . For this case of
uniform convergence the procedure of characterizing the semigroup of

operators is quite straightforward and stands as a direct analogy to the

description of the matrix e— t in finite dimensional systems. The other
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type of semigroup to be considered is one in which the convergence as
t approaches =zero is strong, or lim ”cb{t)x - GB{O)X” = OVXGX.
With strong convergence the analysti:(is much less straightforward.
The Banach space of endomorphisms on X , E (X), is a Banach
algebra, and Hille and Phillips (Ref. Z1, p. 283) show that for any

Banach algebra é’ and wmiformly cantinuous (t) : [ O,W}—*ﬁ such that

f.{t1+t2) = f(t))ft,) , for tl,tze[o,w)
then f(t) must be of the form
[oa]
tn n
f(t) = I-!—Z; a (2.6.2)

n=l
where I is the unit {identity) element of the Banach algebra @ and
a is some unique element of ﬁ . The series is absolutely convergent
for all te[0,w). This result can be specialized, of course, to the Banach
algebra of prime interest, namely, ﬁ = é (j() . Any uniformly con-

ver gent semigroup of operators {®(t)} can be represented by

te 0p)

the expression

B{t) = exp(tA) (2.6.3)
where A is a bounded operator in 5 (j(} and the exponential ex-
pression follows from Eq. 2.6.2.

An important relation exists between the resolvent of the opar-
ator A and the Laplace transformation of the semigroup. The
resolvent is the operator R{A;A) = (AI - A)_l defined for all values of
A for which the inverse exists. It can be shown (see, for example,
Ref. 21, p. 338) that the resolvent operator is the Laplace transform

of the semigroup operator
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«w
-X
R(\; A) =f e ot at
0
for all A with [7\]2 “A”, and, moreover, as might be expected from

knowledge of Laplace transform theory,

Bit) = E‘lw?j_ e MR\ Ayar
T

where I' is a closed path surrounding the spectrum of A in the clock-

wise sense.

The operator A is called the infinitesimal generator of the semi-

group and special note should be taken of the fact that it is bounded, It
is also important to note that every bounded coperator in g (X) is the
infinitesimal generator of a uniformly convergent semigroup of oper-
ators. This leads to the conclusion that unbounded {(or, more par-
ticularly, differential) operators do not generate uniformly convergent
semigroups of operators, so that attention naturally becomes focused on
strongly convergent semigroups of operators.

In order to characterize strongly convergent semigroups of

operators, we first make the following definition:

Definition 2.7: The infinitesimal operator AO of a semigroup

{(]S{t)}te[ 0,) is defined by

A x = lim Ax (2.6.4)
o g0 1
1
A == n -1
where n=T [ @) - 1]

whenever the limit in (2. 6. 4) exists.
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The set of xe ‘3( for which the limit exists is simply called the domain
of AO, DO(AO) . We would ideally like to achieve an exponential charac-
terization of the semigroup as in the uniform case, but in this case the
candidate for infinitesimal generator, AO, is not bounded {(the domain of
AO is not necessarily all ofj( ) so that an exponential expression in-
volving AO would be me aningless.* Aid in this dilemma lies in the
fact that the operators ATI given in Definition 2.7 are bounded oper-
ators so that we might expect the exponential solution we desire to be
some kind of limit of exponential expressions involving the An‘s. It

is shown (see Ref. 22, p. 401) that a limiting exponential solution does
exist, namely

Hit)x = lim exp(tAn)X ¥ xeDo (A ) (2.6.5)
n—0

where the convergence is uniform with respect to t in every finite
interval [0,s]. So every strongly convergent semigroup has the charac-
terization (2.6.5).

The most important question of all, at least for our purposes, is

under what conditions will an unbounded operator A be the infinitesimal
generator of a strongly convergent semigroup of operators? The Hille-
Yosida theorem (Ref,21,p.363) tells us that a sufficient condition for a
closed linear operator A to be the infinitesimal generator of a semi-
group {t_’p{t)}tE[ 0,) such that [|®{t)|]| <M 1is that the domain of A be

dense in X and the following inequality holds:**

" Despite this, we shall use infinitesimal generator and infinitesimal
operator interchangeably.

s
A

The Inequality 2.6..6 is a sufficient condition for the inverse Laplace
transform of R(A; A) to exist. This inverse transform is the semi-

group {&{t) }te[ 0mw)’
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lor-2 < MY™® for A>0  and n=1,2,3,... (2.6.6)
We now have the tools to determine whether the spatial dif-
ferential operators of Section 3 of this chapter are infinitesimal gener-

ators of semigroups. This is the direct concern of the next section.

2.7 DIFFERENTIAL OPERATORS AS INFINITESIMAL
GENERATORS OF SEMIGROUPS

This section relates what has been stated about semigroups of
operators with the characterization of solutions to partial differential
equations. For systems containing elliptic operators of even order
Duniord and Schwartz 18 establish the connection by giving the necessary
conditions for the differential operator to be the infinitesimal generator
of a semigroup of operators and showing that the solution of the un-
‘forced parabolic equation associated with the spatial differential oper-
ator at time t is simply the operator &{t) operating on the initial data.

To qualify for infinitesimal generator the system operator A,
given by Eq. 2.3.1, must satisfy a condition which is a slight modifi-

cation of the condition for strong ellipticity given in Section 2.3, namely,

(-1)"’“/2 Z aq(z);qgo for all LeR", zeD T (2.7.1)
lq [ =m

Additional restrictions must be placed on the state space to be
considered. First, let us define two restrictions Al and AZ of the

operator A which have the following properties:

Do(A) = C (D) ; Ax=ax ¥ xeC”(D)

(2.7.2)

Do(A,) = H(D) ; A,x= Ax ¥ xeH"™D)

2.) 2
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We now define the extension A3 of Al which has the property

Do{A;) = H(D) HH?/Z(D) ; Agx = Ax ¥ xeDo(A

3 3)
{2.7.3)

whe re HO (D) 1is specified in Section 5. Note that the problem of
. . . , /2

Dirichlet has entered with the introduction of the space H0 (D).

With these assumptions on the operator A and on the state space
to be considered, Dunford and Schwartz le prove a theorem, stated in
detail in Appendix A, which,'in summary, yields the following results:

(1) A3 is the infinitesimal generator of a semigroup of bounded

operators {é’)(t)}te[ 0.o)

(2) If xoeDo(A3) is the initial condition for the equation
X = Ax, then the solution is x{t) = @{t}xo

It is clear that the differential operator 32/8 2%, which is the sys -
tem operator for both the one -dimensional heat equation and the trans-
verse bearn vibration equation, satisfies the Inequality 2.7.1, a.r‘ld,
therefore, by the_result of this section,is anoperator having a restriction
A3 which is the infinitesimal generator of a semigroup of operators.

Note that the condition for strong ellipticity, Inequality 2.3.4, is
the condition for strict inequality in Expression 2.7.1. If {@(t)}te[ 0p)
is the semigroup of operators generated by a strongly elliptic operator,
following the above procedure, then the bounded operator &{t} has the
exponential bound

o0 < me™

where M and M are positive constants.

Thus, we are able to characterize the solutions to unforced partial

differential equations with the aid of a distributed parameter equivalent
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of the finite dimensional transition matrix, It remains to characterize

solutions of the forced partial differential equation.

2.8 VARIATION OF CONSTANTS FORMULA FOR
DISTRIBUTED PARAMETER SYSTEMS

We are now in a position to characterize solutions of distributed
parameter systems described by forced parabolic and hyperbolic partial
differential equations. This characterization will take an analogous
form to the variation of constants formula familiar in finite dimensional
system theory and will complete the system theoretic description for
distributed parameter systems,

Phillips 23 proves a theorem, stated specifically in Appendix B,
which yields a variation of constants formula for the parabolic system
described by Egs. 2.4.2 and 2,4.3. The necessary assumption is that
the system operator A is the infinitesimal generator of a semigroup

of operators {&{t)} as described in the preceding section. The

te[ 00)

result is that the solution of the equation

— X(t) = Ax(t) + ity ; =x(0) =%

is x(t) = é{t)xo +) &t-o) f(o)do {(2.8.1)
0

The only requirement on f{t) for this characterization to be valid is

that f(t) be strompglv continuously differentiable.®* Of course, from the

arguments of Section 7, the initial condition x, must be in the domain of

the operator A3 defined in that section.

*That is, lim HERIHE oyigrs in the strong topology of 17(0, T; L4(D)).
h—-0
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A similar result can be achieved for forced hyperbolic systems
of the type represented by vector Eqs. 2.4.6 and 2.4.7. Fattorin: I:'
shows that the solution to this hyperbolic system can be written in a form
similar to that of Eq. 2.8.1 by first introducing the two strongly con-
tinuous operator-valued functions <351(t) and <}32(t). rﬁl (t) is the oper-
ator function which is obtained by writing the solution x(t) of Eq. 2.4.6

x
with =0 and with boundary condition 503[00 in the form

x(t) = <I>1(t) x (2.8.3)
Let us denote the solution of Eq. 2.4.6 with =0 and with initial con-
dition _}goz[g] as v({t) and write wv(t) in the form
o
v(t) = &,(thx (2.8.4)

It is clearly seen that &51(1:) and cI:z(t) are related as

t
B, ()% f &, (5)x_do
0
Now, if { is twice continuously differentiable and if X, is 0, the
solution of {2.4.6) can be shown to be
t
x(t) :f &, (t-o)i(o)de (2.8.5)

0
Combining (2.8.3), (2.8.4), and (2.8.5) with the general initial con-
dition given by (2.4.7) the solution of (2.4.6} is given by

t
x(t) = By (thx  + &y (% +f<I)2(t—cr)f(o*)do~ (2.8.6)
0

It is quite reasonably asked whether the operator-valued functions @1(’5)

and &,(t) are semigroups or not, and, if so, how are they generated"
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The answer is that they are not exactly semigroups, but are very
closely related to them. Fa.ttorinis proves that the resolvent of A
is not the Laplace transform of either cI_vl(t) or (I)Z{t), but the following
"relation exists between the Laplace transforms of 0.131(1:) and @2(1:) and

the operator R(?\Z;A) = (?\ZI-A)_lz

e '}‘tqzl(t)x( at = AR(NZ; A)x

OL“OB

xe€Do(A,) (2.8.7)

e
f e Ma (t)xdt = R\ A)x
0

Moreover, there exist constants K and w <« such that ”tIJl(t) “5 Kewt,
”tI’Z(t) ”E Ke®t. The variable e appears in the resolvent expression
because we are dealing with a second order time derivative in the sys-
tem equation.

The value of having variation of constants formulae like Eqgs. 2.8.1

and 2.8.6 does not lie in having exact specification of solutions to

partial differential equations, but in having a specific form of the so-
lution will become extremely useful in the optimization results pre-

sented in Chapter IV,



CHAPTER III

FORMULATION OF THE CONTROL PROBLEM

3.1 INTRODUCTION

This chapter is concerned with the mathematical description of
the problems which will be solved in Chapters IV and V. For both
parabolic and hyperbolic systems the state regulator problem will be
introduced. The set of admissible controls will be defined and the
quadratic cost criterion will be specified. This cost criterion will be
shown to be analogous to the quadratic cost criterion customarily speci-
fied for a finite dimensional system. In addition, the restriction of the
class of controls to those which are applied at a finite number of points
within the spatial domain is considered and the subsequent modifi-
cation of the cost criterion will be specified.

In Section 3.2 of this chapter precise descriptions of both the
system and the control space are given, This will correspond to the
state equation*cie’scription for finite dimensional systems in the form
% =Ax+ Bu. Conditions on the distributed parameter analog of the
B matrix are specified,

Section 3.3 is concerned with the remainder of the formulation of
the distributed parameter state regulator problem--namely, the intro-
duction of and justification for a meaningful quadratic cost criterion for
the systems described in Section 3.2.

Section 3. 4 contains the restriction of the set of controls to a
finite dimensional space as described above--a restriction to be called

the pointwise control problem.

-37-
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3.2 THE SPACE OF CONTROLS

The general parabolic and hyperbolic systems to be considered
are given by Eqs., 2.4.2 and 2.4.3 for the parabolic case and by
Eqs. 2.4.6 and 2.4.7 for the hyperbolic case. Moreover, we shall re-
strict ourselves to the case of Dirichlet boundary conditions given by
Eqg. 2.5.1. This will result in the consideration of the Hilbert space
HX:(D), rather than Hrn(D), for the state space for the system as de-
scribed in Section 2.5, This is not a severe restriction and does not
fundamentally affect the generality of the results, since, as was
mentioned in Section 2.5, other types of boundary value problems can
be placed within a Hilbert space framework similar to that of Hl;)n(D)
in the Dirichlet problem. The system operator A is assumed to be
either coercive or the infinitesimal generator of a semigroup of oper-
ators as discussed in Chapter II.

With these assumptions we enter into a discussion of the form

of the forcing function f£{-) appearing in both Eqs. 2.4.2 and 2.4.6,

which we rewrite

% = Ax(t) + f(t) (2.4.2)
4 Xl(t) xl(t) 0
A =& + (2.4.6)
xz(t) xz(t) f(t)

Note that f{-) is required to lie in the function space L2 (0, T; LZ(D)).*
In order to put the forcing term in a form which appears more commonly

in system theoretic notation, let us introduce the control wuft), where,

3

The exact requirement is that for each instanf of time t, f(t) must
be an element of Hf)n {D) = H"Y{D). Since LZ(D)CH“m(D) there is
no great loss of generality and the attractiveness of using LZ(D) is
overwhelming. .



-39-
for each instant t, we require u{t) to be an element of a Hilbert space
U, the control space, Moreover, let us assume that u(-)GLZ(O,T;U).
To complete the description of the fo;‘cing term we define B(t) as a
bounded linear operator defined, for each value of tef 0, T] , omnthe
control space U with range in LZ(D), or, inmore convenient notation
Bit)e £ (U;LZ(D))V'te[ 0,T]. We now make the identification of the
forcing term f{t) as

£(t) = B(thu(t) , WV te[0,T] (3.2.1)

The parabolic system now becomes:

%}it@)_ = Ax(t} + B(t)u(t), x(0) = xoeI—ll:(D) (3.2.2)

And if the "vector' operator @ (t) is defined to be

B =

. B(t)

0

then the hyperbolic system is represented by

dx(t)
dt

=Z x(t)+& (ult) ; x(0) =x_ , x_,eH. (D) (3.2.3)

o
One further assumption must be made--B{t}u(t) is assumed to be
a strongly {(in LZ(O, 'I‘;L2 {D))), continuously differentiable function of. t,
This assumption will enable us to use the variation of constants formula
given in Section 2.8 (Eq. (2.8.1)).
With the control u defined and the manner in which u enters the
parabolic and hyperbolic systems clarified, we proceed to the formu-

lation of quadratic optimization problems for these systems in Section 3

3.3 QUADRATIC CRITERIA FOR PARABOLIC AND
HYPERBOLIC SYSTEMS

In this section quadratic cost criteria weighing the state and the

control introduced in the previous section are presented for systems
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{(3.2:2) and (3.2.3). These criteria will be seen to be directly
analogous to finite dimensional quadratic cost criteria. The choice of
a quadratic cost criterion is sometimes motivated by practical con-
siderations. In many applied distributed parameter control problems
of interest it is not feasible to consider driving the system to a fixed
final state distribution, hut rather one would have deviations from a
desired distribution ‘be damped out by the control system. Thus, a
weighted sum of the deviation of the state from the desired distribution
and the magnitude of the control is the necessary type of criterion. The
particular choice of a quadratic cost criterion also stems from the
hindsight that what yielded such elegant results as linear feedback con:
trol laws in the lumped optimal control theory should yield at least some
fraction of the same in distributed optimal control theory.

As a p?elimihary to the specification_of a quadratic cost criterion

)

for the problems under consideration we make the following definitions:

Definition 3.1: The. bounded linear operator Q(t), defined for all

te[ 0, T] on the Sobolev space- Ho (D) with range in H?(D), is called
the state weighting operator. Q(t) is assumed to be a self-adjoint

positive operator, that is, Qft) has the properties:

1. Qft) = Q*(ty  , Mtel 0,T]
2. <x, Qx> >0 Ver?(D), ¥ tef0, T}
H2(D)
The form <{x, Q(t)x> m corresponds, for each te[0,T], toa
H (D)

o
positive weighted average over the spatial domain D. This spatial

weighting is, of course, i;nbedded in the Hilbert space notation. It is
seen that Q{t} corresponds directly to the positive semidefinite state

weighting matrix Q(t} for the finite dimensional state regulator
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problem treated by Athans and Falb (Ref, 24, Chapter 9). We make
the further definition:

Definition 3.2: The bounded linear operator R(t), defined for

all t[ 0, T] on U with range in U, is called the control weighting

operator. R{t) is assumed to be a self-adjoint strictly positive oper-

ator, ox
1. R(t) = R*(t) , % te[0,T]
2. <u, R(t)u}U}_anu ”% , for some a> 0,% ueU,¥ te[ 0, T]

Once again, this corresponds to the positive definite control weighting
, matrix B(t) for the finite dimensional problem and the form
<u,R(t)u>U is a weighted average over the spatial domain D. It is
sometimes desirable to add a penalization cost for deviation of the
state distribution at the final time T from the desired distribution.
For this case we have:

Definition 3.3: The bounded linear operator F, defined on

HD) with range in H™(D), is called the terminal state weightin
. g o ghting

operator, F is assumed to be a self-adjoint positive operator, or

1, F = F*

2, ' '<x,Fx>Hm(D)30 ¥ xeH (D)
(9]

Not surprisingly, the operator F corresponds to the terminal state
weighting matrix F in the finite dimensional regulator problem and,

of course, the form <x,Fx> is a weighted average over the

(D)
spatial domain D, ©

If we denote the desired state-distribution as xd(t)eHo:l(D), we may

now state the cost criterion for parabolic systems as:



8]

T
I= | [ <(x(t)-x (t)), Qt) (x(t)~x ,{t) >
.({ d d HZI(D)

+ <u(t), Ru(t)>U] dt + < (x(T) ~x4(T)), F(x(T) -Xd(T))>Hm
(D)
(3.3.1)
where x{t) is the solution of (3.2.2) with the control sequence
1{t)eU, te[ 0, T}, specified. The optimal control problem may then be
lefined:

Definition 3.4: The optimal control problem for the system (3.2.2)

ls to determine the control u™(t), te[ 0, T], with u*(t)eU for all
€[ 0, T] such that, if x*(t) is the solution of {(3.2.2) with u(t)=u¥*(t),
he functional J in (3.3.1) is minimized. The minimizing control
1%(t), tef 0, T], 1is called the optimal control (if it exists).

As an example of an optimal control problem for a parabolic
system, let us consider the heat equation, given in Section 2.4, with

‘he control u(t) entering in a forcing term. Assuming Dirichlet bound-

ary conditions for this problem, we have:
% = Ax{+B(tluly) ;  x(0) = x_eH’ (D)

where .A is the operator defined on HZC" (D}, corresponding to the
2
spatial differential operator w 2 5 . Let us choose xd(t) = 0 and the
oz
rost criterion to be such that we penalize rmean square deviation of the

state trajectory from zero and total expended control energy, that is,
ve choose a criterion of the form:

T
2 2 1
J= x (t,z)dz+ r{u(t,z)dzldt ; reR™, r>0
0 |D

D
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This can be put within the framework of the optimal control problem
specified in Definition 3.4 1f we choose Q{t}, R(t}, and F to be:
1. Qt) is the identity operator on Hi (D), which can be written

as the integral operator

Qtyx(t) =1 X(t)=f5(z-§)x(t,é):1§ , ¥ x(t)eHi'(D)
D

H_ (D)

where 68(z~-{) is Dirac delta function.
2. R(t) is the identity operator on U, multiplied by the scalar
r, or
R{t)u(t) = rIUu(t) = rfﬁ(z—é’,)u(t,é)d?; . u(t)eU
D
3. F is the zero operator
With these choices of Q(t}, R(t}, and ¥ the cost criterion of Eq. 3.3.1
is seen to be the desired cost criterio;l.
The preceding discussion must be modified somewhat to achieve
the definition of the control problem for hyperbolic systems. As a
preliminary to this modification, let us consider a general 2 X2
matrix operator @ whose elements Mij are boundc—‘:d lin.ear oper-

ators on a Hilbert space H. & operates on the two dimensional vector

x the components of which are elements of H. K is useful to define

the inner product <_§g,?] x > = 3{_'7)7 X as

2 2
;_'_7273:_ = ZZ(x.l,M..X.>H (3.3.2)

. RN

i=1j=1
We are now in a position to make the modifications of Definitions 3.1,
3.2, and 3.3 to fit the hyperbolic case, beginning with the definition of

the state weighting matrix operator:
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Definition 3.5: The 2X2 matrixZ, (t}, the elements of which,

Qij(t), are bounded linear operators defined, for all tef 0, T], on
Ho (D) with range in HI:(D), is called the state weighting matrix oper-
ator. oz {t) is assumed to be 2 symmetric positive semidefinite matrix

with self-adjoint elements, or

1. Qij(t)=0_ji(t) , Ytefo,T] , i,j=1,2

2
! = x x, el
za__g(t)zs = Z Z<X1’Qij(t) ; >HI;1(D)_>_ 0 , ¥ ;€H (D),

iz 1,2 , ¥teo,T]
3. Qij(t) = Qij(t) ,  Mte[o,T]
There is no need to modify Definition 3.2 for the cost weighting oper-
ator, since the control space is the same for both parabolic and hyper-
bolic systems. However, the terminal state weighting operator of

Definition 3.3 must be modified as follows:

Definition 3. 6: The 2X2 matrix ___(‘—77, the elements of which,

Fi" are bounded linear operators defined on H];n(D) with rangé in

Ho (D), is called the terminal state weighting matrix operator. :]-z is

assumed to be symmetric positive semidefinite with self-adjoint ele-

ments,

1. F..=F.. i,j=1,2

Jl
2 2
2. x'Fx = szF x, >0 Ver (D) , i=1,2
:]_ =1

3, F..=F" i,j=1,2
1] i)
If we now denote the desired state vector as g_d(t), the cost cri-

terion for parabolic systems is given by:
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T

7= [ L2 000 (00 (02 460) + <ale), R(e)a(e)>> ]ds
0

+ & (T)x (TN F (x (T) x ((T)) (3.3.3)

where x{t) is the solution of (3.2:3) with the control sequence
u(t)eU, te[ 0, T], specified. Just as in the case for parabolic systems,
the optimal control problem is similarly defined for hyperbolic systems,

Definition 3.7: The optimal control problem for the system

(3.2.3) is to determine the control u*(t),te[ 0,T] such that, if x*(t)
is the solution of {3.2.3) with wu(t) = v¥*(t), the functional J in (3.3.3)
is minimized. The minimizing control u*(t), te[0,T], is called the
optimal control (if it exists).

As an example of an optimal control problem for a hyperbolic
. System, we consider the forced equation for longitudinal vibrations in
a rigid beam, the unforced version of which is given in Section 2.4,
Assuming Dirichlet boundary conditions, the equation may be written

in the form of Eq. 3.2.3 , namely:

dx (t) a [=m@] fo =m

dt T a x| 14 o=,
0 x .
01 2
+ u{t) ; x(0) = XOl’x02€H0 {D)
B(t) X092

where A 1is the operator on HS (D) corresponding to the differential
2

operator R 9 5 - In this example let us choose zc_d(t) = 0 and have the
oz

cost criterion penalize both the mean square derivation of the tra-

jectories xl(t) and xz(t) from zero as well as the expended control

energy, Or
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T
2 A
J :f f(xlz(t, z) + rlxz(t, zZ))dz + T, fu {t,z)dz | dt
0 -D

with Ty and T, both positive real numbers. It is seen that the choice

of -

I, o ]
H_ (D)
L ) =
0 r, I
17542
and R{t) = IZ.IU
where 1 5 and IU are the identity operators specified in the ex-
H{D)
o)

ample following Definition 3.4, puts ‘the cost criterion of Eq. 3.3.3 in
the above desired form.

The parabolic control problem defined in Definition 3.4 will be
studied in great detail in Chapter 4, whereas the hyperbolic control
problem of Definition 3.7 will be briefly discussed in Chapter VI, Important
special cases of these problems are discussed in the next section of

this chapter.

3.4 THE POINTWISE CONTROL PROBLEM

The optimal control problems defined in the preceding section
will be specialized in this section to consider the case where the control
does not enter into the system in a distributed fashion, but rather con-
trol energy enters the system at a fixed number of "points" within the
spatial domain of the system. The justification of the use of this type
of pointwise control is on physical grounds. For many physical distri-
buted parameter systems it is next to impossible to drive the system by
application of a control distribution. For instance, in the rigid beam

.considered in the preceding section, the control energy would enter



-47-

much more realistically as forces at various discrete points along the
length of the beam, rather than a '"perfect' distribution of force de-
fined at every point of the beam. Another example is the membrane
of a drum. Here the distributed displacement of the tympanic mem-
brane is achieved through the approximately pointwise control of the
impulsively applied beating of the drumsticks. ¥In both of these cas;es
the analysis would become terribly complicated if the control were
modeled by a distribution on the spatial domain. Since it is more
likely that one would approximate the distributed control in many phys-
1cal systems by a finite number of lumped controls, this would moti-
vate the a priori use of non-distributed controls and the subsequent
optimization problem in terms of these controls. Moreover, it seems
more likely that the analytic specification of an optimal control distri-
bution would be much more difficult than the specification of an optimal
control vector. In essence, the pointwise control problem is a hybrid
of pure distributed parameter control and finite dimensional control.

If we suppose that control is applied at the k points z;, i=1,2,.,

the control space U to be considered is k-dimensional Euclidean space
k

cak,

R™, or, in other words, the control defined in Section 2 is assumed to be

a k-vector u. On first thought, it would be desirable mathematically

to have the forcing term of Egs. 3.2.2 and 3.2.3 be of the form
k

B{t) u(t) = Zﬁ(z—zi)bi(t)ui(t) (3.4.1)
i=1

where G(Z-zi) is the Dirac 6-function defined on the spatial domain D,
and bi(t)' i=1,2,...k, are bounded continuous functions of time,

Equation 3.4.1 reflects "true" pointwise control, that is, finite control

energy really enters at the set of control points {Zi}1i<—1' Unfortunately,
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expressions of the form of the right hand side of Eq. 3.4.1 cannot be
elements of LZ(D) for each te[ 0,T], because the Dirac §-function is
not square integrable. Since it is required in Section 2 that the forcing
term be an element of LZ(D) for all te[0,T], we must abandon hope
of using '"true'' pointwise control.

The next logical step is to assume that control action takes place
over a small volume surrounding each of the control points Z; . This
actually gives a more accurate picture of the procedure of applying
pointwise control over a spatial domain, since it is a mathematical
fiction to consider control applied at a single point. The physical justi-
fication of this assumption can be seen by consider‘ing the examples
given above. In the rigid beam, any device which applies force at a
"point'' of the- beam cannot apply this force over a region of the beam of
zero width. There must be some small length of the beam over which
-the force is actually applied. In the case of the drum, the vibration of
the membrane is not caused by excitation of a point of the membrane
with zero area, but by excitation of a small area corresponding to the
area of the tip of the drumstick. Both of these cases represent a valid
approximation to the pointwise control problem, since the "volumes"
surrounding the control points are sufficiently small compared to the
"volume" of the spatial region D.

This pointwise control approximation is'achieved through the intro-

duction of the following B operator:

Definition 3.8: The pointwise control operator Bo(t), defined

for all te{0,T] onmn Rk is described by

k

ot ml Z X ;(2)b; (thu (1) W u(t)eR (3.4.2)
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where yi(z) is the characteristic function of the set EiCD which in-
cludes the control point z, as described above. This characteristic
function is given by

1 if zel,
i

x.(z) =
* 0 if zfE,

The functions bi(t) are assumed to be bounded on [0,T]. Note that,
according to the assumption in Section 2 of this chapter, 5(.)€L2'(0, T; Rk) .
In order to show that the form Bo(t)_u;(t) is an element of
LZ(O,'I’;LZ(D)), and, therefore, satisfies the required condition to be a
forcing term for Eqs. 3.2.2 and 3.2.3, we prove the following lemma:
Lemma 3.1: For each te{ 0] T], Bo(t) is a bounded linear oper-
ator with domain Rk and range in LZ(D). Moreover, the function

f{-), where f(t):BO(t)_g(t), Mte[ 0, T], is an element of LZ(O,T;LZ(D)).

Proof:
k
[t5 e = [ (D x g2y ugen? dz
D _ D i=1
k k
2
= Z fx i(z) biz(t)uiz(t)dz = Ebf'(t)uiz(t)fx%(z)dz
i=1 D i=1 D

Since fxiz(z)dz -_-‘in(z)dz = p,(Ei), the Lebesque measure of the set E1’
n
and since thismust be less than the Lebesque measure of the domain D, we have

) k
[ B @l ®as < wo) Y vl = w0 Bowe II‘;"Rk
D i=1

where B(t) is the kX k diagonal matrix with Bii(t) =bi(t)’ i=1,2, ...k,
i Bl & is the induced matrix norm of B(t), it follows that B_(t)

is a bounded linear operator from Rk into LZ(D) and
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& _(t) |f <1ty IBw || . , forall te[0,T] (3.4.3)
° '12(D) R

To show that f{.) is an element of LZ(O,T; LZ(D)), we write

T
120y 112 - w2, a
12(0,T; 12(D)) { 14(D)

T
- [ 1B muwl®, at
.{: o LZ(D)

which, by Inequality 3.4.3, can be written

T
lec-y 112 <wo [ IBOIE, e 7, at
20, T; 120y '!)‘ BE RE
< wo) B ]I Na() [
1210, T; BN 1200, T; 9

whe re the last inequality is obtained by the use of Schwarz' inequality.
By the assumed boundedness of the functions bi(t) , i=l,...,k and tl'_1c—:
assumption that —u (- )eL7(0, T; RY), we obtain
le) 1%, , <o
L°(0, T; L (D))
implying that £(-)€IZ(0, T;1A(D)).

Since the pointwise operator Bo(t) operating on controls u in the
control space Rk qualifies as a forcing term for systems (3.2.2) and
(3.2.3), it remains to formulate the optimal control problem for this
~case, Since the state space remains unchanged neither the state weight-
ing operator Q(t) nor the terminal state weighting operator F must
be modified in the parabolic system case. The same holds true for their

counterparts o__Z (t} and ? in the hyperbolic case. The control space
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is the finite dimensional space Rk so that the control weighting oper-

ator is changed accordingly:

Definition 3,9: The kXk possibly time-varying matrix R(t),

defined for 2ll te[ 0, T] on Rk with range in Rk, is called the point-
wise control weighting matrix. R(t) is assumed to be symmetric and
positive definite for all e[ 0, T].

We are now in a position to specify the quadratic cost criterion

for parabolic systems with pointwise control as follows:

T
J=f [<e(t) -4 (2)), QE) (x(t) -x 4 (£))> + a'()R{t)u(t)]dt
0

+ < (#(T)-24(T)), F(x(T)-x(T))> (3.4.4)
d d ch’?(D)

where x{t} is the solution of {(3.2.2) with B(t) = Bo(t) and the control
sequence u (t) ERk, te[ 0, T], specified. The pointwise optimal control
problem for parabolic systems may now be stated as:

Definition 3.10: The optimal control problem for the system

(3.2.2) with B(t) =B_{t) and U=E' is to determine the control

u¥(t), te[ 0, T], with u*()eR" for all te[ 0,T], such that, if x(t) is

the solution of (3.2.2) with B(‘t):Bo(t) and _U;(t)zll_*(t), the functional J
in (3.4.4) is minimized. The minimizing u*(t), te[ 0, T], is called the
pointwise optimal control (if it exists).

The discussion of pointwise controls will be tabled until Chapter V,
whe re the optimal pointwise control problem for parabolic systems will
be solved. The pointwise control problem for hyperbolic systems has
not been introduced for the reason that study of this problem will not
yield any more insight into the nature of pointwise control than is ob-

tained through the study of pointwise controls for parabolic systems alone.



CHAPTER IV

OPTIMAL CONTROL OF PARABOLIC SYSTEMS

4,1 INTRODUCTION

The purpose of this chapter is to solve the optimal control prob-
lem for parabolic systems as specified in Definition 3.4 of the pre-
ceding chapter. The first concern of this chapter will be to show that
unique solutions of the optimal control problem exist in both the case
where the system operator is coercive and the case where the sys-
tem operator is the infinitesimal generator of a semigroup of oper-
ators. Next, necessary conditions for optimality will be discussed and
a feedback solution for the optimal control will be derived for both
types of system operators. Inthis chapter we shall also treat the so-
lution of the parabolic optimal control problem defined on an infinite
time interval, and we shall derive an inte gro-differential equation the
solution of which specifies the form of the optimal feedback control law.

In Section Ethe existence and uniqueness of solutions of the
optimal control problems for both types of system operators is demon-
strated. With existence and uniqueness guaranteed, we derive, in
Section 4.3, the necessary conditions for optimality in the coercive
system operator case and show, in Section 4.4, that these necessary
conditions imply the existence of a feedback form in which the feed-
back operator is seen to satisfy a nonlinear operator equation of the
Riccati type. The minimum value of the cost criterion will also be

shown to be directly expressible in terms of this feedback operator.

-B2-
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Section 4.5 is concerned with the proof that if a bounded solution
~—

~

of the operator equation discussed above exists in the case where the
system operator is the infinitesimal generator of a semigroup of
operators then the feedback form derived for the optimal control in
the coercive case is also optimal in this case. This leads naturally to
the proof in Section 4.6 that a bounded solution of the Riccati operator
equation does indeed exist.

Section 4.7 contains the discussion of the parabolic control prob-
lem defined on the infinite time interval (0,®),

In Section 4.8 it is shown that the Riccati operator equation is

equivalent to a nonlinear partial integro-differential equation.

4.2 EXISTENCE AND UNIQUENESS OF SOLUTIONS

In this section we examine the question of existence and unique-
ness of solutions of the optimal control problem stated in Definition 3.4,
We shall show that for an elliptic operator, either coercive or strongly
elliptic, the optimal control problem for parabolic systems, as dis-
cussed in Section 3 of the preceding chapter, has a unique solution.
Lions 12 provides the machinery for demonstrating this by giving a
general existence and uniqueness theorem for controls minimizing a
certain cost functional. This is then shown to cover existence and
uniqueness of optimal cont—ro].s in the parabolic control problem., Lions
does not consider terminal-time cost in his cost criterion, so that any
modification of the results due to the slightly more general inclusion of
terminal-time cost will be indicated.

As a preliminary to the discussion of existence and uniqueness of

optimal controls let us make the following definitions:
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Definition 4.1: A coercive bilinear form [i{u,v} is a mapping

of UXU into the reals for which there exists a ¢> 0 such that

M{u,u) >c ”u”2 MYueU

Definition 4.2: The bilinear form I{u,v) is said to be symmetric

if
M{a,v) = T{v,u) Vu,veU

Definition 4.3: The bilinear form [({u,v) is said to be con-

tinuous if it is a continuous function of each of its arguments.

Now, having introduced the bilinear form IH(u,v), let us con-

sider the cost functional

Ju) = M(u,u) - 2L{u) , uelU {(4.2.1)
where L is a bounded linear functional defined on U. The existence

and uniqueness of a control u* which minimizes J in{(4.2.1) is pro-

vided by the following theorem.

Theorem 4.,1: If T{u,v) is a continuous, symmetric, coercive

bilinear form, then there exists a unique u*eU such that

J'(u*) = inf ..T(u)
uelU

Existence is proved by defining a sequence approaching the infimum,
showing it is bounded, and extracting a subsequence which has a weak
limit in U. Since Il{v,v) 1is lower semicontinuous and L(v) is con-

tinuous in the weak topology of U it is seen that the weak limit in U
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is the minimizing element uw¥*. Uniqueness follows directly from the
strict convexity of the function M{v,v). Details have been omitted, but
are readily available in Ref, 15.

In order to proceed to the discussion of existence and uniqueness
of the solution to the parabolic optimal control problem, the question
of existence and unigueness of solutions of the parabolic equation {’3. 2.2)
must be considered. This existence and uniqueness question_for the
case of coercive elliptic system operators is best answered through the
use of another result of Lions' which will also be used to obtain neces-

sary conditions for optimality in the following section.

Theorem 4.2: If M{u,v) satisfies the hypotheses of Theorem 4.1,

then J{u) has a minimum value J{u*) if and only if u* satisfies the
equation®

Muwk,v) = L{v) , ¥veU (4.2.2)

The proof of this theorem is due to Lions; since it is essential to
the optimization results of Section 3 of this chapter, it is presented in
Appendix C for the sake of completeness,

To show how this result yields the answer to the existence and

uniqueness question in parabolic equations, consider the bilinear form

Mee,y) = ~<Axy> . ; x,yeH (D) (4.2.3)
H, (D)

where -A 1is assumed to be a coercive operator, satisfying the

" If the control u* is required to lie in some convex constraint set
2C U, the equation which uw* must satisfy becomes

M{ws, v-u¥) > L{v-uw+) , ¥veQ
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Inequality 2.3.3. Hence, the bilinear form II(x,v) in (4.2.3) is co~
ercive. If we let the linear form I.(v) in Eq. 4.2.1 be the inner pro-
duct

Liy) = <Bu,y> ;. MyeH (D) (4.2.4)
oy

I—I];n(D) is a Hilbert space and, by a well-known result in elementary
Hilbert space theory (see Ref. 25, p. 80), any bounded linear func-
tional on Hgn(D) is an inner product of y with some element in the
dual space of HI;'(D). Since LZ(D) is contained in this dual space, and
since Bu is in LZ(D) by our assumption in Section 3.2, then Ex-
pression 4.2 .4 is a valid linear form on HI;D(D).

The hypotheses of Theorem 4,2 are thus satisfied and, therefore,
we have the result that there exists a unique erzn(D) such that

-<ax,y> = <Bu,y>HIn VyeH (D) (4.2.5)

H(D) ™ D)

For Eq. 4.2.5 to hold for all VEHO (D) it must be true that there is a

unique XEH?(D)*S atisfying the equation

Ax + Bu = 0 (4.2.6)
Thus, we have demonstrated existence and uniqueness of a
solution to Eq. 4.2.6. Needless to say, we have not proved existence
and uniqueness of solutions of the parabolic equation (3.2.2), i.e.,
%X =Ax+Bu. However, Lions uses the procedure demonstrated above,
with a few analytic embellishments to account for time evolution, fo

prove that there exists a unique solution of the parabolic equation

% = Ax(t) + B(thu{t) , =x={0)= X,
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Just as important, Lions shows that the mapping u(-)—x(-) from
LZ(O,T;U)—— LZ(O, T;HIOH(D)) is continuous. The continuity of this
mapping plays a role in the application of Theorem 4.1 to the parabolic
control problem of Definition 3,4,

It remains to show that solutions of parabolic equations with
elliptic operators satisfying Condition 2.7.1 exist, are unigue, and de-
pend continuously on the control as was shown for coercive operators,
Proving existence and uniqueness is trivial in this case, since the
hypotheses of the theorems given in Appendices A and B are satisfied

and the solution of Eq. 3.2.2 1s uniquely given by

t
x(t) = (b(t)xo+f<f){t—cr)u(0')d0' s XOEDO(A3) (4.2.7)
0

whe re {@(t)}te[o o] is the semigroup of operators with infinitesimal
3

generator A3 as defined in Section 2.7. Since we wish in addition to

show that the solution depends continuously on the control we state and

prove the following theorem:

Theorem 4.3: If x(f) is the solution of the parabolic equation

(3.2.2) given by Eq. 4.2.7, then the mapping u{-)—x{.} of LZ(O,T; )

into LZ(O,T; HI:(D)) is continuous,

Proof: Suppose u,(-} and u,(.), defined for all tel 0, T], are

elements of LZ(O,T;U) and x,(+} and xz(o), defined for

1
all te[0,T] are elements of LZ(O,T;HOV(D)) given by:

t
x,(t) = ®(t)x +f &(t-c)u,(e)do , te[0,T], i=1,2 (4.2.8)
0
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Forming the difference xl(t) -xz(t) and taking the norm

squared on LZ(O, T;HO (D)), we deduce that

(-5, () 12
T 20, 1R (o)

T
- [ = 0-,m]%  at
[0,

T t
=f!l it-0) Bl uy(0) u,(e)]do [ At (4.2.9)
o 0 H. (D)
Tl t z
< [1 [ lat-oB@ly@ vyl |, dof at
olo H, (D)

where the inequality follows from a generalization of the
triangle inequality for normed spaces. Since &(t-o) and
B(c) are bounded linear operators we may write the in-
equality- '

& it-0) B u (o) -u, ()] ]
a o ul a 112 d, Hm(D

o]

<[ ®{t-0)B(a) | lla, () -u, (o) | (4.2.10)
i (D) 1197 7% U

o]

so that Inequality 4.2, 9 can be written

I, () -, () )1
Y R o, T EE D)

Tl ¢ 2
< f f f®{t-) B(o) ”Hm(D) [, () -a, () [1;do| at
010 o

{(4.2.11)
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It should be noted that since ”ul( -)-uz(-)”U is an element of
LZ(O,t) for all te[ 0, T], then the inner integral is, in effect,
an integral operator on Lz(O,t) with kernel kit, o)

= ”tI)(t-o*)B(cr) “ m . If this kernel is square-summable,
H (D) :
o]
that is, if

t

[let-oB@ 7 dr<o
; H™(D)
O

for all te[ 0, T], then by application of Schwartz' inequality

it can be shown that (see Ref, 22, p. 148)

t 2
l®it-0)Blo) |l lw (o) -u, (o) || .40
‘!)- ’ H(D) ! 2

t t
o 2 i 2
S_follé\t o) B(o) ﬂHm(D) dO'f”ul(o—) (o) [pde  (4.2.12)
o) 0
—t
<Jlat-0B@ 12 de fug)-uy()|?
'{: ' H (D) B e, T v

holds for all te[ 0, T}. Now, by the uniform boundedness
principle, which is stated in Appendix D, &(t) is uniformly
banded over [0, T]. Let us denote this bound by

”cI:{t) ”_i M. Moreover, B(es) is uniformly bounded on

[0,T], with |B(¢o) || <b. Thus, it follows that

t
f”é(t—cr)B(cr) I° 4o < M°B% . (4.2.13)
0 Ho (D)
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is finite for all te[ 0,T], and the substitution of Inequalities
4,2.12 and 4.2.13 into Inequality 4.2, 11 vields the result that

(-3, [I°
b7 (0, T; B D))

T
2. 2 2
< | Mt flu(-)-u, ()] dt
'(( 1 2 LZ'(O,T;U)
2, 2
M™b 2 2
< T fJu, () -u, () ]
=77 b} 2 Lz(O’T;U}
or, equivalently, that
I, ()2, () ]l
T2 0, 1y D))
MbT
25 ”ul('}'uz(')”ﬁ(o,r;m

which implies that the mapping wu{.) into =x(.) from

LZ(O,T;U') into LZ (G, T; Ho {D})) is continuous.

It may also be shown that the solution at the final time T also de-

pends continuously on the control. This is also necessary for the ap-

plication of Theorem 4.1 to the parabolic optimal control problem.

Theorem 4.4: If x(T) is the solution, at the terminal time, of

the parabolic equation (3.2.2) given by Eq. 4.2.7, then the mapping

u(.)—x(T) of LZ(O,T;U) into H?(D) is continuous.

Proof: With ul(-), uz(-), xl(-), and xz(-) defined as in the

proof of Theorem 4.3, we have the following expression:

2 -
HY D

(o]

T
fla<) (T -2, (T) ] = f HT -0) B(o)[ uy(0) u,(0) Jdo I!iIm
0

D)



-61-

T 2
< { 8(T -0) B(o) wy(o) -u,(0)] || Hm(mdo-

B o]

[T 2
< { ®(T-0) B(o) I Hz)n(D)Ilul(cr)—uz(cr) iy do

and, proceeding as in the proof of Theorem 4.3, we use the
square summability of the kernel '”@(T'U')B(O‘) ” m to

H_(D)
deduce that

eyl <M ) ma, )

H. (D) L0, T; U)

which implies that the transformation u{.) into x{T) from

12(0, T; U) into H™(D) is continuous.

To summarize what has been done so far in this section: unique
solutions have been shown to exist for the parabolic equation(3.2. 2) with
either coercive operators or elliptic infinitesimal generators of semi-
groups as system operator. In addition, these solutions have been shown
to depend continuously on the control u. With this as a foundation, we
may use Theorem 4.1 to extend Lions' results to include the case of

terminal cost in the following manner:

Theorem 4.5: The optimal control problem for parabolic

systems as specified in Definition 3,4 has a unique solution

u(. )ELZ'(O, T; U},

Proof: First, let us introduce the notation xu(t) to denote the

solution of parabolic equation(3.2.2) on [0, T] with the
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control u(-)eLZ(O,T;U) . Likewise xV(t} denotes the
solution corresponding to v(-)€I*(0, T;U). The cost cri-

terion, Eq. 3.3.1, for the parabolic control problem can be

written in the form

J(u)= X" -x ,Q(xu—x } > +<u,Ru
< @20 rPoy S i, 7 0)

(4.2.15)

+ <N T)-%4(T), F (x (T) -x,4(T)) >

#70)

which, in turn, can be rewritten as

J(u) = M{u,u)-2L{u) + <x,,0x.> (4.2.16)
T4 0, T HP (D)

+< x,4(T), Fx (T)>
)

where we define the bilinear form [II{u, v) to be

M(a,v) & <, 0x"> + <xHT), BT >
Tar H

o

*(0, T; H D))

+ <u,Rv> 5
L0, T; U)

L(v) S<nx SES

+ < Fx (T), x(T)
‘ o, 1 H oy 2y

(D)
Since the last two terms of Eq. 4.2.16 are independent of u,

minimizing the cost functional J'(u)

J'(u) = Mfu,qw) - 2L(u)
is equivalent to minimizing the original cost functional J(u).

W e now note that N{u,v} is symmetric since
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fI{v,u) = <XV, qu>
(0, T; BI'(D)

+<x(T),Fx(T)> = +<v,RD> ,

H _"(D) L0, T; U)

o = <Q*XV,Xu>
L*(0, T; HZ(D))

+<FFx(T), x{T) >

m
HL (D)

+ <R, w> = T(u,v)
LF(0, T; U)

by the self-adjointness of the operators Q(t), R(t) and F
and by the symmetry of the inner products on LZ(O, T; I-Ilc;n(D)),
12(0, T; U), and H‘:l(D).

Next we note that H{u,v)} is a coercive bilinear form be-
cause

T, w> e ulld >0 Yu() er?(0, T; 1)

by the positivity of the operators Qt) and F and by the

strict positivity of R(t}.

Also, T{u,v) is contimious, since by Thecorem 4.3
xu(-) is continuous in u(.) on LZ(O, T;Ht;l(D)) and by
Theorem 4.4 x{T) is continuous in wu{.) on Hl(;n(D).

The hypotheses of Theorem 4.1 are thus satisfied, so
that there exists a unique u™(. )GLZ(O, T; U} such that

J'u*) = inf J'{u)
u(-)el#(0, T; U)
or,equivalently, there exists a unique solution of the para-

bolic optimal control problem given in Definition 3.4,
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It should be noted that in the above proof continuity was discussed
in terms of the strong topology of LZ(O,T;H?(D)), whereas Lions'
requires continuity in the strong topology of W(0,T) which is defined
in Chapter II, Section 4. This more stringent continuity require-
ment is not necessary, however, since the cost criterion involves only
x(t) and not X%(t), so that behavior of derivatives of solutions in terms
of u is beside the point.

We have shown in this section that unigue solutions exist to the
parabolic control problem for both coercive system operators and
elliptic system operators which are the infinitesimal generators of
semigroups. It remains to characterize these optimal solutions for

both types of system operators.

4.3 DERIVATION OF NECESSARY CONDITIONS--
COERCIVE CASE

Since, in the preceding section, it has been shown that a unique
optimal control exists, we shall derive in this section what precise
conditions that optimal control must satisfy in the case of parabolic
systems with coercive system operators. Again, this derivation is
due formally to Lions, 15 but his results are extended to include the
case of terminal-time cost in the cost criterion.

For convenience, let us rewrite Eq. 3,2.2

M - A x(t) + BO)

dt i x(0) =x (4.3.1)

Recall from the preceding section that the solution of the parabolic
optimal control problem, namely, the optimal control u¥*, must mini-

mize the cost functional

J(u) = M{u,uv) - 2L{u) (4.3.2)
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where

A a W u v
M, v) 2 <2, 0x"> + <xHT), Fx'(T) >
?(0, T; H (D)) H (D)

+ <lu, Rv> >
L°(0, T; U

L(v) & <ox g, x> + KFx (T),x"(T)> _
H

LZ(O,T;HIOH(D)) .

(D)
Now, by Theorem 4.2, the optimal control must satisfy

M(u*,v) = L{v) for all®(¥IZ(0,T;U)

or, equivalently,

0 (wk, v-u*) = L{v-uk)¥v{. )ELZ(O, T; U) (4.3.3)

 Further, let us introduce the adjoint equation

el mepe) - Q) - xg0)]  * (4.3.4)

p(T) = F[(T) - x,(T)]

p(t) is called the costate, and, by changing the time variable from t

to T-t and realizing that A° is coercive if A is, the results of the
preceding section tell us that a unique sclution p(-)GLZ(O, T;H?(D))**
exists for Eq. 4.3.4. Let us denocte the solution p(-) due to the appli-
cation of control uf(- )eL2 (0, T; U) as pu. Forming the inner product

on 12(0, T;HT(D)) with x”-x we obtain

" The standard asterisk notation for adjoint operators is used here.
This should not be confused with the equally standard use of the
asterisk superscript to denote such optimal gquantities as u*({t),
x*(t), and p*(t).

o Actually, it must be true {and it can be shown) that p{.}eW(0, T).
This is necessary since we wish to take LZ(O,T;H?(D)) inner

products with _C_i_%(f_:_)
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u
< _dp__’ Xv—xu > 2 m = - <'A*puaxv"xu > 2 m
L7(0, T; H (D)) L7(0, T; H (D)}
O [a]
(4.3.5)

- <Q[xu-xd] ,xv—xu>
L (0, T; H (D))

Evaluating the left-hand side of £q. 4.3.5,

< u fr< dEu v- u
;X -x 2> ‘ (t), x {t)-x (t}> dt
dt * 7120, T ED D) 4 dt 1 (D)
T
d <V u
= <pH(T),x " (T) = (T)> Lpt), Sx(t)-x(t)> dt
H_ (D) 'c( H (D)

But since pu(T)=F[xu(T)—xd(T}] as seen in Eq. 4.3.4,

u
<o B> 2 = <F[=™N(T) -2y (T)], xV(T)-=X(T) >

140, T; Hm (D)) HY(D)

o}

-<p?, g (x" X)>
& (0, T; HYY(D))

The first term on the-right-hand side of £q. 4.3.5 can be written
<A*pu,xv-xu 2 m = <p ,A(x -x ) >
L(0, T; H_ (D)) L%(0, T; H'(D))
{(4.3.7)
Combining (4.3.5), (4.3.6), and (4.3.7) and letting u=u¥* we obtain

- L0l xu* -X ],xv—xu*>
¢ L2(0, T;HZ(D))

(4.3.8)

= - <p“,( -A)(x"—x““) >
12(0, T; H™(DY)
[}

+ <FL =" (1) (T)], x¥(T) =¥ (T) >
a X )-x Hrn(D)

o]
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= - <P, Blv-ut) > + < LT (T, x T T (T)>
(0, T, H (D)) d H™(D)
Now from Eq. 4.3.3
I {ux, v-u¥) - L{v-u¥)
v o_u¥
= <ol ) x> 2 (0, T; HIH(D))
+<F[x"(T)-x (D], ="(T) =" (1) > _
H (D)
O
b <Rk, vouk> S0 (439
12(0, T; U)
Combining Eqs. 4.3.8 and 4.3.9 we obtain
"<Pu*: V u )>
(0 T H (D)}
= <Ru¥, v-uk> Mv(.) € L2(0, T; U)
150, T;U)
or, equivalently,
- <Brp™, v >
— " 1%(0, T; U)
= <Ru¥,v-uw> Mv(.)el? (0, T; U) (4.3.10)
1%(0, T; Uy

Since equality must hold in Eq. 4.3.10 for all elements v(- )GLZ(O, T; U,
it must be true that

-BE() pY(8) = R(uH(Y) (4.3.11)
is satisfied by the optimal control u*. Moreover, since R(t) is
assumed to be strictly positive in Definition 3.2 it has an inverse for

all te[0,T] and so Eq. 4.3.11 reduces to

@) = R 6)BE0pY (9 (4.3.12)
It might reasonably be asked, at this point, why the above deri-

vation does not hold as well for parabolic systems with system operators
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which are the infinitesimal generators of a semigroup of operators.
The answer lies in the fact that for this class of parabolic systems the
costate Eq. 4.3.4 cannot be shown to have a solution p(-)}eW(0, T},
that is, although p(-) is an element of L(0, T; H'(D)), we camnot
show that %te(-) is an element of LZ(D,T;HI;(D)). Thus, the inner
product with %%(-) in Eq. 4.3.5 would be meaningless in this case.
This inability to express the necessary conditions for optimality in the
form derived above for this class of systems will be circumvented in
Section 5, however.

Let us summarize the results of this section:

If wi(. )ELZ(O,T; U) is the optimal control for the problem specified

in Definition 3.4, then it is necessary that there exists a unique costate

p*(-) such that:

wH(t) = -RO(4) B pE(t)

where p*(c)eLZ(O, '.I.I‘;HO (D)) satisfies the equation

ale

Q%’L“:ﬁil = -&p™(r) - Qlxx(t)xgt)] 5 PHT) = FLx¥(T) - x4(T)]

and X*(-)ELZ(O,T;H?(D)) satisfies the equation

SR - ) + Bus(e) 5 w80 = x

4.4 DECOUPLING AND THE RICCATI OPERATOR EQUATION

In this section the necessary conditions derived in the preceding
section are shown to yield the fact that there exists a feedback form of
the optimal control given by Eq. 4.3.12. The optimal feedback operator
will be defined and will be shown to satisfy a nonlinear operator dif-

ferential equation of the Riccati type. Bounded, positive and self-

adjoint solutions to this equation will be shown to exist. Moreover, an
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optimal cost function will be defined and shown to be simply related to
the optimal feedback operator. The results of this section are due to
Lions (see Ref, 15, pp. 147-157) with slight modifications and an
extension to include the terminal-time cost.

If we consider the system of equations:

%}f{:* = AX*(T') -B (t)R‘_I(t)B*(t)p*(t)
te(s, T) ; 0<s <T
(4.4.1)
El.d%:i = -A"Ep’k(t) - Q[ X:{:(t) _ Xd(t)]

x#(s) = h, heH (D) and p(T) = F[x#(T)-x4(T)]

This system admits a unique solution pair (x%(.}, p*{-)eW(s, T)XW(s,T),
where W{(s, T) is the space W(0,T) defined in Section 2.4 with s
taking the place of the lower limit 0. This fact is easily seen if the
cost criterion of the preceding section is defined on the time interval
(s, T) instead of [0, T] and the same straightforward procedure of
deriving necessary conditions is used, Lions shows that th:a trans -
formation h—{x*(.), p*{-)}} is continuous from I—II:(D) into
W{s,T)XW{s, T}, and that the transformation h—p¥(s) is continuous
from I—Il;l(D) into Hron(D), this latter result following from the fact
that h—p¥*(s} is a composite transformation composed of

h—{xx(.), p*(-)}, {x*{-), p*(-)} —=p*(T), and the transformation which
relates the "initial' value p*{T) to the solution p%¥*(s) of the adjoint
equation in (4.4.1}), all of which transformations are continuous in
their range spaces. The result of the continuity of the transformation

h—p#{s) is that p*{s) can be written in the form

pi(s) = K(s)h+ g(s) (4.4.2)
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where K(s)eaC(H?(D);}f;(D')) and g(s)eHron(D) for all se{0,T). Since
s 1is any arbitrary time in (0, T) and h is the evaluation of x*(s),
then Eq. 4.4,2 tells us that
p(t) = K(t)x*(t) + glt) ¥te[ 0, T] (4.4.3)

where x%(.) and p*{.) are the solutions of the state and adjoint
equations, respectively, given, in summary, at the end of Scction 3 of
this chapter. It should be noted that K(s) in Eq. 4.4.2 is given by
p¥(s)=K{s}h 1in System 4.4.1 with xd(t)=0, and likewise g(s) is given
by p*(s)=g(s) with h=0. In the sequel, we shall, for convenience,
drop the asterisk superscript notation for the optimal quantities x%*(.}
and p¥(.).

The operator K(s) can be shown to be self-adjoint by con-

sidering the scalar product <K(s)h1,h2> where h1 and h2.
H' (D)

are initial conditions for System 4.4.1, with xd(t)=o for all tef 0,T],

which result in the solution pairs {Xl(-), pl(-)} and {xz(-), pz(-)},

respectively:
T dp
0 = | <=Ly ap 4 0x,,x,> dt
f dt Py 1727
S o
= < pyT), %, (T)> <p(s), %,(s)>
1 2 Hf)n(D) 1 2 H:;n(D)

+ <0x, %, 2>, (4.4.4)



(D} H_ (D)

0 o}

-1
+<p,, B(tyR " B*(t)p, >
! ° s, T ETD))

+ <Qx ,x > = 0
e Lz(s,T;HIOn(D))

and since the operators F, B(t)R_l(t)B*(t), and Q(t) are all seif-
adjoint, K(s) i<_5 self-adjoint.
To show that K(s)} is a positive operator, let us define the cost
of starting at time s in System 4.4.1 with xd(t) = 0 and with initial
m 2 h
state heHo (D) and control u(-)el (s, T;U) as Js (). If
u*(-)ELZ(s, T; U} is the optimal control for this problem then u*{.)

satisfies the necessary condition
Bx(t}p(t) + R({t)u*(t) = 0 te(s,T) (4.4.5)
If h1=h2=h (it follow§ that xl(-)zxz(.) and pl(-) = pz(-)), the last

equality of (4.4.4) may be written

<K(S)h,h> = <QX,X>
Ho (D) L2(s, T HZ (D))
: -1
+'<p, BR "B¥p>
(s, T; HA(D))
+ <Fx(T),x(T)> m (4.4.6)
H. (D)

But, by virtue of Eq. 4.4.5,

T T

[ <myr, we> g a = [ <Brope, R 0B Ep0> | o

s s

(4.4.7)

T
= f<p(t), B)R () B¥ () p(t)> Lm dt = <p, BR-lB*p>
S

) 1%, T, HE(D))
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so that < K{s)h,h> m is the optimal cost starting at time s
H (D)
o

with initial state h, or
h, .
<K(s)h,h> = Jo(u¥) 20

proving the positivity of K(s}.
The boundedness of K(s) follows from the fact that the trans-

formations h—x(-), h—o(-}, and h—x(T) are continuous in the strong

topologies of their range spaces, so that

g |l <clinll et ,
e, mElo) T L HND) (s, T;HL (D))
< o, |nll
— "2 m
H(D))
and Jlx(T) < e, Inl . From Definitions 3.1, 3.2, and 3.3
- (D) H_ (D)

it is seen that the operators Q(t), R{t), and ¥ are bounded so that

<x,x> <Mpel ”h”z , <p.BR'B¥p> ,
12 {s, T;H_ DY) H D) L(s, T; H (D))
<Myt [nl®_ , and <x(T),Fx(T)> <Mt . This
Hg (D) “ Hp@ ™~ 7 HID)

implies that

h
K(s)h, h = P (wr)
>
< My M,es aMyel) [nfP =cllnf? (4.4.8)
H. (D) H.'(D)

proving boundedness of the operator K(s).

It will now be shown that K(s)} is the solution of a nonlinear
equation of the Riccati type and g(s) "is the solution of a linear equation.
Using Eq. 4.4.3 we can rewrite the system given in the summary of the

preceding section as
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(t) = Ax(t) - BOR(0)B* [ KMx(t) + g()]

and 2B - [R@yx(e) +g(t)] = Kiek(t)+ K(t) %(0) + & (t)

dt
(4.4.9)
= - & K(t)x(t)+ g(t)] - Q(t)x(t) +Q(t) x4(t)
and p(T) = K(T)x(T) + g(T) = Fx(T} - de(T) ; x(0) = X
The two equations in (4.4.9) can be combined to yield
[K(8) + K(t)A+ AK - K(9B ()R L0 Be)K(t) + Q(6)] x(t)
(4.4.10)

= [ -3 -&glt) + KOBOR (0 BH)g(t) + Qe (t)]

since x(t} is arbitrary in the sense that it depends on an arbitrary
choice of X the only way equality can be achieved in (4.4, 10) is if
the terms in each of the two square brackets sum to zero, or, equiva-

lently, if the following two differential equations are satisfied

I'{(t) = ~K(t)A - A*K(t)+K(t)B(t)R_l(t)B*(t)K(t) - Q(t)

- (4.4.11)
K(T) = F
and glt) = -Ag(t) +K(t)B(’E)R—1(t) B (t) g(t) + Q{t)x 4(t)
(4.4.12)
g(T) = -Fx,(T)

We may summarize in part what has been shown above by stating

the following theorem:

Theorem 4.6: The optimal control U.*(-)ELZ(O, T; U} for the

parabolic control problem specified in Definition 3.4 is given by the

feedback form:

wH(t) = ~RH (9 B0 K(t)x(t) + g(t)] (4.4.13)
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where K(t}, te[ 0, T] 1is the bounded, positive self-adjoint solution of

Eq. 4.4.11 and g(t) is the solution of Eq. 4.4.12.
It remains to determine the relationship between the cost of
starting at the initial state h at time s and the operator K(s) and

function g(s) given above. This is stated as:

Theorem 4.7: The value of the parabolic cost criterion attained

by System 4.4.1 (the optimal system over (s, T)) is given by the ex-
pression:

T = <K{s)h,h> + 2<g{s), h>> + &(s)
S o™ D) gis ‘ HIH(D) é

(o] o
where K(s) is the solution of (4.4.11), g(s) is the solution of (4.4.12)

ind &{s) is the solution of

Blt) = - <xg(0), Qx> +<glt), BOR (0 Brmgm> _
H_ (D) H_ (D)

(4.4.14)

$(T) = <Fxy(T), x,(T) >

Proof: From Eq. 4.4.1 we may write*

T T

d e
I<Q(X_Xd)’ x-xd> dt = f< - -a}% - A p,x—xd>dt
s S

T - T

- _dp _ _dp

= [ <- - mpx>ar [ <-SB- apx,>a
8 S

(4.4.15)

'All inner products are defined on I—Io (D) uniless otherwise specified.
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Integrating the first term by parts, we obtain

T
[ <-4 -a, x> at = <pls),x(s) > - <p(T), x(T) >
=

T
+ f<p,}'{ - Ax >dt
s
(4.4.16)

= <K(s)ht+g(s),h> - <F(x(T)-x4(T),x(T) >

T
-f<p,BR“lB===p>dt
s
Now, the second term in Xq. 4.4.16 may be written

~LEG(T)-x (T, x(T) > = - KF(x(T)x4(T)), x(T) x4 (T) >
(4.4.17)

- <F((T)=(T), x,4(TD>

Moreover, from Eq. 4.4.7 we see that

T T
- f < p, BR'B#p>dt = - _;' <u(t), R{thu(t) > dt
S . s

‘So that, by virtue of the equation for the cost functional J
(Eq. 3.3.1) and Eqs. 4.4.16 and 4.4.17, Eq. 4.4.15 may be
written

T = <K(s)h, B> +<gls), h> - K Fix(T) x4 (T),x4(T) >
(4.4.18

T
dp , ¥
+f<dt +Ap,xd>dt
s

Examining the last term of Eq. 4.4.18,
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T T
d s
f<—d% + ATp, x,2>dt = —I<Q(x-xd),xd>dt
s s
(4.4.19)

T T
=I<Qxd,xd>dt —f <Qx,xd>dt
S S

But, by the differential equation for g, Eq. 4.4.12,

T T
—f<Qx,xd>dt = —f <Qxd,X>dt
S S

T
-f< g+ A'g - KBR 1B g, x> dt

s

Lgls), x(s)> - LT (T
T
+f < g, %-Ax + BR

]

lps s> at

1 1

swnce g(T) = -Fx4(T) and %-Ax+BR "B¥Kx=BR B¥g, we

obtain

-
- f<QX,xd>dt =< g(s), h > + < Fx (T),x({TP>
< \

T
- f<g, BRIB*g> dt (4.4.20)
S

Combining Eqs. 4.4.18, 4.4.19, and 4.4,20 yields

7 =< K(s)h,h> + 2L gls), h> - < Flx(T)-x4(T)), %4(T) >
+ <Py (T),x(T) >

T T
+f<Qxd,xd>dt —f <g, BR—IB*g>dt
s S
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<K(s)h, h> + 2 <gls),h> + <Fx(T),x,(T) >

T T
1.
+f <Qxd,xd>dt -f< g, BR "B¥g>dt
5 =]

<K(s)h,h> + 2< g(s),h >+ &(s)

where ¢(s) satisfies Eq. 4.4.14.

Thus, we have achieved what was set out to be done in this section.
The optimal control for the parabolic optimal control problem was shown
to be a linear feedback control with a positive, bounded and self-adjoint
feedback operator. It was also shown, by means of Theorem 4.7, that .
the optimal cost is related to this feedback operator. It is important to
note that the existence of this operator X(t) is guaranteed by the
strong continuity of the transformation h— {x(-),p(-)} in W(0,T}XW{0, T}
Once existence is guaranteed, it is a trivial matter to determine what
equation the operator K(t) must satisfy. In the case of the operators
treated in the next section, namely, the elliptic operators which are
infinitesimal generators of semigroups, the transformation h—»{x(.),p(.)}
cannot be proved continuous, so that existence of the optimal feedback

operator K(t) must be proved through other means.

4.5 NECESSARY CONDITIONS FOR OPTIMALITY--
INFINITESIMAL GENERATOR CASE

The necessary conditions for optimality have been derived for the
case of coercive system operators and have been summarized at the end
of Section 3 of this chapter; the resulting feedback form of the optimal
control has been given in Section 4. The existence of the feedback

operator K(t) and of the related vector function g(t) and scalar function



-78-
${t) are a consequence of the strong continuity in W{0,T) X W (0, T)
of the transformation of the initial conditions into the solution {x(-),
p{*)} of the canonical system of Eqs. 4.4.,1, Such a canonical system
mavy be defined in the case where the system operator in the parabolic
system Eq. 3.2.2 is a strongly elliptic operator satisfying Inequality
2.7.1, or, equivalently, is the infinitesimal generator of a semigroup
of operators. However, in this case, the transformation from the
initial conditions to the canonical solution set {x(-),p(.)} can only be
shown to be strongly continuous in LZ(O,T;H?(D}) x LZ(O,T;HT(D)).
Although this continuity feature was enough to guarantee existence and
uniqueness of optimal controls for-this tvpe of system operator (as
was shown in Section 2 of this chapter), it is not enough to guarantee
the existence and uniqueness of a bounded, self-adjoint positive feed-
back operator K{t) and the related functions g{t}) and ¢(t).

It is the purpose of this section and of the following section to
show that the optimal control for parabolic systems with this class of
operators has precisely the same feedback fornj.m given for parabolic
systems with coercive system operators, namely, Eq. 4.4.13., In

this section, we shall show that if a bounded solution K(t) exists for

the Riccati operator equation (4.4.11}, then the feedback form in

Eq. 4.4,13 is the optimal contrel for parabolic systems with system

operators which are infinitesimal penerators of semigroups of operators.

It will also be shown that the optimal cost function for parahbolic systems
with coercive system operators, given in Theorem 4.7, is also the
optimal cost function for this class of systems. In Section 6 the im-
portant guestion of existence and uniqueness of bounded solutions to the

Riccati operator equation will be considered.
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Liet us, for convenience, rewrite the cost criterion (3.3.1)

J=<{x-x,,Qx-x,)> + < u,Ru>
a T 0, T ED (D) 1#(0, T;U)
+ < %(T)-x4(T), F(x{T)-x(TH> (3.3.1)
d ¢ E D)

We shall show that the minimum value which J can attain is

I = <KOx(0),x(0)> _ +2<g(0),x(0) >+ $(0)

m
H (D)

(4.5.1)
where K(t), g(t), and &(t) are given by Eqs. 4.4.11, 4.4.12, and
4.4.14, respectively. Let us make the assumption that Eq. 4.4.11 has
a bounded solution K({t) defined on [0, T]. To show that this implies

the existence of g(t) and ¢{t) we prove the following lemma:

Lemma 4.1: If a bounded solution K(t) of Eq. 4.4.11 exists
for all te[0, T], then a unique solution g(t) of Eq. 4.4.12 and, con-

sequently, a unique solution ¢(t) of Eq. 4.4, 14 exist in the case of

parabolic systems with system operators which satisfy Inequality 2.7.1.

Proof: Rewriting Eq. 4.4.12

détg = - g(t) + Kt BOR (1) BH(t)glt) + Q(t)x 4 (1)

(4.4.12)
g(T) = -Fxg(T)
Let us make the transformation t—T-s, so that Eq, 4.4.12

becomes

%-Sg- A*g(s) - K(s)B(s)R_l(S)B*(S)g(S) - Qfs)x 4(s)

g(0) = -Fx,(0)
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Since the operator A is the infinitesimal generator of a

strongly continuous semigroup of operators {®{t) }te[ 0" 7]

as described in Section 7 of Chapter II, the adjoint operator
A* is the infinitesimal generator of the strongly continuous*

semigroup of operators {&*(t)} as shown by Hille
te[ 0, T]

and Phillips (see Ref. 21, p. 426). We may thus apply the

variation of constants formula, Eq. 2.8.1 to obtain

g(s) = a(s) -fq)*(S-O')K(D‘)B(O‘)R_l(O‘)B*(O')g(O')dO' {(4.5.2)
0

where a(s) = & (s)g(0) —f @*(S-U)Q(O‘)xd(o-)dcr
0

To show that a solution g(s), se[0,T] exists for Eq.4.5.2
we shall apply the well-known Picard method of successive
approximations (see Ref. 26, p.6). Form the sequence of

Sobolev -space valued functions {gi}?_o defined by:

g (s) = afs)

gi+1($) = a(s) —f@*(s—o‘)K(U)B(cr)R—l(cr)B*(tr)gi(o-)dcr
0

We would like to show that the sequence {gi}oio—-o converges
. 2 Tt o ;

in L (0, T; ° (D)) to some limit g(:). The convergence
of this sequence depends on the convergence of the infinite

series
0

h(s) = Zgiﬂ(s) - gy(s)
i=0

Strong contlnulty is a résult of the reflexivity of the space L {0, T; Hm (D)
on which &“(t) is defined.
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The Nth partial sum of this series has the form
N

)= D (g41(8) = &(9) = gygy (5) - g, ()
i=0

and, so, the series converges in LZ(O,T;HT(D)) if and only

if the sequence converges in LZ(O, T;HI:L(D)}. The series

will converge if X ”gi_[_l(- - g {-) ” converges.
0 140, T; H “HD))

Now,

g,4,(5)- g(s)-f@ (5 -0) K(0) Bo) K 10 B (o) g; () g, ()]
0

with the result that for i>1

” g-1+1(s) 'gi(s) “

m
H_ (D)
< f 8% (s -0)K(e) Be)R o) B= (o) | lejo)-g, (a1, do
A H, (D) H (D)

By an argument similar to that appearing in the proof of

Theorem 4.3 we may write the above inequality as

g, (s)-g,( s)ll < cfllg (o) -g; 4(0 II

Moreover, since

FRORERE ||Hm

(D)

=)
sf I (s -0) K(o) Bo)R o) B* (o) || lla(o) flao
0

and since a{s), given in Eq. 4.5.2, is bounded in norm
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on the finite interval [0,T] by ||a(s) " <a

g (s)-g (s} ]] < acs
) o I-II:(D)

T rom this it can be shown by induction that

i+1
!ct)l
1yi41; ”Hm(D) =2

0

and, thus,

it
< 2 {cT})
—c

Iyig-v: 1l 2 (i+2) !

170, T; H (D))
so that
=]

=

(0, T H. (D))

0w

" YIH"]. 'Yi ” 2
" L
i=0

[e°T - (1 + cT)]

and convergence is guaranteed for T finite. Thus,
existence of a solution g(t) of Eq. 4.4.12 is proved.
Uniqueness will not be proved, but it is a straightforward
matter to modify Bellman's uniqueness proof (see Ref. 26,
p.8). The existence and uniqueness of ¢{s) follows di-

rectly from the existence and unigueness of g(s).

‘We shall now show that the optimal control is given by Eq.4.4.13

and the optimal cost function is given by Eq. 4.5.1.

Theorem 4.8: If a bounded self-adjoint operator solution K(t)

of Eq. 4.4.11 exists, then the optimal control is given by

wr(t) = -RU6)B*t)[ Kt)x(t) + glt]

and the optimal cost function is given by

(4.4.13)
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Tonin = K(OX(O,x(0>

+ 2 <g(0), x{0)> t${0)
m X D) T

(D)

o
Proof: Since pg{t) and &(t) exist by LLemma 4.1, let us write

the identity

T

d

— [ K(t)x(t),x(t) > + 2<g(t), x{t) > +d(t) ] dt
.!;dt . HL(D) H_ (D)

(4.5.3)

[ <K()x(t), x(£)D> 2 glt), x(H)> +ot)] L =0
m D) 0

H (D)

Performing the differentiation inside the integral and using
Eqgs. 4.4.11, 4.4.12, and 4.4. 14 to eliminate K (1), &(t),

and ‘i’(t): respectively, Eq. 4.5.3 becomes

T
f< K(t)B(t)R’l(t)B*(t)[ Ktyx(t)+2g(t)], =(t) > m dt
0 H (D)

T
+ 2 f< BE(t) K(t)=(t)+g(t)] ,u(t)>U dt (4.5.4)
0

T
+ f <BOR (0B (Hglt), glt) > . dt
G I_Io (D)

T
- < OQtMx(t) -x 4 (8), x(t)-x 4{t) > dt
4‘/3. d d HI:.(D)

I<r@xm,x0)> _ +2<g, x> +pt)l] =0
H

D) H_ (D)

If Eq. 4.5.4 is added to the cost criterion, Eq. 3.3.1, and

if the equality
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< R(T)={T),x{T) > o F2 <g(T),=(T) > ot (T

H™(D) H\(D)

= <FE(T)-24(T), x(T)-x,(T) >

H{ (D)

is used, then we obtain the result that

3= <K(0;x(0),x(0)>Hm + 2 <g(0),x(0)>+ $(0)

5 (D)
T
+ f< K(6) B (HR™ (0B (0 K(t)x (9+2g(6)] ,%(t) > de
: H()
- T
+ zf B[ K{t)x(t)1+g(t)], u(t) > dt
0

T
+ f <R(t)uft), uft)> dt
0 13

T
¥ f < BOHR OB ) gl), ge)> 4t
0 H (D)

O

This, in turn, can be written in the form

J = <XK(0)x(0), x(0)> + 2 <g(0),x(0) + ${0)
x x . g(0),x(0y> m P

o H, (D)

(4.5.5)

T
+ f <R[ R™ (1) B#(1) (K0 (0+ gl rut)],
0

RO BHE(K(tx (g (thue)> | dt

Since R({t) is a strictly positive operator, the integral term
must be greater than or equal to zero, the latter occurring if

the control u(.) is chosen to be

u(t) = -R(6)Br[ K+ gt)]
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and the minimizing value of the cost criterion is

T in = <K(0)x{0), x(0)> .

m
H. (D)

+ 2 <g(0), x(0)> + $(0)
g m

Thus, we have shown, in the case of parabolic systems with
system operators which are infinitesimal generators of semigroups,
that the assumption of the existence of a positive self-adjoint solution
K(t) of the Riccati operator equation yields precisely the same results
for the characterization of the optimal control and the optimal cost
function as were obtained in Section 4 for the case of coercive system
operators. All of this motivates a vital question, namely, under what
circumstances, {if any), do solutions of the Riccati operator equation
exist for the class of system operators under consid:eration" This

question is treated in the next section of this chapter.

4.6 EXISTENCE OF SOLUTIONS OF THE RICCATI
OPERATOR EQUATION

In this section it will be shown that bounded, positive, self-

adjoint solutions K(t) of the Riccati operator equation (4.4.11) exist

in the case where the system operator A is the infinitesimal penerator

of a semigroup of operators. This will be achieved by using an ex-~

tension of the method of quasilinearization {see Ref. 27, p. 19} used
by D. K_‘Leinn'la,nz8 to prove the existence of a solution of the matrix
Riccati equation for finite dimensional systems. In brief, this method
consists of demonstrating existence and uniqueness of a solution of an
auxiliary linear operator equation and using this equation in an iterative

fashion to prove existence of a solution of the Riccati operator equation.
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If the differential operator A is assumed to satisfy the
inequality, Eq. 2.7.1, then the operator A3, defined in Section 2.7,
is the infinitesimal generator of the strongly continuous semigroup of

operators {@{t)}tdo 7] and the solution of the parabolic equation
&(t) = Ax(t) + Blthu(t) ; x(0) = x_eDo{A;)
may be written as

t
X = 3(0)x, +[ Bit-0IBlo)ulo)de (4.6.1)
0

where B(o)ef(U;1%(D)) and u(c)eU. We shall have need in this

section to discuss solutions of the linear operator equation
d”"u\gf = -Vt A - AFV(Y) - W(t) 3 W(T) = F (4.6.2)

where V(t} and W(t) are assumed to be bounded linear operators on

[0, T] with domain equal to Do{A.) and F 1is the bounded self-

3)
adjoint terminal state-weighting matrix defined in Definition 3.3. For

this equation we state the following lemma:

Lemma 4.2: The solution of the linear equation (4.6.2) is
given uniquely by

T
Vit) = &F(T-t)FH{T-t) +ch>"‘(<r—t)W(t)@{cr—t)dcr (4.6.3)
t

Proof: If A is the infinitesimal generator of a semigroup of
operators, as described above, then its adjoint A* is also

the infinitesimal generator of a semigroup {S(t)} of

te[ 0, T]

operators, and it is easily seen that this semigroup has the

property
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Mxo = A*S(t)xo ‘oneDo(A (4.6.4)

ar 3)

Moreover, since S{t) is bounded on [0, T], we have

asE) (ﬁd@ Jx = sk@)Ax ¥x eDo(a
t o o o]

dt o (4.6.5)

3)
It should also be noted that, from the discussion in the proof
of Lemma 4.1, S(t) = &*(t) and S*{t)=@{t). If we let X
be an arbitrary element of Do‘Aj), Eq. 4.6.3 may be written
T
V(t)xo = S(T—t)FS*(T—t)xO -!-f S(o-—t)W(t)S*(o*—t)xO do
t

Differentiating this expression we obtain

*\}(t)xo = (T -)FS*(T-t)x_ + S(T-t)FE™(T-t)x_

T
—S(O)W(t)S*(O)xo—fé(o'—t)W(t)S*{(r -t)x_do
t
T
—fS(o--t)W(t)S*(tr—t)xodcr
t
— T
= -A%[S(T-t)FS*(T-t) +fS(o*—t)W(t)S*(fr-t)do-]xo
t
T
-[S{T-t)FSH(T-t) +f S(c -t)W(t}S*{rr-t)dcr]AxO
t

-V\f(t)xo
or, V(t)xo = ~V(t)AxO—A«‘V(t)XO - W(t)xo
Since X, is arbitrafty, the Eq, 4.6.3 holds under the as-

sumption that Do{V} = DO(A3)’ demonstrating existence and

unigueness.
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We shall want to use this lemma to prove the existence of the
auxiliary equation discussed in the introductory paragraph of this

section, Let us state and prove the following:

Theorem 4,9: I L{t) is a bounded positive self-adjoint oper-

ator, defined on [0, T], then there exists a unique positive, self-

adjoint solution VL(t) of the equation

Vit) = -Vt A-BOR HOBHL(] -[ A*-L(1) BH)R (8)B*(t)] V(1)
(4.6.6)
- LHBORNOBHOLE - Q) ; V(T) = F
Moreover, if in the parabolic control problem specified by
Definition 3.4 we let x,(t) =.0 on [0,T] and require the control to
be of the form
alt) = -RUHBrOLEx(t) (4.6.7)

then the cost criterion has the value

T =<V, (0)x_, x >
— 1 o) o H;n(D)

Proof: We shall prove the existence of the solution VL(t) in
much the same way that existence was proved for g(t) in
Lemma 4.1, that is, by means of successive approximations.
For any arbitrary XOEDO(A3), VL(t)Xo must satisfy, ac-
cording to L.emma 4.2, the following equation:

vy ()x = @"‘(T-t)qu(T-t)xo

T
+f¢=:=(crl )] L(Ul)B(JI)R"I(UI)B*(al)L(al}+Q(Ul)] & oy -t)x doy
t
(4.6.8)

{contd. on next page}
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T
sl -1 2
-f@'(o-l—t)[VL(o'l)B(o‘llR {G'I)B""(O'l)L(O‘l)
t
-1 . .
+L{e)B(0))R (o)) B (o)) V, (o)) J8 (o} ~t)xc_do)
If we define M(t) to be the bounded operator

M(t) = &*(T-{)F BT -t)

T
+f (o -t)[ L (gl)B(rfl)R"l(crl\ B (o)) L(oy )+ Q{0 ) ]
t

cI)(o-l-t)c‘url (4£.6.9)

then Eq. 4.6.8 can be written in the form

Vo (Ehx = Mt)x
T

-f ¥ (o) -t)[ VL(Ul)B(Ul)R—l(U'l)B*(Ul)l‘(gl)
t

_1 A r
+ L(UI)B(U-]_)R (Ul)BT(G.].)VL(G-l)] (i'\o_l -t)?(od(]'
Forming the sequence {VlL (’r,)}d:_0 , where

iVLO(t) = Mf{t), and
Vi-l—l(t)xo = M(t)xo

T
'f (o7 -0 V(o) Bl R (o) B¥(o7) Loy
t .

+ L(UI)B{G'l)R-l(o-l)B* (cl)Vi(Gl)]@(o'l ~t)x doy

for i>1
we obtain

i+l i
(VL (t) - VL(t))XO

T
= - [ @0, -0l )V oy e R e B (e Lo 18 (o -1 _do

t
(4.6.10)

(contd. on next page)

1
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-1

T
J‘@*(q-t)[L(Ul)B(‘Tl)R (‘Tl)B*(UI)(ViUl)uvi'_l(gl) d
£

@\’0'1—-t)xodtrl

From Eq. 4.6.10 and by the self-adjointness of L(o‘l),
B{c)), and R-l(crl) we see that

i+l i
Hevy ey - Vo=, ”Hm

(D)

T
<2 f 18" (o -t) L{e) Bo) R (o) B (o) | .

t o

Vo) -vi Honde-t= |l de
L 1. o Hl(;n(D)
T . -
<2k [ (Vi) -VE YN @ io-tyx, | do
,tf S ° T EM D)

since @*(o-l), L(o'l) s B(o-l), and R_I(o‘l) are bounded operators.

We can, in turn, write

v (o) -V Ho ) dio, -t)x ||
%Y, 10 “ oH;n(D)

T
. i-2
<2k [ 1OV o)V, (o)) 80y -t By o)
1 . °

{4.6.11)
But, by the semigroup property (2.6.1),
@(U‘I"t)é(crz-o‘l) = $lo,-t)
so that we may continue this iterative substitution to obtain

oy -vikens_ i

D)
T T T
2l [ [ ey sio-ox Il
t o, HO (D)
o1 i-1

do'l do‘z . .do‘i



T T T T
wif [ f
E ooy 95 %

18*(o;4y-0)l Mo,y ) Blog )R (0,,3)B (oy,1) Loy, )
+ L{o,, )B(o,, JR (o, )B¥(o,, )Mo, )]

Doy, -oy)®io;-t)x lldoy . .. doy

TT T T
1+1klff"'f f
Loy o %

&%) | Moy, ) Bloy )R o ) B¥ oy ) Lo ) |

+1

loto, -0 1= lldoy. . do

As before, it can be shown that &{t), &={t), M(t), B(t), R_l(t),
and IL:(t) are uniformly bounded on the finite interval

[0,T], so that

hov, e v e |

T T
< zl'rlklf f .
t Ty

H_(D)

G“x Il do. ...
o Hrn(D) 1

O

doii)

R Y

T T
1+1 i
G”Xo Hf f doy. . .do,
t o

i

i+1d
2T T kKG(T t) ”XO ”

{i+1) !

ja e}
H(D)

From this we determine the LZ(O, T; HT(D)) norm to be



vty v x|l
l“ L i Xo LZ(O,T;Hm(D))
(@]

it+2 .
i i +2
N
(it2) } o H;n(D) Zkz (i+2)! o HI:‘(D)
From this we can see that the infinite series
[#8)
it1 i ~
ZH(V1 («)-V_(.))=x ” converges and is less
£ L L7 Tr2io, T;HT(D)
i=0 o)
than or equal to —égk—[ esz—(l—E-ZKT)] ”Xo ” m implying that
(D)
o

we have convergence of {VIi_'(-)}F‘;:O to the solution VL(') in
the LZ(O,T;H;n(D)) sense. Thus, the existence of a solution
to Eq. 4.6.6 is proved. Once again, as in the case of .
Lemma 4.1, the proof of uniqueness is a straightforward
procedure and will be omitted. The self-adjointness of 'V'L(t)
can be deduced from the fact that its adjoint also satisfies
Eq. 4.6.6, so that, by uniqueness, VL(t) = Vﬁ(t).

To prove the second part of the theorem, we examine the
cost criterion for the parabolic control problem in the case

where the desired state trajectory, xd(t), is zero, The cost

criterion becomes

J = < Qx,x> + <Ru,u >
L°(0, T; H(D)) L%(0,T; )
+ <Fx(T),x(T)> _ (4.6.12)
H™(D)

If, in the identity
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<V (o= ,x > =<V (T)x(T),x(T)>

Irl
H_ (D) H_ (D)

T
:f[<\}'L(t)X(t),x(t)> o
5 H

(D)

+<VL(t):'£(t),X(t)>Hm +<VI_’(t)X(t),}'c(t)>Hm ] at

(D) 24D)

we replace '\}L(t) and VL(T) by their specifications in
Eq. 4.6.6 and use the value of % from the system eguation,

we obtain

<VL(0)XO,X0> Hm(D - < Fx(T), x(T)>Hm

5 o (D)

T
= - | <Q)x(ty, x(t) > dt
! D)

T
-f<L(t)B(t)R“1(t)B*(t)L(t)x(t),x(t)> o dt
5 H™Y(D)

o]

T (4.6.13)

+ [ < mBoR? 0BHOLOR®
0

+ LOBER™()BHOV, (ExE+V, ©BOunlxe) > at

_ H_ (D)

T -
+ <V, (t)=(t), B{t)u(t) > dt
*! L HI(D)

Now, using the fact that the control u(t) satisfies Eq. 4.6.7,
the second integral in the right hand side.of Eq. 4.6.13 can

he identified as
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t
- [<rwBOR OB OLER), x> ds
/ H™(D)
= - <Ru,u> >
14(0,T; U)

and the last two integrals on the right-hand side of Eq. 4.6.13

sum to zero, so that

J = <Qx,x> + < Ru,u>
10, T; H(D)) 240, 7; U)
+ <Fx(T},x(T)> = <V (0)x _,x >
Hg (D) Lo HTD)

proving the second part of the theorem. Since, from the above
discussion, the system could have been started at any time

te[0, T] with initial state x_, it must be true that

J=<Qx,x> 2 m + < Ru,u> 5
Lo(t, T; H (D)) L (t, T; U)
+ <Fx({T),x({T>> = <V, (t)x_,x >
E— H™(D) Lot

and since J> 0 for all initial states XOEDO(A3), it follows
that

<'-VL(t)Xo’Xo>Z 0 M ie[0, 7], VXOEDO(AB;)
demonstrating the positivity of the solution VL (t} and

completing the proof of Theorem 4.9,

Corollary 4.1: If, in the parabolic control problem, we specify

t=0, the solution of Eq. 4.6.6 becomes

: T
V_(#) = §H(T-OF (T 1) +f &% (¢ -t0(0) (o -t) do (4.6.14)
t .
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Proof: Equation 4.6.14 results from L{t) being the zero

operator in Kq. 4.6.8.

We shall now generate a sequence of positive, self-adjoint linear
operator functions {Vn(t)}c;;zo , te[ 0, T], each with domain equal to
DO(AS) . This sequence will be generated by the method of successive
approximations in Eq. 4.6.6. The elements in the sequence :,xfill be
shown to be bounded and mounotonically decreasing in a sense which will
be defined. It will then be shown that the sequence has -a limit and this
limit is the solution of the Riccati operator equation.

The sequence {Vn(t)} is given by

v(t) = 0
: -1 w ‘ T oa%L -1 *
Vo) = -V ([ A-BOR () B*(t)V ()] <Ll A-V_(t)B(HR(t)B WV
(4.6.15)
-1 - . _
VL OBER BRIV (E) - Qft) 5 V_4(T) = F

It should be noted that Eq. 4.6.15 is equivalent.to Eq. 4. 6.6 with

VL(t) = Vn—l-l(t) and—L(t) = Vn(t) . One of the properties we would like to
show that the sequence of operator functions possesses is that of mono-
tonically decreasing positivity. We make this concept precise in the

following definition:

Definition 4.4: If B and P

1 , are both positive linear operators,

then P1

the linear operator (Fi_PZ) is a positive operator.

is said to be greater than or equal to P,, denoted RzPp if

We shall now state and prove a lemma which will ba useful in the

characterization of the sequence of cperators:


http:equivalent.to
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Lemma 4,3: If X, and XZ are self-adjoint linear operators,

1
then
Ao 1., -1 1,
XBR "B*X, = X;BR B#X, + X, BR "B*X; - X,BR "B* X, + N
{4.6.16)
where N is some positive operator.
Proof: Equation 4.6.16 follows from the fact that
“lo -
(X, - X,) BR B¥(X,-X,) >0
which implies that
X, BR'B*X > X,BRIB#X, + X, BRIB*X, - X, BR'B*X
1 1 ~-""1 2 2 ] 2 2

and this implies that there must exist a positive operator N

such that Eq. 4.6.16 holds.

The desired properties of the sequence {Vn(t)}c;_o are now

stated in the following theorem:

Theorem 4.10: The elements of {Vn(t)}Z—o are bounded, and the

sequence is monotonically decreasing for n > 1, in the sense that

ACERACERAD PI

Proof: (By induction) Vl(t) is given by the expression in Eq. 4.6.14,
which is ¢learly bounded and positive. According to the se-
quence generation formula(4.6.15:

. s -1
Y, (£)= - V(D) Af£) -7 (£) Vo) - Vy(8) L B () BHE) V(£ ) -t)

(4.6.17)
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where

A = A - BHR(0)B()V(t)

The self-adjoint solution Vz(t) exists and is positive by
Theorem 4.9 (with Vz(t) = VL(t) and I{t) = Vl(t)). We may

write the following differential equation for 6V2(t)= 1(’c) —Vz(t)

y >k -1 e
8V, = - (Vy{t) - V{t)) A -ANVy(t) - Vo {t)) - V() B{t) R (£) BH 1) Vi(t)

VO BOR (R BHY V) + Vi) BOR (B Vit)

-5V, ) A- BOR 6 BHO V()]

- AF V) BOR ™ (1) Bt ] 6V,

- vl(t)B(t}R‘l(t)B*(t)vl(t) (4.6.18)

with terminal condition SVZ(T) =0

for which a positive solution 6V,(t) for all te[ 0, T] exists
by Theorem 4.9 (with VL(t)=6V2(t), L(t):Vl(t),Q(t):O, and
F=0). Since both Vl(t) and Va(t) are positive this means
that ——

Vi(t) 2V () M te[0,T]

Moreover, since Vl(t) is bounded, then Vz(t) must also be

bounded by the following argument:
Since Vz(t) is positive and self-adjoint, we can apply

the generalized Schwartz inequality (see Ref. 22, p.262)

<V, e, y> 2 < <V, (0%, x>V, (ty, y>

and obtain
| <V, (t)x, y> | <V, (t)x, x>
v, = Z <| sup —2—r
0T e Ik T (iklize I
Iy il £0

1/2
<V2 (thy, Y>]

Iylizo lIylI?
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<Vj(t)x, x> < Vi(tyy,y >|1/2
<| sup 5 + sup >
IeliZo =l yli#o vl

hence, proving the boundedness of Vz(t) .

< vl

To continue the induction process we assume that
i >
Vn-l(t) is bounded and Vn_l(t} > Vn(t). We must prove that

V() >V,

n-l-l(t)' Now, Vn(t) satisfies the equation

\}n(t) = -V {t)A__(t) A (V1) —Vn_l(t)B(t)R”l(t)B*(t)Vn_l(t) -Q)(t)
with A ()= A- B(HR™ (1)) B*(0)V,_ (1)
We may apply Lemma 4.3 to the next to last term of this
equation to obtain the following equation for Vn(t):
V() = -V A (6)-AF (6)V (t)-Qt) -Vn_l(t)at)R'l(t) BHt)V_(t)
V(O BOR O BHOV__(6)+ V(1 BOR (£ BRIV (1) -Ne)
where N{t) is some bounded, self-adjoint positive oparator.

By a rearrangement of terms similar to that done to obtain

Eq. 4.6.18 this can be shown to be

. - -1 .
Vn(t) =—Vn(t)An(t) ,—A"n(t)Vn(t) -0Qt) —Vn(t)B(t)R {t) B'r-(t)Vn(t) ~N(t)

with A (t) = A - B(t)R_l(t)B*(t)Vn(t)
But, since a positive self-adjoint Vn+1(t) exists by Theorem 4.9

and in addition satisfies the eguation

V{8 =V (DA (1-AHEV_, (1) -01) - V(O BOR (1) BV, (1)
then the differential equation for the difference linear operator

6 Vn+1(t) = Vn{t) - Vn-i—l(t)
is given by
6vn+l(t) =Vn(t)-vn+l(t) - é-’Vrrl-l(t)'An(t) _An(t)‘svn+l(t)FN(t); SV (T) =0

(4.6.19)



The proof that the solution of this equation is positive for

all te[ 0,T] is given in Appendix E so that we know that
>
8V (81> 0 ¥ te[ 0, T]
which implies that
>
V) >V ) ¥re[o0,T]

and Vn-}-l(t) is bounded on this interval by the same argu-
ment which proved Vz(t) bounded, completing the proof of

Theorem 4.10,

It remains to achieve the stated aim of this section, that is, the
demonstration of the existence of the optimal feedback operator K(t).
This will be done by showing that the sequence {Vn(t) }0:1_0 has a limit

and this limit is precisely K{t}). We state this as a theorem:

of the Riccati operator equation (4.4.11) exists and is the limit {in

HI:(D)) of the sequence of operators {‘.F'n(t)}a:1 defined by Eq. 4.6.15.

=1

Proof: We shall show that lim Vn(t)x exists for all XEHI:(D)

n—-o
and that the limit satisfies the Riccati equation (4.4.11}.

For any XOEI—ID (D), we have from Theorem 4.10 that

<V, (t)x ,x_>> >V, (tx ,x > > ...
1 o’"o H:l(D) 2 0’ o H?(D)

Moreover, Theorem 4.10 also implies that each of the ele-

ments of the sequence {<Vn(t)xo, X°>Hm(]3)}c;=1 is bounded
o

below by 0. Since any monotonically decreasing sequence of



real numbers which is bounded below has a limit, we know

that 1lim <Vn(t)xo, x0>Hm(D) exists for all x_ EI—I?(D).

n—®
o

To show that the limit is of the form <Vm(t)xo,x0>

H (D)

(o]

we use a well-known theorem (see Ref, 29, p. 189) on
linear operators in a general Hilbert space H, which states
that a monotone decreasing sequence of positive, sélf—adjoint

oD - . .
operators {vn}nzl has a limit V, in the sense that

Vx = Ilim Vx , for all xeH
o n
n— o

Using this result and Theorem 4.10, with the Hilbert space

H = HIOn(D), we may conclude that

V,(x = lim V_(t)x , for a11erI;‘(D) and te[ 0,T)

n— &

Now that we have shown that Vm {t) exists, we shall show
that it satisfies the Riccati operator equation {4.4.11). Inte-

grating both sides of Eq. 4.6.15from t to T we obtain

T
V_{6)-F :'f{vnﬂ(fr)A-vnﬂ(a)B(cr)R'l(cr) B¥ @)V (+ &V (o)
t

V() Bo)R (o) B (0)V, , (0)+V (0) Blo) R () BHo)V, (o) -Q(e) } o

Taking the limit as n approaches infinity,
T
7, 0)-F = [ {(0) A-V,(0) Bo)R o) Bo) V(o) A4V, (¢) -Q(e)} do
t
(4.6.20)

Equation 4.6.20 shows that V_{t) is continuous in t and

differentiable, so that by differentiating (4.6.20), we obtain

V. (£) ==V (t) A- KV ()Y () BOR (HBHV,(6) - Q1) 5 V(T) = F



showing that V. {t) satisfies the Riccati operator equation.
v, (t) is clearly self-adjoint and can be shown to be bounded
by application of the generalized Schwartz inequality in pre-

cisely the same fashion as was done in the proof of Theorem 4.10

We have thus satisfied the hypotheses of Theorem 4.8 and can
identify the operator V, {t} with the optimal feedback operattor K(t).
It should be noted that although the resulis appear to be the same in both
the case where the system oparator is coercive and the case where the
system operator is the infinitesimal generator of a semigroup of oper-
ators, there is a difference. In the coercive case the results hold for
all initial states in the state space Hl:(D), whereas, in the latter case,

the results hold only for initial states in the domain of A This is not

3-
as restrictive as it might seem, since the domain of A3 is dense in
I—]O {D), and, thus, in the lattexr case, K(t)x can be defined for

erron(D) and x¢Do(A,) by letting

K{tlx = lim K(t)xn

n—o
where {Xn}:;l is 2 sequence of points in Do(A3) converging to x.
Since K(t) has been shown to be bounded, t'he sequence {K(t);s:n}q:l:1
has a limit,

With the matter of existence of solutions to the Riccati operator
equation resolved, let us briefly consider the problem of actually
solving the Riccati operator equation. Since the space I—I?(D) is a
separable Hilbert space, there exists a basis {r1>i}>io__o1 where each ¢,

in the basis is an element of H (D), such that any element XEHIOn(D)

has the unique representation
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8

* =2, Fb
i1

where the coefficients xj are given by
x. = <X,$. > 3 i=1,2,.
» H (D)

J
o

Thus, we may consider an element XEHI(;Q(D) to be altermatively re-
presented by the infinite dimensional vector x, with jth component xj.

If L. is any linear operator from H?(D} into HI(;n(D), we have for

i
xeH™ (D),
a0 (89
Lx:LE ..=Z Lo.
%595 *5h0;
j=1 1

Now, chj is an element of I—Im(D) so that

o
o
L; = Z Ly

i=l
where

L., = < Lo, 6. ;oi=1,2,... j=1,2,...
iy = <L ¢1>Hm(D) j
o]

Thus, Lx may be represented by Lx, where L is the infinite matrix
with ijth element Lij' Similarly, since U is a separable Hilbert

each element ueU may be considered to be

space, with basis {¢i}io—01’

an infinite dimensional vector u, and the control operator B(t) may

be considered to be the infinite matrix B{t) with ijth element

o]

Let us, for the purpose of illustration assume that R(t) = I, the

identity operatox. We may now rewrite the Riccati operator equation as
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the infinite dimensional matrix Riccati equation

K(H) = -K()A-A'K() + KOBHB(OK(E) - O ; KT) = F
where all of the ma’crices_in this‘expres sion are uniquely determined
in the fashion prescribed above.

As an example of this procedure let us consider the scalar heat

equation (see Section 2,4), with coefficient p=1, on the domain D=(0,1)

2

9x(t,z) - 2 x(t2) 4 yit,2) 5 x(0,2) = x_(2)

ot 2 o}
8z

with boundary conditions

=2(t,0) = =x{(t,1) = 0

ILiet us choose the cost functional to be.

T
B I IO P 0N P R G oY
0 H_ (D) H_ (D) ‘ H_" (D)

which corresponds to choosing the operators Qf{t), R{t), and F to be

the identity operator on Hi(D); which has the infinite matrix reprvesentation

1

0

The Sobolev space under consideratidn is Hi(D), and we shall choose

the countable basis { 222 Tz sin nqrzllo:l . It is easily seen that

IHn v 4n'nw

. . 2 . . .
this is an orthonormal set in the HO(D) norm. Using this basis, the
2
operator A = 5 has the matrix representation A the ijth element
0z

of which is given by
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2

A < qjﬁﬂ (z) >
L. = - , ®.(2
13 822 ¢1 HI;_‘].(D).
L 2 2 2
= <-J i C!)j(z), ¢i(z)>Hm(D) = =1 T 613.

o

where Bij is the Kronecker delta. Thus A is the infinite diagonal

matrix _ -
2
-7
A = 4w 0
—91-r2
2
-16w
0
.and the system partial differential equation may be written in the form

x(t) =

Ax{t) +u(t)

and the Riccati operator differential equation may be written as

K= K |1 - |- K
-411'2 o - 4n® 0
'-91r2 =9
0 0
+ K -[ 15 xm =1 i
1 0 1 0
1 1
2 o

it is possible to truncate these matrices and solve the resulting
finite dimensional matrix differential equation for an approximate value of
the K(t) matrix. Approximations of this type will be discussed, in a
slightly different cont;ext, when we consider modal analytic solutions in
Chapter V. An alternative way of determining optimal feedback solutions

will be presented in Section 4. 8.



-105-
4,7 INFINITE TIME SOLUTIONS

In the parabolic control problems considered in the preceding
sections, it has been assumed that the terminal time T is finite. In
this section we examine the behavior of optimal solutions when T ap-
proaches infinity. It will be shown that an optimal solution and a
solution of the Riccati operator equation on [ 0,0) exist in the case
whe re the system operator is coercive. These results are due to
Lions. 1 Moreover, it will be shown that, under the assumption of
complete controllability, a solution of the Riccati operator equation
exists on [ 0,») in the case where the system operator is the in-
finitesimal generator of a semigroup of operators., For both types of
system operators it will be shown that the Ri;:ca.ti cperator equation be-
comes an algebraic time -invariant operator equation when the oper-
ators B(t), Q(t), and R(t) are assumed to be time-invariant.

Let us assume that the operators B(t), Q{t), and R(t) are uni-
formly bounded on [ 0,2). Moreover, let us also assume, that there is
no terminal -time-weighting cost, i.e., F=0, Existence and unique-
ness of the optimal control on the infinite time interval are guaranteed
in the case of coercive system operators, since [l(u,v} in Theorem 4.1
is still a symmmetric, coercive bilinear form continuous in u a;—ld v
even though u and v are controls defined on the infinite intexrval
[0,0). Theorem 4.2 still holds and tells us that u(t):-RFl{t)B*p(t) for
all te[ 0,»). It remains to show that the costate is well defined on the

infinite interval, and that it can be written as

pit) = K{t)x{t) + g(t}, M tel 0,0)

LionsREflS’P' 181 shows that, if the desired state xd(- )GLZ(O,O?’;H?(D))

then the costate equation
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.%% = -Axplt) - Q(t)[x(t) - x4(t)]

has a.unique solution %(-)EW(O,OD)., If s is any fixed time in [0,0) and
x(s) = heHI(;n(D) the argument in Section 4.4 can be duplicated to show
that the transformation h—p(s) is continuous from HIOn(D) into HI:(D),
so that we can write

p.(s) = K (9h + g, (s)
or, by using the fact that se[ 0,0} is arbitrary, we conclude that

p () = K (thx, (t) + g (t)  Yie[0,0)

where X (t) is the solution of the system equation on [0,2). The re-
maining arguments of Section 4.4 are extended without difficulty to
show that K, (t) satisfies the Riccati operator equation

1
(

K_(t) = -K_(HA - A*K_(t) + K (BOR (B*(NK(t) - Q1) (4.7.1)

and g _(-) is an element of W(0,m) which- satisfies
& (t) = ~A%g_(t) + K (O)B(e)R (£)B*(tg (t) + Qtixylt)  (4.7.2)

and the minimum cost using the optimal control w¥ (t)=-R (t)B#(t) K, (£)x(t)

+ gw(t)]* on the interval [s,») is given by

T = <K, ()%, (s), %, (s) > +2<g_(s),x (s)>
H, (D) B H (D)

(4.7.3)
Under the assumption that B{t) = B, Qt) =Q, and Rif) = R

o g(15, p. 183)

1.1 shows that the transformation h—p{s) is

independent of s, so that we may write

p(s) = K h+ g (s)

“ Note that since x (-)€W({0,©) and g _(-}eW(0,®), then lim u¥(t)=0.

o



where K_ is the solution of the time-invariant algebraic operator
eguation

e _1 - .
K, A+ AYK - K BR B*K_+Q = 0 (4.7.4)
and gw(t) is the solution of the time -invariant differential equation
] N ol '—1 alr
g, (t) = —Aﬂ-gw (t) + K, BR "B¥*g_(t) + Qxd(t)

So it is seen that the important point of continuity of the trans-
formation of the initial conditions to the costate carries through in a
straightforward manner and enables us to obtain results for the in-
finite terminal time case sirnilar to those obtained in Section 4.4 for
the finite terminal time case. Once again, this continuous trans-
formation cannot be defined in the case where the system operator is
the infinitesimal generator of a semigroup of operators. Moreover,
the infinite time version of Theorem 4,3, namely, the fact that the
mapping u{.)—x(-) of LZ(O,o'O;U) into LZ(O,w;HrOn(D)) is continuous,
_cannot be proved, since ineciuali"cies in the proof do not hold on the in-
finite time interval. This results in an inability to use Theorem 4.5
to prove existence of a unique optimal control in this case., In order
to prove existence of an optimal contreol we must make use of the con-
cept of complete contreollability and proceed by limiting arguments to
the characterization of the optimal control,

Liet us make the following definition:¥

Definition 4.5: The parabolic system

X = Ax + Bu x(t) =x _eH (D)
o] o

b

" This is just the application of the standard definition of complete con-
trollability (see Rzf. 24, p.200) to parabolic systems.
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is said to be completely controllable if for every te[ 0,2) and for
every xOEI—II:(D), there exists a time tlzt and a control uo(-)
defined on [t,t,] such that the state at t;, ={t;) = 0. Another way to
interpret this definition is that if the state at any time tl can be re-
presented by a linear transformation on the control u{.} defined on
[t, tl] , namely,

X(tl) =L uat ¢(tl)

5

then we would like to find a control u and a time tl such that

L = -
tluo <[>(t1)
if q)(tl) is arbitrary, this requires that the range of Lt . denoted
1
R(Lt ), be all of Hf)n(D) for complete controllability. But, since
1
R{L, I )= R(L, ), we require R(L DX} = HYD), or, in other words,
14 b ' o°

we require Lt B'% to be invertible. Clearly, in the case under con-

1 71
sideration,

. &{t;-0) B(o)u(o)do 'V'ueLZ(t,tl; )

t
and

(LF 2)(t) = BH(t) & (1)-t)2 MzeH (D)

1 o}
so that the operator L, I¥ is
t, t
i1
L L“‘ ffI’\t —U')B(U')B"‘(o-)c'B (tl-o')do- {(4.7.6)

Thus, complete controllability is equivalent to finding a time 1;1 for

which L. I¥  in (4.7.6) is invertible,
oY



With the introduction of the concept of controllability we shall
now be able to deal with the problem of proving the existence of an
optimal control and the convergence of the feedback operator when the
terminal time approaches infinity. Toward this purpose, let us denote
K(t, T; F) to be the optimal feedback operator for the control problem

with cost criterion

T =< Qx,x> + < Ru,u>
I¥(t, T; HT(D)) 12(t, T; U)
+ < Fx(T),x{T)>
H_ (D)

Let us also denote J{(x,t,T,u(-}) to be the cost of starting at time t
with x(t) = x and applying the control u(.} on [t, T]. Now, if the

system is controllable, then there exists a time 4 such that the con-

trol
u (1) = -B¥(r)T{rT-t)(L, L* )'1x srelt, 6] (4.7.7)
o ty 1:1 1
results in the desired transferto 0. This is easily seen

by using Egs. 4.7.6 and 4.7.7 in the parabolic system equation with
initial condition x(t) =x. Moreover, by using Eqs. 4.7.6 and 4.7.7,
it can also be shown that

t

H, (D)

1
f<uo(T),uo(T)>UdT =<< (LtlL’il)'lx,x> -
t

and, since R(t) is uniformly bounded with IR (1) ”f-_ T

f
1
L R(tyu (1),u (1) > dr < v <(L_ L¥ yix,x >
'{ o e Tl 4 H™(D)

Thus, we can obtain an upper bound on the cost due to application of

control u (.} on [t:tl] . If we assume that x =0, we can obtain an
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upper bound for the trajectory cost using control uo(-) by showing

that
t

J< Q(-r)xﬁ),xm>}f:(mdt = <eft, ty)x, %>

>()

where
4

clt, t)) =f[1—(LTL‘"' ML, L

e

FH(T-1)Q(M)B (r-t) [ I-(L_L¥) (L, T¥ ) ]a

tl TT tl t1
The precise form of this expression is messy, but the important fact

to note is that since tl is finite, c{t, tl) is positive and bounded. We

can now find a bound on K(t,T;0), 'i"it which is independent of T,

1’
namely, by application of the control T:LO( ) on [t,T] where

< <
uO(T} t<t< t1

u_(7) =
© 0 Tt

we obtain

J(x,t,T;EO(.)):J(x,t tou (NS Lclt, b (L, LT e x>
1

Ho' (D)

But, since

< K(t,T;0)x,x > = min Jix,t, T,u(-))
u(-)eL,(t, T; U) -

we obtain
K(t, T;0) < c(t,t)) + r(Ly ﬁjt )'1
11

noting that the bound is independent of T.
It is now a fairly straightforward matter to prove that the in-
finite time solution exists and that

lim K(t,T;0) = K(t)
T—-c0
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where K(t) is the solution of the Riccati equation on the infinite

-~

interval. Indeed, the arguments used are exactly parallel to those

used by Kleinnmam?'8 s Pp. 41-46

in the case of finite dimensional sys-
tems, so that they will not be stated in great detail.

If T2 > T1 we have, by the principle of optimality, that

<K(E, T,;00x,x2> = ,min J(x,t, T,,u{-)
H (D) u{.)el’(t, T,; U)
© 2
5
- min (St Ta() + [ <QUOxELxm> _ dr
2 H (D)
u(-)els (t,TZ;U) Tl o]
+ <Ru,u> 2 _
LT, T U)
> < K(t, T; 0)x,x>
1 I—Im(D)
D
)
+ min [f< Q(T)X(T),X(T)>d'r+<Ru,u> 2 ]
2 LT, T,; U)
u()eL (T, T,;U) T 172

since the second term on the right hand side of the inequality is positive

it must be true that
K(t, T,;0) £ K(t, Ty; 0)

If we form a sequence of terminal times {'Iiﬁi_l with Ti+l->— T, and

lim T, ==, we know that the sequence {<K(t, T.; 0}x,x> Xis
. i 1 m i=]
i—co Ho (D)

monotonically increasing. However, we have also shown that this se-

guence is bounded, independent of Ti’ by < [c(t,tl.) + r(Lt L‘J; )‘1]x,x> )
. i

1 (D)

o]

which implies that the sequence converges for any fixed x and t. By

arguments similar to those used in the proof of Theorem 4.11 in the
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HD)

Let us denote K(t,®;0) as, simply, K (t}). K (t)} canbe shown to

preceding section, we can write this limit as < Klige; 0)x,x>

be the solution of the Riccati operator equation on [t,®) by proving
that for all ta—s[t,m), K, t) =K(t,ta;Kw(ta)), which is the solution of the
Riccati equation on [0, ta] with terminal-timne weighting operator

K, (ta) . Using the fact that the solution of this equation is continuous

in the terminal condition Km(ta) we obtain, for ta_f tb

K () = lim K, ;0 = lim K(tt;Klt,,t,;0)

tb—-CD tb—-—CD a’

K, (t,)

Kit,t,; lim K(t, t;0) = K(t,t

a"
tb o

The proof that the optimal control, u*(-)eLz'(t,w;U), for the infinite terx
nal time parabolic control problem with xd=0 is given by u¥(T) =

-R"I(T) B"F(T)Km('r)x(-r) for all Te[t,») and that the minimum cost is

T =<K (t)x,x> is exactly the same as that given by
HT(D) .
28, Theorem 5 for the finite dimensional case, so it will be

Kleinman
-omitted.
The demonstration of the fact that if B{t)=B, Q(t)=0Q, and R{t)=R,
then K (t) = K , satisfying the algebraic operator equation (4.7.4),
is precisely the same as that used by Lions in the coercive system
operator case.
The above results were obtained under the assumption that the
desired state trajectory xd(t)zo. L=t us now assume that this is not

the case and xd(t) is the solution of the equation
kd(t) = G’Xd(t) H Xd(o) = XdO (4.7. 8)

where G is a linear spatial differential operator which satisfies the
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conditions of Section 2.7 and is, therefore, the infinitesimal generator
of a semigroup of operators, and Xg is some arbitrary element of

o
Ho (D). If we now consider the error function

e(t) = x(t) - x,(t)

at

The cost functional (3.3.1), with F=0, can be written

T =< Qe,e> + < Ru,u> 5 (4.7.9)

% (0, T; KT (D)) (0, T; U)

where T is finite. We now state the following lemma:
Lemma 4.4: The control which minimizes the cost functional

(4.7.9) is of the form
uwk(t) = —R'lB-“-{ K{t)x(t) —S(t)xd(t)] (4.7.10)

and the minimum cost function is given by

T(x,%4,1) = <K(t)x,X>Hm(D)—2<S(t)Xd,x> D) +<P(t)xd,xd>
O .

o
(4.7.11)
where K(t) is the solution of the Riccati operator equation (4.4.11)

with K({T) = 0, 5(t) is the solution of the opesrator equation

S(t) = -A*S(t) - S(t)G + K(t)BR 'B*S(t)-0 (4.7.12)
with S(T)=0, and P(t} is the solution of the operator equation

P(t) = -G=P{t) - P(t)G + S(t)BR T

B5(t) - Q (4.7.13)
with P(T) = 0.

Proof: Using the identity

T
d .
— [ <K(t)x(t), x(t)> -2 <S(t)x  (t), x(t) >
'({ a H™ (D) d H(D)

+ <Plt)xg(t),xg()> ] a
H

(D)
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= -{ <K(0)x(0),%(0) > - 2<S(0)x4(0), x(0) >
¢ H (D)

T <P0)x4(0),x4(00> ]

HO (D)

and following exactly the same procedure that was used in the
proof of Theorem 4.8, the following expression is obtained

for the cost:

7 = <K(0)x(0),x(0)> -2 LS(0)x,(0), x(0)>
HY(D) d HY(D)

(8] o
+ <P(0)x,4(0), x .(0) >
d d HI:(D)

T
+ f <Rf R-IB*(K(t)x(t) —S(t)xd(t)) + u{t)],
0

[ RTBE(K(0x(0 -S(t)xg(8) + u6)] > at

Since the last term in Eq. 4.7.14 is nonnegative, the cost is
minimized if and only if this last term is 0, and this is
achieved if and only if the optimal control is given by Eq.4.7.10
Moreover, the minimum value of the cost, starting at time
t with x(t)=x and xd(t):xd, is given by Eq. 4.7.11.
Liet us consider the special case where the controlled system has
exactly the same dynamics as the system which is "tracked, " that is,
let us suppose G=A. Eq. 4.7.12 becomes

(1) = -A%S(t) - S{)A + K(§BR

BES(t) - Q (4.7.15)
Tt can be shown, by use of Theorem 4.9, that Eq. 4.7.15 has a unique,
positive, self-adjomt solution. Since 8&{t)=K(t} satisfies this equation,

it must be the unique solution. Similarly, it can be shown that the so-

lution of (4.7.13), in this case, is P{t)=K(t), so that the optimal control,



from Eq. 4.7.10, is given by

i

YBR[ x(8) x4 (0] = -R BFR(t)e(t)

wk{t) = -R

and the minimum cost, from Eq. 4.7.11, is given by

J(X:Xd:t) = < K(t)[X(t)—Xd(t)] H [X(t) 'Xd(t)] >Hm(D)
o
= <K{the(t),e(t)> = I{e,t)
H_ (D)

These results are intuitively satisfying in that, when we assume that
G=A, the error e(t) satisfies the same dynamical equation as the state
x(t), sc that minimization of the cost functional {4.7.9) should yield
precisely the same equations, in terms of e(t), for the optimal con-
trol and minimum cost function as were obtained, in terms of =x(t), for
the optimal control problem with xd(t):O.

Let us consider the behavior of the optimal solution when the
terminal-time T 1is infinite and the operators G and A are unequal.
We have shown that the feedback operator is K _, the bounded solution
of the time-invariant algebraic operator equation (4.7.4). This implies
that S(t) is the solution of the time-invariant operator differential
equation

S(t) = -[ A%-K_BR 'B*]S(t) - S(t)G - Q (4.7.16)

As a preliminary to writing a solution to this equation, let us take note

of the fact (see Ref. 21, p. 389) that if an operator L is the in-

finitesimal generator of a semigroup of operators, and if N is a

bounded operator, then the operator L+N, defined on the domain of L,

is the infinitesimal generator of a semigroup of operators, Thus, the
1

operator A¥* -KmBR— B* is the infinitesimal generator of a semigroup,

which we shall denote {@l(t)}te[ 0] " We have already assumed that
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G is the infinitesimal generator of a semigroup of operators, which

we denote {W(t)} By virtue of Lemma 4.2, we can write the

te[ 0, @] "

solution of Eq. 4.7.16 on the infinite time infterval as

s}

S(t) :fcf;l(o'*t)Q\P(o‘-—t)do' (4.7.17)
t

and the solution of Eq. 4.7.13 as

Pt) =fw;_r*(cr—t)[Q—S(cr)BR'lB*S(cr)]qf(cr-t)dcr (4.7.18)
t

It might reasonably be asked at this point whether time~invariant
operator solutions S and P existto Egs. 4.7. 16 and 4,7.13, re-
spectively. A time-invariant operator solution S_ of Eq. 4.7.16

must satisfy the algebraic operator equation
g - -1 b3 =
[A* - K _BR B*]5_+S5_G = -Q (4.7.19)

If we consider the finite dimensional version of this equation, namely

the matrix equation
AX+XB = C (4.7.20)

where A, B, C, and X are real nXn matrices, we may make use of
a well-known result (see Ref, 30, p. 231) and conclude that a necessary
and sufficient condition for Eq. 4.7.20 to have a solution X is that
A +u; £0 forall i,j=1,2,...n, where }; and p, are the i and
jth eigenvalues of A and B, respectively.

Let us try to generalize this result so as to obtain a condition for
the existence of a solution S to Eq. 4.7.19. If L is any (bounded
or unbounded) linear operator defined on H;n(D), then, since I—II:(D)

is a subspace of LZ(D) and therefore has a basis which is a subset of


http:and4.7.13
http:t)(4.7.17
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an orthonormal basis {ei}o? of LZ(D), we may define the infinite

i=l

matrix L with ijth element

Lij = <Lei, ej>Hm(D)
o

Of course, the matrix (A -L) will fail to have an inverse if and only if

A is an element of the spectrum of I.. Using this procedure, Eq.4.7.19
can be represented by an infinite matrix equation. If we let the oper-
ators (A*—KCDBR_IB*), S, G, and Q be represented by the infinite

matrices A, S

S, G, and Q, respectively, then we may rewrite

Eq, 4.7.19 as

AS_+5,G = -Q (4.7.21)

for which we may state the following existence lemma:
Lemma 4.5: Equation 4.7.21 has a solution S_ if and only if 0

is not un element of o{A%-K_ BRL

B*)® ¢(Q),* where o¢(L) denotes the
spectrum of the operator L.

Proof: We shall prove this lemma by generalizing the concept

of Kronecker products (Ref.30,p.227) to infinite dimensional
matrices. DBy this means we may write the matrix equation
(4.7.21) as the equation

(AxI+IxG)s, =4 (4.7.22)

where I is the infinite dimensional identity matrix, x de-
notes the Kronecker product, and s and g are countably

infinite vectors composed of the elements of §_m and Q,

" The symbol @ denotes direct sum, that is, if H, and H, are two
1 2
subsets of a vector space V, then

H,®H, = {xeV : x=x4x, for some x€H, and xZEHZ}


http:Eq.4.7.19
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respectively., The manner in which the elements of . and
q are chosen is as follows:

If X is an infinite dimensional matrix, we successively
choose the elements of the vector x by following the indi-

cated path through the array

B 11/ *12

................

----------------------------

It is easily seen that the spectrum of the matrix (AxHIxG')
is the direct sum of the spectrum of A ‘and the spectrum of

G, or

o(AxI + IXG') = (A% —KOOBR_lB*) ® ¢{G)

which implies that Xq. 4.7.22 has a vector solution I

if and only if 0 is not an element of this direct sum. Ex-
istence of a vector solution 5 of Eq. 4.7.22 is, of course,
equivalent to the existence of a matrix solution 5 _ of

Eq. 4.7.21.

We are now in a position to state and prove the following lemma

concerning the existence of a bounded solution to Eq. 4.7.19:

Lemma 4.6: If A*—KOOBR"IB* and G are strongly elliptic
operators, as described in Section 2.3, then Eq. 4.7.19 has a bounded

ope rator solution S00
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Proof: The strong ellipticity of A*—KOOBR-IB* and G implies

that the spectra of A‘*—KOOBR'lB* and G are contained in the
left-half of the complex plane and do not include the origin

of the complex plane. This would imply that the direct sum
c(A%-KBR 'B*) @ ¢(G) is contained in the left-half plane and

0 1is not an element of the direct sumn. Thus, by Lemma 4.5,
matrix equation {4.7.21) has a solution __S_OO , and the cor-
responding operator Soo is a solution of the operator .
equation {(4.7.19). The boundedness of Soo is a consequence

of the fact that

s = lim S5(t)
oo
t=—-00

where S(t) is the solution of the operator differential
equation (4.'—7. 16) given explicitly by expression (4.7.17). We
can show that S{t) is uniformly bounded for te[0,m) by
using the fact that A%-K_BR'B* and G are strongly

elliptic and, thus, are infinitesimal generators of semigroups

of operators {q:l(t)}te[ 0. o) and {‘I(t)}tefo,oo)’ respectively,
which have the property that#*

lo 0 < Mye*

and

-}xzt
lee) Il <M,e

where Ml’ MZ’ Xl, and 7~.2 are positive constants. Using

Eq. 4.7.17 we may now write

" See Section 2.7.
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Istoli< [ g te-oil ol w1 lao
t

oo
e do

g, e’

1A

t

M1z g

which implies that Soo is bounded.
The existence of a time-invariant operator solution Poo to
Eq. 4.7.13 hinges upon the existence of a solution to the algebraic

operator equation

e — -1 RN _
G’I‘POO + POO G = SOOBR B S‘:_J_:J Q (4.7.23)

It is quite clear that under the assumptions of Lemma 4.6, a bounded

solution P exists.
oo
We shall return to the discussion of infinite terminal -time prob-

lems in Section 5.3, where the case of pointwise control will be con-

sidered,.

4.8 Derivation of the Riccati Integro-differential Equation

In the preceding sections of this chapter we have shown that a

boﬁnded, positive, self-adjoint, optimal feedback operator exists. (1)

in the case where the system operator is coercive, and, (2) with the

additional assumption of complete controllability, in *he case where the

system operator is the infinitesimal generator of a semigroup of oper-

ators. The optimal feedback operator K{(t) is the solution of the
Riccati operator equation. Unfortunately, there are no straightforward
procedures for solving operator equations directly, It is the purpose of

this section to derive an cquation from the Riccati operator equation
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which can be '"solved" analytically or numerically. This will be
achieved by showing that K(t) can be represented by an integral
operator. An integro-differential equation will then be derived for
the kernel of this integral operator and an expression for the optimal
cost will be specified. Under the as sum;ption that the state-weighting

cost term of the cost functional is of the form < Qx,x_> 5 >
L°(0,T;L° (D))

where (t) is a bounded linear operator from LZ(D)—-LZ(D), we shall
prove that the optimal feedback operator XK(t) i.s a bounded linear
operator from LZ(D)—vL2 (D). This will enable us to specify a particularly
simple form for the optimal cost function,

As an introduction to the concept of representing bounded linear

operators by integral operators, let us examine I - the identity
' C (D)
o
operator on the space of infinitly differentiable functions with compact

support in D, which space is discussed in Chapter II, Section 2. This

operator can be represented by the following integral operator:

Q
c(D)

I o ¢ = ¢(2) = [ 6(a-L)a(0AL , ¥ $eCP(D)

D
The important thing to note from this is that the kernel of the integral
operator, the Dirac delta function, is a distribution on DX D, Indeeld,
Laurent Schwartz (see Ref, 31, Theorem 1} proves that any distribution
on DXD is the kernel of a continuous linear operator from C?(D)
intoa(t/:/(D), the space of distributions on D discussed in Section 2.2.
As a matter of notation let us denote the kernel by L{=z,{} and the cor-
responding continuous linear operator by L. Since we are interested

in the possible representation of the feedback operator K(t) by an

integral operator, we are naturally more interested in the converse of
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this statement. Schwartz (Ref. 31,- Theorem 2) proves that the converse
is true, namely, that every continuous linear operator L from CEO(D)
into 0(9/(13) can be represented by a unique integral operator whose
kernel, I{z,{), is a distribution on DXD.

Thus, having seen that the integral operator representation holds
for bounded linear operators on CEO(D) we must determine when this
representation holds for bounded linear operators from H:L(D) into
1_11;1(]3) . Omnce again, Scl;wartz provides the answer in the so-called

Schwartz Kernel theorem:

Theorem 4.12: If I-I1 and I—Iz are locally convex spaces and L,
is a continuous linear operator from Hl into HZ’ and if the following

are true:

1. CCC;O(D)CHiC. H;Ca(?’(D) o i=1,2
2. C®(D) is dense in H,. NH
‘ o 1 2

then I. can be represented by a unique integral operator whose kernel

L(z,{) is a distribution on DX D,

The proof of this theorem follows from the fact that since
CgO(D)CHl and HZCa&((D), then the restriction of L to C?(D} is a
continuous linear operator from CEO(D) intodd(D) and can be re-
presented by an integral operatoz.', which, from the fact that CZD(D) is
dense in H1 ﬂI—IZ, can be extended to I—I1 by the continuity of the oper-
ator L.

It is not very difficult to see that the optimal linear feedback
operator K(t) satisfies the hypotheses of Theorem 4. 12 for all te[ 0, T].

For any t, K(t) is a bounded linear operator from the Hilbert space



-123 -

H:;n(D) into itself, implying that K(t) is continuous, since boundedness
of an operator on a Hilbert space is equivalent to contimity. The space
Hron(D} clearly satisfies condition 1 of Theorem 4.12 and, since both
CP(D) and HI'(D) are dense in L*(D), CP(D) is demse in HI(D),
satisfying condition 2. Thu:ts, by Theorem 4. 12 there exists a kernel

K(t, 2,8} such that

Kit)x = fK(t,z,g)x(;)dg ¥xec§°(D) (4.8.1)
D

and if er—ILn(D)ﬂ cgo(D)

K{t}x = Ilim fK(t,z,Qx (£)ag (4.8.2)
n—oo .

where {Xn}g—)—l is a sequence in CgO(D) convergent to x.
To simplify notation in the sequel let us assume Eq. 48 1 holds

for all XEHO (D} with the tacit assumption that Eq. 4.8.2 truly represents

K{t) if xg’C?(D). It can also be shown that if K(t) is continuously
differentiable with respect to t, then K(t, z,{) is continuously differentiable

with respect to t, and

K{t)x = %tg(t,z,g) x(0)dL (4.8.3)
D

It will also be necessary in the sequel to consider the operator

Lit) = BHR I (H)B*@)
which is also a bounded linear operator from H?(D) into itself and
therefore can be represented by

Lit)x = fL(t,z, £)x(L)de, "vl‘erI;l(D) (4.8.4)
D
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Likewise, the state weighting operator Q(t) and the teriminal state

weighting operator F can be represented as

o@x = [olt,2,0x(0)d  YxeH] D) (4.8.5)
D

and

Fx = _/'F(z,;)x(g)d;
D

We are now prepared to apply these results of the kernel theorem

to the Riccati equation

K{t)x = -K({t)Ax - A*K({t)x + Kt)L{(HO)K{(t)x - Q{tyx ; K(T)x = Fx
(4.8.6)}
where x is an arbitrary element of H?(D). Liet us first note that

the term A¥*K(*)x has the representation
aeK(eye = A% [K(t, 2, Dxtrat = [AF Kie, 2,0)x(t)ag (4.8.7)
D D

where the subscript 2z in the right-hand equality denotes the fact that
A% is a differential operator in *he 2z spatial variable, operating on

K(t, z, £). In the case of the term K(t)Ax, we have

k(e = [Kit, 2,0 Ax(0)aL
D

where the subscript { refers to spatial differentiation in terms of §.
But, for fixed z and t, we can look upon XK(t, z,{) as an element of
o (D), the distributions on D, so that by elementary properties of

.

distributions, the integral can be rewritten
K(t)Ax =fK(t,z, C.)Agx(t,)dﬁ = fA?K(t, z, L)yx(L)dL (4.8.8)
D D

i.e., the kernel of the operator K(t})A is A"ZK(t,z, LY.
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Using Egs. 4.8.1 and 4.8.4 we can write the following:

K(t) L{t)K(t)x

fK(t,z,me(t,p, o [Kit, o, Ox(0)aL a5 ap
D D D

H

fffK(t,z,p)L(t,p,cr)K(t,cr,&)x(@)dédudp (4.8.9)
DD D

Now, using Egs., 4.8.3, 4.8.5, 4.8.7, 4.8.8 and 4.8.9 in the Riccati

equation{4.8.6) , we obtain

B (1,2, Lx(0)at = - [ K(t 2, x(t)as - [AFK(, 2, O)x(t)aL
D D D

+fffK(f,z,p)L(f,p,cr)K(t,w,z;)x(c)dc,dcrdp
D DD

otz vxiar 5 [rer,z 0x01a = [ree, Hxar
D D D

Since this equation must be true for all XEI‘II;l(D), it must be true that

L5 tm ) = -(af + ADKE, 2L
+ f fK(t:Z:P)L(t: P U-)K(t: 0, E)dﬂ“dp _Q(t: Zy, é)
D D
(4.8.10)
and K(T,z§) = F(z,{)

Thus, we have derived an integro-differential equation of the

Riccati type. It is quite clear that the kernel Ki{t, z,{) is symmetric
in its spatial arguments, that is,

Kit,z,8) = K(t, ¢, z)
This is a direct consequence of the fact that K(t) is self-adjoint (see

Sections 4.4 and 4.6) for all te[0,T].
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Boundary conditions may be specified for the Riccati integro-
differential equation (4.8.10). If ze38D, the boundary of D, then by
the transformation in Eq. 4.8.1 we obtain

yit, 2) | =f K(t, 2.8} | x(t, L) de
zedD D zedD

the evaluation of a function ¥y{t} in I-lln(D) at the point z€edD. But
this is zero by the definition of 1—I (D), which implies that

K(t, z, {) =0 where { is any element in D. In a like manner, it
can be shz(':\evfl?that all of the Dirichlet boundary conditions hold for

K(t,z,L), that is referring to Section 2.5,

-1
K(t, 2, 0)| _ 0Kl 2, L) I i :<( %74 o
2€0D on 2€8D on™ 1 - L op

where n is the normal to the boundary 8D, Moreover, by the symmetry
of the kernel, the above boundary conditions must also hold for {e8D

and z any element of D, thatis

K(t,z, 0], . = 2K(t2.8) _ _ ™K, 2,0) .
*7? 2 ted D, 8n m-1
{edD on C,EBD

Now that the Riccati operator equation (4.4.11) has been trans-
formed into an integro-differential equation, we may specify Eq. 4.4.12,

the equation for g(t), as an integro-differential equation:

8gd{ttz z) _ -A’;g(t, z)+f fK(t, z, L(t, ¢, o) glt, o) dodl,
D D

focf 2, L)x g (t,£) L

g(T:Z) = _fF(ng)xd(T: g)dg
D
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Since g(f) is an element of I-Iron(D), the Dirichlet boundary conditions
must again be satisfied.
Recall that the minimum value of the cost is given by the ex-

pression

T = <K(0)x(0),x(0)>  +2<g(0),x{0)> _ + ${0) (4.8.11)
H

H, (D) o (D)

where &¢(t) is the solution of Eq. 4.4.14 . Using the integral operator
representation for K(t), we may evaulate the inner products in ex-
pression (4.8.11) according to the definition in ChapterIl of inner product
on the Sobolev space I—II:(D), and, thus, we obtain®

1= 0% [0, 200, a0, )
D |gq|]<m D

{4.8.12)
+ 2 f Z DY g(0, z) D%(0,2) dz  + &(0)
D {g|<m '
where &ft) satisfies the ordinary differential equation
B(t) = f Z (quQ(t,z,é)x(t,;)dé)(Dc%x(t,z))dz
Dlgl]sm D
{(4.8.13)

+ f Z Dg(t, z) DY fL(t, z, L) g(t, L)dtdz
D lql<m D .

$(T) = fz (o4 fF(z,‘f;)xd(T, £)aL)(D¥x (T, 2))dz
D [qlsm D

The above expressions for the cost terms are extremely compli-
cated, This is not surprising, however, since our state-weighting

cost term < Q(x-x ), xX-x, > may be written
T 20, T HM DY)

i

" The notation DC1 is described in Section 2. 2.
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<Q(X-X )i %=X >
AT 0, T EDD))

T
=ffZ (qucz(t 2,0)(x(t, §) x g (¢, £)aYDLx (¢, 2) x4 (¢, z))dzdt
0 Dlgl<m

Using elementary properties of distributions this expression may be re-
written as

<Q(x—x ), X% >
AT o, T ETD))

T
- [ [tz Yl n gt 0%t 2xye, 2020t
0D D fqlKm

which indicates that we are, in actuality, weipghting all spatial deriva-

tives (up to order m) of the state in the quadratic cost functional.

Now (assuming, for simplicity, that xd(t) = 0), it might reason-

ably be asked: can we have a state-weighting term in the cost functional

of the form

<Qx,x> 5
120, T; 12(D))

T

=ffo(t,Z,C)x(t,z)x(t,§)dzd§,dt (4.8.14)
0DD

where the operator Q(t) is now a bounded linear operator from LZ(D)

into LZ(D), and will this result in the existence of an optimal feedback

operator? Although the expression (4.8.14) has been written in the
form of an inner product on LZ(D), we are, in actuality, restricting x
to be in the subset Ho'(D) of I(D) in order that the system equation
be satisfied. Accordingly,.the inner product in LZ(D) which is re-

presented by expression (4. 8. 14) must be of the form
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f< Q(t) Ae(e), (9> dt

12(D)
T

=f ffQ(t,z,g)x(t,z)x(t,g)dgdzdt (4.8.15)
6 DD

where A is a bounded linear operator from E—]o (D) into LZ(D). The

left-hand side of £q, 4.8.15 may be written as

f<Q(t)Ax Ax() >, dt
12(D)

=f<m=Q(t)Ax(t),x(f)> o at (4.8.16)
H

o4D)

where A* is the adjoint of /A, The operator A*Q(t)A is a bounded
linear operator from Hl(;n(D) into H?(D), and, therefore, by Theorem

4,12, has the integral operator representation
Q) Ax(t) le(t z, ) x(t, £)dE (4.8.17)

for some kernel distribution Q,(t,z,f). Combining Eq. 4.8.15 and 4.8.16

1.{

we obtain the relation

<ﬁ=Q(t)Ax(t),x(t)>Hm =ffQ(t,z,L)x(t,z>x(t,é)dzdt (4.8.18)

O(D) D D

and, using Eq. 4.8.17, the left-hand side of Eq. 4.8.18 may be ex-

pressed as

<A’"Q(t)Ax(t),x(t)> fz Dt fQ t, z,0)x(t, L) dt, Dix(t, z)dz
D lql<m
ff( z (1) |DqD‘éQ1(t 2, )x(t, 2)%(t, £)dzdt (4.8.19)

lq]<m
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where the operators D(;_l' and D% are the operator ™ inthe z and ¢

spatial variables, respectively. The last equality in (4.8.19) follows
from elementary results (see Ref. 17, pp. 323-337) in distribution
theory. Thus, from Eqs. 4.8.18 and 4.8.19 it is seen that the kernel

Ql{t, z, ) must satisfy the partial differential equation

z (—1)'q'D2DqQ1(t,z, ) = Qf,zt) (4.8.20)
lqi<m

Now, since Ql(t, z,t) is the kernel of a bounded linear operator
from HIOn(D) into I—IIOn(D), Theorem 4,11 implies that the Riccati oper-
ator equation (4.4.11), with Q{t} taken to be NAQt)A, has a bounded,
positive, self-adjoint solution Kl(t), which, by Theorem 4.12, may be
represented by an integral operator with kernel Kl(t, z, £). Moreover,
this kernel must satisfy Eq. 4.8.10, namely

aKl(t: z, ;)
ot

e
=

= -(A% 4+ Ay) Kylt, 2, L)

+ [ [xt 2 oLt p, VK (8,0, D dodp - @, 7, L)
DD -

(4.8.21)
Note that the double integral term in Eq. 4.8.21 is in the form of an
inner product on LZ(D), so that we may use the same reasoning which
led to Eq. 4.8.20 to state that there exists a kernel Ll(t,z, £), cor-
responding to a bounded operator Ll(t) from HI:L(D} into HI:'(D),

such that

2 (—l)lqngDng(t,z,C) = L{t,z, %) (4.8.22)
lal<m

Let us now perform this type of operation on the solution

K

1(’r:,z, £y of Eq. 4.8.21, that is, let
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Z IqngD%Kl(t,z,é) = Klt, 2, ) (4.8.23)
lal<m

It is clear that K(t,z,%} is the kernel of a bounded linear operator K(t)
from LZ(D) into LZ(D) . We shall now proceed to determine the
equation which K(t,z,{) must satisfy. Using the operator

(-1)IC-LID§DZl on each term of Kq. 4.8.21, we see, finst, that
lql<m

|z|: {- 1)’ l“gnggK (t,z, & = gt— K(t,z, L)
g|<m

Next, if we assume that Ai is a constant coefficient differential oper-

ator, we obtain

z (—l)lq!DgDZA:;Kl(t,z,g) = A% Z (-1)l quDqK IERAE =A¥ TRt 2, ¢)

[qi<m lal<m

The same result holds for the term containing A"{i. Using Eq. 4.8.22

and elementary properties of distributions, we obtain

Z (_1)!q|D§D% fle(t, z,mL(t, p, U'}Kl(t, o, L}dodp
lal<m D D

f fK(t, z, p)Ll(t, p, o) K(t, o, C)dedp
DD

where Ll(t,p, c) is given by Eq, 4.8.22. Using all of these results and

Eq. 4.8.20 we see that K(t,z,{) is the solution of the Riccati integro-

differential equation
SEL 2 LA ADKRE, =)
(4.8.24)
+ ffK(t, z.,p)Ll(", o, ) K(t, o, L}dodp - Qft, z, {)
DD

Moreover, it may be seen that the optimal cost is given by
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7 = <K (0)x_,x_ > - Z f(Dg le(o,z,z)xo(;)df;)(D‘;xo(zndz
Hy®) pl<m D D
(4.8.25)
= ffK(O, z, g)xo(z)xo(g)dgdz
D D

Thus, we have shown that, corresponding to a state -welghting operator

Q{t) which is a bounded linear operater from LZ(D) into ]E(D), there

exists a bounded linear feedback operator K(t} from LZ(D) into

LZ(D), and the kernel K(t,z,{) of the integral representation of this

operator satisfies the Riccati integro-differential equation (4.8.24).

Let us now consider the case of infinite terminal time. If we
assume that xd(t)zo, B(t)=B, Q(t)=Q, and R(t)=R then the time-
invariant optimal feedback operator Koo is the solution of the alge-
braic Riccati operator equation (4.7.4). Using the procedures of this
section, we find that operator K__ has an integral representation with
kernel KOO(Z,E) which satisfies the eguation

x4 Ak 2,0+ [ [k (2 oLip, 0K (o, D1dodp - Az, D)= 0

DD
{4.8.26)

where L(p,o) is the kernel of the integral representation of the time -
invariant operator L:BR_IB*.

To illustrate Eq. 4, 8.26, let us, once again, consider the heat
equation example given at the end of Section 4.6.

ox(t,z) _ 9 x(t, z)
ot - Bzz

+ult,z) ; x{0,z) = xo(z)

with the boundary conditions

x(t,0) = x(t,1) = 0
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Let us choose the cost functional

ool 1 1 2 1
47 +1 , . 2
J =f f f(--"-é—"—) sinwz sxn-rrgx(t,z)x(t,g)dzdé-{-fu {t,z)dz ] dt
o0 |0 0 0
4'rr2+

which corresponds to choosing the kernel of Q to be ¢ 5 l)sin-rrzsin-rrﬁ
and the kernel of R to be the Dirac delta function 5(z-t). The opti--
mal feedback kernel Koo(z, {) must satisfy Eq. 4.8.26, which, for

this example, becomes

52
_2 (2 t) _-—— K_(z, 0+ | K (20K {p,t)dp
9z 87; 0

41r2+1 . .
= (-—z—-—) sinwz sinwl

with boundary conditions

K_(0,8) =K_(1,4) = K (%0 =K_(z,1) = 0
The solution, by inspection is
Kco(z’ Y = sinmwzsinml
so that the optimal control may be written

1 ]
wE(t, z) = -J‘Km(z, £)x(t,0)dL = - sinmz fsimg x(t,£)dL
0 0



CHAPTER V

OPTIMAL POINTWISE FEEDBACK CONTROL

5.1 INTRODUCTION

In this chapter we shall specialize the results obtained in Chap-
ter IV for the parabolic optimal control problem to the pointwise opti-
mal control problem defined in Chapter III. Section 5.2 is concerned
with the actual derivation of the optimal pointwise feedback control.
It will be shown that the optimal pointwise' control is of a form which is,
in a sense, computationally simpler than the general feedback form of
the optimal control derived in Section 4.8. In Section 5.3 it will be
shown that a particular choice of the state-weighting operator results
in the traditional modal analytic solution. Still another choice of the
state-weighting operator will be shown to resull in a feedback solution
of the pointwise optimal control problem under the condition that only

a finite number of specific measurements, rather than the entire

state, are available,

5.2 DERIVATION OF THE OPTIMAL POINTWISE
FEEDBACK CONTROL

In this section the pointwise control problem is solved by placing
the problem within the format of Section 4.8, that is, by introducing the
feedback integral operator and writing the Riccati integro~differential
equation, Since the pointwise control problem is characterized,
mathematically, by the control space U:Rk and the pointwise control
operator Bo(t) defined in Section 3.4, we know, from the results of

Chapter IV, that an optimal control of the form E*(t):-g_le(t)K(t)x(t)
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exists® where K(t), satisfies the Riccati operator equation (4.4.11)
with B(t):Bo(t) . We also know, from the results of Section 4. 8,
that the Riccati operator equation may be represented by the integro-

differential equation (4.8.10), namely

%If(t,z,g = -(A% 4 Az)K(t,Z,E)

+ ffK(t, z,p)Lo(t, g, K(t,o,{Ydadp - Qt, z, L)
DD

with
K(T,=z,t) = F(z,)

where Lo(t, p, o) is the kernel of the operator
-1 %
L _(t} = B (K ()B.(t)

Attention will be focused on the nonlinear term of the Riccati equation,
in which the kernel of the operator Lo(t) appears. It will be shown
that in this case a simplified form of the Riccati integro-differential
equation holds the solution of which leads, in an approximate sense, to

a simplified form of the optimal control. The infinite time problem

will also be discussed,
Recalling that the pointwise control operator I[_%O(t):R.k—~I_.-2 (D) is

of the form:
k

Bo(t)p_(t)=in(z)bi(t)ui(t)_ , Mu@erF Mo, T]

i=l
where xi(z) is, again, the characteristic function of the set EICD
as specified in Section 3.4. The adjoint pointwise control oparator

Bj‘;‘(t);LZ(D)—-Rk may be determined in the following manner:

ﬂcWe shall, for simplicity, consider the case where xd(t)z().
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If Y(-)ELZ(D) and y_eRk, then
<BYOYC) 2> = <y().Byl0e> ,

L7 (D)
y(z)z t)u dz
i=1

f
D
k
Z f{zk i(:z.)d_z bi(t)ui.

From this we identify Bf;(t)y(-) as the vector in Rk

Bi(t)y(‘) = \:bi(t)fxi(Z)V(Z)dZ]

Py
In order to obtain an equation for the feedback kernel in the form of the
Riccati integro-differential equation (4. 8.10) we must express the
operator Lo(t)-:-Bo(t)_R—l(t)B':(t) as an integral operator with kernel
Lo(t,p,o'). Using the dummy variable o with the B:;(t) operator and

the dummy variable p with the Bo(t) operator, we obtain

¢

(Lo(07)e) = BOE (W | byft) Jx (o) yle)ds

Dy
!

B (t) ZR (b, ui) fx (0)y(0)do
J._

k

k
Zx i(p)b.(t) 2 R_i}(t)bj(t) fx () v(o)de

i=1 J:l

'k ok
f Z le )b, (t}R (t)b {thy . (U) y(o)do

i=l j=1
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so that the kernel Lo(t, p,o) is given by

k

k
-1
Lo(t 0,0) = ) ) ¢ (a)by RGOtk (o) (5.2.1)
i=l j=1

The nonlinear term in Eq. 4.8.10 may now be written as

f fK(t, z, p) L {t, p,o) K{t, o, L)dedp
D D

k k
- ffK(t, z, p) Z 2xi(p)bi(t)R‘i]JE(t)bj(t)xj(a)K(t,o~, t)dodp
D D i=1 j=1

(5.2.2)

Lk k
-1
= Z E(bi(t) ‘]];x {PK(E, 2, p)dp)Rij(t) (bj(t) fx j(O')K(t,cr, £)do)

i=l j=l D

Let us define the vector function k(t,z) to be

!

k(t,z) = | bt} [x (MK, z p)dp | ;te[0,T] , zeD
R,

Using this vector function, we may rewrite Eq. 5.2.2 as

[ [xit, 2, 0L (6 0, 0Kt 0, Lidodp = K'le, DB 0k (1 8)
D D

and the Riccati integro-differential equation (4.8.10) for the pointwise

control problem becomes:

B (¢, 0) = ~(AL+ADK(E, 2, O +E (DR (DK, D) QU 2, 1)

{5.2.3)

The expression for the optimal pointwise control is

wh(t) = R () Bl (OK(Dx(t)
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- KBk f K(t, 2, L)x(t, t)dL
D
= -K'(t) | by(t) f x;(2) f K(t, 7, {)x(t, 1) dLdz
. D D ‘ |

p— —

- &N | [Ty fxote, .0 daalete, g

LD D -
= -.f_fl{t) fh(t.é)x(t,ii,)d& (5.24)
D

We shall now introduce an approximation by the use of the as-
sumption in Section 3.4 that control action takes place over yolumes!"!
in D which are very small compared to D itself. In other words it
may be assumed that each of the sets {Ei}:;{___l containing the points
{zi}?:l has measure |.L(Ei) < €, where € is very small compared to
4{D). Let us also assume that the control operator coefficients

b,(t), i=l,...k are of the order of 1/e, that is, let us assume that

1
by(t) = = Bylt)

3
The physical motivation for this assumption lies in the fact that unless
the control coefficients were of the order of 1/e¢ then any finite
amount of control would enter the system with magnitude of order e,
and, under the assumption that € is very small, would have no effect
on the system. If the control coefficients bi(t) are of order l/e,
then we shall see that finite control energy results in a forcing term of

the same order of magnitude in the system equation.

als
! . . n
"p is the L.ebesgue measure in R,
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If K{t,z,¢) is sufficiently smooth and € is chosen small enough then

we have approximation
by(t) 33 (0K 2 p)p = BiOK(E, %, 2)
D

which holds for i=1,2,...k. Wha:c, in effect, has been done here is to
assume that the control coefficients are approximately impulsive in the
spatial variable, Note that this assumption was invalid in the rigorous
proofs of existence of optimal controls and existence of solutions of the
Riccati operator equation. However, at this juncture, the assumption
is valid because we are simply trying to solve approximately an
equation which we already know has a solution.

As a consequence of the above approximation the vector function
k(t,z can be approximated by

k(t,z) = kit,z)

where

}E(t,z} = ﬁl(t) K(t’z’zi) (5.2.5)

'

With this approximation the Riccati integro-differential equation becomes

8K o (AF
at (t: ng)_ ('AZ+A

wde
b4

4

What is more interesting is that if the above approximation is used in

YK(t,z,0)+ i:_'(t, z)_R.—l(t) ﬁ(t,{,) -Qft,z, §) (5.2.6)

Eq. 5.2.4 the expression for the optimal control becomes

B [ R e va
D

k t
- R_.I.(t) fﬁj(t) K(t,t, zj)x(t, £ydg

=43
j=1 D t

¥k (t)
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which implies that it is necessary to determine the k functions

Ki(t, =, z.l), i=l,2,...k in order to completely specify the optimal feed-
back control. If one were to consider the computational requirements,
then the computation of these k functions would be simpler than the
computation of the entire feedback kernel, that is, the computation of
K{t,z,¥) for all values of both spatial arguments in D XD.

To summarize the above resulis, let us examine the structure of
the feedback control system. 7The state distribution x(t, 2z} is fed back
through k devices which take a weighted spatial average of the state
distribution. The weighting function in the ith averaging device is
Kit, =, z.i) , i=1,2,...k, and the output is a function of time which may be
denoted y(t), i=1,2,...k. The k-vector y(t), with i™ component

yi{t), is then transformed to the optimal control

’ wi(t) = -E (9B(1)y (8
where B(t) is the diagonal matrix with ith diagonal element Bii(t)z
ﬁi(t), the ith control coefficient. Liet us illustrate the system thus
obtained by means of a block diagram in which we use the conventions
" s ' to indicate the flow of a scalar quantity, " =" a k-vector,
a‘nd At g distributed quantity. The optimal closed-loop system is
represented in Fig. 1. It is interesting to note from this feedback
structure that if we were able to measure y(t) directly, that is, if we
had k measuring devices which average the state distribution with
weighting functions Kf(t, z, zi)’ i=1,2,...k, then we would feed back
the measurements, rather than the entire state distribution, in order to
construct the optimal feedback control, This leads to a question which
is somewhat analogous to the inverse problem of finite dimensional

control theory, namely, if we have k measuring devices of the form
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yi(t) = fmi(t,z)x(t,z)dz ; i=1,2,...k
D

where {mi(t)}l.:_l is an arbitrary set of weighting functions, then does
there exist a state-weighting kernel Ql(t’ z, £} such that the solution
K{t, z, {) of Eq. 5.2.6 with Q(t,z, L)} =Q1(t, z, L) satisfies the property

Kit, =z, zi) = mi(t, z)

for all te[ 0, T], for all zeD, and i=1,2,...k ? Looked upon another way,
obtaining a solution for the set of functions {X(t,z, z,) }1;:1 enables one
to design appropriate instruments with weighting functions equal to

Kit, =z, Zi) . This measurement question will be treated in Section 5.3,

where a particular class of measurement weighting functions will be

considered.
u(t,z)=Bo(t) uXt) Dynamical System x(t,2)
9% _
3t AX + u(t,z)
Pointwise | u™(t) y (1)
Control a1 a " .
Sontrol ke——=-r"*tam K== [ kL2012
_ Bolt) D

Fig. 1 Optimal Closed-Loop Pointwise Control System

Let us consider the pointwise control problem on the infinite
time interval. If the system operator A 1is coercive then, according

to Section 4.7, an optimal control exists on the infinite time interval,
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Moreover, if the system is time invariant, the feedback kernel is
A
K(t, 2z, ¢) =K(z,¢) and k(t,z) defined in (5.2.5) becomes

*

FaS A
_]'-S_(t: Z) = ,IS(Z) = Bi K(Z: Zi)

‘

so that we obtain the following time -invariant Riccati equatiocn:

(8% + AT)K(z, 9 + R@E'R(D) - Q=) = 0 (5.2.7)

Under the assumption that the system operator A is the in-
finitesimal generator of a semigroup of operators, we know, from
Section 4.7, that complete controllability is sufficient in order to
guarantee the existence of an infinite time solution, In the case of
pointwise control, the condition for complete controllability, namely,
the invertibility of LtlL*t1 given in Eq. 4.7.6, becomes the determi-

nation of a time t, such that the following is invertible

t

LtlLfgl = f@(tl—o')Bo(o’)B';(o‘)tﬁ*(tl—o’)da
' t

which, for any xel—fgl(D), reduces to

ty ,
t D

b

= f (I)(tl-O')Y(U')dcr {56.2.8)
t

(t ~o)x) (L)L

-o—

*(@*(tl-a)x)(ﬁ) is the evaluation of @*(tl-O')XEHI:L(D) at the point {eD.
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whe re y(o—)eHT:(D) is given by

k
y(o,2) = ) 3 ;(2)BF(o) [ ;0@ (050 ()t
D

i=1
Note that y(o,z) is zero everywhere except on the sets Ei’ on which

v{o, z) has the values

y(o,2) = Bi(a) fx (0)@™ (-0 %) (L)AL VzeE,
D

The question of invertibility of (5.2, 8) for some time t is still open.
It can be seen that a necessary condition for invertibility of expression
(5.2.8) is that there exists a subset of (0, 00) with positive measure
upon which the opirator $(t) transforms the subspace of functions
with support on U Ei onto aill of I—Ilc;n(D). Otherwise, there would be
no chance for thei%lperator given by (5.2.8) to have its range space

equal to Ho (D) for some time t which is equivalent to inverti-

17
bility. Since controllability is still a matter of open‘research, we shall
assume it, where necessary, in the sequel,

In any case, if controllability is assumed, then infinite time so-
lutions exist in the case where the system operator is the infinitesi-
mal generator of a semigroup of operators and the time-invariant
Riccati integro-differential equation {5.2.7) holds in this case as wells

The optimal control, in this case, is given by the time-invariant

linear feedback control law
" -1 [ A
u*(t) = -R f_lg(z)x(t, z)dz {5.2.9)
D

and the optirr;al cost function is

7 = ffK(z, )x(t, z)x(t, £)dtdz
DD
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As an example of a pointwise control problem let us, once
again, consider the scalar heat equation

.o [ 2 N
ax(t,z) _ 9.x(t,z) . _
Bt = 3Z2‘ + Bo-g(t) ;. x({0,z) = xo(z)

with boundary conditions
x(t,0) =x(t, 1} = 0

where
k

Bont) = ol

i=1

If we choose a cost criterion of the form

oy 1 1 k
J :f ff(z'n'z + z sinz-rrzi)sin'rrzsinﬂ'C,X(t, z)x(t, {)dld=

ful(Hult) | a
where {zi}i_1 is the set of control points, the Riccati integro-

differential equation {5.2.7) becomes

32 32 4 5 L e 2
-3 Kz, ) - — Kz, L) + X'"{2)k(l) = (2= + E sin -rrzi) sinwzsinml
8z 8¢ —
i=1
for which
K(z,L) = sinmz sinwi

is a solution satisfying the boundary conditions
K(0,8 = K(1,8) =K(z,0) =K(=z,1) = 0

A
Since k(z) is of the form

¢

A
k{z) = sinmz .sin'rrzi

\

The optimal control, from Eq. 5.2.9, is

f 1
wk(f) = |s imrzi] f sinmzx(t, z)dz=
% 0
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We shall consider a special class of solutions of Eq. 5.2.7 in
the next section which enable us to compare our results with those ob-

tained by using the modal analytic approach,

5.3 THE INFINITE TIME PROBLEM AND MODAL
ANALYTIC SOLUTIONS

In order to obtain a better physical understanding of the nature
of the optimal pointwise feedback control obtained in the preceding
section, we shall relate these results to the results obtained through
the application of the techniques of modal analysis., We shall show
that a particular choice of the form of the kernel Q(z,%} in Eq. 5.2.7
results, under certain conditions, in the transfo:_:'xnation of the integro-
differential equation (‘5. 2.7) into an algebraic matrix equation, It
will be shown that this finite dirr:;ensional Riccati equation is associated
with the finite modal approximation of the optimal control problem
under consideration. Placement of the control points will be shown to
have a direct effect on the existence of an optimal modal solution, The
optimal solution for an illustrative example will be studied.

For convenience let us rewrite the Riccati integro-differential
equation for the time-invariant feedback kernel associated with in-
finite terminal -time pointwise control problem

(8% + ADK(z, O+ R(AE RO - Qz0) = 0 (5.3.1)

A
where k(z) is the k-vector whose B component is

ky(z) = ByK(z,2)

the set {zi}]f_l, once again, being the control points in D.
As a preliminary to showing that the optimal modal solution can
be deduced from Eq. 5.3.1, let us consider the case where no control

is applied to the system. We can show the cost of starting at
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erf)n(D) at time t to be

co

ffX(z)K(z, E)x(ﬁ)dédz=f ffx(cr, z)Q(z, )x (o, L)dldz | do {5.3.2)
D D t |DD

where x(¢,z) is the evaluation at the point z€D of the element x(a-)eHIon(D)
which satisfies

() = Ax{o) ; x(t) =x
and where K(z,{) is the soluticn of the linear equation

(A7 + ADK(z, L) - O(z,8) = 0 (5.3.3) .

Let us suppose that the system operator A has a countable spectrum
T{?\1}10_01 The eigenfunctions {Vi(z)}io—ol of the adjoint operator A¥

satisfy the equation

for i=1,2,... . If we choose the kernel of the state-weighting oper-
ator to be
A
Qlz,8) = v'(2)Q¥(Y) (5.3.4)
where Q is an nXn positive definite constant matrix and v(z) is
the n-vector whose ith component is the eigenfunction vi(z.), the state-
weighting operator will still satisfy the requirement of positivity,

since

L*(D) 2

f x(z)zqz)dz] o [ fz(é)X(é)dé

D D

<axx>, = [ [aviaermxads
D

= x'Qx >0

where x is the n-vector whose ith component is fx(z)vi(z)dz. Note

that the operator Q is not strictly positive since there exist nonzero
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vectors er';n(D) which are orthogonal to the subspace generated by
the first n eigenfunctions, resulting in <QX,X>L2(D) = 0. Note

that if we allow n to approzfa,ch infinity the kernel Qoo(z, ) of a posi-
tive operator is obtained. The precise nature of this limiting procedure

will be discussed when the concepts of modal approximation are treated

later on in this section. We may now state the following theorem:

Theorem 5.1: If z,8) is givern by Eq. 5.3.4, then the optimal

feedback* kernel for the zero-control case is given by

K(z,t) = v'(2)Kvit) (5.3 .5)
where K is the nXn positive definite solution matrix of the matrix
equation

AK+ KA = -Q (5.3.6)

with A defined to be the diagonal nXn matrix with ith diagonal ele-

ment HA.. = ..
ii i .

Proof: Using Eq. 5.3.5in Eq. 5.3.3 and using the linearity of

F,

A% we obtain

ARVI{Z)EVL) + v(2) KAV (L) = -v(2)Q¥ (L)
Since the elements of v(z) are eigenfurictions of A’;, this
equation becomes

v(2)A Ky (1) + V(KA v (L) = -v(2)Qu (L)

If a2 solution of this equation is to exist for all z, {eD, then
it must be true that the matrix K satisfies Eq. 5.3.6.
Moreover, since K(z,{) must be the kernel of a positive
operator on H?(D), the matrix K must be positive definite.

It is a well-known fact that if the matrix Q is positive definite

" The term 'feedback™ is used loosely here, since we are applying
no control.
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and the matrix A has all its eigenvalues in the left half-
plane, then a positive definite solution of Eq. 5.3.6 exists,
The matrix Q is positive definite by assumption and, since
the spectra of both coercive and strongly elliptic system
operators lie in the left half-plane, the eigenvalues of A
lie in the left half-plane, so that a positive definite matrix
solution K to Eq. 5.3.6 exists. Thus, K(z, %), given by
Eg. 5.3.5, is the kernel of a positive operator which is the
solution of Eq. 5.3.3. By the uniqueness* of positive so-
lutions of Eq. 5.3.3 this kernel is optimal.

We can conclude from this theorem that in the zero-control case

the cost function depends only on the first n mode coefficients of the

initial state er—]o (D). This can be shown bv evaluatine-the cost

function

T = <Kx,x> 2
L°(D)

f fetaxiz, pxataz = f:c(z)r(z)dz;s (O (L)dL
DD D D

= x'Kx
. .th . .th
where x is the n-vector whose i component is the i mode coef-

ficient x, = fx(z)v.(z)dz.
i~ i
A natural question to ask at this juncture would be : does a

solution of the form (5.3,5) exist for the system with pointwise con-

trol when the kernel Q(z,%) is again given by expression (5.3,4)? We

shall show that under certain circumstances such a solution exists for
the optimal feedback kernel and that the solution is directly related to
the finite modal approximation of the original system.,

If the control is a k-vector, with k not necessarily equal ton

(the dimension of the vector y(z)) the substitution of Eq, 5.3.5 into

Uniqueness follows from the uniqueness of the limit in Theorem 4.11.
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the pointwise Riccati integro-differential equation (5.3.1) yields the
equation

(A5 APV (2K Y(L) + mHHE mE) - =R () = 0 (5.3.7)
where m(z) is the k-vector whose ith component is
mi(z) = ﬁi_\:'(z)g v (Zi) i=1,2,...k
We can write the vector m(z) in the form

m(z) = BY Kv(z) (5.3.8)
where B is the diagonal kX k matrix whose ith diagonal element is
Bii = ﬁi and V is the kXn matrix with ijth element vij = vj(zi) .
Using Eq., 5.3.8 in Eq. 5.3.7, we see that the Riccati integro-
differential equation {5.3.1) has a positive solution of the form
K(z,l) = v{z)Kv (L) if there exists a positive definite solution K
of the algebraic matrix Riccati equation

AKX -KA+KV'BR'BVK-Q=0 (5.3.9)
where A is again the diagonal nXn matrix of eigenvalues. We know
that this Riccati-equation is associated with the following finite-
dimensional optimization problem:

Given the n-dimensional system

2 =Ax(t)+ ¥'Bult) ; x(0) =x (5.3.10)

- [

Determine the control E*(t)r—:Rk. which minimizes the cost

functional
@D

J=f [x"9Qx(t) + u'(HRu(t)]dt . (5.3.11)
0

Thus, from our knowledge of the finite-dimensional state regu-

lator, we know that Eq. 5.3.9 has a positive definite solution K if the
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system (5.3, 10) is completely controllable.* We consider the
standard test for complete controllability in time-invariant, finite
dimensional, linear systems {see Athans and Falb, 24 p.205), namely,

if G is the nX(nk) matrix defined by

G8lveiave: v, Ay (5.3.12)

then the system (5.3. 10) is completely controllable if and only if

rank G = n
The system given by Eq. 5.3.10 is interesting in another re-
spect. It is precisely the n-mode modal analytic approximation of the

original distributed parameter system gl'_\r_an_in_Eq.._3-.-2-.-2-—w~i-t-h—~B-:Bo 3

the pointwise control operator. This can be seen by considering the

modal decomposition of the forcing term Bog(t):

k
[v21Bu ez - [rw > xlabu, (tdz
D i=1

D
k
:Zbu(t) fV(Z)X dz—--zﬁu(t)v(z)
= ¥'Buf(t)

which is the forcing term in Eq, 5.3.10. The preceding is summarized as:

Theorem 5.2 If Q(z,0)=v{2z)Qv (L), with Q positive definite,**

and if the rank of the matrix G, defined in Eq. 5.3.12, is n, then
there is a solution of the Riccati integro-differential equation (5.3.1}
which is the kernel of a positive operator and which has the form
K(z,t) = v(2)Kv (L), where the matrix K is the positive definite so-

lution of the matrix Riccati Eq. 5.3.9,

" Obse rvability is actually sufficient for definiteness.

aalle

bt - - - L] - - - - - -
Positive semi-definiteness is sufficient in this case.
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Let us also note that the optimal pointwise feedback control,

from Eq. 5.2.4, is given by

wie) = -EL [ E()(e, L
D
(5.3.13)
- BB v K Jv(Ox(t 0)ag = BB V K x(t)
D
with st 2 [ v(oxe, nat
D

i.e., x(t) is the n-vector of modal coefficients of x(t,z). Moreover,
the minimum cost of starting at time t with initial state 'XOEHI:(D) is

given by

J = ffxo(z)K(z, ?;)XD(Q)dC.dZ = fxo(z)x'(z)dz _I_{,'..-fj_r_(g)xo(?;)dt,
DD D D

1
= x Kx
-0 —O0

where X is the n-vector of modal coefficients of xo(z). Thus, we
have shown that by choosing Q{z,) to be of the form specified in
Eq. 5.3.4, both the optimal control and the optimal cost function de-
pend only on the first n modal coefficients of the state variable.

This has very interesting implications as far as the modal analytic
approach is concerned. In the modal analytic approach, a system of the
form (5.3.10) is obtained and a finite-dimensional cost functional of
the form (5.3.11) is used. Naturally, the optimal control and optimal
cost function would only depend on the finite-dimensional state vari-
able (the modal coefficients). It is difficult to say, one way or the

other, via straightforward modal analytic techniques, whether feeding
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back higher order modes would result in a smaller value of the cost
functional. Theorem 5.2 allows us to make a definitive statement,

namely: if the rank of the controllability matrix G is nthen we can

never do any better by feeding back more than the first n modes, If

the rank of G is less than n, we know, from the results of Chapter IV
and Section 5.2, that a positive operator kernel solution of the Riccati
integro-differential equation (5.3.1) still exists, but it is not of the
form K(z,{) = v'(2z) Xv (L)}, or, in other words, the optimal control and
optimal cost function will depend on modes of order higher than n.

The above results allow us to make still another conclusion con-

_cerning the modal-analytic—approximationT—If we aTe trying to approxi-
mate an arbitrary state-weighting kernel Q(z,%) by the nth order ap-

proximate kernel

Q. (=8 = v (2Q v (&) (5.3.14)

LS S
then the positive operator Qn represented by this kernel is less than

the operator Q, represented by the kernel Q(z,f) in the sense of the

ordering relation introduced in Section 4. 6. Moreover, increasing the
order of the modal approximation by one resuits in a more positive
state-weighting operator, Qa1 that is, Qn+12_Qn, gsince, now, the
presence of the n—!—lth mode increases the cost. We may now ask
whethe r this results in an increase in the resulting optimal cost, or,

more precisely, it is true that we have the relation

A -

where the operator Kn is the positive, self-adjoint solution of the

Riccati operator equation

1

-A*K-KA+ KB E B K-Q = 0 (5.3.15)
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where B0 is the time-invariant pointwise control operator. If we

consider the operators K. and K . and the difference of the equations

1
of the form of Eq. 5.3.15 which they satisfy, we obtain

s - - — -]‘ *
CARK Ry - (K tK AT K BRIBFR

1. } _
_KnBR BrKn B (Qn+1 Qn) =0

This equation may be written in the form

1 i

-{A-BR’ B*K )*5K —aKn(A-BR_ B*K )
= (5.3.16)

1

-5K_BR B¥$K_-(Q_,.-Q) = 0
n n

ntl Tn
whezre 6Kn = K - K

Since (Qn+1—Qn) is a positive operator, Theorem 4,11 implies that a
positive, bounded solution BKn of Eq. 5.3,16 exists, from which we

may conclued that Kn > Kn’ This result may be briefly summarized

+1

by the statement that monotone approximation of the state -weighting

oparator results in monotone approximation of the optimal feedback

operator, It is difficult to prove this monotonicity property by direct
modal analytic considerations, but when recourse is taken to the fact
that any modal approximation of a given order n corresponds to a
distributed optimization problem with state-weighting operator Qn’
the proof becomes quite simple,

This result has a bearing on the problem of determining what
order modal approximation to choose., If n is chosen so that

Qn(z, {) is a good approximation to Q{z, ) in the sense that

fﬁQ(z,§)~Qn(z,§)] x(2)x(£)dzdt < e ffcz(z, L)x(2)% (L) dzdt
D D DD

where € 1is a small positive number, then it is clearly seen that, by
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using the above procedure, the feedback kernel Kn{z, t) resulting
from the solution of Eq. 5.3.1, with Q(z,8) = Qn(z, )y, will satisfy the
inequality

ff[ K(z,{) -K (2.4 )] x(Dx({)dzd?
DD

<e ffK(z,mx(z)xcc)dzdc
DD

where K(z,{) is the optimal feedback kernel. This follows directly

from solving Eq. 5.3.16 with forcingterm (Q-Q_) for the difference

operator 6Kn = K-Kn. To summarize: an analvtic procedure for de-

termining-thenumber-of 1odes which Will result in an appr oximation to the

optimal cost of a particular degree of accuracy is to choose n such

that the state-weighting kernel is approximated to that degree of ac-

curacy. Let us now illustrate these ideas by means of the following
example;

Example 5.1: .Consider the one-dimensional heat equation with

pointwise control, described by the equation

2
ox(t,z) _ 9 x(t.Z)y B y(y , 0<z<1
at BZZ o= . - =

where B‘0 is the time-invariant pointwise control operator, Here, of
course, the system operator A is 8/822. Let us choose the boundary
conditions to be

x(t,0) = x(t,1) = 0
In this case the syst'em operator A is self adjoint and the eigenvalues

are

with associated eigenfuctions

v;{z) = sininz
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Let us suppose that we are using two pointwise controls, that is, k=2.
Moreover, let us choose the state weighting kernel Q(z,f) to be
Qz, 0 = vyl 2w
v,(2)
where {) is a positive definite 2X2 matrix, The matrix V is

sin-rrz1 sind T2

.sinwz sinZwe
T2 T2

The controllability matrix G is the 2X 4 matrix
G = [V'B; i AV'B,]
By sinwz B,sinwz, Xlﬁlsin-n-zl )xl[_’)zsin'rrzz
ﬁlsinp.-n-zl p,siniwz, }xzﬁlsinz-nzl ?tzﬁzsinz-rrzz
The first two column vectors are linearly independent for all choices
of z and Z, € (0,1), since

[31sin-rrz1 [32'&3imrz2

det = (31[32[ sin-n'z.lsiLnZ'rrz2 —sinwgzsin2wzl]

[31si112'rr-z1 stinz'n'z2
= Zﬁlﬁzsin-n'zl sinwz, [cos-rrzz_cos-n-zl]

which is not equal to zero for z ;tf 25, because sin-rrzlsin'rrzz >0 on
(0,1) and coswz is monotonically decreasing on (0,1). Thus, the
rank of G is 2 and Eq. 5.3, 14 has a positive definite solution. If
there is only one control (k=1l} we have
Bsinmz, Rlﬁlsimrzl
G =

BysinZmz, ?\2 pysin2wz,

which has rank 2 since ?xl and ?LZ ate distinct. Note that in the two

control case we do not require that 7\1 and ?\2 are distinct.
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In order to actually compute an optimal solution we assign the

following values:

1 0
"Bl = ._R_- = ..Q =
o 1
1f we denote the matrix X to be
Ky kg
E =
ki Ky

then the matrix equation (5.3.9) yields the three scalar equations

2 2 2
2mky + AkDF 2Bk, k;, +Ckj, -1 = 0
502k, -+ Ak.. k.. + Bk>. + Bkysk,, + Cky ko, = 0 5.3.17)
Tk, 11512 12 11522 12502 = (5.3.
8w’k . + AkZ. + 2Bk,.k +CKZ, -1 = 0

T K22 12 1222 22 =

where A = sinzwz1 + sin -n-zz
B = sinﬂ'zlsinZ-rrz.1 + :-:.i].—rrr.z’.zsin2.-n'z2

C = sinZZ-n'z1 + sinZZTrz2

A simplification can be achieved if we choose the control points zy

and zZy to lie symmetrically about the midpoint of the interval, z:-%— s
. - . . 2

that is, zzzl—zl. In this case A = 2.s1n2'n'z1, B=0, and C=2sin anl, so

that we obtain as a solution of the set of Egqs., 5.3.17

—Tr2+/ Tl’4+ ZSin2 'rrzl

k =
11 ZsinZTrz
1
kjp = 0 .
——411'2-1- '\/l61r4+2.sin22.1rzl
k =
ez ZsinZZ-rrz

1
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Thus, the optimal cost function is
—11'2+ /‘rr4+2.sin2~rrz1
sinw L

J{x) = ffx(z) sinmwz 5
DD 2sin 'rrzl

{5.3.18)

-411'2+ _\/1 611"4-!-2 sinZZ'n'z ]
sinZn{ | x(C)dtdz

2.511’12271‘21

+ sinZwz

And, from Eq. 5.3.13, the optimal control is

--n-Z-{- ,/Tr4+Zsin2'rrz1 ‘
fsinfrﬁ,x(t,?;\dé

. Z.Sin'rrz1

D
{(5.3.19

E# {t) =

-4-rr2+ ].61T4+2.Sin221T21
- 2sin2wz fsmzng!t’ tydt
1

D —

The resulting optimal closed-loop system is illustrated in Fig. 2, where

we again use the conventions adopted in Section 5.2 for Fig. 1.

Dynamical System x(t,2)

Ox  9%x

u(t,z) =Bg u*(t)
kT3 =£2 +u(t,z)

-2 +'\/1r4+28in211”211
- : sinwf[ |dt
POINTWISE 2sinwrzy B
CONTROL ki——
OPERATOR
Bo 4nlt/16T 3+ 2sine 2Tz,
- i [ ld
2sin2rz, 6[8‘"2”;[] L

Fig. 2 Closed-Loop System for Example 5.1
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Note that if we had measuring devices which yield the measurement

vector

fsim-r@ x(t, )dt |

D

VAG I
fsinngx(t, tydg

-OD —
then y(t) can be fed directly through the diagonal gain matrix
—11'2+ 4+Zsin21rzl
- Zsin'rrzl 0
M =
"4ﬂ2+ﬁ6ﬁ4+251n22ﬂ21
0 :
Zsinlmzy
L. -

to obtain the optimal control

u¥ = M y{t)

Clearly, the measurement does not depend on the control point location;

only the gain matrix M does. This indicates there is a decoupling of

the measurement-and control problems in the sense that changing the

control point locations does not modify the basic types of measuring

devices in use, Thus, the design procedure of '""trying' different con-

trol points in order to reduce some average cost does not interfere with
the basic structure of the closed-loop system.

This problem of minimizing some average cost with respect to
control point location can be done analytically as a parameter optimi-
zation problem. For example, if we consider the optimal cost function
for example 5,1, given by Eq. 5.3.18, and take the average cost over

the unit ball in LZ(D) , we obtain

2./ 1 ) '
1 -1+ 'n'4+2.s:1n2-n':z,1 v—41r2+\/l61r4+251n221rz1
+ -

ZsinZTrz 2.sin22.'n'z1

1

‘Tavg =

™|



159-

Differentiating Javg with respect to 1z, equating the result to zero and
solving this equation for 24 (hopefully, a solution exigts in (0, 1))
results in the "optimal' control point location (end of example}.

Let us now consider the question, touched on briefly in the pre-

ceding section: when can a set of measurements of the form

A fmi(z)x(t,z)dz ; i=1,2,...n
D

whe re {1’1:11(2)}];1_1 is an, as vet, unspecified set of functions, be fed

back directly to obtain the optimal pointwise control® Let us assume

that z is a scalar and that each measurement function mi(z) may be
written as a linear combination of the elements of {zl —1}?’_1, that is,
each measurement function is a polynomial of order n-1. The vector

. .t .
m{z), withi h element mi(z}, can then be written

mizy = Wq(z) f5,3.20)

where W' is an nXn matrix and g {z} is the vector

g{z) =

n-1
z

If we choose a cost criterion of the form

a0
1= [ Iyxe + wmrem) o
0

then v'(t)y(t) can be written in the form

yiwn = [ [ormbx, axit, b asdt
DD
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where
Q(z, 8 = m'(z)m(l) ' (5.3.21)
We shall now proceed to show that under certain conditions the optimal

feedback operator K(z,{) for this choice of Q(z, t) is of the form

Kz, = m'(z)Km({ (5.3.22
where K is an nXn positive definite matrix, Using Eqs. 5.3.21 and
5.3.22 in the Riccati equation 5.3.1, we cbhtain

'BYRm(L) -m'(2)m() = 0

-Afm' (2K m(t) - Ajm"(=)Km() + m'(2KY'BR B
{5.3.23)

;.._

where Y is a kX n matrix with Yij = mj(zi). Using (5.3.20) we see

that
%k AW ¥ - £ .
AT miz) = A Wgq(z) = WA? g(z)

Since A"“Z" is a differential operator, we may write
A”;g_(z) = Cqg'z)

where C is a lower triangular nXn matrix. For example, suppose

. 52
‘A';— = = and n=4, then
Bz
"1 7 [o] 0 o0 o0 o |[1 7
K _ 8 _
Zg_(Z)—az z =] 0 =10 0O 0 O % = Cgq (=)
Z
2> 2 2 0 0 0 ||z
_z‘?’J _6z_ _0 6 0 0O i _23_

If we assume that W is nonsingular, then we may write

Afm(z) = WCa(a = WCW m(a)

Let us denote the nXn matrix A by

A= wew!
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Then the Riccati equation (5.3.23) may be written

m'(z) -A'K - KA+ KY'BR'BYK - m () = 0 (5.3.24)
Thus, a solution K(z,l) of the form specified in Eq. 5.3.22 exists
if and orly if a positive definite solution of the matrix equation

“A'K - KA + KY'BR™"

BYK -1 =0 (5.3.25)
exists. Once again, much as in the finite modal analytic case, existence

hinges on the controllability of the finite dimensional system

2 = Ax+Y¥'Bu

The optimal control is now given by

w() = -RBYK f m(z)x(t, zdz = -R* BYKy(t) (5.3.261
’ D

tha‘; is, we have the desired result of directly feeding back the output
of our measuring devices. This is a somewhat startling result in that
it is impossible, in finite dimensional systems, to have optimal output
feedback., This can be explained, however, by the fact that in finite
dimensional systems the output is of lower dimension than the state and
is written
y =Cx

where C is not a square matrix, Thus, if we tried to assume that a
solution K of the matrix Riccati equation

-A'K - KA + KBR'B'K - C'C = 0
were of the form C'K.C, where K satisfies the equation

1

-A'K, - KA+ KJCBR B'C'K, -1 = 0

with the resulting optimal control given by

(1) = -RTB'C'KCx(t) = -RB'C'Ky(!
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i.e., output feedback, we would not be able to verify that K = g'_I_(l_C_;‘
is indeed a solution of the first matrix Riccati equation, This inability

to satisfy the original Riccati equation occurs from the fact that

CKCAACKAC

that is, the output matrix C and the system matrix A can never commute
when G is not a square matrix., This stumbling block is avoided in
our output feedback derivation, because of the fact that (1) we are using
differential operators (A’; and A"z) and (2) tl:le relation Az m(z) =
Am (z) holds, so that there is no problem in deriving a matrix Riccati
equation for’ K given in Eq. 5.3.21 .

To illustrate this result, let us consider the following simple

example;

Example 5.2: Letus, once again, consider the scalar heat

equation and assume that we have a single pointwise control and a
single measuring device which gives the average temperature yft)

over the spatial domain (0, 1), or, more specifically,

1

yit) = fx(t,z)dz
0

If we wish to minimize

a
T = f [v2) + rud(t)] at
0

then we can place this problém within the framework of the preceding
result by observing that q{z) is the scalar 1, W is the scalar 1,

and from the fact that

" 5%
A¥g(zm) = (1) = 0
oz
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the matrix A is the scalar 0, The matrix Y is alsothe scalar 1 and

the matrix B is the scalar [31. The Riccati equation (5.3,25} thus be-

comes

which has the "positive definite' solution

A

k =
|8, |

The optimal control is given by

1

wkf{t}y = - ————— — xit, 2B dz = - — vt
™ «f‘r{ TRE

which shows that we directly feed back the average of the temperature
distribution on (0,1).

To summarize the results of this section, we have shown that
by a judicious choice of the state-weighting kernel Q(z,l) one is able

to derive the finite modal approximation to the pointwise control problem,

from which it was possible to conclude the following:

1. The optimal control law over the class of control laws
which feed back only the modes under consideration is
optimal over the class of all feedback control laws,

2. The optimal cost for the nth meodal approximation mono-
tonically increases with n.

Neither of these two conclusions can be made very easily using straight-
forward modal analytic techniques., In the example presented it was
shown that the feedback structure of the pointwise control system can be
separated into a measurement part, which is independent of control

point location, and a gain part, which depends directly on control point
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location. We next considered the problen:; of having only n measure-
ments of the state distribution available, rather than the entire state
distribution, and we were able to show, under the assumption of a
particular form for these measurements, that the optimal feedback

control law consists of directly feeding back these measurements.



‘CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH

In the preceding chapters we have considered the problem of
minimizing a quadratic cost criterion in systems described by linear
parabolic partial differential equations, We have shown that optimal
controls exist both in the case where the system operator is coercive
and in the case where the system operator is the infinitesimal gener-
ator of a semigroup of operators. The optimal control is given by a
bounded linear transformation of the state of the system, The resulting
optimal feedback operator was shown to be the solution of an operator
differential equation of the Riccati type. By application of the Schwartz
kernel theorem the feedback operator was shown to be represented by an
integral operator whose kernel satisfies an integro-~differential equation
of the Riccati type.

Using these results for general parabolic optimal control prob-

lems, we were able to specialize to the case of pointwise control. It
was shown that the optimal pointwise control is also given by a state
feedback law, which, in this case, is of a simpler form than that of the
distributed control case. We were also able to use the general re-
sults to derive the modal analytic approximation to the optimal point-
wise control and to show that for a special class of state measuring
devices the optimal pointwise control is given by a linear feedback oper~
ation on the measured quantities.

It is felt that, in addition to the results obtained for the optimal

pointwise control problem, this research represents a philosophical

-165-



-166-

contribution to distributed parameter control theory. The general
parabolic optimal control ‘problem was formulated in such a way as to
resemble as closely as possible an analogous problem.in finite di-
mensional control theory. This approach leads to the ability, at many
junctures, to make direct extensions of finite dimensional results to
corresponding distributed parameter results using only the simplest

analytic tools.

There are several areas touched on in this thesis which remain
open topics for research. The hyperbolic optimal control problem was
introduced in Definition 3.7. The remainder of the thesis was devoted
to parabolic optimal control problems, but it seems that a parallel
development for hyperbolic problems would entail using the variation of
constants formula (2. 8. 6) to eventually derive an optimal matrix feed-
back operator which is the solution to a matrix Riccati operator equa-
tion. Presumably, it would t‘hen be a straightforward matter to derive
the optimal pointwise control for the hyperbolic case.

In example 5.1 of Section 5.3 brief mention is made of the opti-
mal point location problem. Although done for a special case, one
could, in the general case, take the optiﬁlal cost function resulting from
an arbitrary set of control point locations, average the optimal cost
function in order to eliminate depepdence on the initial state, and then
optimize the averaged cost function over the set of allowable control
points.

Finally, the output feedback problem considered in Section 5.3
might be generalized to the distributed parameter analog of the finite
dimensional problem sclved by Levine, 32 namely, the determination of
the linear feedback operation on the output which minimizes some

averaged cost functional.
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APPENDIX A

INFINITESIMAL GENERATOR THEOREM

If the Assumptions.2.7.1, 2.7.2, and 2, 7.3 hold then the oper-

ator A; is the infinitesimal generator of a strongly continuous semi- -

group {@(t)}te[ 0, oo) defined on HI:(D) . The function on D repre-

sented by &(t)x, namely (§t)x)(z), is analytic in t andm-times different-

iable in the components z; of z for t>0. Moreover, if XOEHO (D)

there exists a unique function =x(t,z) defined for t >0 and ze€D such

that

i,

iii.

iv.,

vii.

x(t)eH (D) , Yte[0,m)

lim [lx(t) - x(s) || =0 , se[0,0)
t—s ch;n(D)
x(0) = X, .

x(t)e Do(A,) ¥ti>o0

lim ||Ax(t) - Agx(s) ||

t—s 5 (D)

0 , se{0,c0)

— x{t,z) = A=x(t,z)  te(0, o) , zeD

x(t,2) = (Bt)x )(2)
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APPENDIX B

VARIATION OF CONSTANTS FORMULA

R. S. Phillip523 proves the following result: Let A be the
infinitesimal generator of a strongly continucus semigroup of oper-
ators {cbi’f:)}t€ [0,o) and let f(t) be strongly continuously differentiable
on (0,o). Then for each xeDo(A)Cx there exists a unique continu-

ously differentiable function y(s} : [O,w)—szn(D) such that the system

() = Av{t)+ £((t) , v{0} =x (B.1)

has the solution
£
v{t) = &t)x +f ®{t-o)f{e)do (B.2)
0

The requirement of strong continuous differentiability on f£(t) is

required in order that vy(t) be continuously differentiable., If we de-

t t+h
notre g(t) =f &) f{tth-o) -f(t-0)] do +f d{c)f{t+h-o)da
0 t

The integrand in the first term is bounded and converges pointwise to
z(-“;ro as h—0., The integrand in the second term is bounded as h—0,
so that ” g(t+h)-g{h) ” —0 as h—0, implying strong continuity of g(t).
Dividing g(t+h)-g(t) by h, noting that ”%@ {[ fit+h-o) £(t-)] -£' (t-0) } ]|
converges boundedly to zero as h-—0, and noting that "@(o’)f{Hh—o-)

-H{t)f{0) ”—-O as h—0 for c¢e[t,t+rh], we can write

£
5 (t) = Bit)E(0) +f Blt-o) (o) do
O

and the strong continuity of ¥ follows from the strong continuity of f'(t).

~168-
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It should be noted that the application in which this result is

used in Chapter II, Section 8 requires that (B.Z2) holds only for

xEDO(A3) rather than Do(A).



APPENDIX C

- PROOF OF THEOREM 4.2

In this appendix a proof of Theorem 4.2 due to Lions*”

is presented. This theorem is used in Section 4.2 to prove existence of
solutions of the parabolic system equation (3.2.2) and in Section 4.3
to derive necessary conditions for optimality in the coercive system

operator case. Letus restate the theorem for convenience,

Theorem 4.2: I IN(u,v) is a symmetric, continuous, coercive

bilinear form on UXU, and L{u) is a linear form on U, then the
cost functional J(u) = T (u, u}-2L{u) has a minimum value J(u%),
if and only if u* satisfies the equation

M{u*,v) = Liv) , M veu (C.1)

Proof: Suppose u¥ is the minimizing element of the space U

T(wF) < J(1-Ou* + bw) VweU and Oel0,1]

or %[ J(u¥ + @{w-u¥)) -~ J(u¥)] >0

In the limit as 6—0, this expression is the Frechet de-

rivative of J{u) at u=u¥*, which implies that

6
_ w =¥ = ik, w-u¥)-L{w-uk

(G.2)
Since {C.2) must hold for all perturbations w-uw¥, both

-

positive and negative, it must be true that

-170-
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M(uk, w-u*) = L{w-u* for all weU
Since w is any vector in U, w-u¥* = v, any vector in U,
so that Eq. C.1 holds.
The "if" part of Theorem 4.2 is proved by using the

convexity of J(u) to show that

I(v) - T(wr) > F[I(1-Gut + 6v) - Tuk)] V¥veU, 9e[0,1]

which, in the limit as 8—0, yields

I(v)-T ) > < 22 L vS = 2[M{uF, v)-2L(v)] = 0

implying



APPENDIX D

UNIFORM BOUNDEDNESS PRINCIPLE

In the proof of Theorem 4.3 and in other later theorems we appeal
to the uniform boundedness principle to obtain a uniform bound on the
operators &t) and B(t) on a finite interval [0,T]. The uniform
boundedness principle, oxr, as it is sometime referred to, the Banach-
Steinhaus theorem,v is as follows:

Suppose X is a Banach space, Y is a normed linear space, and
{Aﬂ} is a collection of bounded linear operators of X into ¥, where
¢ ranges over some index set A XK itis true that

sup ”Ao.X” < o0
acA

for all x.in a dense subset of X, then there exists an M < o, such
that

”Aa ” <M for all a€ A

A straightforward proof of this theorem is given by Rudin.25 The

: / .. ¥ -
collection of operators {tﬁ\t)}te[ 0, T] and - {B{ ‘)}te[ 0,T] 2T col
lections of bounded linear operators from one Hilbert space into an-
other, and the index set A is [o,T], so that, by this theorem, we

can write [|®{t)[<M and |B() | <B.
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APPENDIX E

POSITIVITY OF THE DIFFERENCE OPERATOR 6Vn+1(t)

We show in this appendix that the solution 6Vn_]_1(t) of Eq. 4.6.19

is positive on the interval [0, T]. Rewriting the equation for con-

venience
y L _1 A
5Vn+1(t) = —6Vn+1(t)A—A>r6Vn+1(t) + 6Vn+1(t)B(t)R (t)B«*(t)Vn{t)

V_OBOR B0V (1) - N(©) 5 &V

(T =0 (E.1

Considering the parabolic system defined on the subinterval [s, T]

%(t) = Ax(t) —B(t)R_l(t)B*{t)Vn(t)x(t)';. x(s) = x_eDo(A,) (E.2)

ale

we examine the expression

T .
<oy, 0 xto =) T = [ L <ov (oxm, x> ar

s

T T . T
= f<6{rn(t)x(t),x(t)> dt +f<6Vn(t)>'<:(t),x(t)> +f< 6Vn(t)x(t),}'<(t)> dt
s 5 S

and use Egs. E,1 and E.2 to eliminate 6Vn+l(t),x(t), and 6Vn+1(T)

obtaining
T
<6Vn+1(s) *g0 % g > = f<N(t)X(t),x(t)>dt >0
s
since N(’é) is a positive operator on [0, T] and proving the positivity

of SVn_I_l(t) on [0,T] since the initial time s r2n ha anv tima in the

interval.

8 All inner products are taken in [—]O (D).
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