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ABSTRACT

Systems described by parabolic partial differential equations are formu-
lated as ordinary differential equations in a Sobolev space of a given
order. Quadratic cost criteria are then formulated in terms of inner
products on this Sobolev space, Existence of an optimal control is
proved both in the case where the system operator is coercive and in
the case where the system operator is the infinitesimal generator of a
semigroup of operators. The optimal control is given by a linear
state feedback law. The feedback operator is shown to be the bounded,
positive, self-adjoint solution of a nonlinear operator equation of the
Riccati type. This operator can also be represented by an integral
operator whose kernel satisfies a Riccati-like integro-differential
equation. ‘

These results are specialized, in a straightforward manner, to the
case of pointwise control. The optimal pointwise control is given by a
simplified linear control law which depends on the control point lo-
cation. The general results are also specialized to obtain the modal
approximation to the pointwise control problem and to demonstrate
the optimality of output feedback for a particular class of output trans-
formations. The pointwise feedback control laws, in these cases, are
characterized, structurally, by a measurement operation which is in-
dependent of control point location and a gain operation which is di-
rectly dependent on control point location., Several examples relating
to the scalar heat equation are solved,
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CHAPTER I

INTRODUCTION

A great deal of research in recent years has been devoted to the
optimal control of distributed parameter systems. With few exceptions
this work has focus;ed on the use of distributed, rather than lumped,
controls. In many cases of practical interest, however, it is actually
desired to control distributed parameter systems by means of finite -
dimensional controls. Examples of such cases would be the control of
the flexure of a launch b;)oster using only rocket thrust and control of
wing and fuselage flexure in aircraft by means of rudder, flap, a.ileron,
and spoiler manipulatio;x. In both of these éxamples the controls are
"d finite number of point;vise controls, that is, controls applied at |
isolateci points within the spatial domain of definition of the distributed
parameter system. Other examples of systems in which pointwise
control might be applied are heat diffusion systems, systems described
by wave equations such as longitudinally vibrating begms and trans-
‘mission lines,transversely deflecting flexible beams, and mechanically
vibrating systems.

Traditional approaches to solving this type of problem include
solving for an optimal d.istribuéed control and then approximating the
distributed control b.y‘ a finite number of lumped controls, or the modal
approach, as used by .]’ohnson,1 for example, in which the system is
assumed to be adequately described by a finite number of modes and the
resulting finite ~dimensional optimization problem is solved for the

optimal modal control. The former approach becomes inadequate if
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we wish to determine feedback control laws rather than open-loop con-
trols, and the latter fails when the system cannot be described by a
countable number of modes, when the number of modes necessary for
adequate description of the system is prohibitively large, when it is
computationally difficult to determine the eigenvalues and eigenfunctions,
or when it is difficult to judge which modes are indeed the dominant
ones.

The purpose of this research is to formulate the pointwise control
problem as a distributed parameter control problem and to presenta
unified approach to solving this problem within the framework of
existing distributed parameter control theory. The distributed param-
eter systems we shall consider are described by parabolic a.nd- hyper -
bolic partial differential equations. Examples of parabolic partial
differential equations are the scalar heat diffusion equation and the heat
diffusion equation in the plane. Wave equations and‘the equation for
transverse deflection of a flexible beam fall within the category of
hyperbalic partial differential equations. The cost functional is
quadratic in the deviation of the state distribution from a desired
distribution and in the control energy. The choice of such a cost
functional is motivated by the desire to derive, in the distributed
parameter case, resuli;s:';f comparable elegance to those of finite-
dimensional control problems with quadratic cost--namely, linear
feedback control laws and simply expressed quadratic optimal cost
functions. -

"'I_‘fhere are many approaches to the solution ;J'f general distributed

e T

pafé.m‘e'fer control problems.. One of the earliest sjrstema,tic‘api:;roaches

was that of Butkovskii's.” He presents a maximium principle for distri-

buted parameter optimal control problems analogous to Pontryagin's
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maximum principle for lumped parameter control problems. The distri-
buted parameter systems which Butkovskii considers are those de-
scribed by systems of integral equations and the necessary conditions
for optimality which he obtains by variational techniques are also in
the form of integral equations. Since we shall consider systems de-
scribed by parabolic and hyperbolic partial differential equations, our
control problem is not in a form in which the Butkovskii maximum
principle is immediately applicable. There are methods, namely
Green's function techniques, whereby the partial differential equation
description of a distributed parameter system may be trans folrmed to
an equivalent integral equation description, but these techniques tend
to be difficult to apply to the general classes of spatial differential
operators we shall consider.

Wang3 derives a maximum principle for distributed parameter
systems described by partial differential equations by using a dynamic
programming procedure. The necessary conditions he obtains are in
the form of partial differential equations. An unfortunate aspect of
Wang's maximum principle is that, although it is systern’atic in pr~inci-
ple, there is no systematic way of treating boundary conditions. More-
over, in a strict mathematical sense, it is impossible to prove existence
and uniqueness of optimal solutions in the function space in which Wang
formulates his control problems.

A step in the direction of formulating distributed parameter con-
trol problems in a form more amenable to the application of well -known
system theoretic concepts is taken by Ba,lakrishna,n,4 who considers the
state distribution in the distributed system to be a point in some Banach

space and then regards the partial differential equation describing the
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time evolution of the state distribution to be an ordinary differential
equation in the strong topology of the Banach space, He uses the as-
sumption that the system spatial differential operator is the infinitesi-
mal generator of a semigroup of operators, the infinite dimensional
analogy of the transition matrix in finite dimensional systems, and
I;roceeds to solve final value problems and time-optimal problems by
means of well-known functional analytic methods. Fattorini5 works
along these same lines in considering the controllability of distributed
parameter systems containing both distributed control and boundary
control. Unfortunately for the problem we wish to consider, or, more
precisely, for quadratic cost functionals, the Banach spaces used by
Balakrisl';nan and Fattorini are much too general.

There have been several applications of the above technigues.
Egorové’ 7 attacks a problem with both interior and boundary control.
He considers the system partial differential equations and boundary
condition equations as dynamics and introduces appropriate adjoint
variables to obtain a2 maximum principle separated into an interior
inequality and a boundary inequality. ,

Sakawa8 considers linear one-dimensional distributed parameter
systems, with boundary control, as represented by integral equations,
and, using variational techniques, derives integral equation necessary
conditions which are simpler in form, but less general in application,
than Butkovskii's maximum principle.

Yeh and Toug treat systems in which the controlled object moves
continuously through the plant with a constant velocity. With the control
assumed to be constrained in magnitude, the authors minimize a

guadratic criterion via Butkovskii's maximum principle., The optimal
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control is shown to be the solution of a Fredholm integral equation of
the second kind.

Kim and Erzbergerlo also consider the minimization of a quadratic
cost functional, using a dynamic programming approach to obtain a set
of functional equations analogous to the matrix Riccati equation for
lumped systems. They solve these equations by a method based on the
eigenfunction representation of the Green's function.

Axelband*! solves the problem of minimizing the norm of the dif-
ference of a distributed parameter system output from a desired output
by the use of a functional analytic formulation similar to Balakrishnan's.
He obtains an optimal solution by a convex programming algorithm.

S:'LI'.'aze:tdim:nrl2 13

considers a quadratic cost functional and, using
stability theory and dynamic programming arguments, proves the
optimality of a distributed control law which is linear in the state of

the system and derives integro-differential equations for the coefficients
of the optimal cost function. He applies this to the problem of con-
trolling aerodynamic and elastic deformation of an airframe,

Yavin and SivanMr treat the optimal control of longitudinal vibrations
in a flexible rod held fixed at one end. From a partial differential
equation formulation they obtain the proper Green's function for trans-
formation to an integral equation. Using a quadratic criterion and a
control applied at the force end, they obtain necessary conditions in the
form of a Fredholm equation of the second kind. An approximate open-
loop control is obtained by approximating the kernel by a sequence of
degenerate kernels,

In a recent book, Lions]'5 formulates quadratic distributed parameter

control problems in Hilbert spaces in which the terms of the quadratic
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cost functional may be written as inner products. He shows, for sys-
tems described by spatial differential operators satisfying a certain
definiteness condition, that solutions to the system equation exist and
are continuous with vespect to the control in the topology of the Sobolev
space of order equivalent to the order of the system spatial differential
operator. Using these Sobolev spaces, he is able to prove the existence
and uniqueness of an optimal control and to determine the necessary
conditions for the optimality of this control. Moreover, he shows that-
the optimal control is specified by a linear feedback control law and that
the feedback operator satisfies a differential equation similar to the
matrix Riccati equation obtained for finite-dimensional systems.

L.ions' results are the foundations upon which this research is
built. We shall extend the class of system spatial differential operators
considered by Lions to include those which are infinitesimal generators
of semigroups of operators and will show that the results obtained by
Iions for his more restrictive class also hold in the more general case.
A fact of key importance which we shall use is that differential operators
defined on a Sobolev space are closed opsrators in the topology of that
Sobolev space. This is one of the requirements for an operator to be
the infinitesimal generator of a semigroup of operators. Another useful
feature of Sobolev spaces is that boundary conditions become easy to
handle when the state space for the system is a Sobolev space. We
shall also show that distributed systems driven by finite dimensional
controls (the pointwise control problem) fall within the framework of
this formulation and the results obtained for a general class of controls
are specialized to the case of pointwise control in a straightforward
manner. It should be noted that Rus sell16 attacks the problem of con-

strained pointwise control with a minimum system energy cost functional.
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He does not develop a Hilbert space formulation of the problem and he
circumvents the unboundedness of the system spatial differential oper-
ator by assuming that his initial states have bounded spatial derivatives.
By treating our pointwise control problem as a special case of a general
quadratic optirp;ization problem in a Sobolev space, we need not con-
sider any such confining assumptions on the initial conditions.

The organization of the thesis is as follows: Chapter II provides
the mathematical background necessary for the formulation of parabolic
and hyperbolic optimal control problems. The material is presented in
such a form as to point out continually the relationships between
infinite dimensional and finite dimensional system theoretic concepts.
Sobolev spaces of finite order are defined by means of distribution
theory. Elliptic differential operators of the coercive and, more
general, strongly elliptic type are defined on these Sobolev spaces. It
is then shown that parabolic and hyperbolic partial differential equations

may be written as ordinary differential equations in the Sobolev space.

The remainder of the chapter is devoted to semigroups of operators--
their definition, the concept of infinitesimal generator, and the pre-
sentation of a formula analogous to the variation of constants formula
in finite dimensional systems. _

In Chapter III we present the precise mathematical formulation of
the parabolic and hyperbolic optimal control problems, The parabolic
_.control problém is then specialized to the case of pointwise control,

Chapter IV is concerned with the solution of the parabolic optimal
c'ontrol problem in both the case where the system operator is assumed
to be coercive and in the case where the system operator is assumed to

be the infinitesimal generator of a semigroup of operators. The path to

a solution first involves proving that a unique solution indeed exists.
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In the coercive systemn operator case it will be shown that because of
continuity of the optimal state in the optimal control, the optimal con-
trol is given by a linear state feedback law in which the feedback
operator is the solution of a2 Riccati operator differential equation.
Under the assumption that the system operator is the infinitesimal
generator of a semigroup of operators this continuity relation is not
easily demonstrable, but it is shown that if a solution of the Riccati
operator equation exists, then the optimal control is given by a linear
feedback control law. It will then be shown that such a solution does
exist., The remainder of the chapter contains a discussion of the be-
havior of optimal solutions when the terminal time approaches in-
finity and an alternative formulation of bounded operators on a Sobolev
space as integral operators and the subsequent modification of the
Riccati operator equation.

With optimal solutions to the parabolic control problem having beer
determined for general control spaces, we specialize the results to the
case of pointwise-control in Chapter V and show that the optimal feed-
back operator in the pointwise control case is of a simpler form from a
computational point of view. The second part of this chapter is con-
cerned with the infinite terminal time pointwise control problem. It
will be shown that by a judicious choice of the quadratic cost functional
the modal analytic formulation of the pointwise control problem is ob-
tained. This appr_oach will enable us to make conclusions about the
optimality of modal analytic solutions which we are unable to make by
the straightforward techniques of modal analysis alone. We then con-
sider the case where the entire state is not available to be fed back,

but only the outputs of a finite number of measuring devices. It will
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be shown that if the measuring devices are of a certain class, then the
optimal contrel law will consist of feeding back only the outputs of
these devices.

The concluding Chapter VI contains a summeary of the results ob-
tained and recommendations for further research.

It should be stressed that throughout the thesis a general class of
distributed parameter optimal control problems will be solved, and the
results will be specialized so as to obtain results in the pointwise
optimal control problem and to obtain insight into the modal analytic

and measurement problems.



CHAPTER II

MATHEMATICAL BACKGROUND

2.1 INTRODUCTION

The purpose of this chapter is to lay the mathematical foundation
for the discussions and derivations in succeeding chapters. The vari-
ous results stated in this chapter do not exhaustively cover the field of
differential operators and partial differential equations, but serve to
form a relatively complete set of tools to be applied to the problems of
interest. The guiding philosophy for both choice of results to be dis-
cussed in this chapter and direction of theory in the sequel is the at-
tempt to provide results for distributed parameter systems which are
roughly parallel to known vesults in lurmped parameter theory. In
order to acﬁieve this parallelism, related concepts in distributed
parameter the01:y must be provided for such lumped parameter system
concepts as state and state space, matrix operators, equations of state,
transition matrices, and variation of constants formulae.

Section 2.2 is concerned with the concept of state in distributed
parameter systems and the discussion of particular spaces of {general -
ized) functions which serve as state spaces for systems described by
partial differential equations.

The reason for the choice of the spaces in Section 2.2 is made
more clear when spatial differential operators are discussed in
Section 2.3 and it is seen that elements of these spaces have sufficient
smoothness to qualify as elements of the domain of differential oper-

ators. The properties of coercivity and strong ellipticity of differential

-10-



-11-
operators are treated in this section. The distinction between these
two concepts will not be apparent until necessary conditions for optim-
ality are discussed in Chapter IV.

Parabolic and hyperbolic partial differential equations and their
boundary conditions are introduced in Sections 2.4 and 2.5. Emphasis
is placed throughout these two sections on the fact that these equations
serve as equations of state exactly as ordinary differential equations
describe the evolution of finite-dimensional state variables.

In Section 6 the concept of a semigroup of operators, the analog
of the transition matrix in the finite dimensional case, ig defined and
explored. In addition to the properties of these semigroups the manner
in which an operator may generate a semigroup of operators is dis-
cussed, This is further elaborated on in Section 2.7 where strong
ellipticity is shown to be a sufficient condition for a différéntial oper-
ator to be the infinitesimal generator of a semigroup of operators,

The final section of the chapter contains the relation of the semi-

group of operators generated by the system operator of a forced {con-
trolled) system to solutions of this system. This expression for so-
lutions of the forced system corresponds directly to the variation of

constants formula for the state of a finite dimensional forced system.

2.2 DISTRIBUTION THEORETIC CONCEFTS AND
SOBOLEV SPACES

The state of a finite dimensional system can be identified as a
point in a finite dimensional FKuclidean vector space., In distributed
parameter systems the state is a function, at each mstant of time, de-
fined on the given spatial region, or, alternatively, the state is a point
in an infinite dimensional (function} space. ¥or the purpose of pre-

paration for our subsequent study of quadratic performance criteria,
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attention will be focused on the Hilbert space of square integrable func-
tions on the spatial region of definition. As will be shown, this space
is not quite suitable for distributed parameter applications, but certain
subspaces, namely the Sobolev spaces of finite order, are. As a pre-
liminary to the definition of Sobolev spaces, a brief discussion of
distribution theory is required,

Liet us denote by D and 8D the spatial region of definition and
its boundary. The variable 2z is used to denote a point in D. Further
let CGZ(D) be the space of infinitely differentiable functions of compact
support on D. The space of bounded linear functionals on Ca;(D) (i.e.,
the dual of GCOO(D)) is called the space of distributions on D and is

denoted by«¥ (D). An element F ofXJ (D) has the form

F(¢) = ff(z)¢(z}dz 2 q,ec"z(D)
D

where f(.) is some Lebesque integrable function on D. The most
familiar example of a distribution is the Dirac &-function or impulse,

6{z-2'), which is the linear functional
Ald) = fﬁ(z—z')q;(z)dz = $(z")
D

There are several properties of the space of distributions which
we shall exploit. First, the spé,ce of square integrable functions on D,
LZ(D), is a subset of the space of distributions. This is easily seen by
noting the fact that Co(D)SL'D) (any infinitely differentiable function
with compact support in D must be square integrable on D) and,
therefore, the dual space of LZ(D) must be contained in the dual space
of CT;(D), namelyaﬁ {(D}. Since LZ(D) is its own dual the following in-

clasion relation holds
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c";(D)CLZ(D) c o)

The second property of distributions which it is useful to exploit is the
unique specification of the derivative of a distribution. If D is a
region in n-dimensional FEuclidean space and z is the n-tuple

(zl, Zos e s zn), BF/BZi for some Feog(D) is uniquely specified by

L@ [O)4zaz - -ff(z) 92 ()dz = 1(-22) ¥4eC? (D)
i D 1 D 1 i
What, in effect, has been achieved is the ability to specify a meaningful
expression for the operation of differentiation of any distribution, or,
more to the point, differentiation is defined for all elements of LZ(D).
This generalized approach to differentiation can be extended to
more complicated differential operators. Introducing the feollowing

notation, we let
n

4 = (a9, ---q,) lal = > a (2.2.1)

n
i=l
where q is a positive integer for i=1,2,...n, and defining the dif-

ferential operator

a, g q

p9 = D!D,?...D™ , with D. =% (2.2.2)
n i azi

then for each FedJ(D)

pir(y) = (-1)|2 5 ¥ 4eC (D)

Let us make the following definition

Definition 2.1+ The subset ofaﬁ(D), denoted by Hrn(D), with
the property
H™(D) = {Fel (D) . Fel?(D) , DYFelX (D) ¥q , [ql<m)

is called the Sobolev space of order m, with m an integer.
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Moreover, defining the following inner product for F, GEHm(D)

<F,G> - z <pir,pic>,
L (D)

Hrn(D) can be shown to be complete in the topology induced by this
inner product {see Ref.17). Chapter 4), and, therefore, I-Im(D) is a
Hilbert space.

The usefulness of the Sobolev space Hm(D) can be understood
when it is recalled exactly what are the useful pr-operties of finite -
dimensional state spaces. First, any finite dimensional space is com-
plete and any operator {matzrix) on this space is everywhere defined.
The dif.ferential operator Dq, as described above, is everywhere de-
fined on CGZ{D), the space of infinitely differentiable functions with
compact support in D. Unfortunately, there is no norm topology for
which this space has the completeness property of finite dimensional
vector spaces. The second useful property of finite Airnensional
spaces is the fact that all linear operators on these spaces are closed,
If LZ(D) is taken to be the space on which D? is defined (in this case
only densely defined), D% is not a closed operator, If D! is the
closure of DY on LZ(D), then the domain of DI would contain non-
differentiable functions, By the artifice of introducing distributions
we are able to define the derivative even for non-differentiable func-
tions, and it is qasily seen that the non-differentiable functions in the
domain of the closure of DY are those functions F in LZ'(D) for
which DYF is in LZ(D). More succinctly, the domain of the closure
of D% is Hm(D) for some m. With the inner product defined above
for Hm(D) the Sobolev space of order m has the very useful property
of completeness. Thus, it is seen that Sobolev spaces fill the bill as

candidates for distributed parameter state spaces.
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2.3 DIFFERENTIAL OPERATORS

With the introduction of Sobolev spaces as the prototype of a
state space for distributed parameter systems, it remains to be dis-
cussed what exactly are the properties of spatial differential operators,
which play the role in distributed pa,rame.ter systems which matrices
play in lumped parameter systems. Some of these properties were
touched on in the preceding section as part‘of the justification of the
usefulness of Sobolev spaces. It was shown, in essence, that a dif-
ferential operator of order m is everywhere defined (with the aid of
distributic;n theory) and closed on Hm(D). This is, however, all that
linear differential operators have in common with linear operators in
finite dimensional spaces.

The first property which characterizes differential operators is
the fact that they are not bounded. This, aside from the infinite di-
mensionality, is the single most complicating factor in distributed
parameter systems. It causes difficulty in proving existence of so-
lutions to partial differential equations, and, in contradistinction to
finite dimensional systems, necessitates that great pains must be taken
in characterizing these solutions, as will be seen 1n Sections 7 and 8 of
this chapter.

The particular type of differential operators which will be con-
sidered, as indicated somewhat by the operator D? in the preceding
section are those of linear form, composed of part'ial derivatives with
respect to each component of the spatial variable and of a specified
order m., Embellishing the notation of-Section 2, let us introduce the
real functions a'q(z), where q is the n-tuple defined by (2.2.1), and

define the formal differential operator A, of order m
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A = Z aq(z)Dq (2.3.1)

l[a] <m

where D% is the differential operator described in Eq. 2.2.2 and the

notation =ignifies the composite summation
la|<m
Z = z + Z + ... Z
lal<m  q g g
lal=0  lal=1 lal=m

With. D° representing the zeroth order differential, or identity,
operator. Ti’le particular nature of the functions aq(z) will be clari-
fied in the discussions on coercivity and ellipticity.

Just as the formal differential operator A has been defined, it
is a straightforward matter to define the formal adjoint of A, denoted
by A+, as

At Z (-l)lq]:)qaq{z,) (2.3.2)
lg[< m
In general, the formal adjoint A" does not equal the adjoint operator

A¥ where A¥ satisfies

<x, Ay> = A*x, v
H™(D) < >Hm(D)

Indeed, it can be shown, by means of Green's Formula, .that
<x, Ay> = <Ax,y>+C
H™ (D)
where the constant C depends on conditions at the boundary 98D. In
the case of Dirichlet boundary conditions, which will be discussed in
Section 2.5, C=0 and the formal adjoint A equals the adjoint A,
We shall now discuss what is meant by an elliptic differential

operator, and we shall subsequently define the properties of coercivity
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and strong ellipticity of elliptic differential operators, which properties
will play an important role in the optimization results of Chapter IV.
If the functions aq(-) are required to be essentially bounded functions, or,
equivalently, are elements of the space IED(D), then an mth ordex dif-
terential operator of the form specified in Eq. 2.3.1 is said to be elliptic
{see Ref. 18, p. 1704) if the inequality
Z 2,(?) 3 40 for all {eR", zeD
g | =m
is satisfied. Note that this is a condition on the highest order termn of
the differential operator, i.e., the terms containing partial derivatives
of order mm. If we restrict our attention to elliptic differential oper-
ators which contain only even order partial derivatives, we define the

concept of coercivity in the following manner:

Definition 2, 2: If A is an elliptic differential operator of the
form
: — A = Z aq(z)Dq
lal<2p
where aq(z) =0 if |ql #2k, for k=0,1,...,p, then A is said to be

coercive if the inequality

(-1)~ Z aq(z)c:qs-o, Z ¢4 (2.3.3)

lqf=2k lq]=2k

is satisfied for some o> (0, for k=0,1,...p, and for all {;ERn and zeD,

This concept of coercivity arises from the use of this term by
J. L. Lions (Ref. 15, p.22) to describe the property of operators more

commonly referred to as ""negative definiteness'', namely the condition
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for some a > 0 and for all erm(D). It might be noted that just as
negative definiteness of a matrix implies that the eigenvalues of the
matrix lie on the negative real axis, the spectrum of a coercive oper-
ator is a subset of the left half-plane.

The condition for strong ellipticity is not as stringent, and a

strongly elliptic operator is defined by:

Definition 2.3: If A 1is an elliptic differential operator of even

order 2p, then A 1is said to be strongly elliptic if the inequality

(-1)P z aq(z)t..qg—a z ¢4 (2.3.4)

lal=2p . lq|=2p

is.satisfied for some a > 0, and for all LeR® and zeD.

Note that, unlike in the Inequality 2.3.3 for the coercive operator case,

the summation in Inequality 2.3.4 is taken over only the highest order
terms of the operator A. All of the terms of a given order in the coerciv
operator case must satisfy this type of inequality. Thus, coercivity
implies strong ellipticity, but the converse does not hold.

To illustrate coercive and strongly elliptic operators, let us con-~
sider the second order differential operator defined on some subset D

of R®

The coefficients of this operator satisfy Inequality 2.3.3 f or k=0 and

k=1 if we choose a=l, implying that this operator is coercive (and, of
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course, strongly elliptic). If, on the other hand, we consider the dif-

ferential operator

2 2

A =2y 2 4
2 5.2 5%
1 2

we see that Inequality 2.3.3 is satisfied for k=1, but is not satisfied
for k=0, and, thus, the ;)perator AZ is not coercive. However, In-
equality 2.3,4 is satisfied, which implies that AZ is a strongly elliptic
operator.

The fact that we do not consider more general operators than
those described above is a reflection of the state of knowledge con-
cerning differential operators and the fact that there are many physical
systems of interest whose mathematical models have spatial differential

operators falling within these categories.

2.4 SYSTEM EQUATIONS“PARABOI;IC AND HYPERBOLIC
The purpose of this section is to tie together the concepts dis-

cussed in the preceding two sections--namely, state, state space, and

system differential operators--and arrive at a description of a distri-
buted parameter system in the form of one or more partial differential
equations. This, of course, is in direct analogy with the equations of
state in finite dimensional systems. The only ingredient missing up to
now is the time variable.

Let us consider functions x{t) defined on te[0, T] and having
values in the Sobolev space Hm(D), defined in Section 2 of this chapter,
that is, x(t)eH™(D)¥te[ 0, T]. Just as was done in Section 2, these
vector functions x(t) may be considered as points of a function space.
Since emphasis has been placed on considering Hilbert spaces as state

spaces, the space LZ(O,T; I-i:m(D)) is defined:
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Definition 2.4: If x(t)eHm(D) for all te[ 0,T], then the square

inte grable Sobolev space-valued functions are

T
1200, T; HDY) = {x(-)=x(t)eH™(D), ¥ te[ 0, T] andfllx(t) I dt <
¢

H (D)

Note that this is a Hilbert space with inner product

T

= x(t}, d
[ <t > 4

<X(‘):V(')>- 2
L 0 D)

(0, T; HH(D))

Since it is desired to represent physical Jistributed parameter
systems, it is essential to be able to characterize partial differentiation
by timme. With the discussion of the distribution theoretic results in
Section 2 the tools.are on hand to make this a straightforward pro-
cedure. If we consider the space of infinitely differentiable Sobolev
space-valued functions with compact support in [0,T] and its cor-
responding dual space of distributions , which, for convenience, may be
denoted by«J [ 0, T], then the following Sobolev space of Sobolev space-

valued fanctions may be defined (see Ref. 15, p. 115).

Definition 2,5: W{0,T) is the set of Sobolev space~valued func-

tions defined on [0, T] with the property

W(0,T) = {x(-) :x(-) eLX0, T; H™(D)) ; 55 x(-)eL? (0, T; H™(D))}

This, as might be expected, is a Hilbert space with inner product

<=(1.¥() >y 0,1y = <X(')’Y(')>L2(0,T;Hm(D))

at & 71200, v, 5Dy,
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We are now in a position to describe partial differential equations

by ordinary differential equations in Sobolev space-valued functions.

Two types of partial differential equations are considered--parabolic

and hyperbolic. Parabolic equations are of the form:

an%_z) = Ax(t,z) + f(t,z) (2.4.1)

where A is an elliptic partial differential oPerafor in the spatial vari-
able z as described in Section 3. If x(t,z), te[0,T], zeD is as-
sumed to be the element x(t)eW(0,T), Eq. 2.4,1 has the equivalent
formulation as the ordinary differential equation in LZ(O, T; HIn(D))

?1%‘ x{t) = Ax(t)+ f(t) (2.4.2)

where f(.)ELZ(O,T; LZ(D))

As might be expected from knowledge of the finite-dimensional prob-
lem, an initial condition must be given so as to specify an exact so-
lution of Eq. 2.4.2. If the initial data is given by X(O,z):xo(é) where
XO(Z) has the representation XOGHI:(D), then Eq. 2.4.2 has the initial
condition

x(0) = x (2.4.3)

As an example of a parabolic equation, consider the single degree of

freedom heat diffusion equation

2
oxft.z) | M 8 x(t,z) ; M = constant
ot 2
oz
82
where, of course, the operator A is —>, an elliptic operator, and
oz

x(t, z) is a temperature distribution.

T

" This description of distributed parameter systems is, of course, not
complete without the specification of boundary conditions, which will
be discussed in the next section.



-22-
Before discussing hyperbolic equations it is necessary to extend
the previously defined state space to a two-dimensional form con-
sisting of column vectors (xl(t), xz(t)), where, for each value of
te[0,T], xi(t)EHm(D), i=l,2. A more general spatial differential oper-
ator must also be defined, namely, a 2 X2 ma_trix the elements -of
which are spatial differential operators as described in Section 2. 3.
The particular matrix operator to be discussed is:
0 I
&€ = (2.4.4)
A 0
where A is as defined above and I is the identity operator on Hm(D) .
We are now in a position to describe second order hyperbolic
equations in terms of the state variables and state spaces of Section 2.2
Hyperholic equations are of the f-orm

2

8 xt:z) . Ax(t,=) + £, 2) (2.4.5)
ot

where A 1is elliptic, If x(t,z) and 2_3_3_%%_2__21 te[ 0, T], zeD are element
of W(0,T), Eq. 2.4.5 has the first order vector ordinary differential

equation representation:

xl(t) xl(t) 0
d
s -a 4 (2.4.6)
X, (t) x,(t) f(t)
where xl(t) = x(t) xz(t) :%{—E(ﬂ’ and {{.) is assumed to be an

element of LZ(O, T;Hrn(D)) .
Once again, initial conditions are required and this time they

take the form of a Z-vector

E

x.(0)
1
2O =l 0] = x | = %o (2.4.7)
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with X and :'co each being elements of an(D) and representing the
initial Jdata %x{0,z) and gaé-x(t, z)|t=0, respectively.

An example of a hyperbolic equation is the equation which governs

the magnitude of langitudinal wvibrations in a rigid beam

Oxit,n) | a%x(tm)
2 b 2

K = comnstant
ot 9z
where x(t,z) is the transverse deflection of the point z in the beam, at
2
time t. The operator A is again the elliptic operator 5 - It should
oz

be stressed that the operator A is elliptic in both parabolic and hyper-
bolic squations.

These two classes of partial differential equations, though not
ger-leral enough to describe all linear distributed parameter systems,
describe a great number of physical systems, and, such being the case,'
are worthy of being the equations of state considered in a system theo-
retic and, subseguently, control theoretic development. All of the
elements analogous to system description in lumped parameter systems--
namely, state, state-space, system operator, and state equation--have
been introduced. One subject, boundary conditions, which are indigenous

to distributed, but not in lumped, parameter systems, remains to be

discussed in Section 5.

2.5 BOUNDARY CONDITIONS

This section is devoted to the discussion of boundary conditions to
partial differential equations. This is a slight deviation from the stated
purpose of this chapter--the development of a system theoretic ap-
proach parallel to that of finite dimensional systems--but one which is
necessary for the sake of completeness. It will be shown that boundary
conditions can be treated within the framework of the system theoretic

notions developed in the preceding sections. Dirichlet and Neumann
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boundary conditions will be defined and, for the case of Dirichlet
boundary conditions, the compatibility with the state space conditions
already given will be demonstrated in detail . "

If the differential operator A in either the parabolic system
(2.4.2) and (2.4.3) or the hyperbolic system (2.4.6) and (2.4, 7) is
of order m, then the Dirichlet boundary conditions, defined on the

boundary 8D of the region D, are

- 9 . - (5 ] -
x(t) ,aD‘ o= () IBD ==t =0 M tefo0,T]
oD
{2.5.1)
Bk th
where n denotes the normal to boundary 8D and I is the k
gn

derivative normal to, and directed to the exterior of, the boundary.
As an example of Dirichlet boundary conditions, let us consider the

heat equation defined on the unit circle in RZ, that is, the equation

ax(t, z) 8%x(t.z) , 8°x(t,2)
ot 2

= 5 ; B = constant
azl Bzz
“1
where the spatial variable =z is the vector ” ; and the spatial.
2
domain D is
D = {z;eR2 :z;i"-l- z§<1}

The boundary 8D 1is, of course,

2
1

oD ={zeR®:2+ 2% - 1)

The Dirichlet boundary conditions tell us that

x{t, 2) lzeaD =0

or, the temperature on the circle zi + zg =1 is required to be 0,

Moreover, since the order of the system, m, is 2, we have the

remainine condition
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axa(;, z) =§a;%£l C059+3—}£—L'—Zl sinf=0, ¥ 8¢ 0,27]
zedD 1 2€5D 2 zedD

which tells us that the component of the gradient normal to the unit
circle must be 0, i.e., no heat flow outward through the boundary.
In order to incox-'po rate this within the framework of the theory
discussed in Section 2.2, we must first develop the concept of Soholev
spaces of negat'ive and fractional orders. The Sobolev space of

negative order H_In

(D) can simply be looked upon as the dual space
of the Sobolev space of positive order H (D), or (Hrn(D))':H_m(D).
Fractional order Sobolev spaces are defined by means of Fourier an-

alysis., If z is the spatial variable, which is an element of R, then

the Fourier transform of x(z),?x(@) is

F =(t) =fexp(2wj(é-z))x(z)dz (2.5.2)
D

where ({.z) is the usual vector inner product on R'. It is shown™

that the Fourier transform of the differential operator bR operating

on x(z}, :% qu(g) is. of the form

X 2
7 Blx(ty = (ZWJ)Iq'éqﬁxm, ¥ xeL (D) (2.5.3)
where (2 is the product defined in Section 2. This results in an al-

ternative definition of the Sobolev space Hm(D), namely

Hm(D) = {x : Qq,?xeLz(D)Vq with Iq!_(_ m}

or, equivalently,

D) = (x: (14 [L]5PF = ai20)) (25,4
There is no restriction in allowing m to be any real number in Ex-
pression (2.5.4), rather than requiring it to be a whole number in
Section Z. Thus, we have arrived at the specification of fracticnal
order Sobolev spaces. These are again Hilbert spaces with inner pro-

duct given by
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2, m /2 2,m/2,_,
I NS (¢ 14 b B¢ 14 A R 2 O
H (D) LD)
The theorem of the trace, stated and proved by Lions and Magenes,
Ik
yields the information that the normal derivatives —a—;{{
on

given in

aD

Eq. 2.5.1 are elements of the fractional Sobolev spaces th-knl/z(BD),

%

Bnk

0< k<m-1, if x€H (D), and the transformation x—{ , 0K k<m-1’

8D

is a continuous linear surjection of H (D) onto the product space

m-l m-k-1/2
T H (6D). The kernel of this transformation, that is, the
k=0
o 9x a™ Ly
space of xe (D} for which xl = =.,, =———= =0, is
9D On m-1
8D 8n 5D

the closure of the space of infinitly differentiable function of compact

support in D, CT;(D), in the norm of H (D). Dunford and Schwartz
(see Ref., 2.1, p. 1652) denote this closure as HO {D}, so that we have

shown that we can represent this closure of Cd;(D) in the following

manne1: E—
K
HO(D) = {xeH™D) : 2£| =0, 0<k<m-1} (2.5.5)
on

aD

Since Hzn(D) is a closed subspace of Hm(D), and therefore a Hilbert
space (with the inner product of an(D)), it may just as easily be con-
sidered as a candidate for a state space, in the sense of Section 2.2, as
Hm(D). Thus, the additional consideration of Dirichlet boundary con-
ditions does not divert our course from that of developing a system
theory analogous to that of finite dimensional systems.

The Neumann boundary value problem is associated with a second

order elliptic operator of the form
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n I
9 )
A= -Z zazi (a'ij(z) '8—2—;) +ao(z) (2.5.6)
i’—']. le

with the coerxcivity property, Inequality 2.3, 3,requiring that there exist

an a > 0 such that
n n

2 2 2, S no__, -
a.lj(z)?:’,iﬁ,j}_a(gl + §2+...+§n) i for all LeR™ and zel

and ao(z) >a >0 ; for all zeD
The Neumann boundary condition relative to A is

8x

BVA

oD

n n
where o9x = z
ov
A £
i=1

terior of 8D at z€dD, and therefore cos(n, zJ.) is the jth direction

a. . (x) _9x cos‘ (n,2z.), n is the normal to the ex-
ij 8Zj J
=1

i

cosine; g is a specified function. Since by the theorem of the trace,

discussed above for the Dirichlet problem Bx must be an ele-

av |
A GED)
ment of H-l/Z(BD), so must it be true that gEH—l/Z{BD) . In this case

the kernel of the transformation x—-—-—a-x—
BvA

-g 1is not so readily
oD

identifiable as was the case for the Dirichlet transformation, however,

direct use of this kernel itseli will not cause too many analytical
stumbling blocks.
Ellipticity of the system operator for both types of boundary con-

ditions is required to prove existence and uniqueness of solutions for

1T, 20

either parabolic or hyperbolic systems. The property of
strong ellipticity will be used to derive a very useful system theoretic

result in Section 2.7 and optimization results in Chapter IV.
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2.6 SEMIGROUPS OF OPERATORS

This section and the final two sections of this chapter are de-
voted to semigroups of operators and the systems which generate them,
It will complete the system theoretic descripiion of distributed param-
eter systems by giving the distributed parameter analog to transition
matrices and variation of constants formulae of finite dimensional
system theory. In this section we shall consider semigroups of operators
defined on a general Banach space x with range in X . It will be
useful in the sequel to consider these operators as elements of a space
of operators, 5 (X), the space of endomorphisms on the Banach

space x . Let us make the following definition:

Definition 2. 6: A mapping &t) : [ O,m]-——g (j(), denoted by
{(I:(t)}te[ 0,0)’ is called a one-parameter semigroup of endomorphisms

with parameter te[0,»), if for all t 26[ 0,»)

.t

Fleyhty) = B(t)B(Ey) (2.6.1)

Equation 2.6.1 is called the semigroup property, and the set of oper-
ators {@(t)}te[ 0,0) with the semigroup property will be referred to as
a semigroup of operators as a matter of convenience.

Two different types of semigroups of operators may be con-
sidered, depending on the manner in which &{t) converges as t ap-
proaches zero. The convergence may be uniform in the opsrator
topology of g (X), or more specifically, lim “@(t) - $(0) ” = 0, where
the norm is the usual induced operator nor:n*bc{))n j( . For this case of
uniform convergence the procedure of characterizing the semigroup of

operators is quite straightforward and stands as a direct analogy to the

description of the matrix e— t in finite dimensional systems. The other
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type of semigroup to be considered is one in which the convergence as
t approaches =zero is strong, or lim ”cb{t)x - GB{O)X” = OVXGX.
With strong convergence the analysti:(is much less straightforward.
The Banach space of endomorphisms on X , E (X), is a Banach
algebra, and Hille and Phillips (Ref. Z1, p. 283) show that for any

Banach algebra é’ and wmiformly cantinuous (t) : [ O,W}—*ﬁ such that

f.{t1+t2) = f(t))ft,) , for tl,tze[o,w)
then f(t) must be of the form
[oa]
tn n
f(t) = I-!—Z; a (2.6.2)

n=l
where I is the unit {identity) element of the Banach algebra @ and
a is some unique element of ﬁ . The series is absolutely convergent
for all te[0,w). This result can be specialized, of course, to the Banach
algebra of prime interest, namely, ﬁ = é (j() . Any uniformly con-

ver gent semigroup of operators {®(t)} can be represented by

te 0p)

the expression

B{t) = exp(tA) (2.6.3)
where A is a bounded operator in 5 (j(} and the exponential ex-
pression follows from Eq. 2.6.2.

An important relation exists between the resolvent of the opar-
ator A and the Laplace transformation of the semigroup. The
resolvent is the operator R{A;A) = (AI - A)_l defined for all values of
A for which the inverse exists. It can be shown (see, for example,
Ref. 21, p. 338) that the resolvent operator is the Laplace transform

of the semigroup operator
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«w
-X
R(\; A) =f e ot at
0
for all A with [7\]2 “A”, and, moreover, as might be expected from

knowledge of Laplace transform theory,

Bit) = E‘lw?j_ e MR\ Ayar
T

where I' is a closed path surrounding the spectrum of A in the clock-

wise sense.

The operator A is called the infinitesimal generator of the semi-

group and special note should be taken of the fact that it is bounded, It
is also important to note that every bounded coperator in g (X) is the
infinitesimal generator of a uniformly convergent semigroup of oper-
ators. This leads to the conclusion that unbounded {(or, more par-
ticularly, differential) operators do not generate uniformly convergent
semigroups of operators, so that attention naturally becomes focused on
strongly convergent semigroups of operators.

In order to characterize strongly convergent semigroups of

operators, we first make the following definition:

Definition 2.7: The infinitesimal operator AO of a semigroup

{(]S{t)}te[ 0,) is defined by

A x = lim Ax (2.6.4)
o g0 1
1
A == n -1
where n=T [ @) - 1]

whenever the limit in (2. 6. 4) exists.
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The set of xe ‘3( for which the limit exists is simply called the domain
of AO, DO(AO) . We would ideally like to achieve an exponential charac-
terization of the semigroup as in the uniform case, but in this case the
candidate for infinitesimal generator, AO, is not bounded {(the domain of
AO is not necessarily all ofj( ) so that an exponential expression in-
volving AO would be me aningless.* Aid in this dilemma lies in the
fact that the operators ATI given in Definition 2.7 are bounded oper-
ators so that we might expect the exponential solution we desire to be
some kind of limit of exponential expressions involving the An‘s. It

is shown (see Ref. 22, p. 401) that a limiting exponential solution does
exist, namely

Hit)x = lim exp(tAn)X ¥ xeDo (A ) (2.6.5)
n—0

where the convergence is uniform with respect to t in every finite
interval [0,s]. So every strongly convergent semigroup has the charac-
terization (2.6.5).

The most important question of all, at least for our purposes, is

under what conditions will an unbounded operator A be the infinitesimal
generator of a strongly convergent semigroup of operators? The Hille-
Yosida theorem (Ref,21,p.363) tells us that a sufficient condition for a
closed linear operator A to be the infinitesimal generator of a semi-
group {t_’p{t)}tE[ 0,) such that [|®{t)|]| <M 1is that the domain of A be

dense in X and the following inequality holds:**

" Despite this, we shall use infinitesimal generator and infinitesimal
operator interchangeably.

s
A

The Inequality 2.6..6 is a sufficient condition for the inverse Laplace
transform of R(A; A) to exist. This inverse transform is the semi-

group {&{t) }te[ 0mw)’
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lor-2 < MY™® for A>0  and n=1,2,3,... (2.6.6)
We now have the tools to determine whether the spatial dif-
ferential operators of Section 3 of this chapter are infinitesimal gener-

ators of semigroups. This is the direct concern of the next section.

2.7 DIFFERENTIAL OPERATORS AS INFINITESIMAL
GENERATORS OF SEMIGROUPS

This section relates what has been stated about semigroups of
operators with the characterization of solutions to partial differential
equations. For systems containing elliptic operators of even order
Duniord and Schwartz 18 establish the connection by giving the necessary
conditions for the differential operator to be the infinitesimal generator
of a semigroup of operators and showing that the solution of the un-
‘forced parabolic equation associated with the spatial differential oper-
ator at time t is simply the operator &{t) operating on the initial data.

To qualify for infinitesimal generator the system operator A,
given by Eq. 2.3.1, must satisfy a condition which is a slight modifi-

cation of the condition for strong ellipticity given in Section 2.3, namely,

(-1)"’“/2 Z aq(z);qgo for all LeR", zeD T (2.7.1)
lq [ =m

Additional restrictions must be placed on the state space to be
considered. First, let us define two restrictions Al and AZ of the

operator A which have the following properties:

Do(A) = C (D) ; Ax=ax ¥ xeC”(D)

(2.7.2)

Do(A,) = H(D) ; A,x= Ax ¥ xeH"™D)

2.) 2
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We now define the extension A3 of Al which has the property

Do{A;) = H(D) HH?/Z(D) ; Agx = Ax ¥ xeDo(A

3 3)
{2.7.3)

whe re HO (D) 1is specified in Section 5. Note that the problem of
. . . , /2

Dirichlet has entered with the introduction of the space H0 (D).

With these assumptions on the operator A and on the state space
to be considered, Dunford and Schwartz le prove a theorem, stated in
detail in Appendix A, which,'in summary, yields the following results:

(1) A3 is the infinitesimal generator of a semigroup of bounded

operators {é’)(t)}te[ 0.o)

(2) If xoeDo(A3) is the initial condition for the equation
X = Ax, then the solution is x{t) = @{t}xo

It is clear that the differential operator 32/8 2%, which is the sys -
tem operator for both the one -dimensional heat equation and the trans-
verse bearn vibration equation, satisfies the Inequality 2.7.1, a.r‘ld,
therefore, by the_result of this section,is anoperator having a restriction
A3 which is the infinitesimal generator of a semigroup of operators.

Note that the condition for strong ellipticity, Inequality 2.3.4, is
the condition for strict inequality in Expression 2.7.1. If {@(t)}te[ 0p)
is the semigroup of operators generated by a strongly elliptic operator,
following the above procedure, then the bounded operator &{t} has the
exponential bound

o0 < me™

where M and M are positive constants.

Thus, we are able to characterize the solutions to unforced partial

differential equations with the aid of a distributed parameter equivalent
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of the finite dimensional transition matrix, It remains to characterize

solutions of the forced partial differential equation.

2.8 VARIATION OF CONSTANTS FORMULA FOR
DISTRIBUTED PARAMETER SYSTEMS

We are now in a position to characterize solutions of distributed
parameter systems described by forced parabolic and hyperbolic partial
differential equations. This characterization will take an analogous
form to the variation of constants formula familiar in finite dimensional
system theory and will complete the system theoretic description for
distributed parameter systems,

Phillips 23 proves a theorem, stated specifically in Appendix B,
which yields a variation of constants formula for the parabolic system
described by Egs. 2.4.2 and 2,4.3. The necessary assumption is that
the system operator A is the infinitesimal generator of a semigroup

of operators {&{t)} as described in the preceding section. The

te[ 00)

result is that the solution of the equation

— X(t) = Ax(t) + ity ; =x(0) =%

is x(t) = é{t)xo +) &t-o) f(o)do {(2.8.1)
0

The only requirement on f{t) for this characterization to be valid is

that f(t) be strompglv continuously differentiable.®* Of course, from the

arguments of Section 7, the initial condition x, must be in the domain of

the operator A3 defined in that section.

*That is, lim HERIHE oyigrs in the strong topology of 17(0, T; L4(D)).
h—-0



~35-

A similar result can be achieved for forced hyperbolic systems
of the type represented by vector Eqs. 2.4.6 and 2.4.7. Fattorin: I:'
shows that the solution to this hyperbolic system can be written in a form
similar to that of Eq. 2.8.1 by first introducing the two strongly con-
tinuous operator-valued functions <351(t) and <}32(t). rﬁl (t) is the oper-
ator function which is obtained by writing the solution x(t) of Eq. 2.4.6

x
with =0 and with boundary condition 503[00 in the form

x(t) = <I>1(t) x (2.8.3)
Let us denote the solution of Eq. 2.4.6 with =0 and with initial con-
dition _}goz[g] as v({t) and write wv(t) in the form
o
v(t) = &,(thx (2.8.4)

It is clearly seen that &51(1:) and cI:z(t) are related as

t
B, ()% f &, (5)x_do
0
Now, if { is twice continuously differentiable and if X, is 0, the
solution of {2.4.6) can be shown to be
t
x(t) :f &, (t-o)i(o)de (2.8.5)

0
Combining (2.8.3), (2.8.4), and (2.8.5) with the general initial con-
dition given by (2.4.7) the solution of (2.4.6} is given by

t
x(t) = By (thx  + &y (% +f<I)2(t—cr)f(o*)do~ (2.8.6)
0

It is quite reasonably asked whether the operator-valued functions @1(’5)

and &,(t) are semigroups or not, and, if so, how are they generated"
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The answer is that they are not exactly semigroups, but are very
closely related to them. Fa.ttorinis proves that the resolvent of A
is not the Laplace transform of either cI_vl(t) or (I)Z{t), but the following
"relation exists between the Laplace transforms of 0.131(1:) and @2(1:) and

the operator R(?\Z;A) = (?\ZI-A)_lz

e '}‘tqzl(t)x( at = AR(NZ; A)x

OL“OB

xe€Do(A,) (2.8.7)

e
f e Ma (t)xdt = R\ A)x
0

Moreover, there exist constants K and w <« such that ”tIJl(t) “5 Kewt,
”tI’Z(t) ”E Ke®t. The variable e appears in the resolvent expression
because we are dealing with a second order time derivative in the sys-
tem equation.

The value of having variation of constants formulae like Eqgs. 2.8.1

and 2.8.6 does not lie in having exact specification of solutions to

partial differential equations, but in having a specific form of the so-
lution will become extremely useful in the optimization results pre-

sented in Chapter IV,



CHAPTER III

FORMULATION OF THE CONTROL PROBLEM

3.1 INTRODUCTION

This chapter is concerned with the mathematical description of
the problems which will be solved in Chapters IV and V. For both
parabolic and hyperbolic systems the state regulator problem will be
introduced. The set of admissible controls will be defined and the
quadratic cost criterion will be specified. This cost criterion will be
shown to be analogous to the quadratic cost criterion customarily speci-
fied for a finite dimensional system. In addition, the restriction of the
class of controls to those which are applied at a finite number of points
within the spatial domain is considered and the subsequent modifi-
cation of the cost criterion will be specified.

In Section 3.2 of this chapter precise descriptions of both the
system and the control space are given, This will correspond to the
state equation*cie’scription for finite dimensional systems in the form
% =Ax+ Bu. Conditions on the distributed parameter analog of the
B matrix are specified,

Section 3.3 is concerned with the remainder of the formulation of
the distributed parameter state regulator problem--namely, the intro-
duction of and justification for a meaningful quadratic cost criterion for
the systems described in Section 3.2.

Section 3. 4 contains the restriction of the set of controls to a
finite dimensional space as described above--a restriction to be called

the pointwise control problem.

-37-
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3.2 THE SPACE OF CONTROLS

The general parabolic and hyperbolic systems to be considered
are given by Eqs., 2.4.2 and 2.4.3 for the parabolic case and by
Eqs. 2.4.6 and 2.4.7 for the hyperbolic case. Moreover, we shall re-
strict ourselves to the case of Dirichlet boundary conditions given by
Eqg. 2.5.1. This will result in the consideration of the Hilbert space
HX:(D), rather than Hrn(D), for the state space for the system as de-
scribed in Section 2.5, This is not a severe restriction and does not
fundamentally affect the generality of the results, since, as was
mentioned in Section 2.5, other types of boundary value problems can
be placed within a Hilbert space framework similar to that of Hl;)n(D)
in the Dirichlet problem. The system operator A is assumed to be
either coercive or the infinitesimal generator of a semigroup of oper-
ators as discussed in Chapter II.

With these assumptions we enter into a discussion of the form

of the forcing function f£{-) appearing in both Eqs. 2.4.2 and 2.4.6,

which we rewrite

% = Ax(t) + f(t) (2.4.2)
4 Xl(t) xl(t) 0
A =& + (2.4.6)
xz(t) xz(t) f(t)

Note that f{-) is required to lie in the function space L2 (0, T; LZ(D)).*
In order to put the forcing term in a form which appears more commonly

in system theoretic notation, let us introduce the control wuft), where,

3

The exact requirement is that for each instanf of time t, f(t) must
be an element of Hf)n {D) = H"Y{D). Since LZ(D)CH“m(D) there is
no great loss of generality and the attractiveness of using LZ(D) is
overwhelming. .
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for each instant t, we require u{t) to be an element of a Hilbert space
U, the control space, Moreover, let us assume that u(-)GLZ(O,T;U).
To complete the description of the fo;‘cing term we define B(t) as a
bounded linear operator defined, for each value of tef 0, T] , omnthe
control space U with range in LZ(D), or, inmore convenient notation
Bit)e £ (U;LZ(D))V'te[ 0,T]. We now make the identification of the
forcing term f{t) as

£(t) = B(thu(t) , WV te[0,T] (3.2.1)

The parabolic system now becomes:

%}it@)_ = Ax(t} + B(t)u(t), x(0) = xoeI—ll:(D) (3.2.2)

And if the "vector' operator @ (t) is defined to be

B =

. B(t)

0

then the hyperbolic system is represented by

dx(t)
dt

=Z x(t)+& (ult) ; x(0) =x_ , x_,eH. (D) (3.2.3)

o
One further assumption must be made--B{t}u(t) is assumed to be
a strongly {(in LZ(O, 'I‘;L2 {D))), continuously differentiable function of. t,
This assumption will enable us to use the variation of constants formula
given in Section 2.8 (Eq. (2.8.1)).
With the control u defined and the manner in which u enters the
parabolic and hyperbolic systems clarified, we proceed to the formu-

lation of quadratic optimization problems for these systems in Section 3

3.3 QUADRATIC CRITERIA FOR PARABOLIC AND
HYPERBOLIC SYSTEMS

In this section quadratic cost criteria weighing the state and the

control introduced in the previous section are presented for systems
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{(3.2:2) and (3.2.3). These criteria will be seen to be directly
analogous to finite dimensional quadratic cost criteria. The choice of
a quadratic cost criterion is sometimes motivated by practical con-
siderations. In many applied distributed parameter control problems
of interest it is not feasible to consider driving the system to a fixed
final state distribution, hut rather one would have deviations from a
desired distribution ‘be damped out by the control system. Thus, a
weighted sum of the deviation of the state from the desired distribution
and the magnitude of the control is the necessary type of criterion. The
particular choice of a quadratic cost criterion also stems from the
hindsight that what yielded such elegant results as linear feedback con:
trol laws in the lumped optimal control theory should yield at least some
fraction of the same in distributed optimal control theory.

As a p?elimihary to the specification_of a quadratic cost criterion

)

for the problems under consideration we make the following definitions:

Definition 3.1: The. bounded linear operator Q(t), defined for all

te[ 0, T] on the Sobolev space- Ho (D) with range in H?(D), is called
the state weighting operator. Q(t) is assumed to be a self-adjoint

positive operator, that is, Qft) has the properties:

1. Qft) = Q*(ty  , Mtel 0,T]
2. <x, Qx> >0 Ver?(D), ¥ tef0, T}
H2(D)
The form <{x, Q(t)x> m corresponds, for each te[0,T], toa
H (D)

o
positive weighted average over the spatial domain D. This spatial

weighting is, of course, i;nbedded in the Hilbert space notation. It is
seen that Q{t} corresponds directly to the positive semidefinite state

weighting matrix Q(t} for the finite dimensional state regulator
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problem treated by Athans and Falb (Ref, 24, Chapter 9). We make
the further definition:

Definition 3.2: The bounded linear operator R(t), defined for

all t[ 0, T] on U with range in U, is called the control weighting

operator. R{t) is assumed to be a self-adjoint strictly positive oper-

ator, ox
1. R(t) = R*(t) , % te[0,T]
2. <u, R(t)u}U}_anu ”% , for some a> 0,% ueU,¥ te[ 0, T]

Once again, this corresponds to the positive definite control weighting
, matrix B(t) for the finite dimensional problem and the form
<u,R(t)u>U is a weighted average over the spatial domain D. It is
sometimes desirable to add a penalization cost for deviation of the
state distribution at the final time T from the desired distribution.
For this case we have:

Definition 3.3: The bounded linear operator F, defined on

HD) with range in H™(D), is called the terminal state weightin
. g o ghting

operator, F is assumed to be a self-adjoint positive operator, or

1, F = F*

2, ' '<x,Fx>Hm(D)30 ¥ xeH (D)
(9]

Not surprisingly, the operator F corresponds to the terminal state
weighting matrix F in the finite dimensional regulator problem and,

of course, the form <x,Fx> is a weighted average over the

(D)
spatial domain D, ©

If we denote the desired state-distribution as xd(t)eHo:l(D), we may

now state the cost criterion for parabolic systems as:
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T
I= | [ <(x(t)-x (t)), Qt) (x(t)~x ,{t) >
.({ d d HZI(D)

+ <u(t), Ru(t)>U] dt + < (x(T) ~x4(T)), F(x(T) -Xd(T))>Hm
(D)
(3.3.1)
where x{t) is the solution of (3.2.2) with the control sequence
1{t)eU, te[ 0, T}, specified. The optimal control problem may then be
lefined:

Definition 3.4: The optimal control problem for the system (3.2.2)

ls to determine the control u™(t), te[ 0, T], with u*(t)eU for all
€[ 0, T] such that, if x*(t) is the solution of {(3.2.2) with u(t)=u¥*(t),
he functional J in (3.3.1) is minimized. The minimizing control
1%(t), tef 0, T], 1is called the optimal control (if it exists).

As an example of an optimal control problem for a parabolic
system, let us consider the heat equation, given in Section 2.4, with

‘he control u(t) entering in a forcing term. Assuming Dirichlet bound-

ary conditions for this problem, we have:
% = Ax{+B(tluly) ;  x(0) = x_eH’ (D)

where .A is the operator defined on HZC" (D}, corresponding to the
2
spatial differential operator w 2 5 . Let us choose xd(t) = 0 and the
oz
rost criterion to be such that we penalize rmean square deviation of the

state trajectory from zero and total expended control energy, that is,
ve choose a criterion of the form:

T
2 2 1
J= x (t,z)dz+ r{u(t,z)dzldt ; reR™, r>0
0 |D

D
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This can be put within the framework of the optimal control problem
specified in Definition 3.4 1f we choose Q{t}, R(t}, and F to be:
1. Qt) is the identity operator on Hi (D), which can be written

as the integral operator

Qtyx(t) =1 X(t)=f5(z-§)x(t,é):1§ , ¥ x(t)eHi'(D)
D

H_ (D)

where 68(z~-{) is Dirac delta function.
2. R(t) is the identity operator on U, multiplied by the scalar
r, or
R{t)u(t) = rIUu(t) = rfﬁ(z—é’,)u(t,é)d?; . u(t)eU
D
3. F is the zero operator
With these choices of Q(t}, R(t}, and ¥ the cost criterion of Eq. 3.3.1
is seen to be the desired cost criterio;l.
The preceding discussion must be modified somewhat to achieve
the definition of the control problem for hyperbolic systems. As a
preliminary to this modification, let us consider a general 2 X2
matrix operator @ whose elements Mij are boundc—‘:d lin.ear oper-

ators on a Hilbert space H. & operates on the two dimensional vector

x the components of which are elements of H. K is useful to define

the inner product <_§g,?] x > = 3{_'7)7 X as

2 2
;_'_7273:_ = ZZ(x.l,M..X.>H (3.3.2)

. RN

i=1j=1
We are now in a position to make the modifications of Definitions 3.1,
3.2, and 3.3 to fit the hyperbolic case, beginning with the definition of

the state weighting matrix operator:
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Definition 3.5: The 2X2 matrixZ, (t}, the elements of which,

Qij(t), are bounded linear operators defined, for all tef 0, T], on
Ho (D) with range in HI:(D), is called the state weighting matrix oper-
ator. oz {t) is assumed to be 2 symmetric positive semidefinite matrix

with self-adjoint elements, or

1. Qij(t)=0_ji(t) , Ytefo,T] , i,j=1,2

2
! = x x, el
za__g(t)zs = Z Z<X1’Qij(t) ; >HI;1(D)_>_ 0 , ¥ ;€H (D),

iz 1,2 , ¥teo,T]
3. Qij(t) = Qij(t) ,  Mte[o,T]
There is no need to modify Definition 3.2 for the cost weighting oper-
ator, since the control space is the same for both parabolic and hyper-
bolic systems. However, the terminal state weighting operator of

Definition 3.3 must be modified as follows:

Definition 3. 6: The 2X2 matrix ___(‘—77, the elements of which,

Fi" are bounded linear operators defined on H];n(D) with rangé in

Ho (D), is called the terminal state weighting matrix operator. :]-z is

assumed to be symmetric positive semidefinite with self-adjoint ele-

ments,

1. F..=F.. i,j=1,2

Jl
2 2
2. x'Fx = szF x, >0 Ver (D) , i=1,2
:]_ =1

3, F..=F" i,j=1,2
1] i)
If we now denote the desired state vector as g_d(t), the cost cri-

terion for parabolic systems is given by:
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T

7= [ L2 000 (00 (02 460) + <ale), R(e)a(e)>> ]ds
0

+ & (T)x (TN F (x (T) x ((T)) (3.3.3)

where x{t) is the solution of (3.2:3) with the control sequence
u(t)eU, te[ 0, T], specified. Just as in the case for parabolic systems,
the optimal control problem is similarly defined for hyperbolic systems,

Definition 3.7: The optimal control problem for the system

(3.2.3) is to determine the control u*(t),te[ 0,T] such that, if x*(t)
is the solution of {3.2.3) with wu(t) = v¥*(t), the functional J in (3.3.3)
is minimized. The minimizing control u*(t), te[0,T], is called the
optimal control (if it exists).

As an example of an optimal control problem for a hyperbolic
. System, we consider the forced equation for longitudinal vibrations in
a rigid beam, the unforced version of which is given in Section 2.4,
Assuming Dirichlet boundary conditions, the equation may be written

in the form of Eq. 3.2.3 , namely:

dx (t) a [=m@] fo =m

dt T a x| 14 o=,
0 x .
01 2
+ u{t) ; x(0) = XOl’x02€H0 {D)
B(t) X092

where A 1is the operator on HS (D) corresponding to the differential
2

operator R 9 5 - In this example let us choose zc_d(t) = 0 and have the
oz

cost criterion penalize both the mean square derivation of the tra-

jectories xl(t) and xz(t) from zero as well as the expended control

energy, Or
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T
2 A
J :f f(xlz(t, z) + rlxz(t, zZ))dz + T, fu {t,z)dz | dt
0 -D

with Ty and T, both positive real numbers. It is seen that the choice

of -

I, o ]
H_ (D)
L ) =
0 r, I
17542
and R{t) = IZ.IU
where 1 5 and IU are the identity operators specified in the ex-
H{D)
o)

ample following Definition 3.4, puts ‘the cost criterion of Eq. 3.3.3 in
the above desired form.

The parabolic control problem defined in Definition 3.4 will be
studied in great detail in Chapter 4, whereas the hyperbolic control
problem of Definition 3.7 will be briefly discussed in Chapter VI, Important
special cases of these problems are discussed in the next section of

this chapter.

3.4 THE POINTWISE CONTROL PROBLEM

The optimal control problems defined in the preceding section
will be specialized in this section to consider the case where the control
does not enter into the system in a distributed fashion, but rather con-
trol energy enters the system at a fixed number of "points" within the
spatial domain of the system. The justification of the use of this type
of pointwise control is on physical grounds. For many physical distri-
buted parameter systems it is next to impossible to drive the system by
application of a control distribution. For instance, in the rigid beam

.considered in the preceding section, the control energy would enter
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much more realistically as forces at various discrete points along the
length of the beam, rather than a '"perfect' distribution of force de-
fined at every point of the beam. Another example is the membrane
of a drum. Here the distributed displacement of the tympanic mem-
brane is achieved through the approximately pointwise control of the
impulsively applied beating of the drumsticks. ¥In both of these cas;es
the analysis would become terribly complicated if the control were
modeled by a distribution on the spatial domain. Since it is more
likely that one would approximate the distributed control in many phys-
1cal systems by a finite number of lumped controls, this would moti-
vate the a priori use of non-distributed controls and the subsequent
optimization problem in terms of these controls. Moreover, it seems
more likely that the analytic specification of an optimal control distri-
bution would be much more difficult than the specification of an optimal
control vector. In essence, the pointwise control problem is a hybrid
of pure distributed parameter control and finite dimensional control.

If we suppose that control is applied at the k points z;, i=1,2,.,

the control space U to be considered is k-dimensional Euclidean space
k

cak,

R™, or, in other words, the control defined in Section 2 is assumed to be

a k-vector u. On first thought, it would be desirable mathematically

to have the forcing term of Egs. 3.2.2 and 3.2.3 be of the form
k

B{t) u(t) = Zﬁ(z—zi)bi(t)ui(t) (3.4.1)
i=1

where G(Z-zi) is the Dirac 6-function defined on the spatial domain D,
and bi(t)' i=1,2,...k, are bounded continuous functions of time,

Equation 3.4.1 reflects "true" pointwise control, that is, finite control

energy really enters at the set of control points {Zi}1i<—1' Unfortunately,



48~
expressions of the form of the right hand side of Eq. 3.4.1 cannot be
elements of LZ(D) for each te[ 0,T], because the Dirac §-function is
not square integrable. Since it is required in Section 2 that the forcing
term be an element of LZ(D) for all te[0,T], we must abandon hope
of using '"true'' pointwise control.

The next logical step is to assume that control action takes place
over a small volume surrounding each of the control points Z; . This
actually gives a more accurate picture of the procedure of applying
pointwise control over a spatial domain, since it is a mathematical
fiction to consider control applied at a single point. The physical justi-
fication of this assumption can be seen by consider‘ing the examples
given above. In the rigid beam, any device which applies force at a
"point'' of the- beam cannot apply this force over a region of the beam of
zero width. There must be some small length of the beam over which
-the force is actually applied. In the case of the drum, the vibration of
the membrane is not caused by excitation of a point of the membrane
with zero area, but by excitation of a small area corresponding to the
area of the tip of the drumstick. Both of these cases represent a valid
approximation to the pointwise control problem, since the "volumes"
surrounding the control points are sufficiently small compared to the
"volume" of the spatial region D.

This pointwise control approximation is'achieved through the intro-

duction of the following B operator:

Definition 3.8: The pointwise control operator Bo(t), defined

for all te{0,T] onmn Rk is described by

k

ot ml Z X ;(2)b; (thu (1) W u(t)eR (3.4.2)
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where yi(z) is the characteristic function of the set EiCD which in-
cludes the control point z, as described above. This characteristic
function is given by

1 if zel,
i

x.(z) =
* 0 if zfE,

The functions bi(t) are assumed to be bounded on [0,T]. Note that,
according to the assumption in Section 2 of this chapter, 5(.)€L2'(0, T; Rk) .
In order to show that the form Bo(t)_u;(t) is an element of
LZ(O,'I’;LZ(D)), and, therefore, satisfies the required condition to be a
forcing term for Eqs. 3.2.2 and 3.2.3, we prove the following lemma:
Lemma 3.1: For each te{ 0] T], Bo(t) is a bounded linear oper-
ator with domain Rk and range in LZ(D). Moreover, the function

f{-), where f(t):BO(t)_g(t), Mte[ 0, T], is an element of LZ(O,T;LZ(D)).

Proof:
k
[t5 e = [ (D x g2y ugen? dz
D _ D i=1
k k
2
= Z fx i(z) biz(t)uiz(t)dz = Ebf'(t)uiz(t)fx%(z)dz
i=1 D i=1 D

Since fxiz(z)dz -_-‘in(z)dz = p,(Ei), the Lebesque measure of the set E1’
n
and since thismust be less than the Lebesque measure of the domain D, we have

) k
[ B @l ®as < wo) Y vl = w0 Bowe II‘;"Rk
D i=1

where B(t) is the kX k diagonal matrix with Bii(t) =bi(t)’ i=1,2, ...k,
i Bl & is the induced matrix norm of B(t), it follows that B_(t)

is a bounded linear operator from Rk into LZ(D) and
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& _(t) |f <1ty IBw || . , forall te[0,T] (3.4.3)
° '12(D) R

To show that f{.) is an element of LZ(O,T; LZ(D)), we write

T
120y 112 - w2, a
12(0,T; 12(D)) { 14(D)

T
- [ 1B muwl®, at
.{: o LZ(D)

which, by Inequality 3.4.3, can be written

T
lec-y 112 <wo [ IBOIE, e 7, at
20, T; 120y '!)‘ BE RE
< wo) B ]I Na() [
1210, T; BN 1200, T; 9

whe re the last inequality is obtained by the use of Schwarz' inequality.
By the assumed boundedness of the functions bi(t) , i=l,...,k and tl'_1c—:
assumption that —u (- )eL7(0, T; RY), we obtain
le) 1%, , <o
L°(0, T; L (D))
implying that £(-)€IZ(0, T;1A(D)).

Since the pointwise operator Bo(t) operating on controls u in the
control space Rk qualifies as a forcing term for systems (3.2.2) and
(3.2.3), it remains to formulate the optimal control problem for this
~case, Since the state space remains unchanged neither the state weight-
ing operator Q(t) nor the terminal state weighting operator F must
be modified in the parabolic system case. The same holds true for their

counterparts o__Z (t} and ? in the hyperbolic case. The control space



-51-

is the finite dimensional space Rk so that the control weighting oper-

ator is changed accordingly:

Definition 3,9: The kXk possibly time-varying matrix R(t),

defined for 2ll te[ 0, T] on Rk with range in Rk, is called the point-
wise control weighting matrix. R(t) is assumed to be symmetric and
positive definite for all e[ 0, T].

We are now in a position to specify the quadratic cost criterion

for parabolic systems with pointwise control as follows:

T
J=f [<e(t) -4 (2)), QE) (x(t) -x 4 (£))> + a'()R{t)u(t)]dt
0

+ < (#(T)-24(T)), F(x(T)-x(T))> (3.4.4)
d d ch’?(D)

where x{t} is the solution of {(3.2.2) with B(t) = Bo(t) and the control
sequence u (t) ERk, te[ 0, T], specified. The pointwise optimal control
problem for parabolic systems may now be stated as:

Definition 3.10: The optimal control problem for the system

(3.2.2) with B(t) =B_{t) and U=E' is to determine the control

u¥(t), te[ 0, T], with u*()eR" for all te[ 0,T], such that, if x(t) is

the solution of (3.2.2) with B(‘t):Bo(t) and _U;(t)zll_*(t), the functional J
in (3.4.4) is minimized. The minimizing u*(t), te[ 0, T], is called the
pointwise optimal control (if it exists).

The discussion of pointwise controls will be tabled until Chapter V,
whe re the optimal pointwise control problem for parabolic systems will
be solved. The pointwise control problem for hyperbolic systems has
not been introduced for the reason that study of this problem will not
yield any more insight into the nature of pointwise control than is ob-

tained through the study of pointwise controls for parabolic systems alone.



CHAPTER IV

OPTIMAL CONTROL OF PARABOLIC SYSTEMS

4,1 INTRODUCTION

The purpose of this chapter is to solve the optimal control prob-
lem for parabolic systems as specified in Definition 3.4 of the pre-
ceding chapter. The first concern of this chapter will be to show that
unique solutions of the optimal control problem exist in both the case
where the system operator is coercive and the case where the sys-
tem operator is the infinitesimal generator of a semigroup of oper-
ators. Next, necessary conditions for optimality will be discussed and
a feedback solution for the optimal control will be derived for both
types of system operators. Inthis chapter we shall also treat the so-
lution of the parabolic optimal control problem defined on an infinite
time interval, and we shall derive an inte gro-differential equation the
solution of which specifies the form of the optimal feedback control law.

In Section Ethe existence and uniqueness of solutions of the
optimal control problems for both types of system operators is demon-
strated. With existence and uniqueness guaranteed, we derive, in
Section 4.3, the necessary conditions for optimality in the coercive
system operator case and show, in Section 4.4, that these necessary
conditions imply the existence of a feedback form in which the feed-
back operator is seen to satisfy a nonlinear operator equation of the
Riccati type. The minimum value of the cost criterion will also be

shown to be directly expressible in terms of this feedback operator.

-B2-
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Section 4.5 is concerned with the proof that if a bounded solution
~—

~

of the operator equation discussed above exists in the case where the
system operator is the infinitesimal generator of a semigroup of
operators then the feedback form derived for the optimal control in
the coercive case is also optimal in this case. This leads naturally to
the proof in Section 4.6 that a bounded solution of the Riccati operator
equation does indeed exist.

Section 4.7 contains the discussion of the parabolic control prob-
lem defined on the infinite time interval (0,®),

In Section 4.8 it is shown that the Riccati operator equation is

equivalent to a nonlinear partial integro-differential equation.

4.2 EXISTENCE AND UNIQUENESS OF SOLUTIONS

In this section we examine the question of existence and unique-
ness of solutions of the optimal control problem stated in Definition 3.4,
We shall show that for an elliptic operator, either coercive or strongly
elliptic, the optimal control problem for parabolic systems, as dis-
cussed in Section 3 of the preceding chapter, has a unique solution.
Lions 12 provides the machinery for demonstrating this by giving a
general existence and uniqueness theorem for controls minimizing a
certain cost functional. This is then shown to cover existence and
uniqueness of optimal cont—ro].s in the parabolic control problem., Lions
does not consider terminal-time cost in his cost criterion, so that any
modification of the results due to the slightly more general inclusion of
terminal-time cost will be indicated.

As a preliminary to the discussion of existence and uniqueness of

optimal controls let us make the following definitions:
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Definition 4.1: A coercive bilinear form [i{u,v} is a mapping

of UXU into the reals for which there exists a ¢> 0 such that

M{u,u) >c ”u”2 MYueU

Definition 4.2: The bilinear form I{u,v) is said to be symmetric

if
M{a,v) = T{v,u) Vu,veU

Definition 4.3: The bilinear form [({u,v) is said to be con-

tinuous if it is a continuous function of each of its arguments.

Now, having introduced the bilinear form IH(u,v), let us con-

sider the cost functional

Ju) = M(u,u) - 2L{u) , uelU {(4.2.1)
where L is a bounded linear functional defined on U. The existence

and uniqueness of a control u* which minimizes J in{(4.2.1) is pro-

vided by the following theorem.

Theorem 4.,1: If T{u,v) is a continuous, symmetric, coercive

bilinear form, then there exists a unique u*eU such that

J'(u*) = inf ..T(u)
uelU

Existence is proved by defining a sequence approaching the infimum,
showing it is bounded, and extracting a subsequence which has a weak
limit in U. Since Il{v,v) 1is lower semicontinuous and L(v) is con-

tinuous in the weak topology of U it is seen that the weak limit in U
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is the minimizing element uw¥*. Uniqueness follows directly from the
strict convexity of the function M{v,v). Details have been omitted, but
are readily available in Ref, 15.

In order to proceed to the discussion of existence and uniqueness
of the solution to the parabolic optimal control problem, the question
of existence and unigueness of solutions of the parabolic equation {’3. 2.2)
must be considered. This existence and uniqueness question_for the
case of coercive elliptic system operators is best answered through the
use of another result of Lions' which will also be used to obtain neces-

sary conditions for optimality in the following section.

Theorem 4.2: If M{u,v) satisfies the hypotheses of Theorem 4.1,

then J{u) has a minimum value J{u*) if and only if u* satisfies the
equation®

Muwk,v) = L{v) , ¥veU (4.2.2)

The proof of this theorem is due to Lions; since it is essential to
the optimization results of Section 3 of this chapter, it is presented in
Appendix C for the sake of completeness,

To show how this result yields the answer to the existence and

uniqueness question in parabolic equations, consider the bilinear form

Mee,y) = ~<Axy> . ; x,yeH (D) (4.2.3)
H, (D)

where -A 1is assumed to be a coercive operator, satisfying the

" If the control u* is required to lie in some convex constraint set
2C U, the equation which uw* must satisfy becomes

M{ws, v-u¥) > L{v-uw+) , ¥veQ
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Inequality 2.3.3. Hence, the bilinear form II(x,v) in (4.2.3) is co~
ercive. If we let the linear form I.(v) in Eq. 4.2.1 be the inner pro-
duct

Liy) = <Bu,y> ;. MyeH (D) (4.2.4)
oy

I—I];n(D) is a Hilbert space and, by a well-known result in elementary
Hilbert space theory (see Ref. 25, p. 80), any bounded linear func-
tional on Hgn(D) is an inner product of y with some element in the
dual space of HI;'(D). Since LZ(D) is contained in this dual space, and
since Bu is in LZ(D) by our assumption in Section 3.2, then Ex-
pression 4.2 .4 is a valid linear form on HI;D(D).

The hypotheses of Theorem 4,2 are thus satisfied and, therefore,
we have the result that there exists a unique erzn(D) such that

-<ax,y> = <Bu,y>HIn VyeH (D) (4.2.5)

H(D) ™ D)

For Eq. 4.2.5 to hold for all VEHO (D) it must be true that there is a

unique XEH?(D)*S atisfying the equation

Ax + Bu = 0 (4.2.6)
Thus, we have demonstrated existence and uniqueness of a
solution to Eq. 4.2.6. Needless to say, we have not proved existence
and uniqueness of solutions of the parabolic equation (3.2.2), i.e.,
%X =Ax+Bu. However, Lions uses the procedure demonstrated above,
with a few analytic embellishments to account for time evolution, fo

prove that there exists a unique solution of the parabolic equation

% = Ax(t) + B(thu{t) , =x={0)= X,
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Just as important, Lions shows that the mapping u(-)—x(-) from
LZ(O,T;U)—— LZ(O, T;HIOH(D)) is continuous. The continuity of this
mapping plays a role in the application of Theorem 4.1 to the parabolic
control problem of Definition 3,4,

It remains to show that solutions of parabolic equations with
elliptic operators satisfying Condition 2.7.1 exist, are unigue, and de-
pend continuously on the control as was shown for coercive operators,
Proving existence and uniqueness is trivial in this case, since the
hypotheses of the theorems given in Appendices A and B are satisfied

and the solution of Eq. 3.2.2 1s uniquely given by

t
x(t) = (b(t)xo+f<f){t—cr)u(0')d0' s XOEDO(A3) (4.2.7)
0

whe re {@(t)}te[o o] is the semigroup of operators with infinitesimal
3

generator A3 as defined in Section 2.7. Since we wish in addition to

show that the solution depends continuously on the control we state and

prove the following theorem:

Theorem 4.3: If x(f) is the solution of the parabolic equation

(3.2.2) given by Eq. 4.2.7, then the mapping u{-)—x{.} of LZ(O,T; )

into LZ(O,T; HI:(D)) is continuous,

Proof: Suppose u,(-} and u,(.), defined for all tel 0, T], are

elements of LZ(O,T;U) and x,(+} and xz(o), defined for

1
all te[0,T] are elements of LZ(O,T;HOV(D)) given by:

t
x,(t) = ®(t)x +f &(t-c)u,(e)do , te[0,T], i=1,2 (4.2.8)
0
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Forming the difference xl(t) -xz(t) and taking the norm

squared on LZ(O, T;HO (D)), we deduce that

(-5, () 12
T 20, 1R (o)

T
- [ = 0-,m]%  at
[0,

T t
=f!l it-0) Bl uy(0) u,(e)]do [ At (4.2.9)
o 0 H. (D)
Tl t z
< [1 [ lat-oB@ly@ vyl |, dof at
olo H, (D)

where the inequality follows from a generalization of the
triangle inequality for normed spaces. Since &(t-o) and
B(c) are bounded linear operators we may write the in-
equality- '

& it-0) B u (o) -u, ()] ]
a o ul a 112 d, Hm(D

o]

<[ ®{t-0)B(a) | lla, () -u, (o) | (4.2.10)
i (D) 1197 7% U

o]

so that Inequality 4.2, 9 can be written

I, () -, () )1
Y R o, T EE D)

Tl ¢ 2
< f f f®{t-) B(o) ”Hm(D) [, () -a, () [1;do| at
010 o

{(4.2.11)
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It should be noted that since ”ul( -)-uz(-)”U is an element of
LZ(O,t) for all te[ 0, T], then the inner integral is, in effect,
an integral operator on Lz(O,t) with kernel kit, o)

= ”tI)(t-o*)B(cr) “ m . If this kernel is square-summable,
H (D) :
o]
that is, if

t

[let-oB@ 7 dr<o
; H™(D)
O

for all te[ 0, T], then by application of Schwartz' inequality

it can be shown that (see Ref, 22, p. 148)

t 2
l®it-0)Blo) |l lw (o) -u, (o) || .40
‘!)- ’ H(D) ! 2

t t
o 2 i 2
S_follé\t o) B(o) ﬂHm(D) dO'f”ul(o—) (o) [pde  (4.2.12)
o) 0
—t
<Jlat-0B@ 12 de fug)-uy()|?
'{: ' H (D) B e, T v

holds for all te[ 0, T}. Now, by the uniform boundedness
principle, which is stated in Appendix D, &(t) is uniformly
banded over [0, T]. Let us denote this bound by

”cI:{t) ”_i M. Moreover, B(es) is uniformly bounded on

[0,T], with |B(¢o) || <b. Thus, it follows that

t
f”é(t—cr)B(cr) I° 4o < M°B% . (4.2.13)
0 Ho (D)
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is finite for all te[ 0,T], and the substitution of Inequalities
4,2.12 and 4.2.13 into Inequality 4.2, 11 vields the result that

(-3, [I°
b7 (0, T; B D))

T
2. 2 2
< | Mt flu(-)-u, ()] dt
'(( 1 2 LZ'(O,T;U)
2, 2
M™b 2 2
< T fJu, () -u, () ]
=77 b} 2 Lz(O’T;U}
or, equivalently, that
I, ()2, () ]l
T2 0, 1y D))
MbT
25 ”ul('}'uz(')”ﬁ(o,r;m

which implies that the mapping wu{.) into =x(.) from

LZ(O,T;U') into LZ (G, T; Ho {D})) is continuous.

It may also be shown that the solution at the final time T also de-

pends continuously on the control. This is also necessary for the ap-

plication of Theorem 4.1 to the parabolic optimal control problem.

Theorem 4.4: If x(T) is the solution, at the terminal time, of

the parabolic equation (3.2.2) given by Eq. 4.2.7, then the mapping

u(.)—x(T) of LZ(O,T;U) into H?(D) is continuous.

Proof: With ul(-), uz(-), xl(-), and xz(-) defined as in the

proof of Theorem 4.3, we have the following expression:

2 -
HY D

(o]

T
fla<) (T -2, (T) ] = f HT -0) B(o)[ uy(0) u,(0) Jdo I!iIm
0

D)
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T 2
< { 8(T -0) B(o) wy(o) -u,(0)] || Hm(mdo-

B o]

[T 2
< { ®(T-0) B(o) I Hz)n(D)Ilul(cr)—uz(cr) iy do

and, proceeding as in the proof of Theorem 4.3, we use the
square summability of the kernel '”@(T'U')B(O‘) ” m to

H_(D)
deduce that

eyl <M ) ma, )

H. (D) L0, T; U)

which implies that the transformation u{.) into x{T) from

12(0, T; U) into H™(D) is continuous.

To summarize what has been done so far in this section: unique
solutions have been shown to exist for the parabolic equation(3.2. 2) with
either coercive operators or elliptic infinitesimal generators of semi-
groups as system operator. In addition, these solutions have been shown
to depend continuously on the control u. With this as a foundation, we
may use Theorem 4.1 to extend Lions' results to include the case of

terminal cost in the following manner:

Theorem 4.5: The optimal control problem for parabolic

systems as specified in Definition 3,4 has a unique solution

u(. )ELZ'(O, T; U},

Proof: First, let us introduce the notation xu(t) to denote the

solution of parabolic equation(3.2.2) on [0, T] with the
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control u(-)eLZ(O,T;U) . Likewise xV(t} denotes the
solution corresponding to v(-)€I*(0, T;U). The cost cri-

terion, Eq. 3.3.1, for the parabolic control problem can be

written in the form

J(u)= X" -x ,Q(xu—x } > +<u,Ru
< @20 rPoy S i, 7 0)

(4.2.15)

+ <N T)-%4(T), F (x (T) -x,4(T)) >

#70)

which, in turn, can be rewritten as

J(u) = M{u,u)-2L{u) + <x,,0x.> (4.2.16)
T4 0, T HP (D)

+< x,4(T), Fx (T)>
)

where we define the bilinear form [II{u, v) to be

M(a,v) & <, 0x"> + <xHT), BT >
Tar H

o

*(0, T; H D))

+ <u,Rv> 5
L0, T; U)

L(v) S<nx SES

+ < Fx (T), x(T)
‘ o, 1 H oy 2y

(D)
Since the last two terms of Eq. 4.2.16 are independent of u,

minimizing the cost functional J'(u)

J'(u) = Mfu,qw) - 2L(u)
is equivalent to minimizing the original cost functional J(u).

W e now note that N{u,v} is symmetric since
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fI{v,u) = <XV, qu>
(0, T; BI'(D)

+<x(T),Fx(T)> = +<v,RD> ,

H _"(D) L0, T; U)

o = <Q*XV,Xu>
L*(0, T; HZ(D))

+<FFx(T), x{T) >

m
HL (D)

+ <R, w> = T(u,v)
LF(0, T; U)

by the self-adjointness of the operators Q(t), R(t) and F
and by the symmetry of the inner products on LZ(O, T; I-Ilc;n(D)),
12(0, T; U), and H‘:l(D).

Next we note that H{u,v)} is a coercive bilinear form be-
cause

T, w> e ulld >0 Yu() er?(0, T; 1)

by the positivity of the operators Qt) and F and by the

strict positivity of R(t}.

Also, T{u,v) is contimious, since by Thecorem 4.3
xu(-) is continuous in u(.) on LZ(O, T;Ht;l(D)) and by
Theorem 4.4 x{T) is continuous in wu{.) on Hl(;n(D).

The hypotheses of Theorem 4.1 are thus satisfied, so
that there exists a unique u™(. )GLZ(O, T; U} such that

J'u*) = inf J'{u)
u(-)el#(0, T; U)
or,equivalently, there exists a unique solution of the para-

bolic optimal control problem given in Definition 3.4,
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It should be noted that in the above proof continuity was discussed
in terms of the strong topology of LZ(O,T;H?(D)), whereas Lions'
requires continuity in the strong topology of W(0,T) which is defined
in Chapter II, Section 4. This more stringent continuity require-
ment is not necessary, however, since the cost criterion involves only
x(t) and not X%(t), so that behavior of derivatives of solutions in terms
of u is beside the point.

We have shown in this section that unigue solutions exist to the
parabolic control problem for both coercive system operators and
elliptic system operators which are the infinitesimal generators of
semigroups. It remains to characterize these optimal solutions for

both types of system operators.

4.3 DERIVATION OF NECESSARY CONDITIONS--
COERCIVE CASE

Since, in the preceding section, it has been shown that a unique
optimal control exists, we shall derive in this section what precise
conditions that optimal control must satisfy in the case of parabolic
systems with coercive system operators. Again, this derivation is
due formally to Lions, 15 but his results are extended to include the
case of terminal-time cost in the cost criterion.

For convenience, let us rewrite Eq. 3,2.2

M - A x(t) + BO)

dt i x(0) =x (4.3.1)

Recall from the preceding section that the solution of the parabolic
optimal control problem, namely, the optimal control u¥*, must mini-

mize the cost functional

J(u) = M{u,uv) - 2L{u) (4.3.2)
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where

A a W u v
M, v) 2 <2, 0x"> + <xHT), Fx'(T) >
?(0, T; H (D)) H (D)

+ <lu, Rv> >
L°(0, T; U

L(v) & <ox g, x> + KFx (T),x"(T)> _
H

LZ(O,T;HIOH(D)) .

(D)
Now, by Theorem 4.2, the optimal control must satisfy

M(u*,v) = L{v) for all®(¥IZ(0,T;U)

or, equivalently,

0 (wk, v-u*) = L{v-uk)¥v{. )ELZ(O, T; U) (4.3.3)

 Further, let us introduce the adjoint equation

el mepe) - Q) - xg0)]  * (4.3.4)

p(T) = F[(T) - x,(T)]

p(t) is called the costate, and, by changing the time variable from t

to T-t and realizing that A° is coercive if A is, the results of the
preceding section tell us that a unique sclution p(-)GLZ(O, T;H?(D))**
exists for Eq. 4.3.4. Let us denocte the solution p(-) due to the appli-
cation of control uf(- )eL2 (0, T; U) as pu. Forming the inner product

on 12(0, T;HT(D)) with x”-x we obtain

" The standard asterisk notation for adjoint operators is used here.
This should not be confused with the equally standard use of the
asterisk superscript to denote such optimal gquantities as u*({t),
x*(t), and p*(t).

o Actually, it must be true {and it can be shown) that p{.}eW(0, T).
This is necessary since we wish to take LZ(O,T;H?(D)) inner

products with _C_i_%(f_:_)
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u
< _dp__’ Xv—xu > 2 m = - <'A*puaxv"xu > 2 m
L7(0, T; H (D)) L7(0, T; H (D)}
O [a]
(4.3.5)

- <Q[xu-xd] ,xv—xu>
L (0, T; H (D))

Evaluating the left-hand side of £q. 4.3.5,

< u fr< dEu v- u
;X -x 2> ‘ (t), x {t)-x (t}> dt
dt * 7120, T ED D) 4 dt 1 (D)
T
d <V u
= <pH(T),x " (T) = (T)> Lpt), Sx(t)-x(t)> dt
H_ (D) 'c( H (D)

But since pu(T)=F[xu(T)—xd(T}] as seen in Eq. 4.3.4,

u
<o B> 2 = <F[=™N(T) -2y (T)], xV(T)-=X(T) >

140, T; Hm (D)) HY(D)

o}

-<p?, g (x" X)>
& (0, T; HYY(D))

The first term on the-right-hand side of £q. 4.3.5 can be written
<A*pu,xv-xu 2 m = <p ,A(x -x ) >
L(0, T; H_ (D)) L%(0, T; H'(D))
{(4.3.7)
Combining (4.3.5), (4.3.6), and (4.3.7) and letting u=u¥* we obtain

- L0l xu* -X ],xv—xu*>
¢ L2(0, T;HZ(D))

(4.3.8)

= - <p“,( -A)(x"—x““) >
12(0, T; H™(DY)
[}

+ <FL =" (1) (T)], x¥(T) =¥ (T) >
a X )-x Hrn(D)

o]
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= - <P, Blv-ut) > + < LT (T, x T T (T)>
(0, T, H (D)) d H™(D)
Now from Eq. 4.3.3
I {ux, v-u¥) - L{v-u¥)
v o_u¥
= <ol ) x> 2 (0, T; HIH(D))
+<F[x"(T)-x (D], ="(T) =" (1) > _
H (D)
O
b <Rk, vouk> S0 (439
12(0, T; U)
Combining Eqs. 4.3.8 and 4.3.9 we obtain
"<Pu*: V u )>
(0 T H (D)}
= <Ru¥, v-uk> Mv(.) € L2(0, T; U)
150, T;U)
or, equivalently,
- <Brp™, v >
— " 1%(0, T; U)
= <Ru¥,v-uw> Mv(.)el? (0, T; U) (4.3.10)
1%(0, T; Uy

Since equality must hold in Eq. 4.3.10 for all elements v(- )GLZ(O, T; U,
it must be true that

-BE() pY(8) = R(uH(Y) (4.3.11)
is satisfied by the optimal control u*. Moreover, since R(t) is
assumed to be strictly positive in Definition 3.2 it has an inverse for

all te[0,T] and so Eq. 4.3.11 reduces to

@) = R 6)BE0pY (9 (4.3.12)
It might reasonably be asked, at this point, why the above deri-

vation does not hold as well for parabolic systems with system operators
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which are the infinitesimal generators of a semigroup of operators.
The answer lies in the fact that for this class of parabolic systems the
costate Eq. 4.3.4 cannot be shown to have a solution p(-)}eW(0, T},
that is, although p(-) is an element of L(0, T; H'(D)), we camnot
show that %te(-) is an element of LZ(D,T;HI;(D)). Thus, the inner
product with %%(-) in Eq. 4.3.5 would be meaningless in this case.
This inability to express the necessary conditions for optimality in the
form derived above for this class of systems will be circumvented in
Section 5, however.

Let us summarize the results of this section:

If wi(. )ELZ(O,T; U) is the optimal control for the problem specified

in Definition 3.4, then it is necessary that there exists a unique costate

p*(-) such that:

wH(t) = -RO(4) B pE(t)

where p*(c)eLZ(O, '.I.I‘;HO (D)) satisfies the equation

ale

Q%’L“:ﬁil = -&p™(r) - Qlxx(t)xgt)] 5 PHT) = FLx¥(T) - x4(T)]

and X*(-)ELZ(O,T;H?(D)) satisfies the equation

SR - ) + Bus(e) 5 w80 = x

4.4 DECOUPLING AND THE RICCATI OPERATOR EQUATION

In this section the necessary conditions derived in the preceding
section are shown to yield the fact that there exists a feedback form of
the optimal control given by Eq. 4.3.12. The optimal feedback operator
will be defined and will be shown to satisfy a nonlinear operator dif-

ferential equation of the Riccati type. Bounded, positive and self-

adjoint solutions to this equation will be shown to exist. Moreover, an
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optimal cost function will be defined and shown to be simply related to
the optimal feedback operator. The results of this section are due to
Lions (see Ref, 15, pp. 147-157) with slight modifications and an
extension to include the terminal-time cost.

If we consider the system of equations:

%}f{:* = AX*(T') -B (t)R‘_I(t)B*(t)p*(t)
te(s, T) ; 0<s <T
(4.4.1)
El.d%:i = -A"Ep’k(t) - Q[ X:{:(t) _ Xd(t)]

x#(s) = h, heH (D) and p(T) = F[x#(T)-x4(T)]

This system admits a unique solution pair (x%(.}, p*{-)eW(s, T)XW(s,T),
where W{(s, T) is the space W(0,T) defined in Section 2.4 with s
taking the place of the lower limit 0. This fact is easily seen if the
cost criterion of the preceding section is defined on the time interval
(s, T) instead of [0, T] and the same straightforward procedur