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SUMMARY

This Report discusses space guidance theory and practice
from a general point of view, Different types of powered
flight guidance algorithms (modes) are classified and per-
formance characteristics of the classes are discussed.
[1lustrative simulation results are presented to compare
the performance of the Iterative Guidance Mode (IGM)

and the TRW Hybrid Guidance Mode with the Calculus of
Variations solution. Certain problems which must be
solved before a truly unified guidance system can be

developed are identified and discussed in detail.
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1.0 INTRODUCTION AND SUMMARY

1.1  UNIFIED GUIDANCE AND NAVIGATION

Guidance and navigation systems for oresent day missions are
developed on an ad hoc basis, in the sense that quidance and navigation
software and hardware is designed so that soecific mission objectives
can te met for a svecific launch vehicle. Little thouant is usually
given to adaotability to other aoplications. One would like to take a
more general point of view and construct what might be called a "unified"
guidance and navigation system. By a unified system we mean a set cf
software and hardware modules which can be used to control all segments
of the trajectory for a wide class of missions and launch vehicles. T1his
is a desirable ohjective, for savings in cost, reliability, and development
t* could be achieved. Furthermore, the cost in time and rioney of mission
design, oreflight nreparation, and fliaght readiness verification could be
reduced by using the unified guidance capability to develop prefliaht
analysis software (the 'quick reactior" problem). The task of designing
and building a unified auidance and navigation svstem is not an easv one,
for different types of difficult mathematical problems must be solved to
accomolish a space mission. Furthermore, an on-board (self-:ontained)

system muct solve these problems with a relativelv rudementary ccmouter.

Assuming that auidance and navigation analvsis can be treated separ-
atelv, it is apparent that the develonient of a unified auidance and
navigation system will onlv be feasible if efficient alaorithms (modes)

for solvina the quidance problem can be devised. With this consideration
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in mind, the purnose of the studv described here is to examine the
state-of-the-art in quidance mode development;classifv existina and
proposed modes; define measures of their performance; comnare the

modes with respect to these measures; describe some of the problem

areas that mav be encountered, and recommend directions for further
research and develooment. Anticipating the forthcomina discussion, it
can be said that the analvtical and numerical studies reported here in-
dici e that it is feasible to design a unified quidance mode capable of
on-board implementation if cne is willing to exploit the numerical inte-
qration and iteration capability of present dav computers. To accomplish
this end, certain oroblem areas requiring further research have been
identified. These are brieflv discussed in Sections 1.4 and 1.8; more

detailed analyses are presented in Sections 2,6,7,8, 9 and 10,

The studies reported here cover only some aspects of the unified
quidance problem. Further information and supperting analvsis is contained
in Reference {1], where mission requirements are analvzed, desian concepts
for a unified, modularized aquidance hardware/software systems are developed
and an error analvsis of a nreliminarv modular desian is nerformed. The
unified quidance problem is discussed from the "quick reaction” noint of

view in References [2] and [3]. The theory of quidance and naviaation is

discussed in References [4] and [5]-[7].



1.2 DEFINITIONS

Guidance and navigation analvsis is concerned with the solution of
the two-point bnundary value problem which arises when one attemots to
estimate the state (e.q., position and velocity) of a space vehicle and
use this information to contro1* the translational motion so as to attain
desired end conditions at mission compietion. That is, a mathematical de-
scription of the given vehicle dynamics and the navigation information to
be obtained, and a specification of the desired end conditions, such as
the orbital elements of the final satellite orbit about the moon or nlanet,
the quidance analvst must desiaa an algorithm for calculating the trans-
lational accelerations to be applied to satisfy mission objectives in the

presence of navigation errors and trajectory disturbances. When:

Definition 1: Given a mathematical model of the motion of a space

vehicle, a description of the translation acceleration which can be com-
manded by the guidance system, and an estimate of the state of the overall
dynamic system, guidance is the task of calculating and executing a
realizable acceleration profile which will cause the trajectory of the

space vehicle to attain desired end conditions, where

Definition 2: The state of the space vehicle system consists of the

position and velocity of the vehicle, the parameters determining the
vehicle performance capability, and the parameters determining the gravi-

tational and atmospheric accelerations.

*
Guidance theory is a special case of final value control theory.
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The estimate of the state is obtained from the navigation svstenm,
where

Definition 3: Naviaation is the task of estimatina the state of
the space vehicle svstem from sensed data, such as the first and second
intearals of on-bnard accelerometer data, and/or earth-based trackinr

data a~d/or on-board observation af a celestial reference.

Definition 4: If the state estimate is available only at some
initial time, the quidance svstem is said to be operating opben-loon. I€
continually updated state information is available from the navigation
svstem, the auidance system is said to be operatina closed-loon.

Definition #1 states that auidance encompasses ouidance theorv
‘software) as well as the mechanization of the theorv (hardware). Guidance
mechanization usuallv concerns the auidance theoretician only to the extent
that it affects his analvtical treatment of the problem. For examole, the
analvtical treatment will certainlv be dependent upon the functional form
of the quidance accelerations, which might be anplied in the form of
impulsive changes of velocitv, realized bv thrusting with a relativelv hich
acceleration level for a relativelv short time: bv starting, throttlina,
steering and/or shutting off a rocket enaine which thrusts for a relativelv
Tona oeriod of time, and/or bv applvina 1ift and/or draa accelerations
durinn motion in the atmosnhere,realized bv commandina motion of aerodvnamic
surfaces. 0On the other hand, the quidance analyst usuallv assumed that

the attitude control problem can be ignored, where

-4.



Definition 5: Attitude Control is the task of attaining and
stabilizing the vehicle in the attitude confiquration called for bv
the quidance svstem. Separate treatment of quidance and attitude
control is reasonable for most applications, because their response
times are usuallv so different that there is neqligible interaction.

The stability problem must be considered, however, where

Definition 6: A quidance or attitude control svstem is said to
be unstable if arbitrarily small errors can result in arbitrarilv larae
commands; if this nhenomenon cannot occur the system is said to be stable.
Note that stabilitv is usuallv not the most imnortant consideration in the
quidance problem, for the duration of quidance is finite and short compared
to the mission duration. This is not true for the attitude control nroblem,

indeed, stability is usually the primary design qoal.

The primary purpose of the study reported here is the analvsis of

quidance modes, where

Definition 7: A quidance mode is an algorithm for calculatina the

parameters and functions which will accomnlish the quidance task.

Since naviaaticr “rfryrticn wiil be getheved durina the missfon in
order to upndate the estimate of the state of the svstem, a quidance mode
must be capable of actina as a real-time, feedback, final-valuve contvyl
Taw.

In general, there exists an infinite variety of auidance modes which
will accomplish mission objectives. Thus one seeks an optimal auidance

policy which satisfies the end conditions while minimizina some performance



index, such as enaine prooellant expenditure, or else one prespecifies

a functional form which is.near-ootimal. Present practice is to simolifv
the overall ontimization problem by treatina it as a seauence of two-
point boundarv value nroblems. That is, the overall mission is thouaht
of as a sequence of "phases", usuallv characterized by the means avail-

able for applving the quidance accelerations.

Definition 8: A quidance phase is a seament of a trajectorv,
usuallv characterized by the means available for annlvina the auidance
accelerations, having a distinct guidance objectives, i.e., specified

end conditions.

The objective of the quidance system for any aiven phase is to
attain the intermediate set of pre-specified end conditions. For example,
a aquidance phase might consist of transfer by means of relativelv niah
rocket thrust acceleration from a near-earth circular parkina orbit to
a soecified earth-escape hyperbola. (A more detailed description of
auidance phases is given in Section 1.3). Such intermediate end conditions

must be obtained bv a "targeting" method, where

Definition 9: Targeting a given guidance phase is the task of

analytically and/or numerically specifying the objectives of that phase.

Thus targeting is concerned with the practical task of piecing together
the solutions of sequence of two-point boundary value oroblems so as to
devise an overall solution of the complete problem. The targeting problem
is almost synonomous with the guidance theory problem to analysts primar-

ily concerned with guidance maneuvers which take the form of velocity



impulses, while analysts concerned with continuous thrusting think of
targeting in terms of specifying end conditions. In the terminoloay of
optimization theory, targeting may be thought of as the task of specifying
the transversality conditions for any guidance phase, given that the

trajectory has been segmented into phases.

The imposition of intermediate "boundary" conditions by the taraeting
process leads to a sub-optimal overall guidance law, but, since each
phase can be treated individually, the design of appropriate guidance
modes is much simnlified. In practice, guidance modes for the individual
phases are usually quite different in form. Considering also the diverse
forms of quidance mechanization employed for the various phases, it is true
that essentially different guidance systems are nresently used on a aiven

mission.

It seems clear that it would be desirable to design a unified

guidance system for future applications, where

Definition10: A unified guidance system is one capable of guiding

all phases of a given mission.

Lastly, for the purnose of classification and analysis of the con-
tribution of software errors, to overall system performance, it is necessary

to define what is meant by precision.

Definitiony): A software algorithm is said to be precise if the

system error introduced by mathematical approximations is small compared

to the total root-sum-square system error; otherwise the algorithm is said

to be apnroximate.



1.3 DESCRIPTION AND EXAMPLES OF GUIDANCE PHASES

Present practice in guidance and navigation system design is to
segment the overall trajectory intc a sequence of phases (see Definition 8).
Tne guidance mode in each phase attempts to null errors resulting from
the previous phase, olus errors due to any current disturbances, by
attaining the end conditions specified for the ohase. Thus a quidance
system might be called ubon to solve in real time many different typss
of two-point boundary value problems for a wide range of initial conditions.

Passible types of quidance ohases for advanced missions 3re:

e Hiah Thrust Continuous Guidance

Launch vehicle quidance

a. Initial ascent to altitude
b. Booster staage

c. Ascent to orbit

d. Injection from parkina orbit

Terminal guidance

a. Retro into lunar or planetary orbit
b. Injection intc earth satellite orbit
c. Descent from orbit

d. Soft landing and hovering

® itow Thrust Continuous Guidance

Spiral escape from earth
Earth to taraet transfer
a. Lunar

b. Interplanetary



Spiral capture by target body
Continuous orbit adjustment
a. Earth satellite

b. Lunar satellite

c. Planetary satellite

d. Earth-target transfer orbit

e Impulsive Guidance

a. Midcourse

b. Approach

¢. Terminal

d. Satellite orbit trim
e. Descent from orbit

f. Soft landing retro

e Aerodynamic Guidance

a. Control of lifting reentry
b. Control of ballistic reentry
c. Drag brake control

d. Parachute control

Since there are many types of guidance phases, it is usually the
case that more than one guidance mode will be employed during a mission,
and more than one command mechanization subsystem will be used. Indeed,
the guidance techniques for the various phases are so different that

essentially different quidance systems are used during a mission.

-9.



EXAMPLES :* Guidance Phases for a Typical Lunar Mission

Ascent Phase, The ascent phase begins at launch and extends to
injection into a nearearth circular parking orbit, which might have a
nominal altitude of 100 n.mi. above the earth's surface. A typical
ascent phase might last 8 to 10 minutes. The objectives of the guidance
system is to attain circularity (eccentricity equal to zero) at an
altitude close to the standard value. Guidance corrections are aoplied
by steering the vehicle with the gimbaled rocket nozzle and by making
small changes in the thrust termination time of each rocket stage. The
distrubances to the flight path consist of imperfectly applied thrust
acceleration and external forces, such as wind and air density variations.
The oosition and velocity of the vehicle are measured by integrating the
outputs of accelerometers mounted on an inertially fixed platform within
the vehicle, or from ground-based tracking radars, or from both these
SOUrces.

Parking Orbit Phase. The parking orbit phase begins at parking

orbit injection and extends to the restart of the launch vehicle for the
injection phase. Typical parking orbit durations are 1 to 20 minutes

(4 to 80° of coast arc) but they can be indefinitely long. There are
usually no guidance corrections required during this phase, but some
vernier adjustment of the errors remaining from the ascent phase might
be made. The disturbances to the flight path are negligibly small for
short coast arcs, but otherwise atmospheric drag becomes important. The
position and velocity of the vehicle are determined as in the ascent

phase, but celestial observations can be incorporated if the parking orbit

¥ This material is from Reference [5].
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is sufficiently long. A rendezvous and docking of two or more vehicles
may occur in this phase, the purpose being to assemble a spacecraft
capable of completing the remainder of the mission. The rendezvous

does not alter the essential here.

Injection Phase. The injection phase begins at restart of the

launch vehicle and extends to injection into earth-moon transfer orbit

(which is an ellipse relative to the earth with eccentricity of 0.987

for a 66 hour transfer). The duration of the injection ohase is typically

2 to 3 minutes. The objective of the guidance system is to attain a transfer
orbit which will cause the spacecraft to imnact the desired target ooint

on the moon. The corrections are made as in the ascent phase, The dis-
turbances to the flight path are primarily due to imperfectly applied

thrust acceleration. The position and velocity of the vehicle are de-

termined as in the ascent phase.

Midcourse Phase. The midcourse phase begins at injection and extends

until the spacecraft enters the "sphere of influence" of the moon, a point
which is not precisely defined but is approximately 60,000 km from the
moon. The duration of a typical midcourse phase is roughly 50 hours. The
spacecraft is separated from the launch vehicle during this period. The
primary objective of the guidance sy.tem is to correct for errors in the
injection phase, thus providing a vernier adjustment. There are in
addition some small distrubances to the flight path to consider, such as
solar winds, leaking gas jets in the attitude controil system, and errors
in the assumed values of the physical constants which define the mathe-

matical model used to construct the standard trajectory. The orbit is

-11-



determined from celestial siahtinas and/or earth-based radar data. The
quidance corrections are performed bv applving short-duration imoulses of
acceleration (on the order of a minute lona) with a small rocket enaine so
as to achieve escentially instantaneous chanaes of velocitv. The magnitude
of the correction is determined by the duration of the thrustina, and the
desired direction is attained bv oroperlv pointina the spacecraft. 0One or
more corrections might be made, the first no sooner than 5 hours after in-
jection so as to allow time to determine the orbit, and others (usually

not more than two) as reauired to null errors in the previous correction.
The total velocity correction apolied in the midcourse phase depends prim-

arily on the injection error, but is tvpically less than 100 m/sec.

Approach Phase. The approach phase begins when the spacecraft enters

the sphere of influence of the moon and extends until just prior to beginning
of the terminal phase, a period of typically 15 hours. The objective of the
guidance system, the disturbances to the flight path, and the techniques

for determining the orbit and applying the guidance corrections are the

same as in the midcourse phase. The trajectory is a moon-centered hyperbola
with a hyperbolic excess velocity of typically 1.0 to 1.2 km/sec. Two or
more corrections will probably be made, based on orbit determination
measurements which sense the position and/or velocity of the spacecraft
relative to the moon. Examples of such observations would be on-hoard
sightings of the angles between the target center and certain stars and/or
measurerent of the change in spacecraft spred as it is acted upon by the

moon's gravitational attraction. It is the gaihering of this target-

-12-



relative tyoe of orbit information which distinquishes the approach
phase. Since the ultimate mission accuracy very likely will depend
on this information, the approach guidance phas2 is one of the most
important of all. It supplies che final vernier corrections to the

orbit.

Terminal Phase. The terminal phase begins at the completion of

the last approach correction and extends through the final thrusting
required to complete the mission, which might be a retro-braking into
satellite orbit, a direct descent to the lunar surface, or a corbination
of these two maneuvers in order to descend to the surface frem parking
orbit. Integrated accelerometer data would be used during the thrusting
periods, the initial conditions being obtained from the orbit parameters
estimated during the approach phase. Celestial measurements and/or
earth-based tracking data would be employed, if possible, during the
coast periods. The only small impulsive corrections made would be during
the parking orbit, if there is one. Thus the terminal phase is similar
to the ascent-to-injection phases, with appropriately modified guidance

objectives,

-13-
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1.4 THE SEPARATION OF GUIDANCE, NAVIGATION AND ERROR ANALYSIS
It will usually be assumed throughout this report that guidance,

navigation, and error analysis can be treated as separate problems.

This assumption is consistent with present practice in guidance analysis,
but the theoretical justification is not at all obvious. Indeed, simple
examples can be constructed to show that the separate treatment of the
guidance and navigation problems (control and estimation problems) can
lead to incorrect results. Separability conditions can be established,
however, and these are usually tacitly assumed for guidance work. For
example, if system and navigaticn errors are small, so that a linearized
analysis is legitimate, then separability follows. To properly account
for random errors in such an analysis, one sometimes applies the method

of aposteriori constraints. That is, a quidance law is derived, an
error analysis is performed, and revised end conditions and constraints

on end conditions are aposteriori specified in order to yield an acceptable
performance in the presence of the stochastic effects. Such an approach is
usually justified heuristically or empirically, and works well

for many applications. Those cases where it does not need to be analyzed
further.

The separability question is discussed in more detail in Section 2.0.

Some new results are presented to indicate that a reformulation of the
guidance and navigation problem in terms of maximum likelihood end conditions
can lead to a rationale for separability, or a relatively simple way of

deriving stochastic correcticas. In particular, it is shown that separ-
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ability applies for the case of hamiltonian dynamic systems, which is
a useful result for space guidance work. The main difficulty in such
an approach is justification of the maximum likelihood formulaticn.
Cases where it is not applicable arise in post-injection impulsive

gnidance, and discussion of this problem is presented in Section 10

1.5 CLASSIFICATION AND PERFORMANCE OF GUIDANCE MODES

Assuming that the separate treatment of guidance,navigation and
error analysis is indeed legitimate, a classification of guidance modes
was devised and measures of performance were defined. In general, the
modes were classified according to the assumptions introduced in their
derivation. That is, the designer of a guidance mode can base his
derivation upon either an approximate or a precise model of the dynamic
system. He can employ either an arbitrary steering function or a special
parameterized form. He can develop the guidance law in terms of a series
expansion with coefficients precalculated and stored before the flight,
where the expansion can be linear or non-linear, or he can call upon the
computer to solve the guidance problem in real time, where the end con-
ditions to be met are either explicitly or numerically specified. Thus
a certain logic tree is foliowed to completion by the guidance analyst,
terminating in a special class of guidance modes. This classification is
discussed in detail in Section 3. Some examples of presently employed

guidance mode are described and classified according to this scheme,
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Measures of performance of a guidance mode are also described in
Section 3, and the various classes of guidance modes are qualitatively

discussed from the point of view of these measures of performance.

1.6 SIMULATION OF JUPITER INJECTION GUIDANCE

A limited amount of computer simulation was carried out in order to
compare typical examples of guidance modes. The test case chosen was the
injection guidance phase of a Jupiter mission. The guidance modes chosen
for numerical simulation were the precise calculus of variations algorithm,
the Iterative Guidance Mode, (IGM) and the TRW hybrid guidance mode. The
trajectory (shown in Figure 1.2) was an unusual one, chosen not as an
example of optimal performance but instead as a severe test case for guid-
ance. The vehicle had an ascent phase consisting of preprogrammed ascent
through the atmosphere plus guided ascent to a circular 96 nautical mile
parking orbit, and an injection phase, consisting of two burns to a
velocity suitable for satisfying the Jupiter mission. The arc turned
over the earth's surface by the last two stages was 96°, the burnout
altitude was 2647 nautical miles, and the path angle at burnout'was 49.4°,
The reason for this long burning arc was that energy, eccentricity and
argument of perigee were specified, thereby causing the vehicle to inject
onto a precisely fixed hyperbla. The long burning arc was required by the
particular vehicle. The hypothesized vehicle consisted of a 260 inch
solid rocket first stage, ar >IVB second stage, an improved Centaur third
stage, and a fourth "Kick" stage.
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The results were interesting. The TRW hybrid and IGM quidance
techniques failed because the approximations introduced irn their de-
viation were not applicable to a trajectory with a long arc lenath
traversed over the earth's surface and a very large altitude change be-
tween ignition and burnout. The calculus of variations approach of
course succeeded, but some difficulty was obtained in generating the
trajectory.

After some initial attempts to improve the approximations in the
TRW hybrid law proved unfruitful, an iterative technique was devised for
improving the performance. The motivation for such an approach followed
from the realization that the approximations of the equations of motion
were, in effect a crude one-step integration. It therefore makes sense
to replace the approximations with more accurate numerical integration.
This approach led to excellent performance, resulting in only a 36 pound
payload loss from the calculus of variation solution, and exact satis-

faction of end conditions. Complete details are given in Section 4.

1.7 SIMULATION OF ATLAS-CENTAUR GUIDANCE

In order to make the numerical evaluation of guidance modes more
complete, studies of Atlas-Centaur guidance carried out by TRW Systems
Group under NASA Contract NAS-3-3231 (Reference 8) were summarized in
Section 5, These studies evaluated the operation of the same two finite
parameter guidance modes discussed in Section 4: the Iterative Guidance
Mode (IGM) and the TRW Hybrid Guidance Mode. The eight missions simul-

ated for the study are: one-burn lunar (direct ascent), two-burn lunar
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(parking orbit), earth orbital, polar earth orbital, one-turn planetary
(Mars, direct ascent), two-burn planetary (Mars, parking orbit), synchron-
ous satellite, and solar probe. While these eight missions represent a
spectrum of situations, performance of the two guidance modes was sat-
isfactory in each case. This conclusion is to be contrasted with the
results of Section 4, where neither mode was adequate for guidance of

the unusual Jupiter injection phase trajectory.

1.8 PARAMETERIZED GUIDANCE

The injection guidance simulation results studied the feasibitity
of what might be called approximate parameterized quidance. These gquid-
ance modes, which will later be classified as finite dimensional (for
example, the Iterative Guidance Mode, IGM, and the TRW Hybrid Guidance
Mode), are constructed by imposing a functional form on either the steer-
ing angle (X) or a portion of the vehicle state vector (e.g., radial
distance r). This leads to the formulas tanXx= A + Bt for the IGM mode

and ;/aT = A + Bt for the TRW Hybrid mode, where a, is the thrust

T
acceleration. The equations of motion are then integrated in approximate
form and parameter values are selected so that the desired end conditions
are satisfied. Approximations to the integrated equations of motion are
in form of closed analytic expressions which give, in general, crude
estimates of the actual integrals. Time-to-go to burnout and the down
range transfer angle are often so approximated. These estimates improve

as cut-off time is approached so that an acceptable trajectory results

when the system is operated closed-loop. The approximations are good for
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the early portions of flight if the guidance phase involves a relatively
short Lurn time and down range transfer angle, but otherwise the approx-
imate values of the acceleration integrals are no longer adequate. This
was seen on the Jupiter mission Injection Phase, and an iterative "precise"
parameterized guidance mode was required.

Precise parameterized guidance retains the parameterization of the
steering law or a portion of the state vector, but replaces the crude
approximations of the acceleration integrals by more exact numerical inte-
gration of the equations of motion. The accuracy of this numerical inte-
gration need be limited only by the computing capabilities of the system.
The final values of the state vector components become functions of the
parameter values, linked by means of the numerical integration scheme, and
desired end conditions may be achieved through application of the Newton-
Raphson algorithm. Extra degrees of freedom, which occur when there are
more guidance parameters than desired end conditions, may be utilized for
optimization of final payload or for the treatment of state and/or control
variable constraints along the trajectory. This general method is discussed

in more detail in Section 6.

1.9 PROBLEM AREAS

Certain theoretical problem areas requiring further research and
development for unified guidance were identified and analyzed as a part
of the study reported here.

e Separability of Guidance, Navigation, and Error Analysis

As discussed in Section 1.4, the question of separability is a

potentially troublesome one. The conditions for separability
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are discussed in Section 2, with primary emphasis upon under-
standing and justifying present practice in guidance analysis.
Some interesting new results on maximum 1ikelihood guidance
techniques are briefly described, and it is concluded that

further work is required to exploit this approach.

Targeting

Targeting, which consists of specifying parameters in the
explicit end conditions functions for guidance phases, is an
important consideration in the development of a unified guid-
ance system. In Section 7 existing techniques for solving
the targetin; problem are described from an intuitive point
of view, and some new results with an improved numerical tech-
nique are briefly described. Based upon these results, it
appears that more efficient targeting techniques can be de-

veloped.

Constraints

The anlaytic treatment of mission and launch vehicle constraints
is another important consideration in guidance mode development.
From a control theoretic point of view, these can be either
state variable or control variable inequality or equality con-
straints. It is well known that such control problems can be
difficult vo formulate and solve. In practical guidance work
solutions are sometimes obtained in an empirical manner, using

using a trialand error procedure to iterate on the form of the
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guidance law and the numerical values of the parameters in
law. The constraint problem has not been treated in detail
in this report, but a new approach is suggested in Section 8.
It is concluded that further work should be spent on develop-
ing efficient analytical techniques for treating state vari-

able and control variable constraints.

The Switching Time Problem

It is well known that nc° all end conditions can be controlled
near the end of a guidance phase, fc* the guidance capability
near thrust termination reduces to a velocity impulse. In
Section 9 the shut-off time phenomenon is discussed from a
theoretical point of view, showing that the problem can be
understood in terms of the classical abnormality condition.
Based upon this consideration, a shut-off region is defined

and a steering and shut-off mode of operation is suggested.

The classical conjugate point phenomenon is discussed in
relation to optimizing the start t'me of a guidance phase.
It is shown that optimization of start time can cause a
conjugate point to exist on a trajectory when it otherwise
might not. That is, the simultaneous optimization of start
time and steering angle function leads to a different
conjugate point analysis than the optimization of steering
angle alone. These interesting questions might well be

further pursued.
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. Stochastic Guidance

The separate treatment of navigation, guidance, and error
analysis may not be justified in certain cases. For example,
the impulsive guidance corrections appiied during the midcourse,
app:-oach, and orbital phases of flight may require a stochastic
guidance algorithm. Stochastic control problems of this type
are very difficult to solve, and at this time only relatively
primitive results have been obtained. In Section 10 this class
of guidance problems is briefly discussed, and some recently

completed work toward practical solutions is briefly described.

1.lIc  CONCLUSIONS AND RECOMMENDATIONS
The results of this study have led to the following conclusions

and recommendations:

1. The capability of on-board computers to do real time numerical
integration and iteration makes unified self contained guidance

possible.

2. Certain problem areas exist, but relatively straightforward
extensions of existing theoretical results could lead to de-
velopment of algorithms suitable for real-time, on-board,

unified guidance.

3. It is recommended that further analysis be carried out in the

following areas:
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a. Separability of guidauce, navigation, and error analysis
b. Targeting

c. Analytic treatment of constraints

d. Switching time analysis

e. Impulsive stochastic guidance

4. A parameterized form of guidince law is tentatively recuimended
for unified guidance, both for ase as an on-board algorithm and
for generation of preTlight reference trajectories. The para-
materized form may also be ysed to generate reference trajectories
for rudimentry guidance systems which cannot duplicate-the

complete parameterized form in real time.

5. More work on parameterized guidance is called fc~. 1In
particular:
a. It is necessary to dev.se more universal fur:tional

forms which are neariy optimal for a wider class of
guidance phases

b. The use of free parameters for the purpose of optimality
and/or satisfaction of constraints must be examined

c. An efficient analytic technique for treatment of con-
straints should be developed.

These conclusions and recommendations must be considered
tentative until further analysis can be carried out,and a wider class of

guidance problems can be studied and simulated,
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2.  THE SEPARATION OF GUIDANCE, NAVIGATION, AND ERROR ANALYSIS

2.1 INTRODUCTION

Implicit in the definitions of guidance and navigation are the
assumptions that guidance and navigation can be treated as separate pro-
blems, and that statistical error considerations do not affect the design
of a quidance mode. That is, in present practice the guidance theorist
designs a guidance mode by assuming that the state is known perfectly,
and for real-time applications employs the estimated state in place of
its true value. This assumption, which is essential to a meaningful dis-
cussion of existing guidance modes, requires further clarification.

Strictly speaking, the deterministic derivation of a guidance mode
is not correct, for the predicted end conditions which determine the guidance
functions become random variables if there are random estimation errors and
randca systematic disturbances to the trajectory. In effect, the state of
the system can no longer be defined simply by position, velocity, and system
parameter vectors. Instead, the state must be thought of as the expected
value of these quantities plus all the statistical moments of their dis-
tribution. In other words, the state can only be described by the condit-
ional probability density function of the state, given the navigation data.
From the point of view of guidance optimization theory, the random behavior
of the dynamic system implies that there no longer exists a field of solutions
which are the characteristics of the deterministic Hamilton-Jacobi partial
differential equation. Thus, at least theoretically, the notion of a

predictable reference trajectory has to be abandoned. In theoretical
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treatments of the stochastic control problem, one usuaily defines the
control (guidance) so as to cause the first moment (expected value) of
the deterministic state, conditiorned on the navigation data, to achieve
the desired value. Such an approach is elegant, but, in general, imposs-

ibly difficult to implement.

Simple examples of stochastic control problems (See Section 2.2)
would seem to indicate that the deterministic guidance analysis is not at
all valid for realistic probiems. As a practical matter, however, stochastic
guidance analysis is not required for those applications where (1) an
apriori reference trajectory is availabie, and (2} the random navigation
errors and random systematic errors are small. That is, the deterministic
analysis applies when the first variation (or perhaps the first and second
variations) about some reference trajectory is the dominant consideration.
In a first variation analysis the random errors enter lirearly and the
deterministic approach can be theoretically justified (See Reference [9]).
Consideration of the second variation does not change this conclusion,
for it then follows that approximate results similar to the linear case
are obtained with additional terms in the estimation and control’equations‘.
to account for non-linear bias. Such assumptions can be thought of as
devices to simplify the difficult computational problem of computing ex-

pectations.

A quidance Taw resulting from determiniatic analysis is sometimes
modified to account for neglected stochastic effects by adding aposteriori

"constraints”.  That is, a linearized or Monte Carlo closed-loop analysis
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of random navigation and systematic errors is performed to test system
performance, appropriate state variahle or control variable constraints
are then empirically defined to cause the mission objectives to be met
in the presence of these errors, and the guidance law is appropriately
adjusted. The procedure can be iterated as many times as necessary.
Stil1l another, and perhaps most important, way of justifying
a separate, deterministic analysis of guidance is to introduce the notion
of maximum 1ikelihood guidance, In this case one seeks to control the
"most likely" value of the deterministic stat2 rather than its expected
value. This most likely vaiue is the root of the differentiated likeli-
hood function, and is the value of the state which maximizes its (con-
ditional) probability density function. Not all guidance problems can be
meaningfully formulated in this way (e.g., impulsive midcourse guidance
with execution errcrs proportional to the applied correction), but the
technique does apply in important cases (e.g., injection guidance). In
these cases it can be shown that the deterministic guidance law is also
the stochastic guidance law, and navigation and error anlaysis can indeed
be treated separately, if the equations of motion describe a hamiltonian
system, For non-hamiltonian systems the stochastic correction to the
deterministic law is relatively easy to compute.
The assumptions reauired to justify deterministic guidance analysis
usually apply to those phases of a space mission where continuous guidance
accelerations are applied, but stochastic consideraticns become important

when the guidance is applied in the form of a sequence of small velocity
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impulses at unspecified times. The difficulty in this case is finding

the times of application. Present practice for the Rancer-Mariner-Surveyor
type of mission (Reference 7) is to prespecify these times and apply the
method of constraints. That is, the application times are chosen by
heuristic or empirical rules, and the real time corrections are calculated
with a linearized deterministic rule. The non-linear effects of the correct-
ions are treated by an iterative technique. Stochastic considerations are
introduced by employing a non-linear maximum likelihood estimator in the
navigation equations, and approximately modifying the targetec end conditions
so as to take into account the statistics of the estimation and systematic
errors. Small real time (adaptive) variations in the time of application
of the corrections are sometimes allowed. This approach demonstrably works

well for many aoplications.

In summary, the separate treatment of guidance, navigation and error

analysis can be justified by

¢ the assumption of linearity
® the imposition of aposteriori constraints

e the maximum likelihood formulation.

Those cases where such separation is not justified are very difficult to
treat, and further research is called for in this area. Further dis-

cussion and some recently obtained results are presented in Section 10,
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2.2 AN EXAMPLE OF OPTIMAL STOCHASTIC GUIDANCE
The stochastic control problem can be illustrated by a simple
example. Suppose that at the initial time to the final state x}(tf) is

known to be of the forn
X](tf) =4 (U,a) (2-])

where U is some scalar contro! parameter, and o is some scalar parameter

characterizing the motion between t0 and t For example, a might be

£
the initial conditicn x](to), or the magnitude of a perturbing accelera-
tion acting between to and te, and u might be the magnitude of the
quidance correction applied at to. Suppose the navigation system has
provided an estimate of a, denoted by a*, but there is an error in this
estimate, denoted by € = (a* - a). Suppose this unknown error is a zero
mean, Gaussian random variable with variance 02 over the ensemble of all
similar experiments. The problem is to choose the u which in some sense
minimizes X If the estimates were perfect (e = 0), one would seek a

uO such that

3d (uo, a*) = 0 (2.2)

In the stochastic case, however, the error in the estimate can be arbi-
trarily large, so one must deal with the statistical expectation (E[-])
of the derivative. This might be expressed in the form of a Taylor

series as



2 3
-k [28 (00)] - |[22 -
0=E [au (u”,a)}] = E { oY) R ag} €+3 2 2‘ e2
ﬁuaal
1 34 S
L1 ._g_) Sl [k | e
3 3 41 €
du da du 3a
+ higher order terms in " ] (2.3)
i
- (28], 2 i’ -} 2,3
dul” 2 { o *a ‘
1du ja Ju aa

+ [higher order terms in 72]

where the coefficients of the Taylor series are evaluated as functions of
u® and a*, and properties of a Gaussian distribution have been used in
computing the expectation (i.e., the expected value of the odd moments
are zero, and the expected value of the even moments are expressible in

2). Thus it can be seen that the statistics of the errors in

terms of o
the estimate become inseparably mixed into the optimization problem, and

it could be difficult to find W®. The Taylior series method might not be
the best approach, especially for states of higher dimension. In any case,
one is conceptually faced with solving an infinite number of optimization
problems corresponding to every possible value of =, and choosing a

statisticallv averaged snlution, weighted ac-ording to the probability of

occurrence of the values of e.

A still more subtle problem arises if it is desired to choose

x](tf) = a](u], Uy, o) (2.4,
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subject to
xz(tf) = gz(ul, u,, a) = given value (2.5)

Aralogous to the deterministic case and the previous example, one is

tempted to minimize

Elg;(u), u,, @) + v g, (u, u,, )] (2.6)

where v is a Lagrange multiplier. Conceptually, this corresponds to
solving an infinite number of optimization problems where the end con-
dition is satisfied each time, and the Lagrange multiplier has to be
treated as a random varii>'e. There is no reason to expect that such

solutions exist, however, Alternatively, one seeks to set
E[g](u],uz,u)] + v E[gz(u],uz,u)] = minimum {2.7)

where v is a fixed constant. In this case the end conditions are sat-
isfied "on the average”, that is, the expected value of the end conditions
satisfy the constraint but individual members of the ensemble generally

do not.

Stochastic control considerations analogous to those discussed in
this simple example will arise in the case of impulsively applied guidance

corrections.
2.3 LINEARIZED STOCHASTIC GUIDANCE WITH CONSTRAINTS

A common approach to stochastic guidance problems is to linearize the
system of equations with respect to random error sources. All statistical

moments then drop out of the optimization equation and one obtains the
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deterministic guidance law. For example, in the simnle oroblem discussed

ntl
above, setting (a____g_) = 0 for n > 1 reduces equation (2.3) to %% (W, a*) = 0.
dUda

Similarly, equation (2.7) reduces to the deterministic form

agl . 332
W(ul, uz,a) + v 'aT("l’ U, @) =0

1 1 (2.8)

1=1, 2
It is clear that such an approach can at best yield an approximately correct
answer, for, in the case of equation (2.3), terms of the form (a_"_ﬂ_g_) "
could be large. e

The effect of neglected random errors is sometimes taken into account by
what can be called the "method of constraints". Suppose that the solution of
equation (2.8) is (u1°, u2°), so that the expected value of the desired end

condition is (since the odd moments are zero)

2 2 2
3
ECxp) = {82(“10' b’ °‘*)] "'[;fé‘ (W u, °*)] T

(2.9)

4 2
3 |3 £ o o . 4
+4![3a2 u1’“2"")]"‘“"'

Thus there is a stochastic bias in the desired end condition due to the higher
order terms, which can be accounted for by introducing an offset aiming point.
More preciselv, one specifies that the probability nf achieving the end con-

dition x, w..nin a given region R should be a certain number (see Figure 2.1),
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and adjusts the aim point to satisfy this probabilistic constraint. The
calculation of this probability is a difficult task, and cannot be directly
inferred from the statistical moments. It can be numerically determined
by the Monte-Carlo method, or, as a reasonable approximation, it can be
assumed that the probability density is Gaussian with bias nearly equal
to the value given by equation (2.2) and variance calculated by linear-
ized analysis. In either case, iteration is required to calculate the
guidance law. That is, equation (2.8) is solved for u]o, uzo, the pro-
bability constraint is tested, new end conditions on X, are defined, and
the procedure is iterated until the probability constraint is satisfied.
This procedure will only be workable if the linearized analysis is

approximately correct, however.

Acceptable Region R
"3¢" Error Ellipse

Mean Final Value with
Stochastic Bias

Mean Final Value from
Linearized Analysis

FIGURE 2,1:  STOCHASTIC BIAS OF DESIRED END
CONDITIONS
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2.4 THE METHOD OF MAXIMUM LIKELIHOQD

A different and more workable approach to the stochastic guidance
problem is to use the concept of maximum 1ikelihood end conditions,
rather than expected values. That is, suppose the task of the guidance
system is to cause the "most likely" predicted final state to be a de-
sired value, where the maximum likelihood end condition is that value

which maximizes its probability density function.

Consider first the simple example of Section 2.2, where X1 is to be
maximized and the problem is to choose the proper value of o to solve
%%-(uo, a) = 0. Suopose that, for a fixed value of the parameter u, there
is a one-to-one mapping between X and o, so that the following inverse

relationship exists:
o= g'] (u, x]) = f(u, x]) (2.10)

Then the probability density function for x is

p(u,x]) = [Prob (a (x], u)i] %%-
(2.11)

‘ of (u,x )‘ exp

} fz(u X )

The maximum 1ikelihood value of Xy denoted by Q], is found as the root

of
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From equation (2.12) we can obtain a relationship between the parameter

(2.12)

u and the most likely value of Xy given by

= h(u) (2.13)
Then the value of u which maximizes ;] is found as the root of

3h _
=0 (2.14)

Maximum likelihood control of end conditions for space guidance
applications can be described by a relatively simple but typical example,
where the control correcticn is based upon only apriori information
rather than data gathered during the mission. Suppose that at time to
a single correction impulse vector u is to be applied so as to cause
the "most likely" state at the final time T to be a desired value. Let

the equations of motion be

%5 f(x,t) to <t<T (2.15)

. s . +
where x is the state vector. The initial condition at to( ) is Xq»
where X, is a Gaussian vector with covariance matrix Ao and mean equal

to [m + Kul. The K is supposed to be a given matrix. Thus the control
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u impulsively changes the state at t° according to
+ -
X, = x(to( )) = x(to( )) + Ku (2.16)
where x(té')) is a Gaussian vector with mean equal to m and covariance

Py Assuming a one-to-one mapping of Xq to the final state X7 = X(T) of

the form Xp = g(x ), the probability density function of X is
prixp) = c exo {5 [a(xp)T" 4" [q(xT)]}l 2 (2.17)

where ¢ is the coefficient of the Gaussian denc”* ‘- function of %o and

C ol =7 (xg) - (Ku+m) (2.18)

g (x1)
'-—-4 = determinant l | (2.19)

‘T
Define the likelihood ‘mction
T - %o
L(xg) = - In pr(xg) = ‘xT) A, a(x;) - In [ele -Inc (2.20)
axT!

But | I is the inverse determinant of the state transition matrix |
T

and it can be shown that (see [10], page 28).

T af 3
l l = exp |- j. trace [5; (t; xo(xT))]dt (2.21)
t )e
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Then the most likely value of Xp is that value ;T which satisfies

3L(x.r) T
~ . =1 3 3f
. =N o=l ) QY G 2z
P o 075 %, tf trace [3x] de (2.22)

ard the control u shouid be chosen to set ;T equal to the desired value,

2.5 SEPARABILITY FOR HAMILTONIAN SYSTEMS

Fer hamiltonian systems, where the state transition matrix is symplec-
3X

T
Iaxol
[%;J = 0. In the examole discussed above we have q(x;) = 0, and

tic (see [6], pp. 306) it can be shown that = 1 and hence trace

Ku = q'] (iT) -m (2.23)

In other worc:, for any desired final state ;‘T we can find the control u
from (2.23), just as though the initial conditions were not random. That
is, hamiltonian systems can be treated as thouch they were deterministic.
This i< an important conclusion. For exsmle, the deterministic analysis
of injection quidance can be justified in this way. For the case of non-
namiltonian systems, relatively simple stochastic corrections can be

obtained from equation (2.22).

The example considered in Section 2.4 treated random initial condition
disturbances only. Thus it is not at all clear that the separability
condition aoplies to hamiltonian systems where estimation errors are pre-
sent as well as systematic disturbances to the equations of motion. This

extension of the problem is analyzed in Reference [11], from which it can
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be inferred that gquidance, navigation, and error analysis can be

separated if:

(1) the maximum Tikelihond formulation is aporopriate
(2) the dynamic system is hamiltonian

(3) the probability density functions of disturbances
and tracking data noise are Gaussian

(4) the trackirg data noise is statistically uncorrelated.

Justifying the maximum likelihood formulation is a centrai difficulty

for space gquidance applications, for it is necessarv to have a one-to-

one relationship between random disturbances and end conditions in order
to define the likelihocd function. For example, this condition does not
apply if the squared value of the end condition is to be controllec.

This is the case in some problem formulations (Reference 12), which can
arise in post-injection impulsive quidance (see Section 10). For the
purpose of guidance mode analysis, however, it appears to be the case that
separabi ity of guidance, navigation, and error analysis is a reasonable

hypothesis.

3. GENERAL STRUCTURE GF CONTINUOUS GUIDANCE MODES

3.1 INTRODUCTION

The purpose of guidance is to control the magnitude and direction
of 2 rocket thrust vector to meet the targeting requirements of a mission
phase. This section examines the basic operation of the cortinuous (as

opposed to impulsive) high thrust guidance modes and describes a method



of classifying modes according to basic differences in the underlying

algorithms,

Open-loop guidance (definition 3) is useful for the 1ift-off phase
of & mission during which the guidance commands are pre-programmed and
independent of the actual state. If the propulsion hardware could per-
form the guidance commands perfectly, and if the mathematical model used
to describc *he mission were in complete accord with the real world,
then open-loop quidance would be sufficient for the entire mission. Since
this ideal is far from realization, it is necessary to occasionally measure
the true state of the vehicle and revise the guidance commands in accord-
ance with the new information. This is clesed-loop quidance., The pre-
sent section will be concerned exclusively with closed-loop guidance,

which will now be called simply quidance.

Fiqure 3.1 illustrates the flow of signals in the total control

sys tem,where

X
-0 Real World State X Nav.
T— of Vehicle == System

2+£2 §_+n

Execution of Guidance
a

a
a8 Command e} SyStem

FIGURE 3.1: GENERAL CONTROL SYSTEM
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x i the state of the vehicle; a is the commanded thrust acceleration

from the guidance system; ﬂq is the error between the actual vehicle state
and the estimated state received from the navigation system, and n, is

the error between the acceleration commard and actua: 27celeratich re-
sulting from execution of the command. Consistent with the discussion

of Section 2, it will be assumed that n; and n, are zero. The space

vehicle system shown in Figure 3.1 may now be reduced to the system

§

Real World
Vehicle

depicted in Fiqure 3.2.

jsv
|

Guidance
System -G-J

FIGURE 3.2: SIMPLIFIED CONTROL SYSTEM

The function of the guidance system is seen to be the computation of
an acceleration vector a for each value of t and i-i" some region per-
tinent to the mission. Since the guidance system is usualiy incapable
of providing a continuous output of acceleration vectors corresponding
to a continuous input of the vehiclc state, it is common practice te
require guidance to output an acceleration vector function g(t) = g(t,

tys 50) for t > t, corresponding to the state vector x at time t .
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The funciion a(t) is used to command the vehicle propulsion system until

a new state vector x. at time t, > t  {s received. Note that a single
computation at t , (open-1oop operation) would be sufficient if there
were no navigation or system errors and if there were no approximations

in the guidance calculation. Neither of these conditions usually apply,
however, Because of the closed-1oop operation, it is difficult to assess
the effect of errors and approximations except by computer simulation.

It has been demonstrated in practice that a guidance mode which apparentlyv
is crude in tne approximations made in the algorithm is quite effective

in steering to the desired end conditions in a near optimal fashion.

3.2 THE MATHEMATICAL PROBLEM
The vehicle state will consist of the position r, the velocity v,
and the mass m of the vehicle. Thus, x = (r, v, m). For a given guid-

ance phase these variables z-e related by the equations:

Fe - gtau (3.1)

3
I
'
™w
—
W
~N
~—

where g = gravitation acceleration (or gravitational
force per unit mass)
a = thrust acceleration magnitude = Y%B-
g = mass flow rate
Vo = effective exhaust velocity
u =

thrust acceleration direction, |u| = 1.
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and a dot over a vector denotes differentiatior by time. The objectives

of the guidance phase may be expressed by the equatiors

g (T, x(M) = 0, " i = 1,2, ...,m (3.3)

o sinply

n
(=]

g(T, x(T)) (3.4)

where g = (g], 9os «ens gm) and T = time of termination of the phase
(thrust cut-off). The time T may be either fixed or free. In addition
to the dynamic operations (3.1) and (3.2) and the desired final con-

ditions (3.4), a performance index J is specified:

J = (T, x(1)). (3.5)

It is common to select J to be the amount of fuel consumed to final time
T. It is desired to choose the guidance commands a and u so that the
resulting trajectory x(t), determined by (3.1) and (3.2), satisfies the

end conditions (3.4), while minimizing the performance index J.

The selection of the guidance commands is of course not arbitrary.
The realizable thrust acceleration is limited by the capabilities of the

vehicle. Two common situations are outlined below.

A. Mass Flow Rate Limited (chemical rockets). The effective

echaust velocity (ve) is constant and the mass flow rate is tounded:
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0 < -m<q.

Often the mass flow rate can assume only two values, o and q. Then

m(t) = m(t)) - qt, (3.6)
hence
-h v
a(t) = ¢ _ Ve _ Yo (3.7)
m m(to) - qt -t ° :

where 1 = m(to)/q.

B. Power Limited (Plasma or Ionic Rockets). The instantaneous pro-

pulsive power is limited, with:

_v 2
P=7Ve BsPpip P < Ppax (3.8)

Both Vo and g8 are treated as control variables.

3.3 CLASSIFICATION OF GUIDANCE MODES

In this section various guidance modes will be classified according
to the mathematical approi?mations and/or assumptions introduced in
their derivation. Although any attempt to classify guidance modes is
difficult, the present scheme has been found wo.kable and useful as a

*
basis for discussion .

The need for a classification of guidance modes was first recognized
by Mr. W.E. Miner. The present scheme of classification is based
upon his suggestions.
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The classification of guidance modes proceeds according to the
steps the analyst introduces in their development. One must first de-
fine the problem, which requires a mathematical model of the system
dynamics, a definition of system performance, a specification of the
desired end conditions, both at mission completion and at the end of
each individual guidance phase, and finally a description of the con-
straints imposed on the guidance system. The constraints mav be of two

types: state variable and control variable constraints.

Given the problem definition, the analyst must first decide whether
the derivation of the guidance mode equations is to be based upon a
precise model of the system dynamics or an approximate mode. The approx-
mate model would be selected to simplify the derivations or to facilitate
real time operation. A1l modes based on an approximate model of the
dynamics are operated closed-loop so that the errors introduced through

the approximations are removed through feed-back action.

In either case the analyst must next decide on either an unrestricted
infinite dimensional steering law or seek to limit the available degrees
of freedom through the introduction of a parameterized steering law. The
latter approach will be called finite dimensional steering. In general,
the infinite dimensional law will result from a calculus of variations
solution; a finite dimensi _nal law is a fixed functional form containing
a finite number of parameters. In this case an ordinary optimization

problem must be solved if there are more parameters than end conditions.
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The distinction between infinite and finite, which is really a distinc-
tion between non-parameterized and parameterized, is consistent with

theory and practice,

After the guidance law has been derived, it may be implemented in a
number or ways. There are basically two approaches. Before the mission
takes place one can compute the steering law for an ensemble of state
vectors, and store the steering iaw as a function of time and the vehicle
state, This is called the stored expansion method. Such expansions can
be further classified according to whether they are linear or non-linear.
By linear we mean an expansion which develops the control as a linear
function of the state, even though non-linear analysis may be required to
do this. For example, the so-called second variation method (Reference 13
and 14) considers first and second order variational terms in order to
develop the steering law, which nevertheless turns out to be a linear
function of the state. Another approach to the problem is to solve the
optimization problem in real-time. This will be called real time iteration,
for, in general, no closed form solution to the guidance problem exists

and an iterative technique must be employed.

If real time iteration is selected one has a choice of specifying
the end conditions either explicitly or numerically. In the explicit
approach the end ccnditions are given in functonal form. For example,
the end conditions might require attainment of given values of energy

and angular momentum at burnout, which can be explicitly described as
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functions of the vehicle state by the well known conic formulas. The
numerical end condition approach specifies some point or some hyper-
surface in state space to be achieved. The latter mav be described in
the form of a Taylor series expansion with numerical coefficients. In
either case, one must specify certain numbers. For explicit end con-
ditions one must specify the numerical value of, say, the energy and
anaular momemtum to be achieved. In the numerical end condition case
one must specify the coefficients of the series. Targeting is the task
of determining these coefficients. This important part of the guidance

pre-flight preparation is further discussed elsewhere,

The scheme of classification is summarized in Tables 3.1 and 3.2,
and representative guidance modes are shown as members of the various
classes. The examples listed comprise modes which have alreadv been
employed for space guidance, as well as schemes which have only been
analytically developed, Because of our classification me*hod it is

possible for some modes to fit into more than one class.

3.4 THE FORM OF THE STEERING LAW
This subsection discusses in more detail the structure of infinite

dimensional vs finite dimensional steering laws as defined in Section 3.3.

Infinite Dimensional Steering: Whether a precise or an approximate

model of the system dynamics is employed in the problem formulation, a

basic guidance class comprises those modes which emnloy an infinite
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DEFINITION OF PROBLEM: SYSTEM DYNAMICS, SYSTEM PERFORMANCE, END CONDITIONS, CONSTRAINTS

TABLE 3.1:

CLASSIFICATION OF GUIDANCE MODES

PRECESE MODEL. OF SYSTEM DYNAMICS

INFINITE DIMENSIONAL STEERING LAW

FINITE DIMENSIONAL STEERING LAW

STORED EXPANSION

REAL-TIME ITERATION

. STORED EXPANSION

REAL-TIME ITERATION

NON- EXPLICIT NUMERICAL NON- EXPLICIT NUMERICAL
LINEAR LINEAR END END LINEAR LINEAR END END
CONDITION |CONDITION CONDITION | CONDITION
1. Delta - | 1. Poly- | 1. Calculus|), Ca]cu]u% 1. C Matrif 1. Poly- |} 1. TRW 1. Ranger/
steer to nominal of varia- |}of varia- | Ref. 6 nominal Iterative [Mariner/
null devia-| Storage - | tions - tions storage Hybrid - Surveyor Mid-
tions from | Ref. 16 Ref. 18 2. Success- kef. 8 and [Course -
nomina] 3. Dynam‘ic 2. Success- ive approx- Section 4 Ref. 7
trajectory | yrogramm- | ive ?PPYOX- imations 2, C Matrix
ing - imations - Ref. 6
2: Lambda | pef. 17 | Ref. 19,2] |3. Newton- ’
matrix - Raphson
Ref. 15 3. Newton -
Raphson -
3. Second Ref. 20
variation
Refs. 13 &

14
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TABLE 3.2:
DEFINITION OF PROSLEM:

CLASSIFICATION OF GUIDANCE MODES
SYSTEM DYNAMICS, SYSTEM PERFORMANCE, END CONDITIONS, CONSTRAINTS

APPROXIMATE MODEL OF SYSTEM DYNAMICS

INFINITE DIMENSIONAL STEERING LAW

FINITE DIMENSIONAL STEERING LAW

STOREN EXPANSION REAL-TIME ITERATION _STORED EXPANSICN REAL-TIME ITERATION
NON- EXPLICIT NUMERICAL NON- EXPLICIT NUMERICAL
LINEAR LINEAR END END LINEAR LINEAR END END
CONDITION |CONDITION CONDITION | CONDITION
1. Delta - {1 Poly- [l. Opex - 1. Ca]culusr 1. C Matriq 1. Poly- [1. TRW 1. TRW
St?;ardto nominal -Ref. 3 of waria- {Ref. 16 nominal Hybrid - Hybrid -
nu e- storage - , tions stora Ref, 8
viations |Ref. 16 2. Brown- ge 2. 1GM
from nomin- Johnson - |2, Success- 2. IGM - 3. Perki
al trajec- 2. Dynamic | Ref. 22 ive approx- Ref. 23 . ns
tory E;ggr?r;mng 3, Calculus |imations 3. Perkins- [}- Teren
2. Lambda ) of varia- |[3. Newton - iRef. 24 5. Cherry
matrix - tionz Ref. 18Raphson 4. Teren -
Ref. 15 4. Success- Ref. 25
3. Second mations o | 5. Cherry -
arition Ref. 19,2 et
14 5. Newton -
Raphson -
Ref. 20




dimensional steering law. That is, the steering law is restricted only by
the vehicle and state variable constraints and not by artificially in-
troduced parameterization of the steering angles. The calculus of
variations is the basic analytical tool for determining the time varv-

inqg steering anqles. The procedure is to introduce the adjoint variables
and proceed as in the theory of optimal control. The following discussion

outlines the major features of this method.

The basic equations for the calculus of variations solution will now
be developed under the assumption that burnout mass is to be maximized
with a mass-flow-rate-limited propulsion system. The equations of
motion are as given by (3.1) and (3.2). The control variables are the
mass flow rate (g(t), the thrust direction u(t), and the total burnina
time (T), where

0 <8 <Byy (3.9)
u-u=1 (3.10)
The state of the vehicle is to satisfy the initial conditions
r(o) = r,, ¥(o) = v, m(o) = m (3.11)
and the final conditions
gi(IjT), viT), T)=0 i=1,2....m<6 (3.12)
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m(T) > Hm-" .

(3.13)
The guidance variables 8,u are to be selected so that the resulting
state vectors with initial conditions (3.11) satisfy (3.12) and mini-
mize the quantity -m(T). The adjoint state vector
A
A =1 12
- - (3.14)
An
is introduced along with the Hamiltonian H defined by
N T
HOGA) = 2w + 2 (a+au)+ (-8 (3.15)

From the calculus of variations it may be inferred that if optimal

quidance g,u exists, then there exists an adjoint vector A which sat-
isfies the equations

T
o= [ a3 oM
Ar 5-‘{— W (3.16)
= .y = oH 3.17
N Aty (3.17)
Bv
_ T e
Ap 5 VU — (3.18)
m
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and the final conditions

sv = 0 (3.19)

9 sr+ 2% sv o= 0. (3.20)

The maximum orincinle imnlies, furthermore, that

u = gv/ilvf, and (3.21)
. T Ve
Bmax ]f(lv = 'i—)’ Ay > 0
B =
0ifh Tu £} 5 <o (3.22)
LS T e .

If the function(lvT g_ve/m-xm)is identically 0 on an interval, g is not speci-

fied. In this case the trajectory is said to have a sinoular sub-arc.
. I ce s
Letting y = A, g_ve/m = Ao it is seen from (3.16) that

T v K/

) == = (3.23)

vo= e -

A
—v

It is thus unnecessary to determine An from (3.16): integration of the

above equation will suffice. It is also seen that
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Jig

where G = ag/ar, so that is is

dimensional adjoint vector A =

GT

A, (3.24)

sufficient to introduce only the three
*

Ay The problem is then reduced to the

following set of differential equations and end conditions:

r=y (3.25)
foae azm
mo= -8 (3.27)
A= 6 (3.28)
y = Ial v/m, (3.29)
r(e} = r,, vo) = v, , m(o) = m, (3.30)
g;(r(t), ¥(t) = 0 i=1,2,---m <6 (3.31)

and
A ev-i er= Oatt=T (3.32)

*

This procedure is no longer
drag. The dynamic equation

valid in the presence of atmospheric
has an additive position and velocity

dependent acceleration term which makes eliminaticn of A, impossible.
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for all ér, &v satisfying

39; r 39,

—_— - — v = i = co=

5 + v = 0 i=1,2,---m, (3.33)
If the m vectors (agilag, 391/3!) are linearly independent, then

the conditions (3.33) represent m-6 conditions on the variables i, i

at time t = T. The system of equations

r=v=g+au (3.34)

(1]
(2}
>

Y (3.35)
of order twelve is thus constrained by a 6 initial conditions and 6
final conditions on the voriables r, r, A,A. This system and the

corresponding boundary values will be called the two point boundary

value problem.

There are many methods for implementing these equations in an

exact or approximate form. For example, there is the aradient method
(References 27, 28), the Newton-Raphson method (References 13, 14, 19,
20), various forms of successive approximation techniques (Reference 21),
or an approximate solution of the Hamilton-Jacobi equation (Reference 29).
A fundamental difference is between real time solution and pre-flight
solution giving the required steering as a function of the vehicle state.
The Tatter technique, the so-called stored solution method, may also be

accomplished in a number of ways. The guidance commands may be stored
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in the form of functions of the actual vehicle state; these will, in
general, be non-linear functions of the state. Another popular method
is to store the guidar zommands in the form of functions of deviations
of the vehicle state from a nominal state. The nominal state in such

a case is generally computed by solution of the two point boundary
value problem given by variational theory. The functional form for the
guidance/state vector relationship may be either linear or non-linear.
These methods generally are called first or second order methods. The
major drawbacks to the stored solution method is the enormous amount of
pre-flight calculation required to cover all contingencies, e.q., vari-
ations in launch date, possible abort modes, et cetera, and the bulk of
the data which needs to be stored. The data storage problem is consi-
derably alleviated when the guidance commands are given as linear
functions of the state vector deviations from a nominal. The on-board
and real time computer capabilities are also at a minimum for this type

of operation.

Real time solution of the two point boundary value problem is suggested
as a feasible guidance mode in light of recent advances in computer
technology. Never the less, the computational demands are considerable.
More design work and testing will be required before feasibility can be
definitely established. Although this method is capable of yielding the
optimal steering law, optimality is but one measure of performance of a
guidance mode. It is often desirable to sacrifice optimality in favor
of accuracy, ease of mechanization, or a wider reqion of applicability.

These considerations will be discussed further in Section 3.8.



FINITE DIMENSIONAL STEERING: This rode of operation means that either

the steering law or a portion of the state vector has been limited to a
finite number of deqrees of freedom. Again, either an approximate or a
precise model of the system dynamics may be used. Some of the equations
of motion must be integrated numerically if the precise model is used.
This approach has been termed narameterized guidance in this report and
is more fully discussed in another section. Most of the operational
quidance modes are finite dimensional with an approximate model of the
dynamics. The corrdinate systems and the parameterization employed are
so selected that the equations of motion may be (approximately) integrated
in closed form, thereby expressing the end conditions in terms of the
parameters. The parameters are then determined to obtain the desired
end conditions, assuming that the dynamic model is correct. These modes
must be run closed-loop so that the errors due to the approximate model
may be removed by subsequent guidance commands. Since these schemes
are relatively simple, there is no need fof éﬁé-étAred sotution mode of
operation. Further discussion and examples of finite dimensional steering
are to be found in Sections 4, 5, and 6.
3.5 APPLICATION OF THE CLASSI-ICATION METHOD TO ATLAS-AGENA-RANGER

GUIDANCE

The modes used for guidance of the Atlas, Agena, and Ranger vehicles
for lunar missions can be classified according to the method of Section
3.3. The mission objective in this case was to impact a given point on
the lunar surface., Different guidance modes were used for each of the

three vehicles. The Atlas system was radio-commanded guided, with the
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pitch and yaw steering angles choosen at every guidance cycle to be

linear functions of time. Thus there were two parameters to choose for
each steering angle, i.e., the initial angle and the angle rate for each.
The end conditions for Atlas burnout were predicted at each cycle time

t by assumina a constant, average gravity vecior acting between t and

the final time. The desired end conditions were explicitly given as

the energy and angular momentum of a prespecified coast ellipse at burn-
out, The ellipse was chosen such that mission objectives would be met

if subsequent Agena vehicle were to perform nominally. The calculations
of steering angle and predicted time-to-go were iterated in real time as
new tracking data was obtained and processed. Thus the Atlas system is

to be considered an example of a guidance mode which employs: (1) approx-
imate model of system dynamics; (2) a finite dimensional steering law;

(3) real time iteration, and (4) explicit end conditions. The parking
orbit coast time for the Agena vehicle was calculated and stored at

Atlas shut-off by using the burnout position and the pre-calculated in-
ertial direction of the "pseudo-asymptote" to determine the coast angle.
The pseudo-asymptote concept will be described in Section 7. The numerical
values of these conic paraméters required for Atlas guidance were determined

by a targeting process.

The Agena vehicle was guided in more rudimentary fashion. A
prespecified nominal pitch and yaw attitude angle was commanded, where
the inertially-sensed pitch angle was corrected in flight by a horizon

sensor. Thrust termination was commanded when the integrated sensed
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velocity reached its nominal value. This rudimentary system can only

be justified theoretically by assuming an approximate model of the

vehicle motion. Thus, the Agena system is to be considered an example

of a guidance mode which employs: (1) an approximate model of system
dynamics; (2) a finite dimensional steering law; and (3) a stored expansion
with a Tinear form, Note that the parking orbit duration, that is, the
time of starting the translunar "njection phase, is an open-loop guidance

parameter after Atlas burnout.

Guidance of the Ranger spacecraft was accomplished by tracking from
the earth to determine injection conditions, and then iterating in real time
to determine the three components of the velocity impulse to be applied at
the prespecified midcourse maneuver time in order to impact the desired
point on the moon. There was adequate time available to accomplish these
calculations, for the correction was not applied until 15 to 20 hours after
injection. The iteration process was carried out by a Newton-Raphson
procedure. Thus the Ranger system is to be considered an example of a
guidance mode which employs: (1) a precise model of system dynamics;

(2) a finite dimensional steering law; (3) real time iteration, and (4)

numerical end conditions.

Thus it can be seen that the relatively simple Atlas-Agena-Ranger

lunar mission contained three distinctly separate guidance modes.
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3.6 APPLICATION OF THE CLASSIFICATION METHOD TO ATLAS-AGENA-MARINER
GUIDANCE

The Atlas-Agena-Mariner vehicle employed for interplanetar.
missions was guided in much the same fashion as for Ranger missions, the
primary difference being that the direction of the earth-escape hyperbolic
asymptote was used for controlling the parking orbit duration rather than
the lunar pseudo-asymptote. The specification of the escape asymptote is
described in Section 7. The midcourse guidance corrections for the Mariner
vehicle were determined as for the Ranger mission, except that the "impact

point" was specified by a fly-by distance at the planet.
3.7 APPLICATION OF THE CLASSIFICATION METHOD TO SATURN V APOLLO GUIDANCE

The Saturn V vehicle used for Apollo missions is guided by the
so-called IGM guidance mode, which stands for Iterative Guidance Mode.
In this method the pitch and yaw steering angles are chosen to be linear
functions of time, and end conditions are predicted assuming a constant
gravitational acceleration hetween present and final time. /in additional

approximation is made in the calculation of time-to-go to burnout, which
corresponds to a rough one step integration between present time and pre-
dicted final time., End conditions can be specified in various forms,

either numerically in terms of a desired state at burnout, or explicitly
from the conic formulae. The calculations are iterated at each guidance
cycle as new inertial navigation data is obtained. Thus, as in the case

of Atlas guidance for Ranger and Mariner missions, we have an example
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of a guidance mode which employs: (1) an appr-ximate model of system
dynamics; (2) a finite dimensional steering law; (3) real time iteration,
and (4) either explicit or numerical end conditions. The main difference
between previousiy discussed Ranger-Mariner mission guidance and Apollo
mission guidance is that the iterative guidance moca is employed all the
way to injection, including a closed-loop computation of parking orbit
duration, rather than by using a rudimentary guidance mode of the Agena

type for translurar injection.

The mode used for midcourse and approach guidance of the Apollo
spacecraft is similar to that used for the Ranger,Mariner vehicles. [he
modes used for subsequent phases of the Apollo mission are of the same

class as the IGM, but will not be discussed here.

3.8  MEASURES OF GUIDANCE MODE PERFORMANCE

The choice of a guidance mode is often ad hoc, and one must con-
sider many factors. Some measures of guidance system performance
are:

1. cotimality - given that there is a performance index to
be minimized, say prcoellant e;nenditure, how does the
obtained value of the performance index compare to the
theoretical minimum?

2. Accuracy - given that approximations are introduced into
the derivation and mechanization of the guidance eguations
what are the resulting errors in the desired terminal con-
ditions? These errors can be classified according to:
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Py approximation errors - due to analytic approximations
introduced into the derivation of the guidance equation,

] computer errors - due to the inaccuracies of the numerical
algorithms used to implement the guidance equations
(truncation and roundoff).

° mechanization errors - due to the inability of the
vehicle to physically respond to the guidance commands.

There are also navigation errors, but, insofar as the guidance

and navigation problems are separable (i.e., assuming superposition
of effects), these errors need not be considered in the design

of a gquidance mode.

3. Stability - does the guidance mode call for high frequency
attitude changes, or can small input errors result in large
non-standard maneuvers of the vehicle?

4. Constraint Compability - 1is the guidance mode capable of
generating commands and a trajectory which satisfy all imposed

control and state variable constraints? If so, how difficult

s the task of incorporating the constraints into the analytical
formulation?

5. preflight prepartion - what is the cost in time and money
of preflight preparation of the guidance equations, In
particular, how long does it take to prepare the guidance
guidance system to accomplisi a given mission? (the

"quick reaction" problem).

6. verification requirements - what is the cost in time and
money of preflight verification of guidance system performance?
(another aspect of the "quick reaction" problem)
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7. flexibility - what are the types of missions which the
guidance mode can perform, and how well can it adapt to
changes in the mission, such as variations of launch azimuth?
(another aspect of the "quick reaction” probliem).

8. region of applicability - what is the range of perturbations
which can be adequately treated by the guidance mode?

9. comouter factors - what are the real time on-board and/or
earth-based computer requirements, in particular, how much
storage soace is required, what is the length of the computing
cycle for each iteration of the guidance equations, and how
complex must the computer be?

10. growth potential - what is potential apnlicability of the
guidance mode to future missions?

These measures of performance are qualitatively discussed in

Section 3.9 for various classes of guidance modes.

3.9 DISCUSSION OF GUIDANCE MODE PERFORMANCE

It is difficult to compare the various guidance modes with respect
to the many measures of performance, for there is a wide variety of
missions, mission phases, and launch wvehicles to be considered. This
section does not attempt a thorough comparison of specific guidance
modes on the basis of the performance indices, but rather contains a
more general outline of the properties of the classes of guidance modes.
Specific results on optimality, accuracy and region of applicability
may be found in the simulation results. The following is organized

according to the general classification scheme.
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e PRECISE MODEL-INFINITE DIMENSIONAL STEERING
The steering law in this case is determined via the calculus of
variations.

Optimality: Both the stored expansion and real time iteration methods
are capable of performing arbitrarily close to optimum, the former
being limited by any numerical approximentations of the control funct-
ion which may be introduced and the latter being limited by the number
of iterations one is willing to perform.

Accuracy: Accuracy is primarily determined by the form of the
steering algorithm near the final time, and the criterion used
to terminate thrust. As in the case of all guidance modes,
there is a natural uncontrollability near burnout (see Section
9).

Stability: Relatively stable, since the optimal steering law is
a smoothly varyina function with only moderate changes in slope
at switching (staging) times. As in the case of all guidance
modes, however, there is a natural potential instability at the
final time (see Section 9.)

Constraint Compatibility: Thrust vector (control variable) con-
straints can be treated relatively easily. State vector con-
straints pose difficulties for the real time iteration modes,
however, for there is no satisfactory theory which allows
straight-forward implementation (see Reference 30). When the
solutions are stored, state variable constraints may be included
at the expense of additional pre-flight computation.

Pre-flight Preparation: Relatively little required for real-
time iteration methods. The stored expansion method, however,
requires that many steering commands be calculated to cover
all feasible contingencies. These include changes in launch
data, off-nominal vehicle performance, and abort operations.
There is a direct trade-off between the amount of pre-flight
oreparation and the region of applicability in the sense that
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the requirement for a larger region (e.g., non-linear rather
than linear control law) leads to more pre-filight computation.

Verification Requirements: Involves simulation of all feasible

contingencies. The stored expansic.a method is more difficult
to verify than the real-time iteration method because of the
many input numbers to be checked.

Flexibility: Potentially very flexible since the form of the
guidance law can be quite jeneral and all mission parameters
could be included as input variables.

Region of Applicability: The real-time iteration method can be

designed to easily accommodate a wide region, being limited
only by the convergence region of the iteration algorithm.
In some cases this region can be determined analytically.
The region of applicability of the stored expansion method
depends upon the form of the expansion (e.g., linear vs non-
linear) as discussed above in Pre-flight ",eparation.

Computer Factors: The stored solution technique requires

minimal on-board computer capability but large data storage.
Real time iterations require a relatively sophisticated on-
board computer capability, but 2 minimum of data storage.

Growth Potential: Limited for the stored solution method

since new forms of the control law may be required for different
applications. Growth poiential is good for the real-time
iteration method, since the form of the sciution is a general
one.

PRECISE MODEL-FINITE DIMENSIONAL STEERING

This class is called precise parameterized guidance in
this report (see Section 6). The same performance may be
expected of this technique as for Infinite Dimensional
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Steering-Real-Time Iteration (discussed above), with the
exception that optimality may be reuced and instabilities
may be induced by the selected form of the control law.

APPROXIMATE MODEL-INFINITE DIMENSIONAL STEERING

The guidance modes in this category are essentially the same
as those discussed under Precise Model-Infinite Dimensional
Steering, except the algorithms are applied to an approximate
dynamic model. The purpose of introducing the approximate
model is to reduce the number and/or complexity of the cal-
culations required. The corrective effect of closed-loop
operation is relied upon to mairtain accuracy; the main
limitation is some loss of optimality.

APPROXIMATE MODEL-FINITE DIMENSIONAL STEERING

These guidance modes are based upon an approximate model of
system dynamics and a parameterized form of the guidance law.

Optimality: The cost in optimality is slight within the region
of applicability, but there can be definite degradation in
optimality if missions further from the designed region are
attempted.

Accuracy: The final value accuracy can be made arbitrarily
good for most missions, subject only to the natural uncon-
trollability suffered by all guidance modes near burnout.

Stability: Stable if the form of the steering law is suit-
ably chosen (except at the firal time as noted above).

Constraint Compatibility: State constraints are more easily

handled than in the infinite dimensional case since enforce-
ment of these constraints may normally be accomplished by
constraining the guidance parameters.
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Pre-flight Preparation: Minimal because of the parameterized
form of the guidance law and the simplified system dynamics.

Verification Requirements: Additional pre-launch simulation
and verification of the guidance equations may be required in
order to check the approximations of the system dynamics.

Flexibility: Can be made very flexible within the region of
applicability, depending only on the form of the guidance
Taw.

Region of Applicability: At present limited to the parti-
cular set of mission geometries to which the approximations
apply. The finite dimensional modes can overcome deviations

from nominal propulsion performance with relative case.

Computer Factors: Minimal computer capability is required,
both on-board and on the ground (see above Pre-flight

Preparation).

Growth Potentiai: Limited only by the form of the guidance
law and the dynamic system approximations; these can be

mcdified relatively easily.

4. SIMULATION OF JUPITER INJECTION GUIDANCE

4.1 INTRODUCTION

Computer simulation of the launch-to-injection phase of a Jupiter
mission was performed in order to compare typical examples of guidance
modes. The trajectory profile was an unusual one, chosen not as an
example of crtimal performance but instead as a severe test case for
guidance analysis. The guidance modes chosen were the precise calculus

of variations algorithm, the Iterative Guidance Mode (IGM) as described
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in Reference 23, the TRW Hybrid guidance mode, as described in Reference
8, and an improved iterative form of TRW Hybrid guidance. The IGM
quidance mode is briefly discussed in Section 3.7, and the TRW Hybrid
guidance mode is briefly discussed in Section 6.3. These modes are
examples of parameterized guidance laws. In all cases the guidance simul-
ations were carried out open-loop, in the sense that no random navigation

or systematic errors were introduced

4.2 TRAJECTORY DESCRIPTION

The launch-to-injection phase of the Jupiter fly-by mission used
the STACK launch vehicle defined by NASA Electronics Research Center.
STACK vehicle consists of four stages: a 260" solid first stage, an
SIVB second stage, an improved Centaur third stage, and an advanced
Kick stage. Table I presents the vehicle mass and performance character-
istics obtained from a reference trajectory provided by ERC.

The first two stages boost the payload into a circular parking
orbit of 96.13 nautical mile altitude, an inclination of 26 degrees,
and a descending node of 101,881 degrees (the angle measured from the
launch meridian to the descending node). Holding this plane of motion
fixed, the last two stages achieve the required velocity for injection
into the departure hyperbola of 3.171 eccentricity, an eneray at cut-off
7.1138 x 108 ftz/secz, and an inertially fixed position of periapsis.
The trajectory is to be designed to maximize payload at final injection,

subject to these final value constraints, 1,e., orientation of the plane

of motion, vnergy, eccentricity, and position of periapsis.
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The optimal Taunch-to-injection Jupiter fly-by trajectory was
obtained by using the Multiple Vehicle N-Stage (MVNS) program with the
gravity turn, Iterative Guidance Mode (IGM), program in the role of a
preliminary optimization tool and a Calculus of Variations program.
Optimization of the trajectory was conducted in two phases: injertion
into the specified parking orbit and injection in the hyperbolic transfer

orbit.

The basic assumptions involved in solving the steering optimization
problem relative to a three-dimensional model of rocket motion were

as follows:
1. Spherical rotating earth
2. Uniform inverse-square gravitational model

3. U.S. 1962 standard atmosphere (first stage only);
no aerodynamic forces for second and upper stages

4, Ambient pressure corrected thrust

5. Minimize time of power flight to achieve specified
final conditions.

® ASCENT TO PARKING ORBIT TRAJECTORY OPTIMIZATION

The STACK vehicle is launched from Cape Kennedy at an azimuth of
90 degrees. An instantaneous kick turn is used to tilt the missile
after a 10 second vertical rise time, A gravity turn program carries
the vehicle to first stage burnout. The second stage, which burns in

vacuum, uses the IGM program with both pitch and yaw steering, to
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TABLE 4.1

STACK Launch Vehicle

Weight Summg:x

Pavload at hyperbolic injection 7,480
Kick stage propellant consumed 11,770

Kick stage ignition weight

Improved Centaur dry weight 4,568
Improved Centaur propellant consumed 37,305

Improved Centaur wet weight

S-IV B dry weight 38,482
S-IV B propellant consumed 217,096
S-IV B interstage 5,600

S-IV B wet welight

First stag- dry weight 402,735
First stage propellant consumed 3,298,986

Stage

II

IIT

First Stage wet weight

Lift-off weight

Performance Summary

Vehicle Thrust Specific
{vacuum) Impulse
1b. sec,
260" solid 6,429,857 265
S-IV B 205,070 L2s
Improved Centaur 31,711 k65
Advanced Kick Stage 7,927 465
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steer the vehicle into the circular parking orbit described above.

The inertial velocity is the cut-off parameter.

Optimization of the payload into parking orbit is accomplished by
varying the kick angle, while constraining the first stage to a gravity
turn and constant burn time, and using the near-optimum steering law
of the IGM program to minimize the burn time of the second stage for
the specified end conditions. An iteration procedure built into the
MUNS program generates a set of first and second stage trajectories
and provides the kick angle to optimize first stage burnout altitude
fcr a given burnout weight., Figure 4.1 shows the variation of the
second stage burnout weight with the first stage burnout altitude. The
near maximum weight inserted into the parking orbit is obtained with a

first stage burnout altitude of 195,494 feet,

Further improvement in the second stage trajectory is obtained by
using the calculus of variations package with the MVNS program. This
program option uses initial guesses of pitch and yaw 2ttitude and
attitude rates to generate a set of Lagrange multipliers that permit,
simultaneously, solution of the equations of motion and the Euler-lLagrange
equations for minimum propellant consumption. The calculus of variations
solution increased the second stage burnout weight by 380 pounds over
the IGM approximation. A payload increase of 6,126 pounds reference

value was obtianed by these optimization methods.
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) HYPERBOLIC ORBIT INJECTION OPTIMIZATION

Trans fer from parkina orbit to -é departure hyperbcla requires
a lona burn time and a large range angle. The linear tanagent steering
law used in the Iterative Guidance Mode package is no longer suitable
to optimize the third and fourth stage trajectories. The calculus of
variations option is therefore used for the hyperbolic orbit injection
phase. No out-of-plane steering is recessarvy since the desired plane

chanae is accomplished during the second stage burn into parking orbit.

Since the parking orbit duration can be freely chosen to control
the position of periapsis of the departure hyperbola, an arbitrary
ignition time is assumed for the third stage and the optimal trajectory
is designed with initial conditions corresponding to the position and
velocity in the parking orbit at this time. With fixed burning time
for the third staae, the fourth stage burnout is defined by the final
eneraoy constraint. Iteration is then performed to satisfy the angular

momentum constraint and the transversality condition
- oo
v-xr - T xv 0
r

where r and v are the instantaneous radius and inertial velocity vectors
Tr and i& the set of Laarange multipliers, and : the gravitational
parameter,

Initial values of Lagrange multipliers are computed from assumed
iritial values of the pitch attitude, wp. and oitch attitude rate,
§ . To determine a proper starting combination of pitch and pitch rate,

p
several nominal trajectories are simulated for rances of initial values
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Yy and @p . The errors in angular momentum and transversality
constraint for each of these combinations are plotted in Figures 4.2
and 4.3 to show the combinations of wp &p which allow each of

th: errors to be nulled. Fig. 4.3 shows that there is, in general,
rore than one value of wp corresponding to each value of @D which
allows the transversality constraint to be satisfied. This is due

to the highly non-linear behavior of the transversality boundary

condition and makes the extrapolation shown questionable.

Through a cross pnlot of the combination of Y, and @p which

allows each of the constraints to be zero, it is possible to determine
the combination which simultaneously nulls both constraints. This cross
plot is shown in Fia. 4.4. The two curves for the zero transversality
correspond to the left and right crossings of the curves in Figure 4.3
Iteration for an optimum near the intersection of the right zeros with
the nulled anguiar momenium constraint allows rapid convergence to the
only optimal injection trajectory. The extrapolated left zeros and

the nulled angular momentum curves will not intersect since the solution

is unique,

After optimization, the third stage ignition time in the parking orbit
is altered to produce the desired argument of perigee in the final in-
jection orbit to be 159.44 degrees (the angle measured in the orbit plane
from the ascending node to a line passing through the perigee of the
hyperbolic conic). This is possible because the payload at injection is
independent of where third stage ignition occurs in the circular parking

orbit.
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The maximum payload at injection is 7,480 1b, or 1,024 1b in
excess of ERC's payload. This assumes that the 6,126 1b additional
weight obtained at second stage burnout is removed from the S-IVB stage
as excess fuel and is carried through the third and fourth stages. Due
to the increased burning time of the fourth stage (5,102 1b of fuel
burned), the final injection conditions are achieved at an altitude
that is 1,104 n.mi. above that of the ERC reference trajectory. Table 4.2
shows a comparison of the TRW optimal trajectory with the trajectory
provided by ERC.

The trajectory just described provides an optimum solution under
the ground rules stipulated by ERC. If the periapsis position of the
departure hyperbola is not specified, however, and only the direction
of the escape asymptote and the escape energy are specified, better per-
formance may be obtained. Another simulation performed for this project
achieved the same asymptotic escape velocity using a (non-optimal) zer>
angle of attack steering program (that is, the thrust vector paralled
to the velocity vector), and achieved a 100 pound increase in payvloac

at injection.

4.3 GUIDANCE SIMULATION RESULTS - ASCENT PHASE

The ascent phase of the mission was simulated using three guidance
modes: the IGM, the TRW Hybrid, and a variation of the TRW Hybrid using
a numerical iteration technique to compute the parameters of the steer-
ing law. The results show a 0.37%, 0.14% and a 0.15% decrease, re-
spectively, from the second stage purnout weight for the optimized

trajectory.
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TABLE 4.2a

ERC - TRW TRAJZCTORY COMPARISON

ERC REFERENCE

EVENT ggzg n*m?tTITUDE — — WEIGHT -
Launch 0 0 0 4,024,022 11,825,256
Burnout Stace I 135.76 44,364 44,364 725,036 | 329,869
Tenition Stage II1] 135.76 44,364 44364 322,302 | 146,193
Zurnout Stage II 599,11 96.138 178.048 93,480. 42,402
Initiate Coast 599.11
Terminate Coast 997.95
Ianition Stage I11 997.95 96.136 178.048 55,00C 24,948
Burnout Staae

111 1545.95 252.95 466.993 17,695 8,026
Ignition Stage IV} 1545 95 252.156 466.993 13,126 5,954
Burnout Stage IV | 1937,20 1542.568 | 2855.835 6,456 2,928
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TABLE 4.2b

ERC - TRW TRAJECTORY COMPARISON

TRW OPTIMAL
EVENT TIME ALTITUDE WEIGHT
SEC. n.mi. Im, 1b. kg,

Launch 0 0 0 4,024,022 1,825,256
Burnout Stage I 135.76 32.174 59,587 725,036 328,869
Ignition Stage If 135.76 32,174 59,587 322,302 146,193
Burnout Stage II 586.16 96.127 178.028 99,606 45,180
Initiate Coast

Terminate Coast

Ignition Stage III 943.90 96.111 177.998 61,124 27,725
Burnout Stage III 1490.90 221.138 409.547 23,819 10,804
Ignition Stage IV 1490.90 221.138 409.547 19,250 8,732
Burnout Stage IV 2181.25 | 2647.035 4902, 308 7,480 3,393
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The objectives of the first phase were to fix the inclination,
longitude of the ascending node, eccentricity (equal to zero), and
the radius of the circular orbit. In order to use the TRW Hybrid
equations, a few simple modifications were made to the equations of
Reference 8, which do not allow a constraint of the orientation of the
final orbit plane. (The quidance mode described in Reference 8 con-
strains the eccentricity and semi-major axis, with the plane of the
final orbit plane constrained only to contain an input target vector).
The results of the ascent phase are shown for the TRW Hybrid equations
and the IGM equations in Table 4.3. The results of the optimized tra-

jectory are also shown in Table 4.3 for comparison.

The TRW iterative guidance is discussed in Section 6.3 where the
guidance parameters AZ‘ BZ’ C2 and 02 are defined. This tecnnique re-
quires an initial guess of the guidance law parameters. The trajectory
is then integrated from the initiation of guidance (immediately after
S-TVB-solid separation) to burnout, defined as the time when the velocity
vector reaches the prescribed value. The initial guess of the guidance
parameters A2, BZ’ C2, and 02 produces a set of terminal errors. Next,
four separate integrations are performed perturbing each guidance parameter
successively (two for pitch steering and two for yaw steering). This
allows a matrix of partial derivatives to be determined. The proper
values of the guidance parameters can then be determined to null the
terminal errors. It was found that an appropriate set of trajectory

variables to iterate upon is (1) positiondirected out of the desired orbit
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~ TABLE 4, 3: ’ Comparison of Certain Trajectory Variables at Circular

Parking Orbit Injection

Optimized TRW TRW Cuidance I0M
Trajectory Rybrid Lav Using

Numerical

Iteration

Technique
Time of Burnout 586.164 586 . 458 586 .498 586.933
(seconds)
Burnout Weight 99606 .5 9464 .9 99kLs5,7 99235.8
(pounds) )
Magnitude of the Inertial 25605.9 '25606. 5 25605.9 25605.9
Velocity
(feet/second)
Eccentricity .109329x10'“ .h30750x10"‘ .576890x10" 2 .6h7625x10"‘
Inclination 26 .0000 25.0002 26.9998 25.0002
(degrees)
Longitude of the Ascending 201.277 201.273 201.280 201.2T4
Node
(degrees)
‘nogee 96.1588 96.4232 96.1473 96.3642
(nautical miles)
Perigee 96.0614 96.1181 96.1063 95.9056
(nautical miles)
?eoce?tric Radius 21510186. 21510130. 21510188. 21510188,
feet
Flight Path Angle -.613213x1073 ,155449x10"3 -.329018x10"3  3.70970x10"3

(degrees)



plane, (2) radial distance, and (3) flight path angle. In this simula-
tion convergence was achieved after seven integrations, which included
a nominal trajectory, four perturbations to form the matrix of partials
and two attempts at nulling the terminal errors. The converged result
of these iterations is shown in Table 43. Fiqure 4.5 shows *the cosine
of the angle between the thrust axis and the radiu. vector for the

optimized trajectory, the trajectory obtained by simulating TRW Hybrid
equations, the trajectorv obtained by the TRW Iterative equations, and

the trajectory obtained using the IGM equations.

4.4  GUIDANCE SIMULATION RESULTS - INJECTION PHASE

The objectives of the second phase were to fix the eccentricity,
the argument of perigee, and the energy of the departive hyperbola, hold-
ing the plane of motion fixed (no out-of-plane steering). Neither the
IGM guidance law nor the TRW Hybrid guidance law of Reference 8 would
perform the second phase of the Jupiter tly-by trajectorv, since the
Tong arc length and high burnout altitude of the reference trajectory
violated the basic assumptions required to derive these guidance modes.
Only the TRW iterative equations produced a satisfactory trajectory. A
prablem was encountered with the continuity conditions at staging
(separation of the Centaur and Kick Stage), however. The equations of
Reference 8 enforce -antinuity of the direction cosine (between the
thrust axis and the radius vector) and the direction cosine rate at
staging. It was found that enforcing continuity of the direction cosine

rate did not produce good results. Hence only the continuity of the
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direction cosine was enforced at staqing., Figure 4.4 shows the variation
of the direction cosine with flight time for the second phase of the
Jupiter fly-bv trajectory, which indicates the discontinuity of the

direction cosine rate at staging for the Hybrid guidance law.

The trajectory integrations and iterations were carried out as in
the ascent phase, where the constraints for this portion of the trajectcry
were energy, eccentricity, and arqument of perigee. Since, including the
total burning time T, there were four quidance parameters, 83, 03,04, and
T (B4 being constrained by the continuity condition of st.aing) and only
three corctraints, the burnout weight can be maximized. Converaence was
achieved in thirteen iterations. Given an initial quess of the parameters

B 33, and D4 (which remain constant throughout the flight) the terminal

39
errors were determined at the time (T) when the velocity magnitude reached

the specified value., The parameters B D3, and D4 were then successively

3’
perturbed in order co forwm a matrix of partial derivatives. Three in-
tearations were necessary to converge cn the parameters 03 and D4 which

would null the terminal errors for a given B,, which was then perturbed

3!
acain and the above process repeated un*il convergence was achieved. At
that time, three pairs of values of burnout weight and 83 were availahle.

Burnout weight was ther fit to a quadratic versus B, and the optimum

3
value of 83 obtained. This burnout weight was only 36 pounds less than
the weight achieved for the optimized trajectory of Reference 2. The

sensitivity cf the burnout weignt to variations in the control parameter
83 was determined. The results are shown in Figure 4.7. The comparison

of the resulting trajectorv with the optimized trajectory is shown in

Table 4.4,



FIGURE 4.6: DIRECTION OF THE THRUST AXIS VS FLIGHT TIME

HYPERBOLIC INJECTION

1.0
(=]
3
wy
= .5 o TRW HYBRID GUIDANCE LAW USING AN
: IT_RATION TECHNIQUE
2 A OPTIMIZED TRAJECTORY
@ o
ro
=5 .6
[FE g ¥V)
x>
I—U')
&2
ws
= .4
3
(3]
g
i
&
a

STAGING AT 1490.9

1000 1100 1200 1300 1400 1500 1600 1700 1800
FLIGHT TIME~-SECONDS

190C

2000

2400



-98-
BURNGUT WEIGHT ~ POUNDS

FIGURE 4.7:  BURNOUT WEIGHT AT INJECTION VS 83

7480 OPTIMIZED TRAJECTORY = 7479.8 POUNDS

T T
oo \\
N

7360 \

7440

7320

7250

-.5 -.4 -.3 T2 T T T
CONTROL PARAMETER, B,



TABLE 4.4: COMPARISON OF CERTAIN TRAJECTORY
VARIABLES AT INJECTION INTO A

HYPERBOLIC TRAJECTORY

OPTIMIZED TRW HYBIRD GUIDANCE
TRAJECTORY LAW. USING NUMERICAL
ITERATION TECHNIQUE
Time of Burnout 2181.25 2183.38
(seconds)
Burnout Weight 7479.86 Tuk3.59
(pounds)
Magnitude of the Inertial L6TL3.1 L6732.6
Velocivy
(feet/second)
Magnitude of the Radius 37009800. 7057500,
Vector
(feet)
Total Energy 711, 385,000, 711, 385,000.
(feet)2/(second)?
Radial Velocity 35500.9 35520.7
(feet/second)
Tangential Velocity 30407.3 30368.0
(feet/second)
~1ight Path Angle 49.4192 49.4T17
(degrees)
Eccentricity 3.17157 3.171%6
Argument of Perigee 159.k44s 159.uks
(degrees)
True Anomaly 63.274k 63.3380
(degrees)
Inclination 26.0000 26.0000
(degrees)
Longitude of the Ascending 201.277 201.2T77

Node
(degrees)
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This procedure was carried out only for the aiven nominal state
vector at third stage ignition, while for a realistic application it
would be repeated as new navication data as obtained. Such iterations
would not be necessarv, of course, if no navigation cr systematic errors
were present. Note, however, that no optimization would be possible for
iterations carried out durina fourth stage, for then there would be just
as many end conditions to satisfy (three) as guidance parameters re-
maining to be chosen (84, D4 and T). This would not be true if only two
end conditions were specified, e.q., energy and direction of the escaoe

asymptote,

5. SIMULATION OF ATLAS-CENTAUR GUIDANCE

5.1 INTRODUCTION

In order to make the numerical evaluation of guidance modes more
complete, studies of Atlas-Centaur guidance carried out by TRW Systems
Group under NASA Contract NAS-3-3231 (Reference 8) are summarized in
this Section. These studies evaluated the operation of the same two
finite parameter guidance modes discussed in Section 4: the Iterative
Guidance Mode (IGM) and the TRW Hybrid Guidance Mode. The eight
missions simulated for the study are described in Section 5.2, and
guidance results are given in Section 5.4. While these eight missions
represent a spectrum of situations, performance of the two guidance
modes was satisfactory in each case. This concluc on is to be contrasted
with the r_sults of Section 4, where neither mode was adequate for

guidance of the unusual Jupiter injection phase trajectory.
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5.2 ATLAS-CENTAUR MISSION DESCRIPTIONS
The simulations results described in this section compare the per-
formance of the IGM and TRW Hybrid guidance modes with the optimal solution.
A set of eight Atlas-Centaur missions was selected for simulation. This
set of missions may be considered to provide a cross-section of future
planning for this vehicle. The missions are not particularly severe from

the standpoint of guidance, and these results indicate primarily the adequacy

of existing modes. The missions are:

One-Burn Lunar (Direct Ascent)

Two-Burn Lunar (Parking Orbit)

Earth Orbital

tarth Orbital, Polar

One-Burn Planetary (Mars, Direct Ascent)
Two-Burn Planetary (Mars, Parking Orbit)
Synchronous Satellite

Solar Probe,

ONOU LWrN —~
e v e ® s e e o

General descriptions of these missions are given below,

Py One-Burn Lunar (Direct Ascent)

The One-Burn or Direct Ascent Lunar Mission is designed to inject
the Atlas/Centaur payload into a lunar transfer orbit with one continuous

burn of the Centaur engine,

The Centaur guidance sub-phase for this mission is initiated as
described previously and the engine burns for a period of approximately
429 seconds. Termination occurs when the desired cutoff velocity of
36060 feet per second (nominal trajectory) is reached. Payload weight
and total injection time (that is, from 1iftoff to translunar injection)

are about 6662 pounds and 675 seconds, respectively
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° Two-Burn Lunar Mission (Parking Orbit)

The Two-Burn Lunar Mission has the same objectives as the Direct
Ascent Lunar; namely, the irjection of payload into a lunar transfer
orbit. However, in this case the Centaur guidance phase has two burn
neriods. The first burn has a duration of about 324 seconds and injects
the vehicle into a nominal 100 nautical mile circular orbit. The vehicle
coasts through approximately 25-30° in this orbit for phasing, then
reignites and burns for approximately another 108 seconds to inject into
the desired transluna. orbit. As with the direct ascent mission, this
desired injection orbit is specified by the abogee, perigee, inclination,
ascending node and argument of perigee. The purpose of the two burns,
i.e., injecting into the parking orbit, is to obtain a much larger launch

window than would be possible with the direct ascent mission.

This mission used the previous ground rules. Total time
from 1iftcff to final injection was about 1170 seconds and Centaur
total burn time was aporoximately 432 seconds. Payload delivered
was nearly the same; however, the tradeoff penalty in obtaining the
larger launch window was an increased trip time for the two burn

mission.

° Low Earth Orbit

The earth orbit mission is an injection into a low 100 nautical
mile circular earth orbit (particular earth orbit missions including the
polar orbit and the parking orbit phase of several missions are discussed

below).
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A 90-degree launch azimuth was used and total Centaur burn time was
nominally about 325 seconds. This particular mission is nearly identical to

the bparking orbit phase of other missions.

° Polar Orbit Mission

The polar orbit mission differs from the usual earth orbital mission
in that the injection of the Atlas/Centaur payload is into a 90-degree
inclination orbit, using a single continuous Centaur burn. The reference
orbit was 100 nautical miles, circular. The maximum allowable launch
azimuth was assumed to be 147 degrees, which necessitated a sizeable plane
change during the overall powered flight phase. Thus, injection into this
mission mode provides a thorough test of the yaw steering capability of

the guidance scheme.

Most of the qualitative aspects of the launch and guidance
phases are the same as described for the Direct Ascent Mission.
Overall 1injection and Centaur burn times were 612 seconds and 365
seconds, respectively. Pa ‘oad weight was approximately 11050

pounds.

° One-Burn Planetary Mission (Mars, Direct Ascent)

A direct ascent Mariner simulation was chosen to represent the
one burn planetary mission. The Centaur objective is to inject the
vehicle into a hyperbolic orbit whicn will intercept Mars. The
limitations of the one burn Tunar mission apply to this case in that

a very small launch window is available with this mode, since a coast
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phase is not available for phasing improvement., Almost 450 seconds of
Centaur burn time were reguired for this mission.

A feature of the solar probe, and the two-burn nlanetary
mission (below), is that the quidance equations must be able to treat

both elliptical and hyperbolic injections,

° Two-Burn Planetary Mission (Mars, Parking Qrbit)

The Mariner Mission is designed to inject the vehicle into a
hyperbolic earth escape crbit which places it in an interplanetary
trajectory intercenting Mars. The orofile consists of injection into a
nominal 100 nautical mile circular parking orbit, followed by a 240° earth
orbit. This mission should reveal any sensitivities in the guidance

equations due to the definition of the orbital elements.

The launch and sustainer guidance phases for this mission are the
same as for the Two-Burn Lunar Mission. The Centaur guidance phase
differs from that mission in that a slightly different parking orbit

is used and the parking orbit coast is almost a comolete period.

o Synchronous Orbit Mission

A synchronous satellite is an orbiting vehicle which would be
permanently stationed (if earth was spherical and homogeneous) over a
point of earth. To accomplish this, the orbital period must equal that
of the earth, i.e., be a 24 hour satellite, and it must lie in the
equatorial plane. The proper altitude for this synchronous orbits is

approximately 19326 nautical miles.



The Centaur guidance subphase of the mission accomplishes this
mission by initially placing the vehicle into a nominal circular parking
orbit. When the phasing is proper, the vehicle is injected into a
Hohmann transfer orbit with an apogee at the 24-hour synchronous satellite
altitude and at a point above the earth near the final desired longitude.
At apogee, the transfer orbit is circularized and the necessary vaw

maneuver is made to bring the final orbit onto the equatorial plane.

Guidance requirements imposed by this mission : "¢ two coast periods,
a larage plane change, and achievement of a 0% inclination for the equa-
torial orbit. The last requirement can be a targeting problem for some
schemes in that the ascending node is undefined at the 0° inclination.

Centaur burn time total about 451 seconds for this mission and

total injection time was about 20740 seconds for the case considered.

o Solar Prote Mission

The solar probe mission is designed to achieve a close perihelion
distance using the Atlas/Centaur vehicle. If the apohelion distance is
approximately equal to the earth's orbital distance, the sun-centered
ellipse described by the probe must have a iower orbital energy than
the earth's circular orbit possesses. This necessitaces a retrograde
launch from the earth with respect to the sun (to lower energy),
or adjusting the semi-major axis to the desired value. A small plane
change would be necessary for a launch if an ecliptic plane probe
orbit were desired. The out-of-nlane effects have been minimized,

however, by injecting with the velocity vector parallel to the ecliptic
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and tolerating the small angular difference between the planes. The
mission simulation was also desianed such that a l1ine-of-sight com-

munications link would be possible at the time of perihelion passage.

5.3 THE ATLAS-CENTAUR LAUNCH VEHICLE

In order to reduce the compiexity of the studv, portions of each
mission were made as nearly similar as possible. The main differences
occur in the number and duration of the Centaur burns, and in launch
azimuth. The mission profile i< separated into a launch phase, which
is common to all missions, and a guidance phase which steers the vehicle
to applicable end conditions. The common launch phase will be described

first,

The Atlas booster has three independent sets of engines as shown

in the sketch below:

Vernier Engines

* Sustainer Engine

Booster Engine

Boos ter
Engine

Vernier Engines

FIGURE 5.1: ATLAS ENGINE CONFIGURATION
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The assumed sequence of events is shown in the 1ist below:

TIME (minutes) DESCRIPTION OF EVENT
0.0 Lift-off, Start booster
0.3 End Vertical Rise. Start Cravity Turn
2.5 BECO (Booster Engine Cut-0ff),

Begin Sustainer Phase

4,2 SECO (Sustainer Engine Cut-0ff)
VECO (Vernier Engine Cut-0ff)
Pre-Centaur Start, Separation

4.4 Centaur Main-Engine Full Thrust.

The launch phase consists of that flight portion from 1ift-off
to 10 seconds after BECO, at which point active quidance is initiate..
For the Atlas/Centaur configuration, the overall quidance phase can

be considered to consist of the sustainer and Centaur subphases.

The sustainer guidance phase is similar for all missions and is
characterized by staging ooerations such as the jettisoning of various
equipment and the Atlas/Centaur separation. The Centaur guidance phase
consists of coasting and powered sub-phases as specified /or the
particular mission. These are discussed in Section 5.2, The initiation
of the Centaur phase however, is common to all missions., The phase
begins 8.6 seconds after SECO with a low thrust and flow-rate requiring
1.315 seconds until full thrust and flow rate are achieved. The same

start-up procedure applies to subsequent reignitions.
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TARLE 3.7 NOMINAL VEATCLF--477_ %alv¥ AND PERFORMANCE
DES TR AT INJECTION ©7F GARITUS MISSIONS
’ INJECTICM SPRCRS
i * T *%
s Altizude | Lelocity Va
Vigsign Scheme | Pavicas | .... A AU &
>0 ! = vttujeg Azte Magritude | velccity
gl it (ft) ‘{ft/sec) (ft/sec) {frisec |
————— ]
Jirect Ascen’ Hybrid i 3.6 -3 - .05 .C2 -.02
!
‘ 1
iunar oM 1.2 3 P22 3 2
Palar Qrbrt Hybrid | -0.3 -1 - .53 03 3
i
M 5.5 3 - .10 0 c
Two Burn Lunar| Hvbrid | 2.2 -8 - .05 -.01 | .ot
16M -€.¢ 4] 24 3 c
Two Burn Hvbrid | -6.9 -8 - .04 3 -.02
lanetary
IGM -4.0 -1 1.86 0 0
~40 Burn Hvbrid |-6.2 -13 - .G4 .01 02
Solar Probe
1M -2.8 -1 - 3.88 0 2
Synchronous Hybrid | -6.9 2 0 -.13 .0¢
Orbit
IGM -0.3 4 .14 4] | 0

* Closed Loop mwinus Calculus of Variations.

* ¥
Tne IGM simulation does not use the time-to-go

achieves a perfect cutoff on desired velocCity.

sults above would also be slightly degraded if

used, It is estimated that the resultina error
maanitude would be less than 0.1 ft/sec.

cutoff routine, but
A1l of the IGM re-
this routine were
in velocity




: ERIONS--ACCURACY AND PERFORMANCE RESULTS AT
TABLE §.2: VERICLE DIS?NJECT?ON FOR THE DIRECT ASCENT LUNAR MISSIONS

Variations:
Perturbed Value-Nominal Value
Dispersion Midcourse .
Dispersion Magnitude | Scheme | Payload | Perigee| Cqorrectigns
pe Y]b? ?ft?e ft/sec?
Hybrid 53.3 -1 .01
. +1.5%
Sustainer I ., IGM 51.9 3 .02
Nominal Thrust Hybrid | -52.1 7 24
-1.5%
IGM -52.2 3 .15
Hybrid | 169.9 3 01
Centaur 1 +1.5%
nLaur tspe IGM 168.7 0 .03
Nominal Thrust
Hybrid | -169.7 1 .24
5% e | -169.7 1 .23
Hybrid | 475.4 3 .13
Thrust and I 3% I6M 693.0 1 .22
of all stages Hybrid | -702.2 4 .09
(Nominal Flow Rate) 3%
- IGM -699.5 5 .26
Hybrid | -19.1 1 12
+4.6%
(Booster Pitch Hybrid | -15.7 10 .04
Program) -4.6% 1GM _15.2 0 15
Hybrid | -16.9 5 .07
0
*2 1M -16.8 -1 16
Launch Azimuth Hybrid 2.2 9 10
=20
IGM 1.8 0 .10
* An approximate figure based on the miss at the nominal impact time pred
dicted from two-body equations, and a midcourse time-to-go of 160,000
sec,
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TABLE 5.3

VEHICLE DISPERSIONS~-ACCURACY AND PERFORMANCE RESULTS AT
INJECTION FOR THE POLAR ORBIT MISSION

VARTATIONS: PERTURBED VALUE-NOMIMAL VALUE

Dis-
Dispersicn oersion Pay- | Alti- | Altitude Yelocity Yaw
Magnitude | Scheme load | tude Rate Maqnitude Velocity
(1b) (ft) | (ft/sec) (ft'sec) (ft/sec)
Hybrid 75.6 -1 -.03 0 0
+1.5%
Sustainer Isp 1M 77.0 0 -.0% 0 0
(Nominal .
Thrust) 5% Hybrid -77.6 -1 -.03 0 0
iGM -77.2 0 .21 0 J
Hybrid 18%.8 -1 -.03 0 0
+1.5%
Centaur | .
(Nominal SD 1M 190.0 -1 12 G 0
.
thrust) Mvbrid  |-192.7 | -1 .03 .01 0
-1.5% 1iou -193.0 | 1 13 0 0
Hybrid 979.2 | -1 -.03 0 0
Thrust and I +3% IGM 976.0 -1 .43 0 0
of all stage§D
{Nominal Flow Hybrid -1012.3 | -1 -.02 0 0
Rate) -3%
ioM -1006.0 1 05 0 0
Hsbrid -140.4 | -1 -.03 .0 0
Pitch Rate +4.6%
(Booster Pitch IGM -122.0 0 .02 0 0
Proaram) [ybrid 50.1 | -1 -.03 0 0
-4.6% o 9.0 | 1 .23 0 0
Hybrid 157.5 | -1 -.03 0 0]
+2°
Launch Azimuth IM 149.0 | -1 .04 .0 0
o Hybrid -162.6 | -1 -.03 0 0
-2
1GM -173.0 1 .04 0 0
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The vehicle Atlas/Centaur 8 is simulated as specified in the GDC
report series "Centaur Monthly Confiquration, Performance and Weight
Status Report". The thrust and mass flow rates of the sustainer and

Centaur phases are approximately as given below:

Thrust {1bs) Mass Flow Rate (1bs/sec)
Sustainer 81,000 270
Centaur 30,000 65

5.4 ATLAS/CENTAUR SUIDANCE SIMULATION RESULTS
Table 5.1 shows accuracy and performance results for the IGM and
TRW Hybrid quidance equations. These results show the adequacy of either

scheme for the missions simulated.

In addition, perturbations in vehicle performance parameters were
introduced in the One-Burn Lunar Mission and the Earth Polar Orbit
Mission in order to assess the effects on accuracy. The results are
presented in Tables 5.2 and 5.3. These results show that both schemes
are able to achieve mission end conditions in spite of off-nominal

vehicle performance.

6. PRECISE PARAMETERIZED GUIDANCE
6.1  INTRODUCTION
The success of the TRW Iterative guidance mode on the Injection
Phase of the ERC trajectory suggests the feasibility of studying other
forms of precise parameterized {or finite dimensisnal) gquidance. This
section contains a discussion of these schemes and the advantages which

may be expected to result.
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There are basically two types of parameterized guidance:

e parameterized control - where i.e form of the steering

law is specified as a function of time containing the
arbitrary guidance parameters. The IGM mode is an
example, where the steering angle (x) tangent is chosen
to be a linear function of time, tan x = A + Bt. A
crude numerical integration then relates the parameters

(A, B) to the end conditions.

e parameterized state - where the form of certain state

variables is specified as a function of time containg
the arbitrary guidance parameters, and the steering law
is thereby implicitly determined via the equations of
motion. The TRW Hybrid guidance mode is an example,
where the radial distance (r) is chosen to be r =

aT(t) [A + Bt], and aT(t) is the thrust acceleration.

The precise forms of parameterized guidance, which do not approximate
the equations of motion, may be regarded as being as being intermediate
to the approximate closed form iterative modes, such as IGM and TRW
Hybrid, and the complete calculus of variations solution employing the
adjoint variables. Recent advances in on-board computing capability
have led to the suggestion that integration of the adjoint equations

and iterative search for the correct adjoint variable initial values may
be possibla in real time., It is further suggested that such a scheme

would form a reasonable basis for a guidance mode,
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\pproximate parameterized schemes such as the IGM and TRW Hybrid
modes require a minimum of computer capability. These modes (or vari-
ations of them) have been tested and have proven quite successful within
the spectrum of missions for which they were designed. These finite
dimensional schemes achieve near optimality because the functional forms
imposed on the steering function or certain dynamic variables are selected
to imitate the behavior of these variables on an optimal trajectory. In
addition, certain approximations are introduced to obviate the necessity
of integrating the equations of motion. Usually the downrange transfer
angle and time-to-go to burnout are approximated through the use of closed

form expressions.
The performance of these schemes is superior in several respects:

e Verification Requirements. Being relatively simple,

, there is les:c opportunity for system error,

e Region of Applicability. Simulations and flight tests
have shown that these modes continue to work well even

when booster performance differs from nominal.

¢ Computer Requirements. - Minimal.

e Pre-flight Preparation. Minimal.

The limitations of these modes arise from the introduction of the

closed form approximations in place of integration of the equations of

motion. The precise parameterized guidance attempts to retain the
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desirable features mentioned above and to eliminate the disadvantages

by replacing the approximate expressions with trajectory integration and
Newton-Raphson iteration. This general idea results in a new class of
guidance modes whizh are intermediate in complexity between the existing
parameterized schemes and the calculus of variations solution. An
example, the TRW Iterative mode discussed in Section 4 , was seen to
perform well on the ERC Jupiter Fly-by Injection Phase even though the
IGM and TRW Hybrid modes failed.

6.2 GENERAL DISCUSSION OF PRECISE PARAMETERIZED STATE GUIDANCE
Having selected a coordinate system it - . assumed that the state
vector x of dimension n may be portioned into vectors y and z of

dimension " and n, respectively, ny +n,=n,

x = H (6.1)
z

such that the dynamic equations may be written

y = f{t, y,z,u) (6.2)

1]

z = alt,y,z,u) (6.3)
It is assumed that the following parameterization is imposed:

5’ = h(tﬂ")
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where h(t, «) is a specified function and o« is a k-dimensional constant
vector of parameters. Then the vector function y may be determined as a

function of t and a:
y = y (t,a). (6.5)

It is further assumed that the remaining two equations

h(t,a) = f(t, y, z, u) (6.6)

2(t) g(t, y, z, u) (6.7)

determine u, and hence z, uniquely as functions of t and a. This requires

that m = "1'

Suppose the final conditions of the problem are of the form
¢(T, x(T)) = 0 (dimension q) (6.8)

and the performance index is

J(T, x(T)).

(6.9)
Having y and z as functions of (t,a) means that the problem becomes
the finite dimensional problem:
Choose T, o to minimize
3T, x(T, a)) (6.10)
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Subject to the constraints

#(T, x(T, ) = 0. (6.11)

I't is assumed that q < k + 1. If the equality holds, there are of course
only sufficient degrees of freedom available to satisfy the final condi-

tions.

There are several methods available for solving the finite dimensional
problem. All of these require integration of equation (6.3) at least once
for each iteration, with additional intearations if numerical different-
jation of the end conditions with respect to o is to be employed. In-
tegrations of linearized versions of the equations would be reaquired if
the derivatives are to be determined from the variational equations,

There is thus a considerable amount of extra computation over the IGM
and TRW Hybrid modes, yet no more than through introduction of the adjoint
variables. Further simulation work is needed to determine the feasibility

of such a scheme,

Several comments on possible variations of the scheme and applications

are in order:

o State Variable Constraints. It is sometimes necessary

to impose state constraints which concern only the

portion y of the state and may be written
Fly) < 0. (6.12)

When the parameterized y is inserted, this becomes
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t
Fly, +.{ h(s, a)ds) < O . (6.13)

If A(t) is the set of o satisfying this condition at time t, then

- N . (6.14)
A = 0<t<T A(t)
1s the set of a satisfying the condition for all 0<t<T. There exists the
possibility of selectinag y and o such that this constraint is independent
of t, and hence becomes an algebraic constraint on o. The state variable

constraint problem is discussed further in Section 8.2.

e Atmospheric flight. The calculus of variations solution to the

guidance problem is considerably more complicated in atmospheric flight.
Parameterized quidance, on the other hand, would operate in the same
manner as in a vacuum with the possible exception of a minor change in
the function h(t, a). This consideration may become important, for
example, when shuttle flights to and from an orbiting space station
become routine. Since the shuttle vehicles will require some aerodynamic
control upon re-entry, a form of parameterized guidance might be appro-
priate. This is particularly true if the re-entry phase requires a

large downrange transfer arc.
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6.3 TRW ITERATIVE GUIDANCE

A specific example of precise parameterized state guidance will
now be examined; the TRW Iterative mode used to achieve end conditions
on the Injection Phase of the Jupiter Fly-by mission. The scheme is
a natural extension of the approximate parameterized TRW Hybrid gquidance
mode, The same type of extension from approximate to precise parameterized
quidance could be applied to the IGM equations or any of the so-called

"explicit" schemes.

The equations of motion in a rotating coordinate system (planar

motion) become

2
- h u
r r
h = r ar u. (6.16)
o = _’% (6.17)
r
where
r = radial distance
h = angular velocity
ay = thrust magnitude
@ = down range angle
U, = direction cosine of the thrust vector (radial)
U = direction cosine of the thrust vector (circumferential)
u = gravitational constant of the earth,
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The form of the control selected 1s based on the observation
that ir:/aT is approximately a linear function of time on an optimal
trajectory during periods of powered flight. Since the Jupiter Fly-by
mission Injection Phase consists of two thrust stages (and no inter-
mediate coast) it is natural to constrain 'r:/aT by

B3+D3t OitiT]

— = 15.18)
+ D (t-T T T

where third stage ignition occurs at t = 0, fourth stage ignition and
cut-off are at t = T] and t =T respectively, It 9s assumed that T]
is fixed so that only T may be varied as a control parameter.

The final conditions are three in nv ..er: it is desired to reach

prescribed values of

ener E = ] r2 + hz L
[ wp?
eccentricity e = \V i+ :j?f- (6.20)
. _ 11 ke
argument of perigee @ = 6 - cos” [ g (- 1)) (6.21)
Since
B,+D,t- £ (hz - H 0<t<T
3+ 03 ar \ 3 7 7)) <=h (6.22)
Ur = ( ( ) ( h2 "
By + Dy(t-T ) - T,<t<T
4 4 1 ar ;§“ ';Z) 11—~
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it follows that at staging (t = 7,) the requirement

3 3" 4 6.23)

enforces the continuity of the direction cosine 4 - 84 is thus
determined leaving free the four parameters 83. D3, D4 and T to satisfy
the three end conditions. With the first three parameters constant,

the integration of the equations proceeds until tne desired energy is
achijeved; this determines T. As expianed in Section 4.5, the parameters
33 and 04 are varied until the other final conditions ire satisfied.

Thus, final burn out weight becomes a function of the free parameter

B The graph of this realtionship is shown in Figure 4.7 .

3
7. THE TARGETING PROBLEM

7.1 INTRODUCTION

One of the most important concerns in present day guidance system
develoient is the cost in time and money of preflight opreparation and
verification. For example, even a relatively simple mission such as a
Mars fl,-by {e.g., Mariner) might require the generation and verification
cf as many as 1,000 closed-loop, precisely simulated reference trajectories:

10-15 launch azimuths per daily launcs ooportunity
x 5G-90 days of launch pericd
= 500-1350 trajectories
As a result, a relativelv simple guidance law *, usually chosen and an

explicit (closed) form of the end conditions for each phase is used.
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These end condition functions describe the trajectory after guidance
termination, 2nd hence define relationships between end conditions of
the gquidance phase and desired corditions at mission compietion. These
are always approximate relationships, for precise closed form solutions
do not exist. The targeting problem consists of choosing the parameters
in these functions (e.g.. desired value of injection energy and Euler
angles of the earth-escape asymptote) so as to satisfy mission objectives
with neqiigible error. 1n efTfect, targetina consists of constructing an
acceptably accurate sequence of simplified two-pcint boundary value

problems.

The conic formulae are used extensively in targeting, for motior
during a coast period in a drag-free environment can usually be closely
approximated, with perhaps some empirical correction terms, by the
solutions of "patched" two-body problems. Thus for guidance purnoses
2 closed form solution is nearly valid in these segments of the trajectory,
ard the objectives of a given guidance phase can be stated as attaining a
certain combination of orbital elements. A dynamic programming argument
gives a sequence of desired elements for a'l phases by working backward from
mission termination. For example, the objectives of a retroc thrust mun-
euver to obtain injection into a terminal satellite orbit about a planet
can be specified in terms of the elements of that orbit. The objectives
of the approach phase can be specified in terms of the elements of the
approach hyperbola which will be optimal for the retro phase. The

objectives of the midcourse phase can be specified in terms of the elements
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of a hé]iocentric transfer ellipse which will yield an optimal
approach hyperbola. The objectives of the near-earth injection

can be satisfied ir terms of the elements of the earth-escape
hyperbola which will yield an optimal heliocentric transfer ellipse.
Lastly, the objectives of the initial ascent from the launch pad
can be specified in terms of the elements of the near-earth park-

ing orbit which yields an optimal injection phase.

The notion of a "patched" cenic is not a precise one, for
the actual trajectory is continuously attracted by many bodies.
The guidance analyst does not consider the conics to be joined at
fixed points on the trajectory, however, but instead they are
"asympototically matched" in order to yiela a much better approx-
imation of the true motion. That is, the target planet can be con-
sidered massless for the purpose of injection and midcourse guidance
analysis, and the position and velocity at closest approach to the
massless target can then be used to determine the asymptotic con-
ditions of the approach hyperbola. The magnitude cf the positicn
vector at closest approach is the impact parameter and the velocity

is the hyperbolic excess velocity.

The difference between the actual and "massless" time of closest
approach can be calculated by relatively simple but crude formulae.
The errors introduced by such approximations are due primarily to the

gravitational attraction of the target body and other rnon-target masses
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acting during the enti - %‘rajectory, and can be made negligibly small
compared to other sources of guidance system error. The determination
of simple yet acceptable correction terms is the central issue in the
targcting problem. Thus targeting models for explicitly calculating
desired end conditions for deep space missions can be ordered according

to increasing levels of precision and computational complexity:

a. flat earth, vacuum - wihere gravitational acceleration

is represented by a constant vector, and the trajectory
after guidance termination is a parabola.

b. simple conic - where the trajectory after guidance
termination is described by the conic formulae.

c. simple patched conic - where the trajectory after
guidance termination is described by a sequence
of conic segments patched at the spheres of gravi-
tational influence of the bodies which perturb
the spacecraft.

G. asymptotically matched conic - where the trajectory
after guidance termination is described by a sequence
of conic segments as in (c) above, but the patching
is accomplished by matching the "asymptotic” values
of position and velocity of the individual
(hyperbolic) segments.

e. corrected conic - where the trajectory after guidance

termination is described by one or more conic segments,
and numerically determined corrections to the approx-
imation are applied,
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There are, of course, other types of approximations which could be
employed. For example, an approximate explicit description of motion
of a high speed vehicle in a dense atmosphere might be obtained by
assuming that the gravitational acceleration is negligible compared to
the drag acceleration. In this Report, however, we shall be parimarily

concerned with the conic approximations.

7.2 EXAMPLES OF CONIC TARGETING FORMULAE

In this section we will give examples of conic formulae which can
be used as approximations for explicitly relating end conditions at
termination of a given guidance phase to desired conditions at mission
completion. In general, the conic formulae define explicit relation-
ships between final speed, velocity path angle, altitude, and downrange
angle which must be satisfied in order to meet mission requirements,
assuming that such requirements can be specified in terms of certain
conic parameters such as energy, angular momentum, orientation of the
line of apsides, or orientation of the hyperbolic asymptote. Since two
body motion is only an apprc...nation »f the actual trajectory, and be-
cause additional approximations are sometimes introduced in the deriva-
tion of the end condition functions, the targeting problem consists of
numerically determining the conic parameters (energy, angle of asymptote,

etc.) which will yield accep-able approximation errors.
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The examples given here are for guidance in the plane of motion only,
and are primarily applicable to injection guidance, where future quidance
corrections are nominally zero. A1l equations follow from the conic relaticn-

ship between radial distance (r) and true anomaly {8), given by

- )
r=yy =73 (7.1)
c 2
where p = semi-latus rectum = —%— = constant
L. = gravitational constant
¢y = specific angular momentum = r v cos y = constant
v = speed
y = flight path angle 2 1
. “© 3,7
e = eccentricity = [ 1 + '"_?T"] = constant
u
€3 =2x (specific energy) = vis - viva = ve - §3-= constant

a. Energy-Anquiar Momentum Guidance - This form of end conditions

specification arises when controlling the apogee (g = ) and perigee

distances of a near earth ellipse, Via Equation (6.1), these quantities
are completely specified by a,p and e, and hence specific energy, (c3),
and specific argular momentum, (c]). Let r; be the injection altitude
Then the required speed (Vr) and velocity path angle (yr) at injection

are found from

. o Z 2

¢, = specified = v, - —
37 5P roT T (7.2)
¢ = specified = ry v, cos Yy (7.3)
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From these ex,ressions the vr(rI) and Yr(rl) required to obtain the specified
<, and g can be calculated. Equation (7.3) can be put into different forms

better suited for control of low path angles. For example,
1
“

21z
sin Yy = [1 - (rlvr) ] is an equivalent form,

b. Apogee/Apsides Guidance - This explicit form arises when it is

required to control the apogee of a near earth ellipse as well as the
direction of the line of apsides. Similar formulas would apply for —ontrol
of perigee and line of apsides. If ¥y is the down range angle at injection,
relative to some arbitrary inertial reference, and 3 is the true anomaly

at injection, then the control of line of apsides is achieved by setting

(v - ) equal to a fixed value (see Figure 7,1). The true anomaly at

injection is found from
p'rI
ry e

) (7.4)

cos 8 = (
It follows that

. _ (p tan
sin 8 = (‘—rI—?Y-) (7.5)

T hen

cos (v - 8) = specified

(7.6)

cos ¥ €os 8 + sin ¢ sin 9o
apogee distance = specified = (T—g—a) (7.7)

Given vy and o the simultaneous solution of these equations for

v.(re vp) and v (r, ¢) yields the required velocity.
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¢. Lunar Mission Guidance - Suppose the mission objectives is

to fly past the moon at a given distance. It will be shown in Section
7.3 that it is legitimate to pretend that the moon has no mass and con-
struct an equivalent "massless" miss to cause the appropriate fly-by
distance to be achieved. Then if follows that conditions at injection
can be specified by constructing a conic passing throuch a massless point
which moves according to the lunar ephemeris. Such an approach requires
an application of Lambert's Theorem to find the time-of-flight to the
moon'. distance as a function of the injection conditions r, v, and vy,
The specification of this time, as well as the angular orientation of

the earth-centered conic, will satisfy mission requirements, and thus
define the required v (rI, YI) and Yr(rl, WI). A simpler (but approx-
imate) approach is to introduce the notion of a "pseudo-asymptote", which
is defined by the direction and magnitude of the earth-centered conic
velocity at the point of closest approach to the massless moon. Controll-
ing the magnitude of this vector at the (specified) lunar distance fixes
energy and (approximately) the time of flight. Controlling the direction
of this vector fixes (approximately) the orientation of the earth-
ceatered conic. This law has the practical feature of being similar to

the "energy-asymptote" specification used for interplanetary missions.
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Assuming that the distance to the moon is so large that the velocity
ard position vectors are approximately parallel, the "pseudo-asymptote"
is then determined by (see Figure 7.3)

c3 = specified = vr‘ - %% (7.8)

cos s = specified = cos (y - 6, + eA)

cos Yy (cos 8y €os 6, + sin 9, sin eI)
+ sin yy (sin 8p COS 87 - cos oy sin eA)
where vy is defined as before; 81 is the injection true anomaly, where

cos By and sin 6, are determined from equations (7.4) and (7.5), and o

is the true anomaly at the moon's distance, given by

_ -1 1
8y = COS (g;-- 59 (7.10)

where " is the moon's distance. Convenient expressions for sin o and
cos 8, can be obtained from equation (7.10), and thus the required vr(rl, ¢I)

and Yr(rI’ wI) can be calculated.

4. Interplanetary Guidance - A more complicated situation arises in

the case of interplanetary missions, where there are three conics to be
counsidered i.e., the near earth escape hyperbola, the heliocentric ellinse,
and the aj ‘ch hyperbola near the target. The basic approach is to

pretend that the earth and target planet have no mass and design a heliocentric

ellipse which will pass between the massless earth and the massless planet with
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an acceptable eart! escape hyperbola, characterized by the energy &
direction of the asymptote. Thc conic injection conditions are then given
by (see Figure 7,3)

-2 . s 2 2
C3 = |\'mi = spEC'If‘IEd = Vr - "L (7.]])

I

cos 8 = specified = cos (wI -6+ eA)

cos vy [cos 85 COs 6y + sin 8a sin ex]

: . . (7.12)
tsin y; [sin 8y COs 8, - cos 8y sin eA]
where Vg and 8y are defined as before, and 6y s the asymptotic true
anomzly, defined by
.1
cos 6y = - (7.13)

Note that the angle of the hyperbolic asymptote is obtained in much the
same fashion as for the lunar pseudo-asymptote described in (c). Indeed,
success with the energy asymptote concept for interplanetary guidance 12d
to the notion of a pseudo-asymptote for lunar guidance.

7 .3 Asymptotically mMatched Conics

In the previous section it was assumed that it made sense to pretend
that the mass of the target body, be it the moon or a planet, can be set to
zero for the purpose of defining injection guidance requir~mznts, It remains
to be shown how target errcrs for a massless moon or planet can be related
in a meaningful fashion to the true conic relative to the body. The justifi-
cation foliows from the concept of "asymptotic matching" of the near target

and/or near earth hyperbolae to a transfer ellipse (References 31,32,33).
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Referring to Figure 7.3, let the massless closest approach dis-
tance be denoted by b and the massless velocity relative to the target
at closest approach by v. Recognizing that the asymptotic speed must

be v_ = v, so that

v, TV =cq (7.14)

and that the angular momentum is given by
¢y = by, (7.15)

we note that the energy and angular momentum of the target centered
hyperbola are specified by b and v. The orientation of the hyperbola is
specified by the inertial direction of v. It remains to be shown how the
time-of-flight to massless closest approach relates to time of flight to
actual closest approach. From the conic formula we find that a time from

an arbitrary position r to periapsis is

t(r) = %:) {e sinh E - E] (7.16)

where

cosh €= (1+0) (D (7.17)

and a is the semi-major axis given by a = (E;J. But for large r (r -~ «),

we have (asymptotically)

cosh E = {0y = (285 = sinn € (7.18)

E ~ In (25-) -Tne (7.19)

-121-



Then
tr) = () - () @+ me (7.20}

The term (5—) is the time to massless closest approach; the term

(vﬂ) In (%!) is the decrease in that time due to the gravitational
acceleration of the target body, and the term (%—) In e is the increase in
that time due to the bending of the conic trajectory. Similar results can

be cbtained for the asymptotic patching of the near-earth hyperbola when

1aunching to a planet, or for the near-moon hyperbola when moving from
moon to earth,

It should be noted that the asymptotic distance corrections and the
time of flight correction (%—) In e are commonly used in guidance work.
The time of flight correctio: (%—) In (%f) has not been applied, however,
because it is very lar¢> and pro;ably too approximate., Instead, a numerical
integration is usually performed to calculate actual time of flight to
closest approach (tcA), and "linearized time-of-flight” (tL) is used for
guidance purposes, defined by

a
B =t~ (G Ine (7.21)

This quantity, called the "local" correction by Breakwell (Reference 33),
is linear in the sense that the nonlinear dependence of flight time upon
the impact parameter b has been eliminated. As an example of the magnitude
of this correction, note that for a lunar mission with v_ = 1,25 km/sec and
a closest approach distance of 100 km, we have @ = 6,270 km, p = 9,190 km,

e = 2.46, §-= 5,360 sec, and

©
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W:— In e = 4,830 sec = 1.34 hr. 7 22)

The other flicht time correction term, called the grsss correction by
Breakwell (Reference 33), is much larger. If we set r = distance to

earth = 354,000 km, then
(v:—) In (§£) = 25,800 sec = 7.15 hrs. (7.23)

Since this correction is adequate only if the motion of the spacecraft
relative to the moon is approximately a hyperbola for the entire
mission, errors of more than 10% (an hour, say) are to be expected. Thus
cne can see the motivation for numerically calculating this term.

The asymptote matching method yields very good results if the
gross correction term is numerically computed. There nevertheless do
remain some errors in the appr~ximation, for the effect of other bodies

during the hyperbolic phase has not been precisely treated.

7.4 THE HYBRID CONIC TECHNIQUE

A "hybrid conic" technique “as been developed by TRW Sys‘ems
Group to numerically improve conic approximations of translunar and
transearth trajectories.* In this approach, one takes a patched
con.c as a first approximation, which does not necessarily have to be
asymptotically matched, and intearates in a simple way the moon's per-

turbation on the oeocentric conic. The integrations are performed by

This work was carried uut under contract to the Manned Spacecraft
Center, Houston urder Contract No NAS 9-4810, Phase II, and is re-
ported in TRW Note 63 FMT-728.
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assuming chat the perturbing acceleration iz of the form
e(t) = a(t) A + b(t)B + c(t)C (7.24)

where a(t), b(t), and c(t) are specified functions which can be integrated
in closed form, and A, B, C are constant vectors. The nine constants
defining A, B, C are determined by evaluating the three components of

Z(t) at three specified times. The time varying position and velocity
corrections to the matched conic, e(t) and e(t), are obtained by quad-
rature, thereby construct’ 3 ar improved trajectory approximation. The
procedure is repeated by re-evaluating A, B, and C on the improved tra-
jectory, and iterating to convergence. The technique regquires very

little computing time, and converges rapidly to a trajectory with saml}

errors. Some numerical results are presented in Figures 7.4 and 7.5,

8.  THE CONSTRAINT PROBLEM

8.1 INTRODUCTION

Another important consideration in the development of a guidance
mode is the analytical treatment of constraints on the mission, the
trajectory, and the vehicle. Indeed, it is sometimes the case that
these requirements affect the form of a guidance algorithm more than
any other factor, for constraints are of prime importance and are
difficult to treat analytically. Constraints are basically of two
types: mission constraints and vehicle constraints. The mission
constraints are those which exist independently of any vehicle, while

vehicle constraints are those required by the particular launch vehicle.
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Examples of mission constraints would be:

o Total mission time. The time from launch from mission

completion may be fixed. This is particularly important
in reliability anlaysis, where the probability of failure

is a monotonically increasing function of time.

o Tracking. It may be that the trajectory will be required
to pass over certain tracking stations at various times

during the mission.

¢ Range Safety. 1% may be required that the trajectory
not pass over certain parts of the earth because of the
safety considerations. These constraints can be described
in terms of certain impact probabilities, and trans-
Tate themselves into such considerations as launch azimuth

constraints and yaw steering constraints.

e Launch Window Duration. The length of time available

to get to launch a vehicle may be restricted by many

practical considerations.

e Launch Window Availability., Certain days or months may

be restricted for numerous reasons.

e Solar Visibility. Some payloads may require solar power

or heating or attitude reference at phases of the

mission.
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Examples of vehicle dependent constraints which may be specified are

as follows:

The vehicle attitude at various times (e.g., at staging
or injection).

The vehicle attitude rate at various times.

The velocity correction capability remaining at
burnout.

Maximum dynamic pressure,

The heating integral, which is the integral of
dynamic pressure times velccity.

Dynamic pressure at first stage separation,
Angle of attack at first stage separation
First stage impact distance.

Radar look angles, for the case of a vehicle which
is radio guided.

There are other constraints which might be specified, but, from

the point of view of guidance theory, these constraints all translate

themselves into one of two types:

1.

State variable constraints -- Corsisting of certain functional

specifications of the trajectory state. For example, the speci-
fication that the dynamic pressure must never exceed a certain
number is a state variable constraint, as is the specification

that the heating integral shall be less than a certain number.
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2. Control variable constraints - The specification of vehicle

control functions, such as the steering law. For example,
if the steering attitude at injection is specified to be &
certain value, or the injection attitude rate is specified
to be a certain value, these would be control variable con-

straints.

The control variable or the state variable constraints could be in
equality or ineguality constraints., For example, specification of a
radar look angle as a precise function of time on the nominal trajectory
would be a state variable equality constraint. Specification of a radar
Took angle as lying between two given bounds would be a state variable

inequality constraint. Specification of final injection attitude as a
fixed number would be a control variable equality constraint, while
specification of the final injection attitude as lying within certain
bounds would be a control variable inequality constraint. Control
variable constraints can usually be treated without too much difficulty,

particularly with a parameterized guida.ce law.

8.2 TREATMENT OF STATE VARIABLE CONSTRAINTS

The analyti.al treatment of state variable constraints is
difficult. The reader is referred to References 17 and 30 for a

discussion of this problem from the point of view of optimal control

-129-



theory. 1In general, the theory s;tates that one may design a trajectory
without regard to constraints i€ it occurs that the resulting trajectery
satisfies all corstraints, If this is not th2 case, a different tra-
jectory must be constructed. For example, in the case of a state variable
inequality constraint one must develup a trajectory broken into segments,
where on some segments an crdinary unconstrained optimization problem
is solved, ana on other segments the trajectory moves along the boundary
of the constraint inequality surface. The task then is to find the break
points, or switching times, where the segments ipin. With the exceptinn
of some special cases, the theory is difficult to implement, and empirical
rules are often api.lied for the design of practical guidance modes. Cne
must be awara of this troubiesome probtiem when evaluating the performance
of any aiven guidance mode.

The state variable constraint problem might be efficiently treated
by a parameterized quidance law. (See also the discussion of Section 6.2).
Suopose that a steering law similar to the TRW Hvbric gquidance mode were
used, and, aftor approprizte approximations of the non-parameterized state

variables, the equaticns of molijn cculd te represented in the form

E o= flp.t) (8.1)

where p is the guidance parameter vector. Then implicitly we have
x = x(p,t). Suppose there is a state variable inequality constraint

of the form
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0 <a{x) =q (x(p,t)) . (8.2)

For any given b, the maximum value of q is attained when
- d - _3_3_ dX (o '2}
0~ & -(2)(%)

Solving for the time (tm) of maximum q from equation (8.3), we have an

implicit constraint on p:

- )
Guax = @ (X (9,)0 > 0 (8.3)

Thus there is an acceptable region in parameter space., the boundary
being determined by setting Umax = 0 in Equation (8.4). If one can
find the intersection of this set of acceptable parameter values with
other similarly defined sets corresponding to other state variable
constraints, the selection of acceptable p vectors would be possible.
If there are more values of j, than end conditions and p ¢an be chosen
as an interior point, degrees of freedom are available for optimization,
The constraints determine p, however, if it must be a toundary
point in order to satisfy the end conditions, If there are just the right
number of values of p to satisfy end conditions, the constrainy surfaces
orovide a means for checking whether or not a given p vector is

acceptable,
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9, THE SWITCHING TIME PROBLEM

9.1 INTRODUCTION

Another important consideration in guidance mode analysis is the
specification of engine stop and start times, which-are called switching
times. Most guidance mode analysis tends to concentrate on the steering
laws, but for all schemes some technique for starting and stopping engines
must be developed. It is often the case, however, that the largest source
of guidance system inaccuracy arises from errors in thrust shutoff time.
The selection of the steering law primarily affects the fuel consumption
required to get to the end conditions, and has relatively little to do
with accuracy. An error and shutoff time, on the other hand, yields an
error in state which transforms directly to an error in conditions at

mission completion.

There is a fundamental problem in rocket engine shutoff because the
guidance system is basically uncontrollable near the final time, For
example, it is obviously impossible to correct even a small position
error at an arbitrarily short time-to-go from shutoff by steering and
shutting off the engine, for in this short time the rocket engine can at
best supply an impulse of velocity to the trajectory. According to de-
finition 5 of Section 2, the guidance system can be said to be potentially
unstable at the final time. This is a well known phenomenon and has been
analyzed from various points of view by a number of peopie. The usual
approach is to relax the guidance requirements in a small region near
cutoff. One very useful and elegant technique is the velocity-to-be

gained approach, where one defines as a function of given position the
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velocity which would be required to satisfy mission onjectives., The
difference between the present velocity and the required velocity is
called velocity-to-be gained, and the vehicle is steered to null the
velocity to be gained. There are several ways to do this; one method

is to thrust in the direction to null the cross product of velocity-to-be
gained and the rate of change of velocity-to-be gained. In any case, one
must determine the criterion for changing from whatever steering mode
has been previously employed to the shutoff mode, be it velocity-to-be
gained or any other, and secondly, one must develop a steering and shutoff
law which achieves a satisfactory set of end conditions. It should be
noted that all three components of velocity-to-be gained should simul-
taneously go to zero, for otherwise errors will occur, The cross product

steering scheme theoretically has this feature,

from the theoretical point of view there are severai interesting
questions to be asked. First, from the point of view of the classical
theory of the calculus of variations, what phenomenon is taking place
at tne final time? This can be answered in terms of the classical
condition of abnormality. Second, given that this phenomenon does indeed
occur (i.e., abnormality), what insight does control theory offer as a
solution to the problem? Lastly, how do such techniques as velocity-
to-be-gained by cross product steering relate to the theoretically

optimal law? These questions will be discussed in this section.
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9.2 THE FIRST NECESSARY CONDITION FGR OPTIMAL STEERING AND SWITCHING

Let the equations of motiun be

x = flxu, t) ot <teT (9.1)

where u{t) is a continuous scalar, control {steering) variable, and

to’ T are, respectively, the times of starting and stopping times

of the guidance phase. In parti:zular, we have in mind the special

case
ve=Eaora(y [C?s v (9.2)
ir [sxn u
r=vy (9.3)

where a(t) is the prespecified thrust acceleration, v is the velocity

vector, r is the position vector, and u is the gravitational constant.

We suppose that the problem has been formulated so that, at the
final time(T), X1 is to be minimized and Xo oo xr_ére to be set equal
to zero. Thus we are considering a special case of the Mayer problem,
where the end conditions are linear. There is no loss of generality
here, for a guidance problem can be put in such a form by a re-definition
of state variables. For example, given the state variables Yy ot Yy

and the problem formulation
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y = fly, u, t) (9.4)

T
/ g1 (y1. (X ¥ ym’ t) dt = minimum (9.5)
t
T
[ g.i y] cae ym’ t) dt = 0 i=2 ees p (9.6)
to \
then define x, eeo X o X 4 eoo X 0 by
* Co ey (9.7)
at 9 ’
and
dxi
T Fioe e o X W0 8 P=rtl, coorim (9.8)
That is, we have set Xi4p = Yj and introduced r new state variables
to treat end conditions and optimality. The reformulated problem
is of the type we have postulated.
To obtain the first necessary conditions for optimality of
u{t) and to’ T, we suppose that an optimal reference trajectory xs(t)
is available, and consider the variations about this path. Let
sX(t) = x{t) - xs(t). and su(t) = u(t) - us(t) so that the first
variation is described by
d
qr 8% = F(t) 6x + G(t) su (9.9)
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where

F(t) = LZ{—. (x(t), ug(t), t)
G(t) = L% (xs(t), u (t), t)

(9.10)

(9.11)

Holding ty and T fixed, the solution of equation (9.9) at the final

time T is

where the

and U(T,t) is the state transition matrix, described by

afa.
o

(9.13)

(9.14)

where U(T) T) = the jdentity. The effect of changing the einigine start/stop

times ts and T by small amounts is to apply impulsive changes in position

and velocity at, respectively, the beginning and end ¥ the trajectory.

For example, ir the special case described by equations {9.2) and (9.3),

we have
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co0s us(to)

av(t ) = a(t.) (9.15)
° a ° sin us(to)

Ar‘(to) =0 (9.]6)

T
av(T) = a(T) cos ug(T) (9.17)

sin us(T)
ar(T) = 0 (9.18)

In general, we have

ax (t,) = a(t)) dtg (9.19)
A (T) = afT) dT (9.20)

where a(to) and ofT) are the accelerations realized by switching the

thrust. Then ifdx (T) =x (T + dt) -xs(T), from eguation (9.12), we

have
T
dx(T) = 8(ty) dt, + «(T) dT +f n(t) su(t) dt (9.21)
t
0
where
8(ty) = U(T, t;) alty) (9.22)
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The limits of the integral can be taken as the nominal times for

this first order theory .

it is necessary that there be a constant Lagrange multiple vector

vl = B)] s "r] such that

for all su(t), dto, and dT.

it follows that

Defining

™w

T

- dx(T) =0

At) =y U(T, t)

so that, from the definition of y(T, t),

V() = -a(t) ar (1)

it follows from equation (9,24) and the definition of s(t) that

v+ n(t)

0

-138-

(9.

Since thesa are independent variations,

(9

Then if the trajectory is to be optimal,
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These are the well-known optimality conditions, where the

hamiltonian is

h(x, u, t) = a(t) « fix, u, t) (9.30)

9.3  ABNORMALITY AND UNCONTROLLABILITY

The first necessary condition for optimality can be derived
in an elementary way, which illustrates the relationship between

optimality, abnormality, and controllability (Reference 34).

Suppos 2 we define the normality matrix

-r

N=N, + 88! +a o

(9.31)
where o and B are as given in equations (9.20) and (9.22), and
Y ARCENGEL
t
T
(m?) (ymg) =+ (agn,)
2y . ..
(nyny) (%) dt (9.22)
N L
t
0

The N matrix cannot have full rank (ccnnot be invertable) if the
reference trajectory is optimal, for otherwise we could find variations

dto, dt, and Ssu(t) suzh that the end conditions are met with the
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performance variabie x](T) less than the nominal value. For example,

choose the variations

at, = ol N e (9.33)
T = o N e (9.34)
su(t) = o () N e (9.35)

where ¢ is an arbitrary vector with |¢| small, Then equation (9.21)

becomes

I

dx(T) = [BBT + aa + Nu] N_] £ = € (9.36)

In this case dx(T) can be controlled so as to take on arbitrary

values, in particular, dx] = -eq, dx2 = dx3 = dxr = 0. This

is a contradiction of the assumption of optimality, and hence N must

not have full rank. By setting dt0 and dT both equal to zero, similar
reasoning shows that N, also must not have full rank. Thus we have

established that N (and Nu) has at least one zero eigenvalue, and,

from the definition of N, there is a constant vector v such that

0 vT Nv i/ﬂ

%

T 2
(vin(t))“ dt + (v - B

+ (v - a)? (9.37)
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From equation (9.31) the optimality conditions given by equations (9.24)-
(9.26) immediately follow.

We have shown that the first necessary condition for optimality
is that the r by r normality matrix N must have rank not greater than
r - 1. Abnormality exists in the case where the rank is r - 2 or less,
for then there is more than one linearly independent vector v which

has the property described by equation (9.37). That is,

Definition: A trajectory is said to be optimal if the r by r
normality matrix ( N) has rank less than r; it is said to be abnormal

of order q if it has rank equai to (r-1-g).

The notions of abnormality =d controllability (Reference 35) are closely

related.

Definition: The r end conditions X1 st X, are said to be
first-order completely controllable if the r x r normality matrix N
has full rank; it is said to be first-order uncontrollable of order

g+ 1 if it has rank equal to (r-1-q).
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Thus an optimal trajectory is, by defi. _ion, alwavs uncontrollable,

and is abncrmal of order q if it uncontrollable of order q + 1.

Note that this definition of abnormality is slightly different
from that of Bliss (Reference 36, page 210), where the abnormality is
also said to occur if the vector « turns out to be vT = [0, Vs
ee Vo ]. That is, the Lagrange multiplier of the performance variable
X cannot be zero. We have also slightly modified Kalmar's definition
of (first-order) controllability, in the sense that the performance
index Xy is included as a state variable. For example, because of
the wav state variables have been defined an optimal system of the form
given by equations {9.4) - (9.6) would be unconirollable, even though
the original system Yy - - - - ¥, were completely controllable. One
is forced to adopt these modifications if there is to be, in general,

a precise relationship between abnormality and controllability. For
example, it can be seen that these definitions are meaningful for the
case of a minimum time trajectory with all end conditions specified.
Essentially, the slightly different definitions arose because abnorm-
ality was introduced as a condition required to proceed with aralysis
of the second variation (see Reference 34), and controllabilsty was

a condition required for the analysis of linear systems with a quad-

ratic performance index (see Reference 35).
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9.4 ABNORMALITY AND UNCONTROLLABILITY AT THE FINAL TIME

A1l trajectories become uncontrollable of order (r-1) at the
final time, and all optimal trajectories become abnormal of order
(r-2) at the final time. This follows from equations (9.31) and (9.32),
for suppose that to is an arbitrary time during the guidance phase
(i.e., t is no longer the free start time), and let t> T . Then the

normality matrix becomes

limit N(T_) = limit [N (t) + a(T) J(T)] =[a(T) J(T)] '5.38;
t »7 ° t T u-o 3
0 ()

The [é(T) aT(Ti]is obviously a rank one matrix. Furthermore, for times

t near T we note that Nu(to) is also of rank one, for

o
I
N,(t,) =/ () n'(t) dtz[n(‘r) nT(T)](T-to) {9.39)
t

0

For an optimal trajectory it follows from Equations (9.38) and (9.39)
n(T) and a(T) are both orthogonal to v ; for a non-optimal trajectory

this is not necessarily the case.

An analysis of the Nu(to) matrix is carried out in Reference (37)
for the case of optimizing the burnout speed to attain a satellite orbit,
controlling path angle and burnout altitude. The eigenvalues of the
resulting 3 by 3 normality matrix are shown in Figure9 .1, where, for

physical compatibility of units, the position state has been scaled by

an energy factor to be expressed in units of ft/sec.
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9.5 SHUT-OFF AND STEERING NEAR THE FINAL TIME

The degenerary of the normality matrix near thrust termination
offers an explanation of the thrust termination phenomenon. Given an
optimization problem which is abnormal in the sense defined here, one
would be forced to delete from consideration those linear combinations
of end conditions corresponding to the zero eigenvalues of the normality
matrix. Simile 1y, in the guidance problem one should attempt to control
only one linear combination of end conditions near thrust termination. For
the special case described by Equations (9.2)-(9.3%wne only control avail-
able at the final time is the velocity correction av(T) given by Equation
{9.9). That is, at the final time the vehicle ought to be pointed in the
nominal directiorn, and the shut-off time should be adjusted (by dT) so to
null coordinate errors in the direction of Av. This theoretical result
is in agreement with practice, for thrust termination commands are usually
generated when the required velocity component in a pre-specified direction

reaches the desired value.

It remains to be shown how the region of uncontrollability can be
precisely defined, and what the steering law should be in this region. In
reference (37) it was suggested that a stable guidance law would be obtained
by steering to the boundary of the reachable set of points, which is the
the locus of attainable end conditions obtained by an analysis of the second
variation., The analysis will not be repeated here, suffice it to say that
the resulting steering law tends to null end condition errors sensed early

in flight, when the radii of curvature of the boundary (p{) are large,
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and tends to ignore errors sensed late in flight when the radii

of curvature of the boundary (p_) are smali. Assuming suitable
normalization of the steering a;gle, the p; nNear thrust termination

are approximately equal to the eigenvalues of the normality matrix

(see Figure 9.1). Further work is required to develop this approach into
a practical algorithm,but the analysis suggests that a reasonable terminal
steering and shut-off criterion might be as follows: (1) enter the shut-off
mode of operation when all but one of the eigenvaiues of the normality
matrix are nearly zero, (2) since the non-zero eigenvalue corresponds to
the direction of n(T), steer to null velocity errors perpendicular to

this direction, but with a limit on the maximum steering angle deviation
from nominal, and (3) terminate thrust when the speed error in the
direction of o(T) is zero. Note that in effect we are attempting
to null velocity errors near shut-off, which can be thought of as

components of the velocity-to-be-gained.

9.6 THE CONJUGATE POINT PHENOMENON AT START TIME

The optimal start time can be calculated from the conditions obtained
in Section 9.2. Although no difficulty should be expected for most space
guidance applications, there is a possibility that the conjugate point

phenomenon can occur at t, because of the fact that to is a free parameter.
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Consider first the case where to and T are fixed, and for
simplicity assume there is only one constraint, xz(T) =0. Itis
shown in Reference (34) that, by a proper choice of the X; coordinates,
the second order expression for end condition variations can be written

in the form
T
ox, (T) = fffsu(t) Q (t.s) su(s) dt ds (9,40}
tO
.
8x,(T) =f n(t) su(t) dt (9.41)
tO

where Q(t,s) is a real symmetric kemmel. Equation (9.40) is obtained
by expanding the equations of motion (9.1) as a second order Tayior's
series, but is, the terms cxz(t) and auz(t) are retained, and the
solution is represented in the form of an integral equation. The X,
coordinate is chosen in the direction of the Lagrange multiplier v.
(Note that Q(t,s) would be a matrix, and su(t) would be a vector, if
the control were to be interpreted as the values of u(t) at a finite
number of points). The conjugate point condition is developed by

solving the accessory minimum problem to obtain an expression for the

boundary of the reachable set of points. It is shown in Reference (34)

that the boundary surface is given by
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(9.42)

The o is the radius of curvature of the reachable set of points given

by
T -1
. =fﬁ(t) Q"' (t,s) n(s) dt ds (9.43)
t
0

where Q'] (t,s) is the "inverse Kernel" of Q(t,s). A1l end conditions
within the boundary (9.42) can be reached by applying some control

¢u(t). A conjugate point occurs at a value of to where p(to) = 0.

For the case of free initial time to’ Equation (9.40) becomes

2 T
Gx](T) = Ydto + dtO/ K(t) su(t) dt (9.44)
%
vl
+ 2-ffsu(t) Q(t,s) su(s) dt ds (9.4,
%
T
6x,(T) = 8, dt_ +f a(t) su(t) dt (9.46)
to
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where B is as defined above, vy is the second partial derivative of X

with respect to to’ and Kk(t) is the mixed partial derivative, Expressions
fory and K will not be presented here; they may be obtained from the
analysis of Reference (37), where the second order effect of initial con-
dition error is calculated. The conjugate point analysis proceeds as
before, except that the inverse of a mixed kernel and scalar must be
obtained. This can be done (again, think of su(t) as a vector and

Q(t,s) as a matrix), and the resulting radius of curvature is

o =ftyn(t) Q! (t.9) n(s) dt ds

o

[ 7T -1 2
+ "[/ / n{t) Q" '(t»s) n(t) dt ds - a] (9.47)
[of
ts
where
T
¢ T Y -/fk(t) 07! (t.s) K(s) dt ds (9.48)
tO

As before, the conjugate point phenomenon occurs when p(t )= 0
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A comparison of Equations (9.43) and (9.48) shows that the
conjugate point cenditinn is indeed modified when tO is treated as
a free variable, Thus it is possible that cotimal switching could
cause the conjugate point phenomenon to occur when it otherwise would
not, or conversely. These interesting possibilities should be explored

further for practical cases.

10. IMPULSIVE STOCHAS™IC GUIDANCE
10.1 INTRODUCTION

It was pointed out in section 1.3 that in certain phases of fight

the seperability of guidance, navigation and error analysis no longer
aoplies. These cases arise when impulsive velocity corrections are to
be applied, and there are execution errors proportioned to the magnitude
0¥ the correction and/or a constraint on the total amount of propellant
to be utilized. For exampnle, an important objective of some space
missions is to achieve a specified eliptical orbit around the target bady
(e.q. Voyager, Apollo, Lunar orbiter). After the insertion manuver, the
spacecraft may reach a dispersed orbit due to orbit determination and
manuvver execution errors, and a sequence corrections (possibly only two)
becomes mandatory in order to accomplish the mission. These corrections
are applied in a form of acceleration impulses, causing a step change in
velocity, and hence orbital elements, at the correction times. The
guidance strategy for such a sequence of corrections is the specification

of how many corrections should be applied, when, and what they should be.



The determination of a strategy which minimizes a statistical measure
of the final orbit error in the presence of orbit determination (estimation)
and guidance execution errors poses an important unsolved problem. The
classical optimal orbit transfer analysis which seeks the strategy to
minimize propellant (correction capability) expenditure and does not
consider random errors, can at best yield that approximately optimal
strategy. The theoretically correct approach is ebtained<via the dynamic
programm.ng algorithm or its equivalent. This is an impossibly difficult
task for realistic guidance systems, so one must take a different approach.
Several authors (Refs. 12, 38-41 ) have dealt with a problem of this type

and obtained some interesting results by analysis of simplified cases of

by developing a suboptimal guidance strategy. The relation between this
work and practical application is somewhat teruous, for the problems

have to be so simplified in order to accomplish the analysis that reality
is often lost. In practice one sometimes uses a procedure which might

be called the method of constraints. That is, a guidance strategy is
chosen, based upon huristically applied deterministic reasoning, and this
s trategy is modified to take into account random errors. For example,

on an interplanetary mission such as Mariner one might arbitrarily decide
to make the first mid-course correction at, say, six days after injection,
realizing that adequate tracking information can be gathered and processed
by that time and that Tittle would be gained by making the co: rections

s lightly sooner or later. The aiming point for the correction, must con-
s ider the random correction execution errors, however, for these errors

will yield state dispersions at the target which may violate certain
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mission constraints (e.g., the probability of impacting the planet may be
too high). Thus one chooses a biased aim point which yields an acceptable
probability of impacting the planet, assuming that there will be a second
correction at some later time to adjust the aim point so as to have a high
probability of satisfying the mission objectives. (The execution errors
for the second correction are considerably smaller because the correction
itself is smaller). In this case we are seeking to satisfy certain
probabilistic mission objectives while imposing a orobabilistic state
variable constraint. This type of stochastic guidance problem is, in

general, a very difficult one..

10.2 SOME NEW RESULTS IN STOCHASTIC GUIDANCE THEORY

The solution of a rather realistic form of the stochastic guidance
problem is described in Referc.cc. {4z, and (43). It is assumed that the
total guidance correction capability expended during the mission is
constrained to be less than a snecified number (the resource initially
allotted), and one seeks the strategy which minimizes the expected
value of a weighted sum of squares of the final orbit errors. These
dispersions arise from random estimation and correction execution
errors. The analysis employs the dynamic programmirg technique for
determining the optimal stochastic orbital transfer strategy,where it
is supposed that the <tate of the system at any time can be described
by the correction capability remaining and the maximum likelihood
estimates of the orbit parameters. These estimates do indeed provide
sufficient statistics for our problem if we assume that very many track-

ing data points are nrocessed between corrections, since it can be shown
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that the probability density function for the estimation errors asymptot-
ically becomes Gaussian with known covariance. A further simplification
is introduced by assuming that two modes of operation are possible at

each correction opportunity: capability unlimited, where an excess of

correction capability is availanle to complete the mission and the optimal

correction can be determined without constraint, ard capability 1imited,

where there is not adequate correction capability to complete the mission
optimally,andaheuristically justified simple one-correctisn policy and
measure of performance are to be employed. Thus correction capability (c)

is a state variable which is constraind to be positive, and the control

policy and performance associated with transfcrring from the state

c>0 to the state variable boundary c = 0 are assumed to be specified.

It is reasonable to specify these functions in a heuristic fashion,
because for most anplications the capability limited case rarely occurs

In effect, then, one need only treat the capability unlimited case (c = =)
and tabulate the optimal correction policy, the optimized measure of per-

formance, and the expected correction capability required to complete the

mission,

These simplifications are essential to the numericai dynamic program-
ming solution of the problem. Nevertheless, one still encounters the well
known numerical difficulty of calculating and storing the many values of
the optimized per’ormance index and guidance policy corresponding to all

possib?z values of the state vector for ali of the corrections. This
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problem can be partially overcome by recognizing that the only regions of

the performance surface which are of real interest are the neighborhoods

of the local minima which result from the guidance corrections, for these

determine the "aiming points" in state space for preceeding corrections.

(It can be shown that such local minima do indeed exist). Thus for the

iEﬁ- guidance correction we need to store,as functions of uncorrected

state variables,the coordinates and magnitudes of the local minima of the

oerformance surface resulting from the correction, the expected value of

the correction capability required for subsequent corrections, and a

quadratic approximation of the iocal behavior of the performance surface.

Given the estimate of orbit parameters prior to the (i-l)EE-correction,

these results would be used in a real-time application to determine

the coordinates of the "best" reachable local minimum point., This

choice specifies the aiming point for the (i-])iz-correction and

(implicity) the correction itself, assuming that the capability required

to reach this point pius the expected value to complete the mission is

less than the amount presently avilable. This procedure would be repeated
for the next correctior,after tracking and estimation of the corrected

orbit parameters, and all subsequent corvections would be treated similarly.
£ adequate correction capability is not available at any opportuaity it

is necessary to either choose a different local minimum which is acceptable,
or apoly the capability limited mode of operation, or aim for "best" local

minimum, assuming it is to be followed with a capability-limited correction.

The best of these alternatives should be chosen.

-154-



The dynamic programming approach to stochastic orbit transfer
described here was applied by Nishimura to a space mission of the
Voyager type (Reference 42). The numerical results were obtained with
a computer program which determined the optimized performance index
resulting from the final correction for a large number of points in
state space. The optimal performance index contours were plotted to
find the local minima (Figure 10.1), and these coordinates were used
to define the intermediate orbits, i.e.. the "aiming points" for the
preceeding correction. An example correction sequence is depicted in
Figure 10.2, which is interesting to compare to the classical Hahman
transfer case. Because of the stochastic dispersion factor, the
Hohman transfer will yield poorer performance than the optimized

strategy shown in Figure 10.2.

In summary, then, we have described a non-linear stochastic
control problem where expenditure of correction capability is introduced
as a state variable constraint, where the maximum likelihood estimates
of the orbit parameters provide sufficient statistics to define the
state of the system, and where the properties of the local minima of
performance surface provide adequate information for a dynamic programm-
ing solution of the problem. More work is required to develop this
approach to the point where it is practical for real-time guidance
application. Some possibilities for simplification have recently become

apparent and are being investigated.
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11. CONCLUSION

In this report we have taken a rather general, theoretical view of
the "unified" guidance and navigation problem. (By unified system we
mean a set of software and hardware modules which can be used to control
all segments of the trajectory for a wide class of missions and launch
vehicles) Assuming that the guidance and navigation problems can be treated
separately, it is apparent that the derivation of a guidance algorithm (mode)
is a key element in the development of a unified guidance and navigation
system. With this motivation in mind, the purpose of the study described
here was to examine the state-of-the-art in guidance mode development;
classify existing and proposed modes; define measures of their performance;
compare the modes with respect to these measures; describe some of the
problem areas that may be encountered, and recommend directions for further
research and development.

Specific conclusions and recommendations are presented in Section
1.9 and will not be repeated here, Suffice it to say that the analytical
and numerical studies reported here indicate that it is feasible to design
a unified guidance mode, capable of on-board implementation, if one is
willing to exploit the numerical integration and iteration capability of
present day computers. Further analysis and simulation is required in
order to fully justify this conclusion. Such effort would be well spent,
for savings in cost, reliability, and development time could be achieved
by developing aunfied guidance system. Furthermore, the cost in time

and money of mission design, preflight preparation, and flight readiness
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verification could be reduced by using the unified guidance capability to
develop preflight analysis software (the "quick reaction" problem), It
is hoped that this Report will be a worthwhile contribution toward such

a development.
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