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ABSTRACT 

This is the final report of a program to develop efficient methods of fabricat

ing strut assemblies consisting of beryllium tubing and end fittings. The work con

sisted of the design and analysis of the strut assembly and components, laboratory 

evaluation of joining methods, procurement of beryllium forgings and tubing, testing 

of full-scale attachments on short tubes, and assembly of two 40. 60-inch long struts. 

The joint configuration consists of a stainless steel lap strap. adhesive bonded to the 

butted beryllium tube and end fitting. 

Processing variations produced premature adhesive failure on two parts, 

but the problems have been identified and corrected, and tests on other assemblies 

demonstrated the capability of the joint to exceed design requirements. 

The end fittings. machined from beryllium forgings, and the extruded beryl

lium tubing exceeded design requirements. No failure of these beryllium components 

was experienced during the test program. The high quality evident in these procured 

materials represents the best current state of the art in beryllium production. 
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INTRODUCTION 

The work described in this report was performed for the National Aeronautics 

and Space Administration, Marshall Space Flight Center, by the Solar Division of 

International Harvester Company under Contract NAS 8-20151. The activities at 

Solar were performed under the direction of Aerospace Engineering with Mr. H. Jones 

as Program Manager until November 1966, since that time Mr. T. Stockham has 

been Program Manager. The NASA-MSFC technical managers have been Mr. 

Lawrence Dwyer, Mr. 0. M. Tommie, and Mr. Carl M. Wood. 

The program objective was to produce and deliver to NASA-MSFC two 

structural tube assemblies which meet the following requirements: 

" Stiffness equivalent to a 5. 0-inch OD, 0. 625-inch wall 2219-T8511 
aluminum alloy tube 

* The assemblies to consist of a 5. 0-inch OD beryllium tube with beryl
lium end fittings 

* Pin-to-pin length of the assemblies to be 40.60 inches. One assembly 
having two fixed ends, and the other one fixed and one adjustable end 

* The assemblies to be capable of carrying a load of 80, 000 pounds in 
tension or compression. 

The applicability of beryllium to this program was established by the high 

stiffness-to-weight ratio of the material. Thus, use of these struts to replace the 

current aluminum alloy design would result in a major weight reduction. 

All of the program objectives have been accomplished. One assembly was 

tested to a 112, 800-pound tensile load without failure. This load produces stress in 

the beryllium in excess of 58, 000 psi, making very effective use of beryllium as a 

structural material. A 63 percent weight reduction of the comparable aluminum strut 

was indicated on the 40. 60-inch long assembly. 
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RECOMMENDATIONS 

There are a number of areas in which further work could be done to enhance 

the results obtained in this program. The first of these is, of course. evaluation of 

the 40.60-inch long prototype strut assemblies. The results of this evaluation would 

be of significant value in establishing the nature and extent of any future work. The 

next area which warrants additional study is a thorough evaluation of the bonding proc

ess parameters to establish a working range which will consistently provide high

strength joints. A part of this investigation should include evaluation of nondestructive 

inspection techniques to ensure the quality of completed assemblies. Design refine

ments could be accomplished to reduce the end-fitting weight by removal of additional 

material from the forging in low stress areas. In addition, it might be possible to 

eliminate the lap straps through the use of mating tapered surfaces on the fitting and 

tube. The use of a shallow taper would provide a large joint area without extra 

material and would eliminate eccentricities in the load transfer from one beryllium 

element to the other. With this type of joint and current improvements in braze proc

esses, it would be practical to reconsider brazing and thereby produce a more rigid 

assembly. 
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DESIGN AND ANALYSIS 

The tube assembly was designed to withstand an axial load of 80, 000 pounds in 

tension or compression, and to match the stiffness of a given aluminum tube. Analyses 

were therefore conducted on the tube, the end fitting, the end-fitting lug, and the tube

to-fitting joint. 

3.1 	 TUBE ANALYSIS 

The design criteria for the beryllium assembly specified a stiffness equal to 

an aluminum alloy strut 132 inches long with a 5.0-inch OD, and a 0.625-inch wall. 

Axial and transverse stiffness for tubular columns were calculated from: 

KA = P/6 = AE/A 

KT = 48 EI/ 3 

where, 

K A Axial spring constant (lb/in.) 

KT Transverse spring constant (lb/in.) 

P Applied load (lb) 

A Cross section area (sq in.) 

E Modulus of elasticity (lb/sq in.) 

A Length of section (in.) 

6 Deflection (in.) 

I 	 Moment of inertia of section (in.4 
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A 2219 aluminum alloy tube was assumed as a standard, and the wall thickness 

of a beryllium tube of equal OD and stiffness was calculated. Comparative data are: 

KA KT 

Al - 132.0 in. long by 5.0 in. OD by 0. 625 in. wall - 690, 000 lb/in. 4630 lb/in. 

Be - 132. 0 in. long by 5.0 in. OD by 0. 125 in. wall - 647, 000 lb/in. 5220 lb/in. 

Axial and transverse stiffnesses could not be matched without changing 

the tube OD. Since column buckling behavior is proportional to K this factor was 

considered most important. The 0. 125-inch wall was therefore selected. yielding an 

increase in KT of 12 percent. 

3.2 END FITTING 

The tube-end fittings (dwg. 46763, Appendix A) have been designed for 

failure loads of 80, 000 pounds or greater. Early in the program it was established 

that a forging would be the only practical means of obtaining satisfactory material 

properties in the end-fitting blank. Machining the part from beryllium block is 

undesirable because of the low ductility and low strength of hot pressed block mate

rial. Two configurations for the assembly were given prime consideration. These 

were a brazed joint design and a bonded joint design. The major portion of the analysis 

concerned the stress discontinuities of the end fittings and the tube in the vicinity of 
the joint. 

The analysis was conducted using a computer program which has been written 

for a 7094 computer system. The method employed is discussed in "Beams on Elastic 

Foundations" by M. Hetenyi. It consists of writing deflection and continuity equations 

for many short cylinders, and then solving the system of equations by matrix 

techniques.
 

The end fitting and the joint were assumed to be a homogenous surface of 

revolution. The surface of revolution was broken into many very short elements. 

The assumed boundary conditions provide for the first element near the lug to be com

pletely fixed (all deflections equal to zero). For the lap ring joint design the last ele

ment at the joint was also assumed to be fixed against rotational or radial deflections. 

The purpose of fixing the last element was to ascertain the worst condition which may 

exist and to provide a basis for design. 
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The analysis shows that this particular configuration will have bending 

stresses of significant magnitude developed both at the joint and at the transition of 

the end fitting from cylindrical to tapered shape. The nature of beryllium makes this 

a very critical structural problem. Bending stresses in the vicinity of discontinuities 

must be held to a minimum because of the sensitivity of beryllium to high localized 

stresses. The analysis leads to the conclusion that the fitting design has a reasonable 

probability of performing reliably at high joint efficiency. 

3.3 END-FITTING LUG 

A particularly critical design area on the forged beryllium end fitting is the 

pin-joined lug, by which the tube assembly is attached to the adjacent structure. 

Stress distribution in the lug, especially around the pin, would normally be established 

from past experience with similar configurations. In the case of a beryllium 

forging, this experience is too sparse to be of any real value in design. Consequently, 

after making the best estimate possible from the available data, it was decided to build 

a one-third scale model of the lug to increase confidence in the design prior to forging 

the first full-scale end fitting. 

Figure 1 shows the test specimens fabricated for this purpose. The tapered 

end simulates the machined forging. The material used was cross-rolled beryllium 

plate, chosen for the similarity of its mechanical properties to those of the forging. 

After machining, the test specimen was chemically etched to remove surface stresses 

(the full-scale part was also finished this way). The final dimensions and fits obtained 

were, therefore, a close simulation of those expected on the full-scale parts. 

One of the specimens was tested. The load was applied in tension through a 

steel clevis fitting and a close fitting drill rod pin. At a load of 11, 000 pounds the pin 

failed in bending due to excessive clearance between the clevis and the beryllium lug. 

As a result of the pin failure, the end of the beryllium lug also failed. The load at 

which failure took place Is equivalent to a scale load of 99, 000 pounds on the full-size 

forging, 124 percent of the 80, 000-pound design load. 

3.4 JOINT 

Various factors affect the design of the joint between the tubing and the end 

fitting. The results of the joining investigation, Section 4, have shown that a lap-strap 

joint is necessary for high efficiency. The design must transmit loads from one 

beryllium element to the other without imposing severe stress concentrations, it 
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FIGURE 1. LUG TEST SPECIMENS 
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should minimize load eccentricities, and be relatively easy to fabricate and inspect. 

It must also be capable of carrying the applied loads and of conforming to the finished 

dimensions of the beryllium parts. 

The simplest design which can meet these criteria is the split ring, Solar 

P/N 44858-11, (App. A). The split in the ring provides for assembly fitup without 

imposing excessive stress concentrations. The bonding area is sufficient to maintain 

adhesive shear stress below 3000 psi and the tensile stress in the strap is below 

67, 000 psi at the design load of 80, 000 pounds. 
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JOINING INVESTIGATION 

To provide confidence in the assembly design, it was necessary to develop 

and evaluate methods of attaching beryllium end fittings to beryllium structural tub

ing. The joining techniques investigated were brazing and chemical bonding. 

Mechanical fastening was not investigated on the basis of a comparison of 

the results published in NASA technical memorandum X-53453 and the results obtained 

on adhesive bonded specimens at Solar. The findings of the NASA investigation 

produced a maximum of 36,000 psi ultimate stress in the parent beryllium material 

by using huckbolts, while the initial bonding investigation at Solar yielded nearly 

twice that strength. 

The joint configurations represent a conservative approach made necessary 

by the difficulty of reliably joining an anisotropic brittle -material. The configurations 

selected for study were fabricated from sheet beryllium of gages and material prop

erties similar to the tubing used in the full-scale hardware. 

Type 19-9DL stainless steel was selected for the lap straps because it 

closely matches the expansion coefficient of beryllium and has fairly high strength 

properties (Ftu = 118,000; Fry = 69,000). Lap straps of 0.043-inch Type 19-9DL 

stainless steel were used in both the bonded and brazed joint sample configurations. 

In the bonded configuration both simple lap and double lap strap joints were 

tested. In the brazed samples, configurations with interlocking fingers but no lap 

straps, and with a double lap strap and no fingers were fabricated and tested. 

Specimen blanks for all these tests were machined and then chemically etched 

0. 002 inch minimum. 

Specimens were also fabricated to investigate process parameters. A series 

of 0.75-inch wide strips were cut from 0. 125-inch sheet, then the edges were ground 

and the surfaces etched. These strips were used in the laboratory to evaluate the 

effectiveness of various cleaning, bonding, and brazing methods prior to evaluating 
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the joint configuration samples. Process specifications generated from this investi

gation are shown in Appendix B. 

4.1 ADHESIVE BONDING 

The requirements in this area are considered to be within the current state 

of the art; therefore, the effort was restricted to confirmation of various vendor 

recommendations and other sources of reliable information for the cleaning and bond

ing processes. 

Four epoxy type materials were evaluated: 

" BR 92 - Bloomingdale Rubber two component liquid resin 

* BR 92B - Similar to (a) but more viscous 

* FM-1000 - Bloomingdale Rubber unsupported solid epoxy-nylon film 

* Narmco 332 - One component epoxy resin 

The test specimens for the first series of tests consisted of strips of cross

rolled beryllium sheet (0.75 in. by 2.5 in. by 0.10 in.) joined to similar strips of 

Type 19-9DL stainless steel in a single shear configuration. The lap area was 

deliberately made small (0. 30 to 0. 50 in. 2) since these tests were intended to produce 

bond shear strength data rather than optimum joint designs. 

These tests were to evaluate the effects of bond line thickness and sensi

tivity to pressure for each adhesive system. Bonding times, temperatures, and 

pressures were in accordance with the manufacturer's recommendations for each 

adhesive system tested. 

The results of this test series, summarized in Table I, were: 

* Highest strength values were attained with the FM-1000 film when 
bonded under pressure, and with a minimum bond line thickness. 

" Within the limitations of the small number of tests, FM-1000 appeared 
to be completely reliable with respect to a design level of 3000 psi 
shear stress. 

*oThe BR 92 and BR 92B liquids seemed rather unreliable. Shims to 
-control the bond line thickness between 0. 002 and 0. 010 inch would 
'be required. 

Following the above tests, a similar series of simple lap joints were tested 

using two Type 19-9DL stainless steel straps for symmetrical double shear on a 
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TABLE I - SINGLE LAP SHEAR SPECIMENS
 

Beryllium 0. 10 

0.75 

[- @Variable Lap Length 

Serial 
Num-
ber Adhesive 

Bond 
Cycle Pressure 

Joint 
Shim 
(in.) 

Area 
(in. 2) 

Load 
(Ib) 

Shear 
Stress 

(psi) 
Com
ments 

Al 
2 
3 
4 
5 
6 

q 
90 Min 

at 

180 F 

Yes 
Yes 
No 
Yes 
Yes 
Yes 

0 
0 
0 
.002 
.010 
.020 

.455 
.533 
.529 
.370 
.380 
.388 

112 
345 
600 

1500 
1400 

246 
647 

1134 
4054 
3684 

19-9/19-9 
19-9/19-9 

Failed 
,before 
test 

B1 
2 
3 
4 

5 
6 

pq180 
M 
itest 

90 Min 
at 

F8e-

Yes 
Yes 
No 
Yes 

Yes 
Yes 

0 
0 
0 
.002 

.010 

.020 

.408 

.482 

.560 
--

.378 
.-

980 
493 
802 
-

1620 
.. 

2402 
1023 
1432 

-

4286 
.. 

19-9/19-9 
19-9/19-9 
Failed 
before 

Failed be
fore test 

C1 
2 
3 
4 
5 
6 

o 60 Min 
at 

350 F 

Yes 
Yes 
No 
Yes 
Yes 
Yes 

0 
0 
0 
.002 
.010 
.020 

.384 

.319 
.473 
.360 
.373 
.414 

2940 
2270 
1540 
1515 
1500 
2600 

7656 
7116 
3256 
4208 
4021 
6280 

19-9/19-9 
19-9/19-9 

D1 
2 
3 
4 
5 

0 

d 

60 Min 

350 F 

Yes 
No 
Yes 
Yes 
Yes 

0 
0 
.002 
.010 
.020 

.510 

.505 

.350 

.350 

.335 

68 
154 
774 
540 
226 

133 
305 

2211 
1543 
675 

19-9/19-9 
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central beryllium strip. The Narmco 332 was not tested because of poor results in 
the preceding tests. The liquid resin systems were assembled using 0. 010-inch shims 
to control bond line thickness. No shims were used with the FM-1000 adhesive. One 
BR 92 specimen (A9) was deliberately cured at 350 F in addition to the recommended 
180 F. All specihens were bonded under approximately 25 psi pressure. Results of 

these tests are shown in Table 1I. 

Specimens A8 and B8 failed first on one side then shortly afterwards on the 

other side, with visible evidence of asymmetric loading. Self-aligning load fixtures 
were not available for these tests. With the exception of these two premature failures, 
all other results were considerably in excess of requirements, including the sample 

which was overheated. 

Based on these results, the investigation proceeded to specimens which 
simulated the full-scale joint. Two of the more promising systems, one liquid epoxy 
(BR 92) and one solid film epoxy (FM-1000), were evaluated on specimens simulating 
a one-inch wide section of the full-scale tube/fitting joint. Surface preparation and 
bonding procedures were identical to those for the single- and double-lap shear 

specimens. 

Lap straps varied from one to four inches in length. A specimen using one
inch straps "(BL7) is shown in Figure 2, while one with longer straps (BL6) is shown 
in Figure 3. Some specimens failed in the parent metal using the FM-1000 adhesive 
system, while those with lap lengths of 0. 75 to 1. 0 inches failed in the bond joint. 

The results of these tests are shown in Table I and are summarized as 
follows: 

a 	BR 92 liquid again proved to be unreliable. Even with a 4.0-inch long 
lap strap, failures were all in the bond at a low stress level. Difficulty 
was experienced with wetting the beryllium with this adhesive resulting 
in excessive scatter of results. 

o 	FM-1000 film adhesive was able to carry the applied loads up to a level 
producing failure of the parent beryllium sheet with 4. 0- and 2. 0-inch 
lap straps. 

* When the lap-strap length was reduced to 1. 0 inch, one specimen failed 
in the bond and one in the parent material. A further reduction to 0.75 
inch also resulted in bond failure (at 6000 psi shear stress). As the 
lap-strap length was reduced, the stress at which tensile failure of the 
parent beryllium sheet took place was observed to decrease, i.e., joint 
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TABLE 11 - DOUBLE SHEAR SPECIMENS 

Speci

men Shear 

Serial Bond Area Load Stress 

Number Adhesive Cycle (in. 2) (ib) (psi) Comments 

A7 90 Min . 710 3670 5169 Beryllium failed Fw = 65ksi 
at 180 F 

8 BR 92 90 Mini . 508 1270 2500 Asymmetric Failure 
at 180 F 

9 90Min 
at 180 F 

and . 532 2060 3872 
60 Mini 
at 350 F 

B7 BR 92B 90 Mini .624 2390 3830 
at 180 F 

8 90 Min .76 1690 2224 Asymmetric Failure 
at 180 F 

C7 FM-1000 60 Min .532 3100 5827 Beryllium failed Fw = 55 ksi 
at 350 F 

8 60OMin 
at 350 F .488 3030 6209 Beryllium failed Ftu 53 ksi 
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FIGURE 2. LAP JOINT TEST SPECIMEN (BL7)
 

FIGURE 3. LAP JOINT TEST SPECIMEN (BL6)
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TABLE Mn. ADHESIVE BONDED JOINT TESTS 

P 1.0 I - p 

(2) Type 19-9 DL stainless steel 
straps 0.06 inch thick 

I Be 0.125 inh 
thick 

Bloomingdale Rubber BR 92 (liquid epoxy) 

Bond Be 

Specimen 
Number 

Lap 
(in.) 

Failing
Load 
(ib) 

Failure 
Mode 

Shear 
Stress 
(psi) 

Tensile 
Stress 
(psi) 

Joint 
9* 
(%) 

BLI 4.0 4265 Bond 1066 44,500 81 
BL2 4.0 1730 Bond 432 18,000 33 
BL4 4.0 4800 Bond 1200 50,000 91 
BL5 2.0 1304 Bond 652 13,500 25 

Bloomingdale Rubber FM-1000 (epoxy film) 

BL3 4.0 5760 Tension 1400 62,000 112.5 
inBe 

BL6 2.0 4930 Tension 2540 54,000 98 
inBe 

BL7 1.0 4520 Tension 4520 46,800 85 
in Be 

The specimens below are identical to preceding ones except for a chamfer at each 
end of the lap straps. 

Be 19-9 DL 

19-9 DLI-I 

BL8 1.0 4870 Bond 5100 43,100 78.5 
BL9 0.75 4460 Bond 6070 41,250 75.0 

* Based on Ftu = 55,000 psi for beryllium cross-rolled sheet and extruded tube. 

17
 



efficiency dropped from 112.5 percent for L = 4.0 to 85 percent for 
L = 1. 0. This efficiency drop was attributed to the more abrupt transfer 
of load in the shorter lap joints. 

* 	Lowest stress at which shear failure of an FM-1000 bonded joint 
occurred in this series was 5100 psi. A design shear stress of 3000 psi 
is therefore considered conservative for this adhesive system. 

The FM-1000 adhesive in the double-shear configuration using Type 19-9DL 

straps and the process techniques established, gave the strongest, most reliable 

joints obtained during this investigation. Therefore, the tube assembly configuration 

was established using FM-1000 adhesive and the process parameters outlined in this 

report. 

4.2 BRAZING 

Since the joint between beryllium and Type 19-9DL stainless steel was of 

interest (to facilitate construction of lap joints with a ductile strap material), the 

investigation was concentrated on silver-base braze alloys which were compatible 

with both materials. The approach favored was to use a lower melting point alloy to 

minimize metallurgical damage to the beryllium due to brazing above the anneal 

temperature, and to augment the naturally poor wetting of those allows by preplating 

the substrates. 

Preliminary braze bond and wettability tests were made on fifteen 0. 75 by 

0.75-inch preplated lap joint type beryllium to 19-9DL specimens. The results of 

metailographic examination of the filler metal and interface reactions are summarized 

in Table IV. A microhardness survey revealed a thin (0. 0002 in.) brittle (RC-71) 

diffusion layer between silver plating and the 19-9DL after braze. However, later 

work has shown that the brittle zone was eliminated completely by closer control of 

braze temperature and the elimination of various sources of contamination. The 

hardness of the diffusion zone between the braze alloy and beryllium varied depending 

upon the braze alloy and braze temperature. The hardness of the BAg-8 (Braze BT) 

interface is due to the formation of silver/copper berylides. 

Electro-deposited silver platings gave the best results of wetting and bonding 

in a dry H2 atmosphere. Adherence of electro-deposited nickel platings to beryllium 

after an elevated temperature cycle (> 1300 F) proved to be poor. 

Three specimens of an interlocking finger design were fabricated using 

BAg-8 and Ag-Li braze alloys, and were subsequently tested. Figures 4 and 5 show 
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TABLE IV. METALLOGRAPHIC EXAMINATION 

Beryllium to TYPE 19-9 DL Stainless Steel Braze Joints 

Specimen Braze Surface Hardness Joint 
Number Alloy Preparation Survey Integrity Comments 

A H&H 
630 

Not plated --- Very poor, mostly 
unbonded areas in 

Wide gap, 
is bonded. 

one small area 

joint. 

B H&H Not plated --- Joint separated in --
630 cutting. 

C BAg 3 Not plated 19-9 DL-R/B 97.0 Good bonding Diffusion zone at Be
(Easy 
fio 3) 

Easy fi-R/B 60,0 
Be - R/B 95.0 

filler alloy interface. 

D H&H 
630 

Ag plated --- Good bonding Diffusion zone at Be
filler alloy interface. 

E BAg 8 
(BT) 

Ni plated BT - R/B 88.0 
Ni - R/C 71.0 

Bonding intermittent, 
but generally very 

Plating separated from 
parent material. 

Be - R/B 95.0 poor. 

F HAg 8 Ni plated --- Limited bonding ex- Plating separated from 
tensive voids parent material, some 

bonding under detached 
plating. 

G BAg 8 Ag plated 19-9 DL-R/B 100 Good bonding Restricted areas of 
Unknown-R/C 71.0 
Ag - R/C 41.0 
BT - R/B 73.0 
Be -R/B 96.5 

stainless steel appeared 
to show plating at 
brazed joint 

H BAg 8 Ag plated --- Good bonding ---

I BAg 8 Not plated --- Joint separated in --
cutting 

J BAg 3 Ni plated --- Very poor ---

K BAg 3 Ag plated --- Limited bonding 

L BAg 3 Ag and Cu Be - R/C 21. 0 Good bonding --
plated Cu flash -

not readable 
Ag - R/C 42.0 
Easy flo-R/B 60.0 
19-9 DL-R/B 98.0 

M BAg 3 Ni plated --- Very poor, mostly --
unbonded areas in 
joint. 

N BAg 3 Ag and Cu --- Good bonding 
plated 

0 None NI and Cu --- Parent material Very thin, discontinous 
Plated specimen plating on one side, with 

vestiges of plating on 
other side. 
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FIGURE 4. BRAZE JOINT SPECIMENS BEFORE TEST
 

WON,< 

FIGURE 5. BRAZE JOINT SPECIMENS AFTER TEST 

two of these specimens before and after test. The contempated advantage of this 

design was to eliminate the eccentricity in the joint, thus, theoretically, there were 

no bending stresses to cause delamination of the beryllium in the sensitive Z direction. 

This type of joint had two major disadvantages: 

* The shear area available for brazing was small, i.e., the perimeter 
length of each finger times its thickness. Therefore, a very high shear 
strength was required from the selected braze alloy. 

* The net tension section of the parent material was severely reduced. 

The results of tests on three examples of this type of joint are reported in 

Table V. All three failed at an unacceptable load. The first two failed because of 

20
 



TABLE V. BRAZED JOINT TESTS 

Cross-Rolled Be Sheet 
0. 125 Inch Nomnal Thicimess 

p ,--- 1. 0 inch )---P 

Specimen 
Number 

1 

2 

3 

Braze 
Alloy 

BAg 8 

BAg 8 

Sterling 
Silver 
and Li 

Failing
Load 

Failure Mode (lb) 

Asymmetric 1465 
braze shear 

Asymmetric 798 
braze shear 

Tension base 1340 
of finger 

0. 09 inch R1 

Equivalent
Tube Load 

(lb) 

29,300 

15,960 

26,800 

Fraction 
Required 
Load (%) 

36.7 

20.0 

33.5 

Braze 
Shear 
Stress 

4500 

2060 

3270 

1.01inch

- 1.49 inch--- 0. 09 inch R 

Tapered 
finger 

Ag-Li Braze shear 2684 41,200 51.5 6580 

Double - BAg-19 Braze shear 3860 59,000 74.0 6500 
lap shear 
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insufficient braze shear strength, and the third (Fig. 6) because of the reduced 

tension section at the base of the finger. 

To evaluate the inherent difficulties in this design, a tapered finger speci

men was tested before abandoning the concept altogether. The completed specimen 
is shown in Figure 7 prior to test. Test results are contained in Table V. 

Although the results were an improvement over those obtained with parallel 

finger joints, there did not seem to be sufficient promise of meeting design require

ments to justify further development. Further work on brazed joints was therefore 

directed towards an investigation of double-lap configurations similar to those suc

cessfully employed for adhesive-bonded joints. 

One such double-lap brazed tensile specimen was fabricated and tested 

using BAg-19 braze alloy. The results are quoted in Table V. 

The results were considered encouraging since a higher load can be obtained 

by increasing the length of the lap straps. However, in view of the results obtained 

with the adhesive systems investigated, combined with the inherent difficulties that 

would be encountered using this configuration on the full-scale assemblies, brazing 

was eliminated as the final method of fabrication. 
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FIGURE 6. BRAZED FINGER JOINT; SPECIMEN NUMBER 3 

FIGURE 7. TAPERED FINGER JOINT SPECIMEN 
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COMPONENTS 

The principal components of the beryllium structural tube assembly, the 

forged end fittings, and the structural tubing, are both vendor-supplied articles. 
Since beryllium is in a constant state of development it is not possible to procure these 

items by standard procedures. Consequently, a considerable effort was expended in 
the initial stages of this program to investigate the position of the various potential 
suppliers. Specifications were prepared based on the best experience available from 

qualified vendors and these specifications were issued through procurement channels 

to control the purchase of the required parts. 

5.1 FORGINGS 

This procurement was discussed with cognizant potential vendor personnel 

(Ladish Company and Wyman Gordon Company) at their plants. As a result of these 

contacts the following transpired: 

* Vendor technical personnel were solicited for ideas which would improve
the original Solar design technically and/or reduce its cost. These sug
gestions were incorporated in two revised designs. One design incorpo
rates only minor improvements over the original whereas the other is a 
suggestion by one vendor to substantially reduce the beryllium input 
weight, and thus the cost of the forging. That vendor also claims that 
the geometry of this design will permit more uniform working of the 
material during forging, resulting in better balance between longitudinal
and circumferential properties. There is, however, a possible penalty 
in higher local stress at the intersection of the conical section and the 
cylindrical section. 

* By combining the comments of each vendor, a revised version of Solar's 
preliminary procurement specification was issued. The revision incor
porates more stringent control of source material and mechanical prop
erty testing (App. C). 

* The potential vendors were briefed on the technical objectives of this 
program to improve their understanding of the end application of the 
forging. Both vendors, in return, contributed valuable metallurgical 
inputs to the specification and designs. 
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As a result of the competitive bidding, the Ladish Company was selected to 

supply forged blanks for the end fittings to the reduced input weight configuration. 

The first forging produced was destructively tested, as planned, by Ladish 

and was found to be slightly under specification requirements for minimum elongation 

at two locations. (Minimum Specification requirement was 2.5 percent.) The results 

of these metallurgical and mechanical property tests are shown in Appendix D. The 

test section dimensions for forging property tests were 0. 125 inch diameter by 0. 500 

inch long. 

After reviewing the test results, Solar requested that an attempt be made to 

improve the elongation value at location Long Transverse Number 3 by modifying the 

forging technique. The low value at Long Transverse Number 1 was accepted as a 

deviation from the specification because its location is not considered critical. A 

cutoff ring was provided in the forging design at Location Number 3 for the purpose of 

obtaining critical location property data, thus enabling a review of the improvement 

made on forging Serial Number 2. 

This forging was reported to have shown considerable improvement in elonga
tion, the Long Transverse Number 3 value being raised from 2. 0 to 5.5 percent 
(average of three tests). Solar then gave Ladish approval to proceed with the balance 

of the order. 

Subsequently, Ladish advised that a tooling fault had developed part way 

through the production run and caused cracking of five of the total quantity of nine 

forgings. The fault consisted of metal flow interference due to improper seating of 
the part ejector. This fault was corrected by providing a seating gage. These forgings 
were replaced and delivered to Solar. All nine of the delivered forgings appear to be 

of excellent quality. One of the forgings is shown in Figure 8. 

5.2 END FITTINGS 

Five forgings were machined to the 46763-2 configuration, Figure 9, and 

three to the -3 configuration, Figure 10. These end fittings were used on the six 
tube assemblies. Each end fitting was chemically etched 0. 002 to 0. 004 inch all 

over to remove surface microcracks and then dye penetrant inspected. Except for 

the surface cracks in one -3 fitting described in Section 7, no defects were noted. 
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FIGURE 8 END FITTING FORGING 

A revision of the machining drawing was made after the test of the first two 

short tube assemblies. Basically, this revision removed excess material in low-stress 

areas of the fittings increasing the lug flat length on the -2 and making the face of the 

-3 conical. The revised drawing, 46763, Sheet 2, is included in Appendix A. 

5.3 TUBING 

Meetings with both potential tubing vendors (Brush and Berylco) were con

ducted. The technical aspects of this procurement were discussed and both vendors 

made contributions to a revised and more detailed procurement specification (App. C). 

Both vendors appear to be well qualified to produce the tubing. Formal requests for 

quotation for the tubing to the revised specification were sent to both. Berylco was 

selected to supply the tubing on the basis of lowest cost. The tubing produced exceeded 

the procurement specification (App. D). 
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FIGURE 9 FIXED END FITTING
 

FIGURE 10 ADJUSTABLE END FITTING
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TEST ASSEMBLIES 

Four short tube test assemblies were fabricated and tested. Each assembly 
consisted of a dummy-steel end fitting; a 5.0-inch diameter beryllium tube with 0. 125

inch thick wall, 6.0 inches long; and a beryllium end fitting. Two specimens of each 
of the two beryllium end fittings were included. The end fittings were joined to the 

tube by adhesive bonding with FM-1000 adhesive and Type 19-9DL stainless steel lap 

straps. 

The lap strap was split Into halves to permit the ring to conform to the contour 
of the butted end fitting and tube. Details of the ring are shown on Drawing 44858, 

Appendix A. 

A fixture was used for alignment and support of the detail parts during the 

bonding operation, (Fig. 11). Loading was applied to the ring and the adhesive by use 
of a pressure pillow arrangement. A sleeve of dimpled stainless steel foil was welded 

to the inside of a steel tube and the cavity was pressurized to approximately 40 psig 
during adhesive cure. This pressure forced the dimpled foil into contact with the lap 
strap half rings and applied a uniform load on the adhesive joint. Since only three 

psig were necessary to achieve initial contact between the foil and the ring halves, 
almost all of the pressure applied was transmitted to the joint. Two pressure pillows 
were used, one on the joint at each end of the tube. The pressure pillow active area 

extended approximately 0.25 inch beyond each end of the lap strap. 

The first fixed end test fitting (Fig. 12) failed at a tensile load of 75. 900 
pounds. The failure occurred in the adhesive joint, largely as an adhesive failure at 
the beryllium surface (Fig. 13). There are two possible causes of the premature 

(80, 000-pound design strength) failure. The most likely explanation is the nonuni
formity of the adhesive film thickness after cure which varied from approximately 

zero to 0. 0055 inch. This nonuniformity resulted in concentration of the load in local 

areas of the joint. The concentration was confirmed by the patterns developed in the 

stress coat applied to the lap strap and the beryllium tube (Fig. 14 and 15). The 
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FIGURE 11 BONDING FIXTURE
 

FIGURE 12 FIXED END TEST ASSEMBLY
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FIGURE 13 FAILED TUBE JOINT
 

FIGURE 14 LAP STRAP STRESSCOAT PATTERN
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INOT REPRODUCIBLE
 

FIGURE 15 STRESSCOAT PATTERN
 

FIGURE 16 TEST EQUIPMENT
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thickness variation was corrected on assemblies, Numbers 3 and 4, by applying small 

shims of 0.006 inch diameter wire to the lap straps before assembly. The other 

possible cause of failure is inadequate preparation or contamination of the beryllium 

surface prior to bonding. This cause is not considered likely since the procedures 

used were the same as those employed on other parts and the cleaning, layup, and 

cure were performed essentially as one continuous operation. 

A mild steel bushing 1. 125 by 1.000 inches in diameter was used in the end 

fitting pinhole to reduce stress concentrations which would arise due to bending and 

local bearing of the pin. Strain gages on the beryllium end fitting showed low stresses 

on the surface indicating that the fitting design is probably quite conservative. Strain 

gages were located on the cylindrical portion of the end in the plane of the lug and at 45 

and 90 degrees from the plane, and also on the tapered face of the transition section 

and on the side of the lug. None of these gages indicated stress in excess of 15, 000 

psi at 60, 000 pounds load. The low stress levels were partially confirmed by no indi
cation in the stress coat of reaching the threshold level of approximately 35, 000 psi. 

The test equipment is shown in Figure 16. 

The first adjustable-end test fitting (Fig. 17) failed at a tensile load of 88, 900 
pounds. The failure, in this case, was in shear of the eyebolt and nut threads (Fig. 

18). The eyebolt was made of 4340 steel, heat treated to Rockwell C-34. One nut was 
bonded to the inside of the end fitting and a jam nut was used on the outside. Swivel 
adjustment is provided by loosening the jam nut to allow the eyebolt to rotate in the 

bonded nut. Two 0. 030-inch thick aluminum washers were used inside and out to 
distribute the load to the beryllium. Threads on the eyebolt were one inch-14 NS. 
The threaded portion of the eyebolt passed through the 1. 00 inch diameter hole in the 
end fitting. The nuts used were Type 303 stainless steel. Stresscoat indicated much 

more uniform load distribution than on the fixed-end test piece (Fig. 19). Measure

ments also indicated a more uniform adhesive thickness (0. 0035 to 0. 0065 inch). This 

greater uniformity tends to substantiate the probable cause of failure on the first test 
since the otherwise identical joint did not fail at the higher load on this part. 

The configuration of the joint for the second set of two test assemblies was 

modified by attaching short pieces of 0.006 inch diameter wire to the lap straps prior 

to layup to control the bond line thickness. These units are shown in Figure 20. 

Assembly Number 3, with a fixed end fitting, was loaded to 112, 800 pounds in tension 

when the test was stopped resulting from failure of the bolt which attached the clevis 
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FIGURE 17 ADJUSTABLE END TEST SPECIMEN 
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FIGURE 18 FAILED TEST SPECIMEN
 

FIGURE 19 STRESSCOAT PATTERN
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FIGURE 20 TEST ASSEMBLIES 3 AND
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fitting to the test machine. The stresses at maximum load were 3760 psi joint shear, 

58, 200 psi beryllium tension, and 87, 500 psi lap-strap tension. Dye penetrant inspec

tion of the lug area after this test revealed no defects. 

Assembly Number 4, with an adjustable end, failed at a load of 50,400 pounds 

tension. The failure occurred in the adhesive joint to the beryllium end fitting at a 
shear stress of 1610 psi. Examination of the failed assembly showed that only 30 to 

40 percent of the lap area was bonded. The most likely explanation of the poor bond is 
that air, entrapped within the tube and joint area, prevented contact between the adhe

sive film and the beryllium during cure. The factors leading to this conclusion are the 
pattern of the bonded areas which shows good bond around the periphery of the lap 

strap with no indication of fingerprints or other signs of handling contamination, the 
strength exhibited by the bonded area (over 4000 psi) tends to rule out inadequate sur
face preparation, and the fact that the adhesive film thinned from 0.010 to 0.007 inch 
indicates that adequate pressure and temperature existed during the cure. 

The intersection of the ends of the lap strap with the butted fitting and tube 
provided relief of the pressure built up within the tube during the heatup portion of 
the cure cycle. Examination of this area showed that it was blocked at some time 
during the cure and therefore might not have provided the necessary venting. Since 
the adhesive around the edges of the lap strap would soften and flow first during the 
warmup, it could effectively seal the gas in the tube and result in an internal pressure 

buildup as well as pocketing gas between the adhesive and the beryllium as the assem
bly stabilized at cure temperature. The FM-1000 adhesive used on these parts is very 
viscous even at cure temperature. This property further supports the air-pocket 

explanation of the failure. 

In summary. one assembly with each style of end fitting sustained loads in 

excess of the 80, 000-pound design level, demonstrating the adequacy of the design 

and components. One assembly of each type failed in the adhesive joint at a load below 
the 80, 000-pound level. Table VI presents the short tube test results. The failures 
were analyzed, the probable causes determined, and corrective action established 

for assembly of the 40.60-inch struts as follows: 

* Use shims of 0.006 inch diameter wire to control minimum bond line 
thickness 

* Provide positive venting of the tube interior by drilling a hole in the end 
fitting or maintaining the joint intersection clear of adhesive. 
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TABLE VI 

SHORT TUBE TEST RESULTS 

Average Stress 
at Maximum Load 

Spec 
Num-

ber 

End 
Config-
uration 

Maxi-
mum 
Load 

Adhesive 
Shear 

Be 
Tension 

19-9 
Tension 

Yield 
Load 

Yield 
£ In 9 

Inches 
Type 

Failure 
Probable 
Cause 

1 Fixed 75,900 2530 39,200 58,900 60,000 .060* Adhesive to Thin
beryllium nonuniform 
fitting and bond line 
tube thickness 

2 Adj. 88,900 2960 45,900 69,000 58,200 .060" Eye bolt 
threads 

Loose 
thread fit 

3 Fixed 112,800 3760 58,200 87,500 56,900 .091 Clevis bolt Exceeded 
threads design 

4 Adj. 50,400 1680 26,000 39,100 33,000 .092 Adhesive to 
beryllium 

Trapped 
air pockets 

fitting 

*Estimated - Based on 0.166 Measured e in 46 inches 

11.5-inch clevis bolts (2) = 0.046 inch calculated 
18.0-inch test assy = 0.120 + 2 = 0.060 in9 inches 
5.0-inch clevis fitting = 0.000 
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PROTOTYPE FABRICATION 

Two strut assemblies (Fig. 21) have been fabricated for evaluation by NASA-
MSFC. One of the struts has fixed end fittings on each end of a beryllium tube and 

the other has one fixed end fitting and one adjustable end fitting. 

The fixed end strut was bonded prior to completion of testing of Specimen 
Number 4. This assembly was, therefore, not provided with a vent hole in the end 

fitting. Fortunately, one of the joint intersections remained clear through the cure 
cycle and provided the venting necessary to prevent pressure buildup within the 
assembly. The weight of this assembly is 12.82 pounds compared to the 35.14 pounds 
which the comparable aluminum strut would weigh. 

The assembly with the adjustable end fitting was provided with a 0. 125 inch 
diameter vent hole in the fixed end fitting. The hole was located in an area of low 
stress on the tapered face of the fitting, 90 degrees from the plane of the lug. The 

total weight of this assembly is 13.62 pounds. 

Dye penetrant inspection of the end fittings after the surface etch revealed 
shallow cracks over part of the conical surface of the adjustable beryllium end fitting. 
Since these cracks are shallow in a thick section of the fitting and do not extend over 

the entire surface, they should not impair the assembly strength. 
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FIGURE 21 STRUT ASSEMBLIES
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PROCESS SPECIFICATIONS
 



SOLAR
 
A DIVIION Of INTCINATIOMAL HARVEStI COMPANY 

ENGINEERINGN MEM RANDUM 

2200 PACIFIC HIGHWAY. SAN DIEGO. CALIFORNIA 92112
 

CLEANING SPECIFICATION FOR BERYLLIUM AND 19-9DL
 
STAINLESS STEEL PARTS
 

1.0 	 APPLICABILITY
 

This specification shall apply only to beryllium and 19-9DL stainless steel
 

parts for use on NASA Contract NAS8-20151. 

2.0 	PROCEDURE
 

2.1 	Beryllium Cleaning
 

2.1.1 	 Use clean nylon or cotton &loves when handling all beryllium and 
stainless 19-9DL parts. 

2.1.2 	 Using a slurry made by mixing 0C3 micron mesh aluminum oxide and 
deionized water (A1 2 03 - 30 ±10% by weight) and an ultrasonically 
cleaned short bristle brush, thoroughly brush all faying surfaces. 

2.1.3 	 Flush with deionized water for not less than 3 minutes to com
pletely remove all traces of aluminum oxide. 

2.1.4 	 Ultrasonically clean parts by imnersing for not less than three 
(3) minutes, but no more than fifteen (15) minutes in reagent 
pure acetone. 

2.1.5 	Remove parts from tank and spray rinse immediately and thoroughly
 
with deionized water, distilled water and/or acetone for a ninixum 
of two (2) minutes, and then place part(s) in vacuum dryer or o-rn 
set at 230OF minimum, 400°F maximum for one hour or until complete
ly dry. 

2.1.6 	 Check all parts with black light (using gloves at all times), and 
if part fluoresces repeat 2.1.4 through 2.1.6. 

2.1.7 	 Using a solution comprised of 25% reagent grade nitric acid (0 3 )9
and 0.25% hydrofluoric acid (HF), with the balance being deionized 

water, etch faying surfaces for 1-3 minutes at room temperature, 
not allowing the acid bath temperature to exceed 1200 F. 

2.1.8 	Rinse surfaces thoroughly for a minimum of three (3) minutes with 
deionized or distilled water. Spot check wet surface with blue 
litmus to assure all acid has been removed. If litmus turns red, 
repeat rinse operation above. 
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2.1.9 	 Place part(s) in vacuum dryer or oven until completely dry (a 
minimum of one (I) hour at a minimum temperature of 2300F). 

2.1.10 	Protective wrap part(s) using a lint free material prior to a
 
bonding or brazing operation. Do not let part(s) stand before
 
bonding or brazing for more than 24 hours after cleaning. If
 
so, repeat 2.1.7 through 2.1.10 before continuing fabrication.
 

2.2 Stainless Steel 19-9DL Cleaning 

2.2.1 Lightly hand rub with clean stainless steel wire brush or light
 
abrasive cloth to remove surface contamination and any residual 

- stains. 

2.2.2 	 Perform operations 2.1.4 through 2.1.10.
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BONDING SPECIFICATION 

BERYLLIUM TO 19-9DL STAIMlESS STEEL 

FM-O00 ADHESIVE 

1.0 	 APPLICABILITY
 
This specification shall apply only to beryllium and 19-9DL stainless steel
 

parts 	for use on NASA Contract NAS8-20151. 

2.0 	 PROCEDURE 

2.1 	 Clean parts to be bonded per applicable specification. 

2.2 	 Use clean nylon or cotton gloves at all times when handling parts to 
be bonded. 

2.3 	 If necessary for ease of layup, use a tack primer on only one of the
 
surfaces to be bonded. Apply with ultrasonically cleaned bristle brush, 
however, do not exceed 10% of bonded surface area.
 

2.4 	 Apply FI-1000 adhesive film to either surface to be bonded, cut to bonded 
surface area size, (or to surface with tack primer applied). 

2.5 	 Position metal details and apply required pressure for bonding (25-50 psi). 
Make sure details and adhesive film do not shift position while pressure 
is being applied.
 

2.6 	 Place gart in a temperature controlled oven and raise part's temperature 
to 350 ± 100 F in less than one hour. 

2.7 	 Maintain the required pressure and temperature (3500F) for a period of 
not less than one hour, and not more than two hours. 

2.8 	 Remove part from oven and let cool to room temperature while under pres

sure. 

2.9 	 Remove pressure source. 

2.10 	 Remove adhesive flash if required. 
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SOLAR
 
A btVISION OF Iw rANATIONAL HANVESTEA COMPANy 

ENG INEER ING NV MMRANOUM 

2200 PACIFIC HIGHWAY. SAN DIEGO, CALIFORNIA 92112
 

PRELIMINARY PROCURENT SPECIFICATION 

FCR BERYLLIUM TUBING (REVISION 3) 

1.0 APPLICABILITY 

This specification shall apply only to beryllium tubing for use on 

NASA Contract XAS8-20151. 

This tubing is being procured for Engineering Development Test purposes 

only. No production procurement activity my be controlled with this 

specification. 

2.0 CONFIGURATION 

The parameters of the tubing shall conform with Figure A. 

2.1 The outlines and dimensions shown are required for an acceptable, 

deliverable item. Necessary extra material to provide test pieces 

per paragraph 5.0, for certification, will be added by the vendor 

and removed before delivery. Excess not to exceed 3 inches and 

added to only one tube of each lot. 

3.0 MATERIAL 

3.1 Source 

The source material shall be beryllium metal powder containing not 

more than 2 percent by weight of Be 0. One material lot only to 

be used for each order. In addition, the following maximums are 

specified: 
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Carbon 1500 ppm
 

Aluminum 1800 ppm
 

Titanium 400 ppm
 

Silicon Boo ppm
 

Chromium 200 ppm
 

Iron 2000 ppm
 

Nickel 300 ppm
 

Manganese 350 ppm
 

Magnesium 800 ppm
 

The 	remainder shall be beryllium. Grain size shall be less than 

100 	mesh for 98 percent of the material and less than 200 mesh 

for 	75 percent of the material. There shall be no inclusions 

larger than .05 inch diameter. 

4.0 	 CONDITION 

Each tube length shall be processed as. follows: 

(a) 	 Extruded 

(b) 	 Rotated (at vendor option to control ovality) 

(c) 	 Annealed (at vendor option provided mechanical property 

requirements of paragraph 5.0 and dimensional tolerances 

of 6.0 are not affected) 

(d) 	 Finish machined all over (maximum RES 63); allow for material 

removed during etch (Reference 4.0 (P). 

(e) 	 Inspected (visual and non-destructive test) and warranted 

free from cracks, laps, inclusions, and other latent defects 
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(f) 	 Acid etched all over to remove .002 minimum. No further 

material removal permitted after this operation. 

(g) 	 Identify by lot nber and serial number by means of rubber 

stamp directly on the tubing, not within three inches of 

either finished end. 

5.o 	MECNICAL PROPRTIES AND TESTID 

Mechanical properties are to be determined by the tubing vendor using 

the optional excess material allowed in paragraph 2.1. Properties 

shall be measured in the longitudinal and circumferential directions 

and shall meet the following minimum requirements: 

Ftu - 55,000 psi 

Fty - 40,000 psi 

Elongation = longitudinal 5% (on a 1-inch gage length) 

6.0 	 DWENSIONS AND TOLERANCES 

Dimensions and tolerances shall conform to Figure A, after processing. 

7.0 	 CETIFICATION 

Certification of compliance with this specification, by individual 

item, is required for each tube delivered, and includes the polished 

and etched test piece. Certification requires two copies, one 

accompanying the hadware and one mailed directly to the Solar 

Project Engineer, Mr. H. Jones, Department 299. 
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.25*5 .0o0 	 3_ Max.' Ovality 

5.010 	 .13o of O.D, pnd I.D. 
not to exdeed .005 TIR 

Straight within
 

hds to be, .010 per ft.
 
perpendicular to 
center axis within * These dimensions to be good at any point. 

Do not interpret as mean dimensions..005 T.I.R. 

Machining Note: 	 Each succeeding machine cut depth not to exceed 50%of the 
preceeding machine cut depth. The final machine cut shall 
not exceed .002. 

Note: 	 All dimensions and tolerances are to apply after final 
Chem-Etch. See para. 2.1 and 4.0 (d) 

FIGURE 	A 
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FORGING SPECIFICATION FOR
 

BERYLLIN4 	 FORGINGS (REVISION 2) 

1.0 	 APPLICABIITY 

This specification shall apply only to beryllium forgings for use
 

on I'ASA Contract DNL8-20151 shown on Solar drawing 46763.
 

These forgings are being procured for Engineering Developnent Test
 

purposes 	only. To production procurement activity may be controlled writh
 

this 	specification.
 

2.0 	CONTIGTUJTION 

The preferred forging shapes are shoim as solid outlines on both 

drairings. Deviations from this shape, such as that indicated by Note 6
 

on the drawings, are acceptable if they improve the forgeability of the
 

part. Such deviations will increase machining and "lost metal" costs, 

however, 	and should be avoided if possible.
 

2.1 	The outlines shown (and their dimensions) are those desired upon
 

delivery. Cropping, surface grinding, or rough machining to expedite
 

inspection and ncn-destructive testing at the forging vendor's plant is
 

acceptable, provided that the final shape and dimensions are within the
 

stated tolerances.
 

2.2 	The base of each configuration has been extended to provide a cut-off
 

ring for property measurement. The exact size of this ring is to be
 

at the option of the forging vendor. The ring is to be removed from
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every forging by the vendor and the testing prescribed in paragraph 

5.0 performed prior to shipment. The ring shall be removed only by
 

means of processes which create surfaces not rougher than PUS 63.
 

3.0 MATERIAL
 

3.1 Source material shall be S200 grade or equivalent.
 

3.2 Forging Input
 

T4e form of the material is optional with the vendor. Composition
 

will be within the limits established in paragraph 3.1.
 

3.3 Forging 

The first piece to be forged successfully shall be sectioned along an
 

axial center line to give two complete half sections. A series of
 

microspecimens (four locations) to be used to examine structure.
 

Microspecimens and balance of sectioned forgings would be delivered 

to Solar. The other half will be retained by the vendor for property
 

testing per paragraph 5.0.
 

4.0 	C0?DITION
 

Each delivered forging shall be in the following condition:
 

(a) Forged
 

(b) Annealed 

(a) Rough 	machined or ground all over (Max. R'S 63)
 

(d) Inspected (visual and non-destructive test). Average inclusion
 

limited in size to .03 maximum and that the combined volume of
 

inclusions shall not exceed the volume of a .032" sphere per
 

cubic inch of Be. Warranted free from cracks and laps at time
 

of delivery.
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(e) 	 Acid etched all over to remove .002 minimum. No further metal 

removal permitted after this operation. 

(f) 	 Identified by drawing number and serial number by rubber stamp 

directly on the forging.
 

. Annealing is optional provided vendor can meet mechanical
 

property requirements of paragraph 5.0. If forgings are 

of the process used should be submittedannealed, full details 

with 	certification.
 

5.0 	 MECFA ECAL PROPBETIES AND TESTING 

The half of the sectioned forging will be used per paragraph 3.3. 

These locations are defined approximately on the attached sketch:
 

Locations #1TUTLT Longitudinal and Long Transverse
 

Locations #2L&2LT Longitudinal and Long Transverse
 

Locations #31 3LT Longitudinal and Long Transverse
 

Locations #4S.T. Short Transverse
 

Locations 1, 2, and 3 are controls and must meet the following minimum 

values: 

Ftu - 55,000 psi 

Fty-	 40,000 psi 

Elongation - 2-1/2 percent (on a 1/2-inch gage length) 

Location #4 (short transverse properties) is included for information 

only and no minimum properties are specified. 

Following approval of the above property value test results, by 

Solar, the vendor may proceed with production of forgings for delivery. 

C-7
 



Forging Specification for
 
Beryllium Forgings (Revision 2)
 
9 I-lay 1966 
Page 4 

6.o 	 CMTIFICATIOX 

Certification of compliance with this specification, by individual 

item, is reqdired for each forging delivered, including, the half prototype. 

Certification shall be in two copies, one accompanying the hardware 

and one mailed directly to the Solar Project Engineer (Mr. H. Jones 

fDepart nett 299). 

PREPARED BY: - _ _ 

H. Jones 
Project Engineer 

APPROVED BY: ' czw 1N1. R. Licciardello 
Chief Project Engineer
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LONG TRANSVERSE #1
 

LONG #2 

LONG TRANSVERSE #2 

SHORT TRANSVERSE 4 

(FOR GUIDANCE ONTLY) 

LONG #3 

LONG TRAMVERSE #3 
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2200 PACIFIC HIGHWAY, SAN DIEGO. CALIFORNIA 92
 

PRELMIARY PROCUREMENT SPECIFICATION 

BERYLLIUM STRUCTURAL SHEET.
 

Beryllium Assay % 98.0 Min.
 

Beryllium Oxide % 1.4 max.
 

Aluminum % o.16 Max.
 

Carbon % O.15 Max.
 

Iron % 0.18 Max.
 

Magnesiun % 0.08 Max.
 

Silicon % 0.08 Max.
 

Other Metallic 
Impurities, each % o.4 Max.
 

Ultimate Tensile 70,000 psi min.
 

Yield 50,000 psi Min.
 

Elongation 5% in l" min L & 3% in 1" min. Transversly
 

Thiclmess .125 ± .005
 

Flatness within 2%
 

Certification of the above to accompany shipment 
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LADISH CO. CUDAHY WISCONSIN .	 MATERIAL ANALYSIS REPORT METALLURGICAL DEPARTMENT 
PART NUMBER SPECIFICATION Forging) Included In thls shipment was (wer.) precae controlled DATE lilY. NO.
 

46763 S200 Beryllium ard Identifieds o nd 3 dos 7-22-66 2526
 
CONDITION OF FORGING$; Forged and annealed I hour at 1300uF., furnace cooled. Surface of sectional forging is
 

in as forged condition, production forgings will be rough machined or ground all over.
 
FORGING HARDNESS IS WITHIN SPECIFIED RANGE OF, 	 ForgIng. pduced p.r tl t alay process ea. APPLICABLE WHEN NOTED W 

Ma, EcqIpme0t tlfIed to MIL-W-6873
 

Moche.lcal property accsptonce of listed fargings based on results, from Farging. ia r..n.t ..mnt Inspected Free Irm cninuoue ca ide aotwrk
 

i Welding performed per prin 	 MIcr structur. sotlfncory 

- atscdeIpro tested L EFree hm cast trut
 

whch caeorms t at.ial Oecificatfn listed aboe. are tIblatd bkedo Pogingl. n nlc putl. Inpct.d
 

CarBlnNt... 	 T. StKSI Ulti e a n Red. H ISpI T oO - ElI I STRESS INCREASED TOSRerial 	 .yiel S Els K u +C: 7MDo. Y "r.o idetity " ft n I f AtrpnN RlKI T.$ . Load N Of Area . K SI AFTER -HOURS 

V BIDNOT FRACTUREBrush Lot No. h220 V = V-NOTCH 

Ladish Lot No. P6-2080 S=SMOOTH 
C COMBINATIONSerial No. I 

are follow e 	 REPoRTHAVE COVEREDBYTensile properties of the sectional forging as 	 THIS PARBEE 

Locations are as defined in Solar Specification. 	 AND ACCEPTED TO THE SPECIFICA.
Long. #1 66.1 83.4 3.0 4.0 TNS INVOLVED. 
Long. #2 66.1 834 3 O .0 I HEREBY CERTIFY THAT TO THE 
Long. #2 59.6 81.3 9.0 9.0 BEST OF MY KNOWLEDGE AND B.S 

Long. #3 57.4 79.4 4.7 4.7 LIEF THIS MATERIAL ANALYSIS
 
Long. Trans. #1 50.6 61.3 1.2 2.4 REPO7 ISTpE AtIl, RECT.
 

Long. Trans. #2 58.0 78.9 3.7 6.8 / r., i/
 
Long. Trans. #3 51.2 62.0 2.0 3.0 ,IETALLURciST
 

not been completed at this time, 	 SWORN AND SUBSCRIBED TO BEFOREShort transverse tensile properties have 
but wil be reported as soon as available. ME THIS -DAY 

inspected VIA X-ray, dye penetrant and ultrasonic techniqueMaterial has been 	 19 

and found to be free of defects as defined in Solar BerylliumiForging 
Specification dated 5/9/66. MY COMMISSION EXPIRES 

1CODEI MILL I NEAT NO. I STOCK SIZE I GRAIN SIZE I HIARDENABILITY I CHEMISTRY REPORTED INS 
be Assay Be 0 1 A S Fe Mt I'Other M ±tal0lis - I 

98.51 	 1.72 .060 .030 .140 .oo5 <.oo .130
 
Solar, cc: With Shipment (1)
 

H. Jones Dept. 299 	 (1)
PUrchasing Dept. 9 	 ()

Division of International Harvester Co. 

2200 Pacific Highway
 
San Diego, California 92fl2
 

LCD 1540 F 



LADISH CO. 
METALLURGICAL DEPARTMENT
 

Position 011 Position 021
 

031 0V/
0.14 Li U 

Metallographic survey of sectioned beryllium end fitting for Solar
 
program0 Circumferential viewing direction, polarized light, 160X,
 
as polished,
 



LADISH Co.
METLLRGCA C. NOT REPRODUCIBLE 

METALLURGICAL DEPARTMENT 

Position 031 Position 041
 

Metallographic survey of sectioned beryllium end fitting for Solar
 
program. Circumferential viewing direction, polarized light, 160C,
 
as polished.
 



LADISH CO. CUDAHY , wIsccNN. 51111 	 MATERIAL ANALYSIS REPORT METALLURGICAL DEPARTMENT 
jPART NUMBER 	 SPECIFICATION i gDslncvtdIn°si.'sipmet"w ...... DATE INV.NO. 

ad iddstIEedlfd1 

CONDITION OF FORGINGS. Di, $~~li1S~U2 .~~. at . rljuo... S<AaCGUS' tnac zjneci Onf40 
. . . No 	 . ,Ir scrfe$t I ,W67 

FORGING HARDNESS IS WITHIN SPECIFIED RANGE OF. 	 Ferging produced per itanium olly p.ee shet- APPLICABLE WHEN NOTED W
 
HiG Ewip..nt ctifi.4 toMIL-W-6873
 

Mtcho.,I~ol prpesy aceptanfce of isted forging. base dr.an .euIsfr I FasgngsIluortscent pen1tr.1t inspec.ed Fl .fr cntinuou carbid nbetwork
 
--Welding performed per print Micro siuclure satlisfactory
 
_Motria prof tested Frete tm cast etrtuciur.
 

which eonIffu to materlal epecllesans listed ow. 1 ta lIaed belws 	 Feral... magnetic particle inspscted 

tRed. H $ Tenp. ci Nes at tIElan * % Red. + STRESS INCREASED TO
ClBae Notorised Repart Tes Yild StrJ KSI UIfmate % El.. 

Me. Da.l YR." N..1 Identit t Is. ng KSlI OAea BHN R ( etF ed I fAnKS1 AFTER - H.......OURS 
DID NOT FRACTURE 

Brush Lot No. 4220 V= V-NOTCH
 
Tedish Lot .4o. P6-2080 CMCOBNTIO
C :: COMBINATION 

Serial U'os. 2, 3, 8 & 9 MATERIAL AND PARTS COVERED BY 

lensile properties of interal test rings are as follows: THIS REPORT HAVE BEEN TESTED 
Vi-. ~ Trr~eiosAND ACCEPTED To THE SPECIFICA. 

TIONS INVOLVEI.2,ir 	 7.1 74.1 5.4 5-5 
57.4 74.8 6.06.3 	 I HEREBY CERTIFY THAT TO THE 

"8t 	 Ca-, n , 6.0 6BEST OF MY KNOWLEDGE AND BE 
I2. 75.4 60 6-3 LIEF THIS MATERIAL ANALYSIS 

3 Ciro. 56.8 72.9 4.0 6.0 	 REPO. IS MUAN CORRECT. 
. 662 72.4 5.0 6.o
 

S iro. 55.6 74.1 5.0 7.0

It 56-9 75.2 6 .007~.2 60 7.0METALLURKIST 

SWORN AND SUBSCRIBED TO BEFORE9 Ciro. 56.3 71.7 4.0 6.0 
" 56.o 72.0 3.0 5.0 	 ME THIS __ DAY__ 

!aterisl has been inspected VIA X-rays dye penetrant and ultrasonic technique and "-- --

TOund to be free of defects as defined In Solar Beryllium., Forging specification
 
dated 5/9/66. Y COMMISSION EXPIRES
 

CODE I MILL I HEAT NO. STOCK SIZE GRAIN SIZE HARDENABILITY 	 CHEMISTRY REPORTED IN % 

98 1 1.72 .06o .030 .140 .005 .o40 .130
 
Solar, c. With Shipment (i)
 

Division of International Harvester Co. H. Jones De t. 2.99 (1I
 
2200 Pacific Highway Purehasing ept. (i
 
Sen Diego, California 92112
 

LCO 154 RS 

http:inspec.ed
http:pen1tr.1t


LADISH CO. =20 b •eSW,ine MATERIAL ANALYSIS REPORT METALLURGICAL DEPARTMENT., . 
PATForging(s) Included Inthis shpment was (w.) process controlled DATE INV. NO. 

and Idenified 

+6763 Blum d200.d 300 ad 310 -6-67 
CONDITON OF FORGINGSForged and Annealed 1 hour at 1300"F. ftrace cooled machined and etched 

for 15 minutes In 55 Hq S0l.. 
FORWGNG HARDNESS IS WITHIN SPECIFIED RANGE OF: Forgings produced per titanium alloy process bset APPLICABLE WHEN NOTED r.1 

No.,[ E,.ulpm.t ctrtlfi~d to MIL-W-6373 

M, ecMledn t., of listed forgng. hsed an results, from g fluorescent penerant inpctd re from continuous earbidproperty acc.ptone network 
W.Idin, performed pop print Mlc srcuestsotr 

-- Material proof teatted L IFree I..m ct utu 

wiWAaeon6Fms to materiol specificatlons lIsted above aretobuola.d w.i Forgings magnetic particle Inspectej 

" 
Sa M..IBion Te ' %Elan R I " S Temp. f'fH... %Eo.% Re. + STRESS INCREASEDNHoode'Repor tYie"s'*d Str KSI Ultimate TO

Mo. Da Yr. Na.,Idett %,fs.Setb S IOfAraH R TstF. Loa N ,Of Are KSI AFTER __ HOURS 
r DID NOT FRACTUREBrush Lot No. 4220 V= V.NOTCH 

S = SMOOTH 
Ladish Lot No. P6-6757. C= COMBINATION 

MATERIAL AND PARTS COVERED BYSerial Note. 12, 13, 14, 15 THIS REPORT HAVE BEEN TESTED 
AND ACCEPTED TO THE SPECIFICA-

TIONS INVOLVED.Tensile properties of integral test rings are as follows 
HEREBY CERTIFY THAT TO THESerial No. Test Direction BEST OF My KNOWLEDGE AND S& 

12 Circ. 59.0 75.7 6.4 7.8 LIEF THIS MATERIAL ANALYSIS 
REPORT IST E AND CORRET.60.3 79.0 10.0 10.1 


13 Ciro. 59.2 76.6 5.0 5.0 ZLGI
7 
58.7 75.3 4.0 4.0 METALLURGISf 41

14 Ciro. 59.0 77.0 3.0 5.0 SWORN AND SUBSCRIBED TO BEFORE
58.2 77.2 6.0 6.o ME THIS -DAY 

15 Ciro. 58.1 76.8 8.4 9., 
1959.3 76.z 6.2 6.3 

(Continued on Page 2) MY COMMISSION EXPIRES 

IoDE MILLI HEAT NO. I STOCK SIZE I GRAIN SIZE I HARDENABILTY I CHEMISTRY REPORTED IN % 

e ,Assay e A ,si Fe MgI Other Metallics I O 
4220 98.51 1.72 .060 .030 .140 .005 <.040 .130 
4490 98.5 1.70 .080 .030 .130 .olo <.040 .120 

Solar, cc: With Shipment Ci) 
Division of Irternational Harvester Co. H. Jones Dept. 299 (1)
2200 Pacific Highway Purchasing Dept. (I)
San Diego, California, 92112 

LID 154 RS 
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INVOICE NUMBER
 
BLANKET NOTARIZED REPORT NUMBER
 

N,*od.d R~port TestIRj IB I Yfle Sf.KI UItlmae Els %Re(.J. S T~ip. of Hoursoat I%E5n% Rod.I. STRESS INCREASED TO 
Sd IS I~. Do. Yr, Ho.jd ,ty fr.' (RSIlI OFOfAs. BHk RI T, H. 1 . I A, KS AFTER-.HOURS 

Brush Lot No. 4h90
 

Ladish Lot No. P6-6258
 

Serial No. 16
 

16 Circ. 6o.5 80.9 9.2, 9e4
 
60.0 79.3 8.0 9.4
 

Material has been inspected VIA X-ray, dye penetrant and ultrasonic technique and
 
found to be free of defects as outlined in Solar Beryllium, Forging Specification
 
dated 5-9-66.
 

CODE MILL HEAT NO. STOCK SIZE GRAIN SIZE HARDENABILITY 	 CHEMISTRY REPORTED IN % 
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