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Properties of Sums of Pseudo-Random

Variables in Feedback Shift Registers

0.0 Introduction

It is well-known that the output of a binary feedback shift register,

such as that shown in Figure 1, is a binary pseudo-random sequence.

-

Figure 1. Binary Feedback Shift Register

The statistics of the output sequence have been studied in some
detail.[l]-[g] Other researchers have studied the important delay or

[103-[13]

shifting property , the statistics of the output after filtering

[14]"[17], the spectral density of the oﬁtput[lsl, some practical applica-

[19]~[25], and finally a mumber of other closely related ideas[261-135]

tions
This report is concerned with the statistics of the sum of the values

in the shift register[sﬁ]-[ssl. The problem is considered here from a

number of'ﬁiewp01nts. We first consider in section 1 partial results

obtained from a computer study, These results show a mumber of interesting



features. To some extent, sections 2 and 3 are intended to explain some
of the features observed in secélon 1. The major conclusion from the
computer study is that the generated distributions become extremely complex
as the number of stages in the shift register and the degrec of inter-
dependence increase.

In section 2 we consider the problem of the sums of weighted outputs
of the stages of the feedback shift register. A method of synthesizing
pseudo-random distributions is developed. It is shown that several
important distributions such és uniform, triangular, stairstep and bimodal,
as well as an unlimited number of other less important distributions, are
easily synthesized.

Section 3 is concerned with the sums of the outputs of the feedback
shift register and various delayed or shifted outputs. The results of -
sections 2 and 3 are shown to be closely related.

In section 4 we study the problem of the infinite sum of weighted
random variables. Some important relations with the problems of the first

three sections are shown.

1. Computer-Generated Frequency Histograms

We are concerned in this section with the frequency histogram of the
sum of values of outputs in the first M stages of a feedback shift
register such as that shown in figure 1. The rangeon M is 0 to
2" - 1. Where M exceeds n , it is assumed that additional delay stages
are added to the shift register outside the fee@back loop. The frequencies
of occurrence of different sums, over different values of M , were determined

for n ranging from 3 to 11. The results are easily displayed in the form
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of a "frequency histogram matrix,' as seen for n =3 in table 1 below.

S/M 0 1 2 3 L4 5 6 7
0 7 3 1 0 0 0 0 0
1 0 4 4 3 1 0 0 0
2 0 0 2 3 3 Z 0 0
3 0 0 0 1 3 4 4 0
4 0 0 0 0 0 1 3 7

Table 1. Frequency Histogram Matrix - n =3

The frequency of sums S appears as a row under each value of M .
For example, consider the case where we add two successive stage outputs

3-1=7)the

at a time M = 2). In a single complete period (length = 2
sum will be zero once, one four times and two twice.

Note that the matrix is symmetrical in that the right half repeats
(see Table 1), in reverse order, the left half. To see why this is so,
consider two colums of symmetry designated by M and 2" -1 -M.
Note that these columns cover a total number of stages equal to Zn-l
(their sum). Also, note that when we cover all 2" -1 stages the number

of 1's is -1

. Hencg, obtaining a sum S in column M is equivalent
to obtaining a sum 22 .5 incolum 2 -1-M. Thus, the matrix
must be symmetrical and it is necessary only to display the left half.

We will also drop the M= 0 term since it is not of general interest.
With these changes the matrices for n=4 and n =5 are given in
tables 2 and 3.

It is of interest to briefly consider the matrix in table 3 for n =5

as an example of a relatively complicated and yet manageable matrix. The



s/™M 1 2 3 L 5 6 7

of T 3 1 0o 0 0 O
1 8 8 6 4 2 1 0
2 0 L 6 6 b 2 2
3] o o 2 4 6 6
L 0 0 0 1 3 5 5
5{ 0 0 0 0 0 1
6 0 0 0 0 0 0 0
7T{ 0 0 0 0 0 0 0
8, 0o 0o o0 o0 o 0 0O

Table 2. Frequency Histogram Matrix - n = 4



s/M

o =' o w

hte

10

L 2 3 4 5 6 7.8 9 10 11 12 13 14 315
15 7 3 1 0 0 0 c 0 o o 0 0 0 0
16 16 12 8 5 3 100 0o o 0 0 0 0 0

0 8 12 12 10 6 6 5 2 0 0 0 0 U 0

0 0 Y 8§ 10 10 6 4 5 5 2 0 0 0 4]

0 0 0 2 5 9 9 T 5 5 6 6 2 0 0

6 0 ©°o 0o 1 3 9 12 10 6 L L 6 5 1

0 0 0 0 0 0 0 3 & 1n a Y ! 5 7

0 0 0 0 0 0 ¢ U Ly Lo o 6

¢ 0 o o o © 0 0 o0 0 1 5 9 9 5

0O 0 0 0 0 0 0 0 0 0 0 ¢ 5 9

o 0 0 0 0 0 0 0 0 0 0 ¢ L 3

Table 3. Frequency Histogram Matrix



first n columns follow, except for one zero term the well-known and
easily expressed binomial freqﬁency 1aw.[4} (See section 2) A fairly
concise expression is also available[4] for the n+ 1 column, For
greater values of M no easily handled explicit expression is known.
The problem is that if M > n the summed terms become dependent and
their frequency histograms highly complex. One of the objectives of
sections 2 and 3 is to explain how this dependency arises and what kinds
of distributions or frequency histograms arise in this and other kinds
of sunming techniques.

We do not have space to present frequency histograms for larger
values of n . It 1s of value, however, to observe that as n increases
and M increases the histograms become increasingly complex and apparently
without order. This reflects the high degrce of interdependency of terms.

Consider, as an example, the histogram H(s) for n=8 and M= 67 .

s 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
H(s) 3 16 27 28 8 11 17 26 33 26 19 18-20 2 1

7th

This is the 6 colum of the n = 8 matrix. It is clearly very

complex. There is no apparent order or structure in this matrix.

2.0 Weighted Sums from Feedback Shift Registers

In this section we consider a weighted sum of outputs from a feedback
shift register. The basic system is shown in figure 2. It will be assumed
that the feedback connections are such that maximal-length binary sequences

of length 2" - 1 are generated.
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Figure 2. Weighted Sums

[5]

The required connections will not be considered here. The n stages
of the feedback shift register can have values 0 or 1 {arbitrary units)
during any specified clocking period. As the shift register cycles through
a complete period, each stage h;s a sequence of 0's and 1's following a
well-kgown[l] and definite pseudo—syatlstical pattern.

The term "pseudo’ is used here and in other parts of the paper to
indicate that the outputs or variables appear to be random and thus capable

of a statistical description. Actually, we are dealing with a finite-state-

machine with a prescribed initial state and defining relationship, and the
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output is thus known deterministacally. Nevertheless, it is of great
value to treat the output as random in some sense. We will adopt the
practice here of speaking of probability distributions even though a

term such as ''deterministic frequency histogram" might be more correct.

2.1 The Binomial Distribution

In the diagram of figure 2 the weighting factors, aj , can take any
integer value. Consider first the case where aj =1 for all j from
1 to n . In this case, we are simply adaing the number of outputs of
value 1. It will be shown in section 3, when we discuss the generating
polynomial, that the outputs of the stages are independent of each other.
Since the stages can have two possible values, the sum of n stages must
have a binomial probability distribution. Actually, there is one state,
the all-zero state, which camnot occur. The result is that the distribution
is binomial except for one term. With the probability of 0 or 1 equal

to a half, the distribution of the sum becomes: (41217

P(s) = (’sl)znl_ - forlgs <n )

where (E) stands for the combinations of n things taken k at a time.
In much of the discussion to follow the all-zero state will be assumed
possible. This simplifies calculations significantly. It will be removed.
when final results are presented. ﬁhen the all-zero state is‘assumed the
distribution is the familiar binomial. A series of binomial distributions
for increasing values of n is easily presented by means of the Pascal

triangle as shown in figure 3.[39]



1 n:
1 ) 1 n
' 1 2 i N
1 3 3 1 n
1 4 6 4 1 n
1 5 10 10 5 1 n
1 v 15 20 15 6 1 n
7 21 35 35 | 21 7 1 n
8 28 56 70 56 28 8 -1 n

Figure 3. The Pascal Triangle

Once again n 1is the mumber of stages. Thus, for n =5 stages we
can use the n =5 row to find the binomial distribution of the sum of out-~
puts in the five stages (including the all-zero state). To use the Pascal
triangle for n = 5 we first normalize by dividing each-éerm in the n=75
row by the sum of the terms, which is 32(25). The first term on the far left
is the sum equals zero term. Thus, the probabality that the sum equals zero
is 1/32. The probability that the sum equals one is 5/32, etc, The complete

distribution is:

s o0 1
P(s) 3%? 2 10 1 5

2.2 Sums of random variables - Discrete Convolution

We wish now to consider the very interesting case where the a's are
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not all one. In the work which is to follow we make use of a mathematical
approach and a nomenclature which are not too common. We will, therefore,
review these ideas first.

We will write the probabality distribution as a sequence of unnormalized

numbers. For example, the binomial distribution for n =5 is:

f1 S 10 1W0:+'5 1]

This is intended to convey exactly the same information as the
distribution at the end of section 2.1. ‘

Recall now that we are basically interested in obtaining the analog sum
of some independent random variables (in the stages of the feedback shift —
register.) It is well-known (see for example [40], Chapter 15) that the
probability distribution of the sum of two random variables is the convolution
of the two original probability distributions. It is particularly easy to
convolve two discrete probability distributions using the sequence format
shown above. (see [41] or chapter 3 of [40]). As an example let us find

the distribution of the sum of binomial random variables for n =3 and

n = 4 . From the Pascal triangle we see that the correct sequences are:
[1 3 3 1] for n=3
{1 4 6 4 1] for n=4

There are various ways to mechanically carry out this convolution.
Perhaps the simplest is to set up a format much like that of conventional
miltiplication. The only difference is that with this approach we do not

carry tens.
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1 4 6 4 1
1 3 3 1
1 4 6 4 1
3 12 18 12 3

3 12 18 12 3

1 4 6 4
1 7 21 35 35 21 7 1

Using the symbol * for convolution we write the above problem in the form:

{146 4 1]=[1 3 3 11=[17 21 35 35 21 7 1]

~

(We might note that the solution to this convolution problem is a sequence
equivalent to the binomial distribution for n = 7 . The property of
obtaining the distribution for order n by convolving any two distributions
whose orders add to n holds in general for the binomial family, as well

as for a number of other families. It does not hold for all families of

distributions.)

2.3 The Uniform Distribution

With the above technique we can now obtain the distribution of the sum
of weighted outputs from stages of the feedback shift register.

As a first example consider the simple case where n =2, a; =1 and
a, =2 . The weighted output of the first stage is 0 or 1 with equal .
probability of 1/2 (we are assuming the all-zero state for the present).‘ This
distribution is expressed as:

[1 1]



The weighted output of the second stage is 0 or 2 with equal

probability which we express as:
{1 0 1]

That is, zero appears with probability 1/2, one with probability zero
and two with probability 1/2. All terms below zero and above the greatest
term specified in the sequence occur with probability zero. To find the
distribution for both stages, out of the analog addey we convolve the above

to obtain:
(1 131=[1 0 1}1=[1 1 1 1]

This says that the sums 0, 1, 2 and 3 occur with equal probability
1/4. This result can be checked by means of the following table. Call the

state of the two stages k, and k

1 2

El E% alkl azkz alk1 + ak,
L D 0 0

0 1 0 2 2

1 0 1 0 1

1 \l 1 2 3

Thus we see that each term appears just once for the four distinct and
equally probable combinations of states kl and k2 . We can now make use
of the‘fact that the all zero state'is not possible and the maximal-length
sequence has a length 22 - 1=23 ., Without the all zero state our

distribution becomes

[0 1 1 1]
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Now let us add a third stage with weight factor 4. First we go back
and restore the all zero state until the problem is completed. The .

distribution of the weighted third stage is:
[1 6 0 0 1]

That is, the values 0 and 4 occur with equal probability 1/2,
and the values 1 , 2 and 3 occur with probability zero. To find the
distribution of the sum for three stages we convolve the distribution of

the third stage with that of the first two.
[1111]*[10001]=[{11111111]

and removing the all zero temm we have

——

[¢ 1 1 1: 1 1 1 1]

P

which says that the integers one through seven occur with equal probability.
If we add fourth stage with weight 8 the dastribution suggests that the
first 15 integers are equally likely to occur. Approp;&ate weightings
cause this pattern to be continued. Thus we come to the most interesting
conclusion that a uniform pseudo-random distribution can be generated by a
feedback shift register with suitable weights. It is apparent that the

h

proper weight for the Jt stage is 23"1 if a unifom distribution is

desired.

2.4 Some Additional Non-Binomial Distributions
The possible variations suggested by this basic approach are endless.
We mention here only some of the most important.

Consider a six stage register with weights ay = a, = l,a;=2a,=2,
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ag = a5 = 4 . We have just seen that the combination of weights 1, 2, 4

produces a distribution.

[1 1 1 1 1 1 1 1]

But now we have two such dastributions so we convolve them together to

obtain:
f1 111111 1311*[1 1-1 1111 1]
=[1 2 3 45 6 7 87 65 4 3 2 1]

The result is a triangular (Simpson) distribution. (The pertinent weights
and final distributions are summarized for this case and other important cases
in table 4.)

A "stairstep" distribution is obtained from a combination of weights such

as 1, 2, 4, 4 which give.

[1 111111 11*%[1 00 0 1]

=[1311122221111]

Finally, a ”Bimédal" distribution is obtained from weights such as

1,1,1,1,5 which give$

[1 46 4 11>[1 000 0 1]
=714 6 411 46 4°1]

The pezk of the second mode can be extended out to any value by simply
increasing the last weight. Thas bimodal technique can be used on any type
ol distribution by simply adding a stage with a weight equal to the distance

the second mode 1s to be shifted.



Name

Binomial

Uniform

Triangular

Stairstep

Bimodal

Weights Distribution Histogram
fpo0f2 530 .

101 1 1 [o % 6 % 2] ' ll

1 2 %» 8 o 2 1 12 2 1 1 1 1 1 roecl B b L fot 4o} [
1 2 1 2 [0 2 3 L4 3 2 1] I‘ Il | [

1 2 L b o » 2 1 2 2 2 2 1 1 1 1]h 118 I [ l | TR

-
i 1 1 5 [o 3 3.1 0 1 3 3 1] i‘ l l l 1!
Table 4, Synthesis of Daistributions of Pseudo-Rdndom Variables

ST
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The preceding examples are swmiarized in table 4. Necessary weights
and the resulting distributions are shown. The histogram is simply a
pictorial representation of the distribution.

Once again it should be emphasized that the possible variations to the
above are unlimited. Any number of different distribuflons can be generated
simply by changing the weights, aj .

Although the above technique for synthesizing pseudo-distributions is
very attractive it is not without limitation. Consider the uniform dis-
tribution, generated by weights Zjnl . The range of this pseudo-random
variable is from 1 to 2% - 1 where n is again the nmumber of stages.
Thus, for example, this simple circuit cannot be connected to yield a
pseudo~random variable uniform between 0 and 9 . The latter would be
necessary to develop a decimal range pseudo-random number generator.

These results have been reported on in the literature[42] [43].

2.5 Some Thoughts on Range and Smoothness
In this section we are interested first in the range of the pseudo-

* yandom variable S , the output from the circuit of figure 2, and second

on the effect which weighting has on "‘smoothness" of the output distribution.
These factors are of course inter-related. Note that we define the range
here as the number of possible outcomes or values of S, rather than the
difference between S max and S min .

T@e range of S can be important for a number of applications as it -

indicates the number of different output levels of the device. Aggarwa1[44],
for example, has suggested a frequency generator which generates a number

of frequencies equal to the number of different levels of S .

If we consider the circuit of figure 2 with unity weights, the range
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on the sum is n s’ince the sum can be any number from 1 to n , with a
distribution following (almost) the binomial law, If we let the weights
be 2971 , We obtain a uniform distribution with range 2" - 1 , as we

saw in section 2.3. This latter range is obviously the maximum range for
the circuit of figure 2, since after 2 - 1 outputs the pericdic sequenc
repeats. Likewise n is the minimm range., Hence, the range T, has

bounds:

where the weighting sequence for the lower limit is [ 1, 1, 1, --- 1 i,
and for the upper limit [1, 2, 4, 8, +-- 21"'1 1 . For any weighting seau
1 8, 8y, **t, By 1 the range Ty is simply the number of different Ian‘n'l
which can be obtained by adding any combinations of the weights taken anywl
from 1 to n at a time.

The analysis in sections 2.3 and 2.4 raises some inteTresting question:
related to the Central Limit Theorem tendencies of sums of random variable:

— The Central Limit Theorem says that the distribution of the sum of continu

random variables tends to be Gaussian (or normal) as the number of summed
variables increases, under certain conditions. A discrete approximation
to the Caussian is the Binomial distribution. The accuracy of the approxir
increases as the order of the binomial increases. The Gaussian distributi
is in a sense the "'smoothest" possible continuous distribution. In the sa
general sense the Binomial dis;tributlon is the smoothest discrete distribu
Summed discrete random variables tend to be Binomial under conditions
analogous to those necessary for the Central Limit Theorem.

Consider what happens when we use weights of unity in all stages of tl

circuit of figure 2. The distribution of each stage is [ 1 1 ] and the
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distribution of the sum for an n-stage circuit is banomial of order n .
Consider now what happens as we start to use non-unity weights. .Let
n =23 and find the distribution for a series of weight combinations as

shown in table 5., Assume the all-zero state.

a; a, ag 6 1 2 3 4 5 &6 7
1 1 1 1 3 3 1 0 0 0 0
1 2 1 12 2 2 10 0 0
1 2 2 1 12 2 1 100
1 2 3 1 1 1 2 1 1 0
1 2 4 1 1 1 1 1 1 1

Table 5. Effect of Weights on "Smoothness™

As the weights increase the range increases and the "smoothness'
decreases. The ordinary (normal?) tendency under summing is for the
dastribution to become increasingly smooth. However, the tendency of the
weights is to emphasize individual distributions. These two tendencies

tend to offset each other. If the weights are chosen as 20 s 21 s 22 s

2% .. as in the last line of table 5, the two tendencies cancel each
other and we retain the uniform distribution.

It is of interest to consider the sum which leads to the uniform
distribution in more detail. First, we recall that the condition for the

Central Limit Theorem, the Lindeberg-Feller condition, can be expressed in

simple‘form as.

2
- g.
iiﬂ — = (2)
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where 032 is the variance of the jth random variable.

Thas condition is essentially applicable to the discrete case as well
to the continuous case to the extent that the bainomial distribution
approximates the Gaussian. Let us consider the limit in (2) for the

0 1,2 .3

case vhere the weights are 2° , 27, 2%, 27, +*+*. The corresponding

distributions are: [1 1}, [1 0 1], [10001], --- and the corresponding
variances are 1/4, 1, 4, 16, ++- or 43*2 where j =1, 2, 3, «+¢ .

th

The ratio of the variance of the j variable to the sum of the’

variances of the first n variables is:

= 3 j
L -6)

The largest variance appears for j = n in which case the ratio is:

ok |

R =__3 4)
4-1/4n
And the limit is:
lim R = 0.75 (5)

Fsas

Thus, for this case, the Lindeberg-Feller conditions are not met. This

is, of course, exactly as we would have expected. A similar analysis for
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series of weights 1, 2, 3, 4, .... indacates the limit is zero. Thus,
these weights are not large enéugh to offset the central tendency of the
sunmed random variables. We will return to this question briefly when we

discuss infinite sums in section 4.

2.6 The Autocorrelation Function

In the preceding work, it was convenient to let the states take
values 0 and 1 . ;In our study of the autocorrelation function, we
will let these value; be -1 and +1 . We are interested in the stream
of values out of the analog adder in figufe é. This can be thought of as

a stochastic process with a new value occurring at each clocking time. We

will designate this sequence of output values as:

[blx bz: o, bk' e » bzn_l]

We will only consider 2™-1 terms since the sequence is periodic and

repeats after 2™1 terms. We define the autocorrelation function as:

2"-1
R(m) = 1);=1 by by » M= 0,1,2,00 (6)
(Note that because the sequence is periodic by _ Mg T by )

This is also equal to the mumber of agreements (same sign} minus the nmumber
of disagreements when the original sequence is compared with itself shifted
by m units. -

We consider first the case where all the a's except one in figure 2
equal zero. The one exception 1s equal to 1 . For this case, it is

known[l] that the autocorrelation function is:
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RyGm) = {2°-1  m=0 (7)
-1 m#0
This function which also has period 2"-1 , 1s plotted in fagure 4.
Note that we are considering m as a discrete integer variable. The
graph represents an integer as all of the space between the integer and

the next higher integer.

21'1"1

R, ()

2t 2

Figure 4: Autocorrelation Function of Maximal-Length
Pseudo-Random Sequernce

From figure 4 we see that as the length or period of the sequence
(Zn-l) increases the autocorrelation becomes increasingly concentrated at
m=20.

Now we wish to study this autoccrrelation function for the stream of
values out of the analog adder in figure 2 for some non-trival weightings.
As an example let a; = 1, a, = 1 and all other weights be zero. Then

the seduence out of the generator is:
[ by #Bgs By ¥ by, *rr 5 B by, g, 7T s By ¥ By ]

with autocorrelation function:
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|
Ry(m) = 12@1 O * byer) O * Presme)

271
= lel (bkbr-i-m * bk+1 bk-i-l-rrn“Lerrl bk-»-n'l)
= 2R10n) + ngm-l) -+ R1@m+1) (8)

Thus we have established thé very interesting and useful, though hardly
surprising, result that the autocorrelation function of t};e sum of sequences
is a sum of the individual sequence autocorrelation functions. This discrete
result 1s analogous to the well-known[45] expression for the autocorrelation

of a sum of continuous random-variables:

{
Reay (1) = R,c,((“r)if *R (D RYXFT) + RW(T)’ &)

-

Consider now the sum of p sequences obtained by letting a; =a, =

ees = a_ =1 and all other aj's are zero. The autocorrelation function is:
R ) = pR; (M) + (p-1)R;(m-1)

+ (p-DR; (1) + (P-2)Ry (m-2) + -+

+ Ry (u-p+1) + Ry (mép+1) (10)

This result is a fairly straig'htfomard extension of the p=1 and
p = 2 cases. It simply indicates the number of cross-terms of given delay

obtained in the multiplication:

BytDy gt *77 Ppagam) B+ bropg ¥ 777 F brapep-1)



Equation {10) reduces to the following simple relation for the auto-
correlation of the sum of p successive unity-weighted pseudo-random

sequences.

R@ = -ImD2” - P, m

n
L)
-
+
|
-
+
™~
-
.
.
+
"

- - ’ (11)

-p? , m=P ,P+1, s+, 2"-1-7P

This function is plotted in figure 5 for n=4 and p = 1,2,3,4,5,6,7
and 8 ., The effect of summing D sequences is seen to be to introduce
"memory'' into the output process. The process "'remembers' over a numéer of
clocking pulses equal te P , the number of successive sequences added.
The effect is analogous to passing the original sequence through a low-pass
filter. In fact the system is actually a non-recursive daigital filter.

It is, of coufse, not necessary to add successive stages or to use
unit (or equal) weights. We consider first the sum of non-successive

sequences and second the sum of sequences with different weights.

Let a; =ag=1 and all other weights be zero,

2"-1
Ris =L Oypeg) Om * by
(12}
= 2R10n) + R1Cm~2) + R16m+2)
And, similarly:
Ry () = 2y () + R (1-q) + Ry () (13)
th

is the sutocorrelation function of the sum of a sequence and the q later
sequence. The effect of delaying the weighting to the qth stage is to

delay the "memory' in the process. As an example Rl40m3 is plotted in
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P=1

0 1 15 16
P=2
P=3

L

Figure 5, Autocorrelation Function - R 5 (m)
(scale not consistent fox different values of p)
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figure 6.

Ry, (m) 28

12

wd

7
] Figure 6

&
0
Other interesting autocorrelation functions can be obtained by adding
sequences with different delays.

We turn now to the effect of non-unit weights. Let a, =1 and

1
a, = e . The sequence out of the generator is:

[bl + ebz, b2 + ebs, *** , b, +eb

gt Dpars Tt s bylly ey )

and its autocorrelation function is:

20-1
R g =L O bpy) Bpy * D)

a2=e
= (rel)R; (m) + 6R; (n-1) + eR (1) (14)

This function is plotted in figure 7 for e =1,2,3, and 4 . The -
important difference between these results and those of figure § is that in
figure 5 the autocorrelation decreases in equal steps (triangular) whereas

in figure 7 the function drops off more rapidly for m near 0 than for
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e=1

e=2

e=23
e=4

Figure 7,

=S
-

Autocorrelation Functions for Different Weights
(Scale not consistent for different values of e.)




larger m . The latter function resembles an exponentially decreasing
function. As e increases the autocorrelation function resembles
increasingly the autocorrelation function of the original pseudo-random
sequence. This is certainly reasonable because values of e much greater
than 1 simply emphasize the heavily weighted sequence. The important
point here is that the process of weighting does effect the autocorrelation
function and does so i1n a way which is intuitively reasonable.

Let us consider the effect on the autocorrelation function of binary
weights (a) =1, a, = 2, a; =4, +++ ) . .This function is plotted in.
figure 8 for a number of combinations of binary weights. The functions
fall off in an exponential-like way with each succussive step being about -
1/2 the previous step when all levels are referenced not to zero but to

the minimum level.
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? a1=1
:i; az=2
3.3=4

o =1

az=2

a3“4

a4=-8

. al=1

) 32=2

a3=4

a4—8

aS=16

._J'—'r_.

Figure 8.

5

tocorrelation Functions for Binary Weights
(Scale not consistent for different weights.)
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3.0 Augmented Feedback Shift Registers

We turn now to an alternmative approach to changing the distribution
obtainable from a feedback shift register. Actually there are two ways
of implementing this approach. It will be shown that these ways are
related to each other and likewise are related to a lesser extent to the
approach just discussed in Section 2.2, Before we consider the two ways
available under this alternative approach we must briefly consider the

defining or characteristic polynomial for the feedback shift register.

3.1 The Characteristic Polynomial

The state of a feedback shift register is completely specified by its’
initial conditions and a so-called characteristic polynomial which
interrelates outputs from various stages and the input to the first stage.
One form of the characteristic polynomial for a feedback shift register

with n stages comnected to generate a maximal length sequences is*
n n-1 n-2 1 o _ R
D'®A, DTT®A L, DT e DAD(HD =0 (15)

where (*) stands for the modulo 2 sum. This operation is defined in the

table below,

= o P
= oo

Table 6

The coefficients Aj are either 0 or 1 depending on the feedback

connections in the shift register. D 1is an operator signifying delay of

order equal to its exponent. To clarify this general expression consider
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the particular circuit shown in figure 9, and its characteristic polynomial:

2
Figure 9. Five Stage Binary Feedback Shift Register

p°@p*@E° = 0 . _ (16)

Note farst that there is no need or dse for a minus sign in modulo 2
arithmetic since -1 and +1 are equivalent. Therefore we can put any term
in equation (16) on the right side of the equation without changing signs.
Thus, for example, we can write: DS(:)DZ =p° . (17)

The interpretation of this expression is as follows. The value in &
certain stage is equal to the modulo 2 sum of the value two time delay
periods earlier and the value five time delay periods earlier. Since the
shift register shifts values or outputs one position each delay or clocking
period, this is equivalent to saying that the modulo 2 sum of the value
in the 5th and 2nd stages is equal to the value in the oth stage. The
latter is a hypothetical stage which feeds the first stage at a clocking
instant.

Since D simply stands for delay we can increase the exponent of each

term in (17) and still have a correct equation. Thus, for example
p’@p? - ot (18)

Similarly, this' can be repeated any number of times, a property which
&
will be very useful in the sections to come. The characteristic equation

also tells us that values in stages are independent as long as the stages are
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no more than 5 delay periods apart. In general, values are independent
if stages are no more than n 'delay periods apart where n is the number

of stages in the feedback locop.

3.2 Added Stages
We are ready now to consider the first of two alternative ways to
change the distribution available from a feedback shift register. Consider

the circuit of fagure 10.

Analog Adder _ﬁhoutput

~ L }f A A A 4 A L 4
a1 1% 1231 1%t {3 ljf_' seet L8t teee 18y

LR N ) k LI m

v
=
[t ]
(73]
S
tn
[

Figure 10, Augmented Feedback Shift Register

The basic feedback shift register is identical to that of Figure S.
To this we have added m-5 delay stages which are part of the shift
register but are not in the feedback loop. In much of our discussion to
follow, we will assume that the weighting factors related to the stages
in the feedback loop are all equal to unity.

Consider as a first example the problem where m = 31 in Figure 10,
Let ay through ag equal one and all other factors equal zero. That 1is,

we are adding the outputs of the five stages plus one additional stage



delayed one clocking period from stage 5. Call this analogsum "Sﬁ".

1 2 3 4 5 6

8¢ =D +D°+D”+D" +D°+D (19)

We know from section 2 that the sum of the first five stages is
binomial. But the addition of a sixth stage adds a dependency which makes
the resulting sum non-binomial. To see this we substitute D6 from

equation (18) into equation (19) and collect terms to obtain:

2

36=D1+D +D3+D4+D5+@1@Q3)=DZ+D4+D5+

1

0"+ 0° + O ®D)] (20)

The terms within the bracket were collected because they are inter-
dependent., The total bracketed term and the first three terms are independent
and the resulting distribution of the sum can be found by the convolution
techniques developed in section 2. The distribution of the terms Dz, p*
and D° is banomial of order 3. That is, it is of the form. [0 3 3 1].

The distribution of the complex term in the brackets cannot be found

from convolution techniques. It is possible, however, to find the

distribution using a table of possible states as shown below.

pr p° @D  p+p @D

0 0 0 -0
0 1 1 2
1 0 1 2
1 1 0 2
k)
5 Table 7

:
ﬁ 1 3 1 3
The resulting distribution of [D” + D + (D™ + D7)} is: [1 0 3].
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5

4 and D° we

When we convolve this with the distribution for D2 , D
finally obtain:

[1331] # [103) = 1 3 6 10 9 3]

(see Column 6 of Table 3).

If we now change the problem so that the output of the seventh stage"

is added to the first five we have:

S =Dt +0f+05 4% +0% + D = e D%« D%+ [pF + DY+ DEODH]

(21}

7

and the resulting distribution is as in the previous example since the
structure is the same.
Now, however, consider the case where the added term is in the ninth

stage. Then we have:

4 9

S =D +p2+D°+Dt +p° D

p! + p? + D3 + D% + D% + D@ D7

[\

H:

b s 0%+ 0% 4 0 4 05 4 DL@D@ DY
=p?+ 1%+ D'+ D° + D} + @D’ ®DH] (22)

In this case the dependency is in three stages rather than two and the
distribution changes. Using the basic approach above, with an 8 column table
in this case, we finally obtain the distribution, [1 2 7 12 7 2 ljior,
dropping the all-zero term, [0 2 7 12 7 2 1].

After two examples we are led to the general question, what is the

dastribution for. Sj = D1 + D2 + D3 + D4 + D5 + D) where j can be any
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number from 1 to 31? First, we should establish our range of interest
on j as 31 (or 25—1). We will not exceed 31 since any value of j
greater than 31 is equivalent to some j between 1 and 31 . This
follows from the fact that the maximal-length pseudo random sequence
repeats every 2°-1 (25-l=31 in this case) clocking periods. Furthermore,
we note that every Sj involves a different combination of the first
five stage terms. For if the D term consisted of exactly the same
combination of (Dl s 1% , D> s p* and DS) for different values of 3 the
sequence would have a period equal to the difference of the values of . j in
question., Thus there are 31 different combinations of terms arising in
SJ whach should be considered in determining the possible distributions
obtainable.

Not all of these combinations produce different distributions. (We saw
above that 86 and 87 had the same distribution). Since the distribution
is dictated by the structure, which éeflects the number of interrelated
terms, it is fairly obvious that there are 5 possible distributions
depending on whether there are 1, 2, 3, 4, or § interrel:jlted_terms_ in a.
particular combination.

The question of how many ways there are to obtain a particular distributior
is easily answered. There is just one way in which all five terms can be
interrelated. Thus, one of the 31 possible values of j leads to the
distribution typical of the case where all five terms are interrelated.
There are 5 distinct ways of combining four dependent terms. That 1s,
the combinations of five things taken four at a time is five. And, in fact,
the combinaterial law is used to find the number of values of j which lead
to a particular distribution. The distributions which are obtained by

adding one additional delayed value are summarized in the following table §.
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Included for reference is the binomial case where there are no dependencies.

In all cases the all-zero term has been ommitted.

Number of Interdependent Number of-ways to

Stages Obtain Distributicn Distribution
0 1 [0510105 1]
1 5 [047841]
2 10 [03 6109 3]
3 10 027127 21]
4 5 {0 110105 5]
5 1 {00150 150 1]

Table 8

The above example is limited of course to a shift register with five stages

1n the feedback loop and to a single added stage augmenting the basic five

stages. It is of interest to generalize and expand our development.
Consider first the case where we allow more than one additional stage.

Thus, for example, we might consider the sum:

Sg7 = pl + 0% +0° + 0% +D°

+ D6 + D7

D° + [DF + D>+ O + D] + D% + D* + (% + DY)} 23)

The bracketed terms, identical in structure to the bracketed term in
equation (20), have the distribution [1 0 3] as shown earlier. Thus, the

total distribution of 867 is:
(117> {1 03] # [103]=1{116629 9]

or, dropping the all-zero term:

{01669 9] y (sec column 7 of table 3)
{
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This is a new distribution as we might have expected. Once again,
there are a large number of different ways of adding 2 more values. Thus,
many different distributions can be obtained depending on which two delayed
values are sclected. We can, of course, extend the number of added stages
to 31 with a very great many different distributions obtainable.

A second way of expanding on the possible distributions is by letting
the weaghting factors, Aj , take values other than 1. (In section 2, we
essentially covered this situation for the case where j was between 1 and
n .) Allowing Aj to take any value leads to literally countless different

1

distributions. i

A final generaligation 1s to allow n (5 in the above example) to take
any value. Again, this opens up a whole new range of distributions.

No attempt has been made to chronicle any significant number of the
infinite number of possible distributions. The basic procedure is summarize
below. '

1) Obtain the characteristic equation corresponding to the feedback

_shift register of interest (assume its length isl n). )

2) Write down the sutm S in terms of the first n vﬁlues of
Dj (I <j <n). Use the characteristic equation to express values of Dj
for j<n in terms of values of Dj for 1<j=<n.

3) Separate the'terms 1In S into independent groups.

4) Find the distribution of each independent group through the tabular
method shown above.

5) Convolve the distributions of the independent groups to find the

overall distribution of the sum.
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3.3 Added Logic

The approach used in sectio_n 3.2 suggests an alternative to adding
additional stages. Since we can express any sum in terms of the first n
values of D’ we can obtain any sum by simply using logic (modulo 2 adders)
prior to analog summing. Assume, for example, that we wished to obtain the

sum 86 defined i1n equation (20) as:

Sg = D'+ 0%« D° + D'+ D° 4 @ 4 1) (24)

This sum is easily realazed by the circuit shown in figure 6.

> output
Analog Adder =
& 4 A L 4 y
=8 1 2 3 4 5

[\
N

Figure 11, Synthesis of Sum S6

It is apparent that this basic approach can be used to synthesize any
sum discussed in section 3.2. In a particular practical case, it would be
necessary to decide whether it would be more desirable to use additional shift
register deiay stages or additional logic circuits. No general role seems

to held for all szituations,
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It is also apparent that the above scheme can be used with different

weighting factors to produce a wide range of different distributions.

4.0 Infinite Sums

In this section ve are concerned with a problem closely related to
that of the first three sections. We seek the probability density fumction

of the random variable:
X=1 a g (25)

vhere "a" is a constant, and &k is a random variable. The relation to
our earlier work is evident when we write the sum as obtained in section 2.3

as:

S = 2" g (26)

where & is a pseudo-random variable which takes values 0 or 1 with nearly
equal probability.

Here we extend the pro.blem to the infinite sum where ''a'' can take any
value and £ can be any random variable. The problem is solved with
comparative ease for some cases and is not satisfactorily solved for other
cases.’ We start with the easy cashe (a = -%- s &y binary with equal probability

of either state) and consider later the more difficult cases.

4.1 The Uniform Case

We consider first the random variable:
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* 1.k
X = 2 g 27
§=1 & & 27

where %;k is a binary random variable which takes the values ¢ and d

with equal probability. That is:

P(g, = c) = (s, = d) = % , for all k (28)

We assume further that the ¢,'s are independent. This problem has

been solved (for ¢ =0 and . d = 1 ) by Blake and Thomas[%] Hence, we

are working with the problem of the infinite sum of independent random

variables of the form akgk . We will use a characteristic function
{40]

approach. It is well-known that the characteristic function of a sum
of independent random variables is the product of the indivadual characteristic

functions.

NURS§

29
| h 29)

¢k(w) , the characteristic function of akgk , is:

. k . 1 7nK
%_(ejwc/z N ejwd/Z )

]

3. )

. k+1
= wlcrd)/z os “_r._’(iic) (30)

2

C

Applying (29) we obtain:

. k+1
o (W) = T erC'<-:+d)/ 2 T cos W(,ddc) (31)
£ x=1 1 25 =
. w{d-c)
= e}'w(c-?-d)/Z sin T (32)

wWia-C

2
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The two infinate products of equation (31) are found as indicated in
equation (32), in the appendix. The characteristic function of equation (32]

is that of a uniformly distributed random variable with range from c to d.

That is:
gz, cixzd
fX(X) 1o , otherwise (33) .

This is a most interesting result, namely that the infinite sum in
equation (27) is mifomly distributed. This problem has been considered,
though not o.riginall?f in a probabilitie framework, for a long time. I‘t
was shown by Vieta (;?ee Kac[47]) that any real number t , 0<t <1,

can be expressed unigl uely as:
63

+ + ee (34)
2228

where Gj is either 0 or 1 for each j . The problem is discussed in

some detail by Kac.

4.2 General Weights (a = 1/2)
We turn now to the general problem of the distribution of:

X= E a Ek , (35)

where -a can be any number from 0 to « , This problem is not solved
here in any closed form. Rather we suggest some of the results and point

out problems which are still under consideratiomn.

We are tempted of course to simply apply the transformation approach:
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used in section 4.1. This leads us to a transform of X given by:

jw(c+d) az J/(1-a) +]

i cos w(d-c)ak
k=1

¢x{w) = e (36)
It is seen that the first infinite product, involving exponentials,
reduces to an easily expressed: "phase' term. The second preduct, however,
is not known to have a simple solution. So the method of section 4.1 does

not lead to the closed form solution for which we might hope. In fact,
further consideration of the range of X  suggests some very real problems.
a) Case 1: a < %—

When a = % » X 1is a continuous random variable on the range [c,d]. )
However, 1f a < % it is not possible to obtain all values of X between

the minimum and maximum. In analogy to the formula of Vieta (see equation 34)

consider for following expression.

1 2 3
t= ela + e2a + esa_ F eee (37)
If e; canbeeither 0 or 1 the range on t is 0<t<. %_—.- o
For example, if a = %_ , we have:
e, e, e
1 Z 3
t = + o S e (38]
2P

and the range on t is [0,_%—] . However, there are many values of t which
cannot be generated by any combination of e 's . For example, none of the
numbers in the open sub-range (%—,%) can be obtained. In fact, the closed
range [0,-:5] has an infinite number of open sub-ranges in which no number

can be generated by equation (38) with any combination of e 's .
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Let us turn now to a consideration of the distribution of F ., This
problem is discussed by Feller. [48] As we shall see it turns out to be
essentially meaningless to speak of the probability density function (PDF),
so we shall look at the cumulative distribution function (CDF). The CDF
has an im?;nlte number of flat regions separated by jumps which are
infinitely small. The largest flat region is (%‘-,%—) which is centered at
X= %- and had a length of %— . There is also a flat region centered
about X = %T with a length of -]2—'3- , and another of length %1— centered
at %@ . The CDF for these regions only is plotted in figure 12, The CDF
for these regions plus the next set of regions between these is shown in
figure 13. As the number of terms in equation (38) taken into account is -
increased, the size of the jumps in the CDF, F(X), decreases. (See figure 14.)
These jumps go to zero in the 1limit as all terms are considered. Hence, the
CDF becomes contimuous, and yet no PDF exists. Feller (48] refers to this
as a singular distribution.

The example above is for a = %_— but the same type of distribution arises

for all 0 <a < %- . Work is presently underway to effect a more meaningful

representation of the distribution for this case.

Case 2: %<-a < 1

We consider now the range of t in equation (37) under the assumption

%< a2 <1 ., The maximum and minimum values are 0 and -1%5 . The range

on t 1is continuous; that is, every number t between 0 and 1% can
be expressed as in equation (37) with appropriate ej 's . To see this we
consider the way in which we generate appropriate values of ej 's for a

given t ,

The procedure 1s to subtract from t the largest value of al which



Figure 13. Partial CDF of X (7 open regions shown)
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is less than t . For ihis value of j we let ej = 1 ., For each smaller
value of j we let ej = 0 . We now try to subtract a3+1 from the new
difference t - a’ . If we can do so without leaving a negative remainder,

we let e _, = 1, if not then €54 = 0 . We proceed in like manner with

3+l
aj+2 etc., generating new values of ej+k based on whether or not the
corresponding aj+k can be successfully subtracted from the new difference.
We continue until the last difference is zero. This may be possible only
in the limit as the nmumber of terms approaches infinity.

Suppose that at any point ﬁn the procedure the original number t -or

|

a new difference t - a’ ~ +++ falls, as it must, within the range:

P <t 5‘an+1 (39)

A necessary and sufficient condition that the procedure can be carried out
with an eventual difference of zerc (if only in the limit as the number of

terms is unbounded) is that:

< - n+2
SEE S T o

j =n+2

for every t and evexry n . Equation (40) simply says that after any

an+1 subtraction the terms left to subtract must add to a number at least
as large as the new difference. The largest value of t in the range given
by (39) is a.ln so the worst case in (40) is:

n+zi
. n+l -7
an - f-a

-

|

-a

which reduces to

(1-2)% < a? (41)
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Note that the equality in (41) is met for a = % , but the inequality
fails for a < %- . This is in agreement with the argument of the preceding

section. However, the inequality holds for -12-< a <1 . Hence, any
f

0 <tx< 'i%'aT can be %‘ealized by a proper selection of ej 's as long as
u
%— <a=<1l. Thus, we have established that the range on t is continuous

for % sa<l.

We now direct our attention to the random variable defined by equation (35)
The range on X is the same as the range on t ; following the argument
above, 0 <X < _i_z_a_a , and X 1is continuous in this range.

We consider next the distribution of X . For a = 1 X was found

2 ?
to be wniformly distributed. More precisely, the expression,

x-7 ae =0 (42)
j

can be satisfied only by a unique set of Ej 's for a particular X . That
is, there is one and only one combination of gj‘s in eguation (35) for
a given value of X in the range [0,1].

It %-< a <1 this situation no longer holds. As an example let

a = 0.6. There is only one way to obtain X = 0 ; it is necessary that

Ej =0 forall j . ‘Likewise, we obtain X = 1.5 only if gj =1

for all j . However, we can obtain numbers in between in many ways. The
number 0.96 is obtained from the set £ = 1, £y = 1, Ej = 0 for
j>2 - It can also be obtained b).r letting 81 7 1, £, = 0 and gj

(for j » 2) take on any appropriate values to add\ to 0.36 . That this

is possible is demonstrated by the fact that:

[--2

Z ) (0.6)j = 0.54 , (43)
J:



which is greater than 0.36 .

Hence, we have shown that for %-< a < 1 the random variable X ais
continuous and is not uniformly distributed. Work is continuing on the
determination of this distribution.

We close this section with the comment that we believe that as "a"

approaches 1, the distribution of X will probably become Gaussian-like.

Case 3: a=1
For this case consider equation (35) with finite range.
N
=1
This is simply the problem of N independent trials and the distribution
of X is of course binomial of order N . As N increases without bound
the distribution of X asyptotically approaches a Gaussian distribution,

according to the DeMoivre-Laplace Theorenm.

Case 4: a = 2

Again, we let the number of terms be finite

X=] 2 (45)
k=0

As was shown in section 2.3, the resulting distribution of X is

uniform.

Case 5: l<a<wo, a=*2

Little work has been done on the wide range of "a' greater than 1.
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There is, however, an intriguing symmetry or mirror effect of the type of
distribution with respect to a = 1 . Note again that for a = 1 the
distribution 1s approximately Gaussian. For a = %— and a = 2, the
distribution is uniform. There is a strong temptation to suggest an analogy
between the ranges (0,%3 and (2,=) We are contanuing to explore these
relationships., Fagure 15 summarizes the above 5 cases, including the

speculations suggested for case 5.
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6.0 Appendix: Infinite Products

- . k+1
1) Simplify § eI¥(e*d)/2
: k=1

. k+1 . .
it eJW(C+d)/2 * ) e_—;a(c-é-d) (11- + %-;. % + eee)

. 15 i.n
o dwlesd)z ] G
e 4 5=0 2

- ejw(cj—_d)/z (A-1)
. v 1.n _
Since § =2
n=0
. © d-c)
2} Simplafy £ cos wl
=l 2K
w(d-c) ~w(d-c) w(d-c)
w(d-¢) _ 2 Z

o 2
I cos W = COS R COs T Cos 3 e

8
sin 2 _ 6 . 8,0

3 = cos gz sin z/7 (A-2)

2
= cos Scos & sin &8
= COS  COs & sin 8/8
_ 8 8 6 . 86 ,8
= COS 7 COS ¢ COS 5 sin '1_6'/16' (A-3)

As the- trigonometric identity is continually applied to the last (sin v}

y term, that term approaches unity and the infinite product becomes:

7.8 cos Ly )



which suggests that-

w{d-c)
w(d-¢) _sin 2
lli-—-l cos zkvl w(d-c)
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