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Properties of Sums of Pseudo-Random
 

Variables in Feedback Shift Registers
 

0.0 Introduction
 

It iswell-known that the output of a binary feedback shift register,
 

such as that shown inFigure 1, is a binary pseudo-random sequence.
 

Figure 1. Binary Feedback Shift Register 

The statistics of the output sequence have been studied in some
 

detaill] Other researchers have studied the important delay or
[1]9 

shifting property [10 ]- [13], the statistics of the output after filtering
 

[14]-[17], the spectral density of the output [18 
, some practical applica­

tions and finally a number of other closely related ideast 26] - 35].
 

THis report is concerned with the statistics of the sum of the values
 

-
in the shift register [36] 38]. The problem is considered here from a
 

number of viewpoints. We first consider in section 1 partial results
 

obtained from a computer study. These results show a number of interesting
 

1
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features. To some extent, sections 2 and 3 are intended to explain some
 

of the features observed in section 1. The major conclusion from the
 

computer study is that the generated distributions become extremely complex
 

as the number of stages inthe shift register and the degree of inter­

dependence increase.
 

Insection 2 we consider the problem of the sums of weighted outputs 

of the stages of the feedback shift register. A method of synthesizing 

pseudo-random distributions is developed. It is shown that several 

important distributions such as uniform, triangular, stairstep and bimodal, 

as well as an unlimited number of other less important distributions, are 

easily synthesized. 

Section 3 is concerned with the sums of the outputs of the feedback 

shift register and various delayed or shifted outputs. The results of
 

sections 2 and 3 are shown to be closely related. 

In section 4 we study the problem of the infinite sum of weighted
 

random variables. Some important relations with the problems of the first 

three sections are shown.
 

1. Computer-Generated Frequency Histograms
 

We are concerned in this section with the frequency histogram of the 

sum of values of outputs in the first M stages of a feedback shift 

register such as that shown in figure 1. The range on M is 0 to 

2n - . W n it assumed that additional delay stagesWere M exceeds , is 

are added to the shift register outside the feedback loop. The frequencies 

of occurrence of different sums, over different values of M , were determined 

for n ranging from 3 to II. The results are easily displayed in the form 
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of a "frequency histogram matrix," as seen for n,= 3 in table 1 below. 

SiM 0 1 2 3 4 5 6 

0 7 3 1 0 0 0 0 0 

1 0 4 4 3 1 0 0 0 

2 0 0 2 3 3 2 0 0 

3 0 0 0 1 3 4 4 0 

4 0 0 0 0 0 1 3 7 

Table 1. Frequency Histogram Matrix - n 3 

The frequency of sums S appears as a row under each value of M
 

For example, consider the case where we add two successive stage outputs
 

23
at a time (M=2). In a single complete period (length = 11 = 7) the
 

sum will be zero once, one four times and two twice.
 

Note that the matrix is symmetrical in that the right half repeats
 

(see Table 1), in reverse order, the left half. To see why this is so,
 

n
consider two columns of symmetry designated by M and 2 - 1 - M . 

Note that these columns cover a total number of stages equal to 2n-l 

n(their sum). Also, note that when we cover all 2 - 1 stages the number
 

-
of l's is 2n l . Hence, obtaining a sum S in column M is equivalent
 

to obtaining a sum 2 - S in column 2 - 1 - M . Thus, the matrix 

must be symmetrical and it isnecessary only to display the left half. 

We wilr also drop the M = 0 term since it isnot of general interest. 

With these changes the matrices for n = 4 and n = 5 are given in
 

tables 2 and 3.
 

It is of interest to briefly consider the matrix intable 3 fo n = 5
 

as an example of a relatively complicated and yet manageable matrix. The
 



1 

2 

3 

4 

5 

6 

7 

8 

S/M 1 2 3 h 5 6 7 

0 7 3 1 0 0 0 0 

8 8 6 4 2 1 0 

0 h 6 6 4 2 2 

0 0 2 4 6 6 4 

0 0 0 2 3 5 5 

0 0 0 0 0 1 4 

o 0 0 0 0 0 0 

0 o o 'o o o o 

0 0 0 0 0 0
 

Table 2. Frequency Histogram Matrix - n = 4 
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Table S. Frequency Histogram Matrix - n 5 

tn 
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first n columns follow, except for one zero term the well-knowm and
 

easily expressed binomial frequency law. [4] (See section 2) A fairly
 

concise expression is also available [41 for the n + 1 column. For
 

greater values of M no easily handled explicit expression is known.
 

The problem is that if M > n the sunned terms become dependent and
 

their frequency histograms highly complex. One of the objectives of
 

sections 2 and 3 is to explain how this dependency arises and what kinds
 

of distributions or frequency histograms arise in this and other kinds
 

of surming techniques.
 

We do not have space to present frequency histograms for larger
 

values of n . It is of value, however, to observe that as n increases 

and M increases the histograms become increasingly complex and apparently 

without order. This reflects the high degree of interdependency of terms. 

Consider, as an example, the histogram H(s) for n = 8 and M = 67 

s 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
 

H(s) 3 16 27 28 8 11 17 26 33 26 19 18 -20 2 1
 

This is the 67th column of the n = 8 matrix. It is clearly very
 

complex. There isno apparent order or structure inthis matrix.
 

2.0 Weighted Sums from Feedback Shift Registers
 

Inthis section we consider a weighted sum of outputs from a feedback
 

shift register. The basic system is shown infigure 2. It will be assumed
 

that the feedback connections are such that maximal-length binary sequences
 

n
of length 2 - 1 are generated.
 



An alog Adder Output 

12 ... j .. 

Figure 2. Weighted Sums 

The required connections [5 will not be considered here. The n stages 

of the feedback shift register can have values 0 or 1 (arbitrary units) 

during any specified clocking period. As the shift register cycles through 

a complete period, each stage has a sequence of O's and l's following a 

well-known[1] and definite pseudo-statistical pattern. 

The term "pseudo" isused here and in other parts of the paper to
 

indicate that the outputs or variables appear to be random and thus capable
 

of a statistical description. Actually, we are dealing with a finite-state­

machine with a prescribed initial state and defining relationship, and the
 



output is thus known deterministically. Nevertheless, it is of great
 

value to treat the output as random in some sense. We will adopt the
 

practice here of speaking of probability distributions even though a
 

term such as "deterministic frequency histogram" might be more correct.
 

2.1 The Binomial Distribution
 

Inthe diagram of figure 2 the weighting factors, aj , can take any 

integer value. Consider first the case where a. = 1 for all j from3 

1 to n . In this case, we are simply adding the number of outputs of 

value 1. Itwill be shown in section 3,when we discuss the generating 

polynomial, that the outputs of the stages are independent of each other. 

Since the stages can have two possible values, the sum of n stages must 

have a binomial probability distribution. Actually, there is one state, 

the all-zero state, which cannot occur. The result is that the distribution 

isbinomial except for one term. With the probability of 0 or 1 equal 

,to a half, the distribution of the sum becomes: 
[4] [71
 

= P)()1 fo 1)2n< (
P(s) forl<s< (i) 
sn 

where (p stands for the combinations of n things taken k at a time.
 

Inmuch of the discussion to follow the all-zero state will be assumed
 

possible. This simplifies calculations significantly. Itwill be removed
 

when final results are presented. When the all-zero state is assumed the
 

distribution is the familiar binomial. A series of binomial distributions
 

for increasing values of n is easily presented by means of the Pascal
 

393
triangle as shown in figure 3.
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1 fl: 

I I n: 

1 2 1 n1: 

1 3 3 1 n 

1 4 6 4 1 n 

1 5 10 10 5 1 n : 

1 6 15 20 15 6 1 n : 

7 21 35 35 21 7 1 n ! 

8 28 56 70 56 28 8 1 n : 

Figure 3. The Pascal Triangle 

Once again n is the number of stages. Thus, for n = 5 stages we 

can use the n = 5 row to find the binomial distribution of the sum of out­

puts in the five stages (including the all-zero state). To use the Pascal 

triangle for n = 5 we first normalize by dividing each term in the n = 5 

row by the sum of the terms, which is 32(2 5). The first term on the far left 

is the sum equals zero term. Thus, the probability that the sum equals zero 

is 1/32. The probability that the sum equals one is 5/32, etc. The complete 

distribution is:
 

I 

S 0 1 2 3 4 5 

P(s) 1 5 10 10 5 1 
)2 32 32 32 

2.2 Sums of random variables - Discrete Convolution
 

We wish now to consider the very interesting case where the a's are 
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not all one. In the work which is to follow we make use of a mathematical
 

approach and a nomenclature which are not too common. We will, therefore,
 

review these ideas first.
 

We will write the probability distribution as a sequence of unnormalized 

numbers. For example, the binomial distribution for n = 5 is: 

[1 5 10 10 5 1] 

This is intended to convey exactly the same information as the
 

distribution at the end of section 2.1.
 

Recall now that we are basically interested inobtaining the analog sum
 

of some independent random variables (in the stages of the feedback shift 

register.) It iswell-known (see for example [40], Chapter 15) that the 

probability distribution of the sum of two random variables is the convolution 

of the two original probability distributions. It isparticularly easy to 

convolve two discrete probability distributions using the sequence format 

shown above. (see [41] or chapter 3 of [40]). As an examiple let us find 

the d1s-triHbutibn of tfie sir of tbinomial random variables for n = 3 and 

n = 4 . From the Pascal triangle we see that the correct sequences are: 

[1 3 3 1] for n 3 

[1 4 6 4 1 for n = 4 

There are various ways to mechanically carry out this convolution.
 

Perhaps the simplest is to set up a format much like that of conventional
 

multiplication. The only difference is that with this approach we do not
 

carry tens.
 



1 4 6 4 1 

1 3 3 1 

1 4 6 4 1 

3 12 18 12 3
 

3 12 18 12 3
 

1 4 6 4
 
1 7 21 35 35 21 7 1
 

Using the symbol for convolution we write the above problem in the form:
 

[ 1 4 6 4 1] [ 1 3 3 1] = E 1 7 21 35 35 21 7 1 ] 

(We might note that the solution to this convolution problem is a sequence
 

equivalent to the binomial distribution for n = 7 . The property of
 

obtaining the distribution for order n by convolving any two distributions 

whose orders add to n holds in general for the binomial family, as well 

as for a number of other families. It does not hold for all families of
 

distributions.)
 

2.3 The Uniform Distribution 

With the above technique we can now obtain the distribution of the sum 

of weighted outputs from stages of the feedback shift register.
 

As a first example consider the simple case where n = 2 , a1 = 1 and 

a2 = 2 . The weighted output of the first stage is 0 or 1 with equal
 

probability of 1/2 (we are assuming the all-zero state for the present). This 

distribution is expressed as:
 

[1 1]
 



The weighted output of the second stage is 0 or 2 with equal
 

probability which we express as:
 

[1 0 1]
 

That is,zero appears with probability 1/2, one with probability zero
 

and two with probability 1/2. All terms below zero and above the greatest
 

term specified inthe sequence occur with probability zero. To find the
 

distribution for both stages, out of the analog adde we convolve the above
 

to obtain:
 

[El ] [1 0 1]=[1 1 1 1]
 

This says that the sums 0, 1, 2 and 3 occur with equal probability
 

1/4. This result can be checked by means of the following table. Call the
 

state of the two stages k1 and k2
 

kI1 k2 alk1 a2k2 a1kI + a2k2 

_0 0__ 0 0 0 

0 1 0 2 2 

1 0 1 0 1 

1 1 1 2 3 

Thus we see that each term appears just once for the four distinct and 

equally probable combinations of states k1 and k2 . We can now make use 

of the fact that the all zero state is not possible and the maximal-length 

sequence has a length z2 - 1 = 3 . Without the all zero state our 

distribution becomes 

[0 1 1 1] 
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Now let us add a third stage with weight factor 4. First we go back 

and restore the all zero state until the problem is completed. The .
 

distribution of the weighted third stage is:
 

[1 0 0 0 13
 

That is, the values 0 and 4 occur with equal probability 1/2,
 

and the values 1 , 2 and 3 occur with probability zero. To find the
 

distribution of the sum for three stages we convolve the distribution of
 

the third stage with that of the first two.
 

[I 1 1 1]W [1 0 0 0 1] [1 1 1 1 1 1 1 11 

and removing the all zero term we have
 

E0 1 1 1, 1 1 1 1] 
I'
 

which says that the integers one through seven occur with equal probability.
 

If we add fourth stage with weight 8 the distribution suggests that the
 

first 15 integers are equally likely to occur. Appropriate weightings
 

cause this pattern to be continued. Thus we come to the most interesting
 

conclusion that a uniform pseudo-random distribution can be generated by a
 

feedback shift register with suitable weights. It is apparent that the
 

3th  
proper weight for the stage is 2531 if a uniform distribution is
 

desired.
 

2.4 Some Additional Non-Binomial Distributions
 

The possible variations suggested by this basic approach are endless.
 

iemention here only some of the most important.
 

=
 Consider a six stage register with weights a1 = a2 = ,a 3 = a4 2,
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a5 = a6 = 4 . We have just seen that the combination of weights 1, 2, 4 

produces a distribution. 

[1 1 1 1 1 1 1 1]
 

But now we have two such distributions so we convolve them together to
 

obtain:
 

(1 1 1 111 1 1) *[1 Ii 1 1 11 11
 

=[123456787654321]
 

The result is a triangular (Simpson) distribution. (The pertinent weights 

and final distributions are summarized for this case and other important cases
 

in table 4.)
 

A "stairstep" distribution is obtained from a combination of weights such
 

as 1, 2, 4, 4 which give.
 

[ 1 1 1 1 1 1 1 0 0 0 1] 

-[111122221111 ]
 

Finally, a "Bimodal" distribution is obtained from weights such as
 

1,1,1,1,5 which give,
 

[1 4 6 4 1] [1 0 0 0 0 1] 

-E1 4 6 4 1 1 4 6 4 ']
 

The peak of the second mode can be extended out to any value by simply 

increasing the last weight. This bimodal technique can be used on any type 

of distribution by simply adding a stage with a weight equal to the distance 

the second mode isto be shifted. 



Name Weights Distribution Histogram
 

aI a2 a3 a4
 

Binomial 1 1 1 1 [0 4 6 L 1) __ _ _ _ 

Uniform 1 2 4 8 [0 1 1 1 1 1 1 1 1 1 I I I I I I I I I 

Triangular 1 2 1 2 [0 2 3 4 3 2 1] 

Stairstep 

Bimodal 

1 

1 

2 

1 

4 

1 

4 

5 

[0 

[0 

1 

3 

1 

3 

1 

1 

2 

0 

2 2 

3 

2 

3 

1 

] 

12 1 1) 1 

I I 

Table 4. Synthesis of Distributions of Pseudo-Rdndom Variables
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The preceding examples are sumnmarized in table 4. Necessary weights
 

and the resulting distributions are shown. The histogram is simply a
 

pictorial representation of the distribution.
 

Once again it should be emphasized that the possible variations to the
 

above are unlimited. Any number of different distributions can be generated
 

simply by changing the weights, a.
 
* 3 

Although the above technique for synthesizing pseudo-distributions is
 

very attractive it is not without limitation. Consider the uniform dis­

-
tribution, generated by weights 2j . The range of this pseudo-random 

nvariable is from 1 to 2 -i where n is again the number of stages.
 

Thus, for example, this simple circuit cannot be connected to yield a
 

pseudo-random variable uniform between 0 and 9 . The latter would be
 

necessary to develop a decimal range pseudo-random number generator.
 

These results have been reported on in the literature[42] [43] 

2.5 	Some Thoughts on Range and Smoothness
 

In this section we are interested first in the range of the pseudo­

random variable S , the output from the circuit of figure 2, and second
 

on the effect which weighting has on "smoothness" of the output distribution.
 

These factors are of course inter-related. Note that we define the range
 

here as the number of possible outcomes or values of S , rather than the
 

difference between S max and S min .
 

The 	range of S can be important for a number of applications as it
 

indicates the number of different output levels of the device. Aggam'al[44],
 

for example, has suggested a frequency generator which generates a number
 

of frequencies equal to the number of different levels of S .
 

If we consider the circuit of figure 2 with unity weights, the range
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on the sum is n since the sum can be any number from I to n , with a 

distribution following (almost) the binomial law. Ifwe let the weights
 

2n
be 25-1 , we obtain a uniform distribution with range - 1 , as we 

saw in section 2.3. This latter range is obviously the maximum range for
 

the circuit of figure 2, since after 2I - 1 outputs the periodic sequenci 

repeats. Likewise n is the minimum range. Hence, the range rs has
 

bounds:
 

R < Ts < 2 

where the weighting sequence for the lower limit is [ 1, 1, 1, -... ] 

and for the upper limit [i, 2, 4, 8, . Z. 1I For any weighting sequi
 

[ a1 , a2, ... , an I the range rs is simply the number of different numl
 

which can be obtained by adding any combinations of the weights taken anyw]
 

from 1 to n at a time.
 

The analysis in sections 2.3 and 2.4 raises some interesting question!
 

related to the Central Limit Theorem tendencies of sums of random variable!
 

--The Central Limit Theorem says that the distribution of the sum of continu(
 

random variables tends to be Gaussian (or normal) as the number of summed 

variables increases, under certain conditions. A discrete approximation
 

to the Gaussian is the Binomial distribution. The accuracy of the approxI
 

increases as the order of the binomial increases. The Gaussian distributi(
 

is in a sense the "smoothest" possible continuous distribution. In the sax
 

general sense the Binomial distribution is the smoothest discrete distribr
 

Summed discrete random variables tend to be Binomial under conditions
 

analogous to those necessary for the Central Limit Theorem, -

Consider what happens when we use weights of unity in all stages of t]
 

circuit of figure 2. The distribution of each stage is [ 1 1 ] and the
 



18
 

distribution of the sum for an n-stage circuit isbinomial of order n
 

Consider now what happens as we start to use non-unity weights. -Let
 

n = 3 and find the distribution for a series of weight combinations as
 

shown in table 5. Assume the all-zero state.
 

0 1 -2 3 4 5 6 7
a1 a2 a3 


1 1 1 1 3 3 1 0 0 0 0 

1 2 1 1 2 2 2 1' 0 0 0 

1 2 2 1 1 2 2 1 1 0 0 

1 2 3 1 1 1 2 1 1 1 0 

1 2 4 1 1 1 1 1 1 1 1
 

Table 5. Effect of Weights on "Smoothness"
 

As the weights increase the range increases and the "smoothness"
 

decreases. The ordinary (normal?) tendency under summing isfor the
 

distribution to become increasingly smooth. However, the tendency of the
 

weights is to emphasize individual distributions. These two tendencies
 

20 , 21 , 22If the weights are chosen as
tend to-offset each other. 


2 .as in the last line of table 5,the two tendencies cancel each
 

other and we retain the uniform distribution.
 

It is of interest to consider the sum which leads to the uniform
 

distribution in more detail. First, we recall that the condition for the 

Central Limit Theorem, the Lindeberg-Feller condition, can be expressed in 

simple form as. 

2 
a­lir _ 0 (2)n 2n-


j=lc
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where r32 is the variance of the jth random variable.
 

This condition is essentially applicable to the discrete case as well 

to the continuous case to the extent that the binomial distribution 

approximates the Gaussian. Let us consider the limit in (2)for the 

case where the weights are 20 , 21, 22, 23, .... The corresponding 

distributions are: [1 1], [1 0 1], [10001], - and the corresponding 

variances are 1/4, 1, 4, 16, --- or 4j-2 where j = 1, 2, 3, . 

The ratio of the variance of the jth variable to the sum of the' 

variances of the first n variables is: 

43-2
 

I143- 2
 
= 

j=l 

- 4J
 

4J
 
1=1 

= 3x43 -(3
4 n+ll 

The largest variance appears for j = n in which case the ratio is: 

R= 3 (4) 
4-1-4n 

And the limit is: 

lim Rn = 0.75 (5) 

Thus, for this case, the Lindeberg-Feller conditions are not met. This
 

is, of course, exactly as we would have expected. A similar analysis for
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series of weights 1, 2, 3, 4,.... indicates the limit is zero. Thus,
 

these weights are not large enough to offset the central tendency of the
 

suhmed random variables. We will return to this question briefly when we
 

discuss infinLte sums in section 4.
 

2.6 The Autocorrelation Function
 

In the preceding work, it was convenient to let the states take 

values 0 and 1 . <In our study of the autocorrelation function, we 

will let these values be -i and +1 . We are interested in the stream 

of values out of the analog adder in figure 2. This can be thought of as 

a stochastic process with a new value occurring at each clocking time. We 

will designate this sequence of output values as: 

[bl,b2, ",bk, ...Ibzn_l
 

Wle will only consider 2n-I terms since the sequence isperiodic and 

repeats after 2 -l terms. We define the autocorrelation function as: 

R(m) bkk bk+m , m = 0,1,2,... (6)
k=I
 

(Note that because the sequence is periodic bk + 2n 1 = bk.) 

This is also equal to the number of agreements (same sign) minus the number
 

of disagreements when the original sequence is compared with itself shifted
 

by m units.
 

We consider first the case where all the a's except one in figure 2
 

equal zero. The one exception is equal to 1 . For this case, it is
 

known[1] that the autocorrelation function is:
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R1(m)= [2n-l m0 (7)1 moo 

ThLs function which also has period 2n-I , is plotted in fLgure 4. 

Note that we are considering m as a discrete integer variable. The 

graph represents an integer as all of the space between the integer and 

the next higher integer. 

2n-I 

R1 (n)2 

Ri~in 

[ m 

n 
o1 

0n_1 _ 

Figure 4: Autocorrelation Function of Maximal-Length
 

Pseudo-Random Sequence
 

From figure 4 we see that as the length or period of the sequence
 

(2n-l) increases the autocorrelation becomes increasingly concentrated at
 

mn= .
 

Now we wish to study this autocorrelation function for the stream of 

values out of the analog adder in figure 2 for some non-trival weightings. 

As an example let aI = 1, a2 = 1 and all other weights be zero. Then 

the sequence out of the generator is:
 

[b1 + b 2, b 2 + b3, ],+ bk + 1 , b 2n_1 + b,] 

with autocorrelation function: 
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2nl
 
2P-1
 

R2 (m)-- 0
( bk~ )(bkf + bkm+l) 

k--1 
(b + +b klb k+,~--+l bk'1 r~m k+1 hklrr br k 

2Rl(m) + R 1 m-l) + Rl(m+l) (8) 

Thus we have established tha very interesting and useful, though hardly
 

surprising, result that the autocorrelati6n function of the sum of se4uences
 

is a sum of the individual sequence autocorrelation functions. This discrete
 

result is analogous to the well-known [45] expression for the autocorrelation
 

of a sum of continuous random-variables:
 

xy yx. yy 

Consider now the sum of p sequences obtained by letting a = a2 = 

. a = 1 and all other a.'s are zero. The autocorrelation function is:P 3
 

Rp(m) = pRl(m) + (p-l)Rl(m-l) 

+ (p-l)Rl(m+l) + (P-2)RI(m-2) + 

+ R1(-p+l) + R1(m+p+l) (10) 

This result is a fairly straightfonard extension of the p = 1 and 

p = 2 cases. It simply indicates the number of cross-terms of given delay 

obtained in the multiplication: 

+ - + bkm+pl)(bk+bk+l+ "" +bk+l+m)(bk+m + bk+mfl 




Equation (10) reduces to the following simple relation for the auto­

correlation of the sum of p successive unity-weighted pseudo-random
 

sequences.
 

R (m) = (P-ImI)2n - P m 0 + 1 + 2 , + P 
p- -()
 

2n 
 1 - P
_p2 ,m=P,P+l,"m"'P+" ,2 -1-


This function is plotted in figure 5 for n = 4 and p = 1,2,3,4,5,6,7 

and 8 . The effect of summing p sequences is seen to be to introduce 

'Mmemory"into the output process. The process "remembers" over a number of
 

clocking pulses equal to P , the number of successive sequences added.
 

The effect is analogous to passing the original sequence through a low-pass
 

filter. In fact the system is actually a non-recursive digital filter.
 

It is, of course, not necessary to add successive stages or to use
 

unit (or equal) weights. We consider first the sum of non-successive
 

sequences and second the sum of sequences with different weights.
 

Let a1 = a3 = 1 and all other weights be zero.
 

2n-I
 

R1 3 (m)= k+bk+2)k +bkm+ bk+m+2 )
k=l 

(12) 

2R1(m)+ Rl(m-2) + Rl(m+2)
-

And, similarly:
 

Rlq(m) = 2Rl(m) + Rl(m-q) + Rl(m+q) (13)
 

is the autocorrelation function of the sum of a sequence and the qth later
 

sequence. The effect of delaying the weighting to the qth stage is to
 

delay the "memory" in the process. As an example R14 (m) is plotted in
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p 
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Figure 5, Autocorrelation Function - Rp(M)
 

(scale not consistent for different values of p)
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figure 6. 

R14 (i) 	 28 

12 

-3 0 1 5 	 11 12 15 16 19 20 

Figure 	6 

Other 	interesting autocorrelation functions can be obtained by adding 

sequences ith different delays.
 

We turn now to the effect of non-unit weights. Let a = 1 and
 

a2 = e . The sequence out of the generator is:
 

[bI + eb2 , b2 + eb3, , bk + ebk+l ... , b2 _1 + ebk+m+I) 

and its autocorrelation function is:
 

2n-i
 

R2 (m)	al=1 = (k + ebk+l)(bk+m + ebk+m+l)
 

a2 e
 

(1+e2)Rl(m) + eRl(m-i) + eRi(m+l) 	 (14)
 

This function is plotted in figure 7 for e = 1,2,3, and 4 . The 

important difference between these results and those of figure 5 is that in
 

figure 5 the autocorrelation decreases in equal steps (triangular) whereas
 

in figure 7 the function drops off more rapidly for m near 0 than for
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Figure 7. Autocorrelation Functions for Different Weights 

(Scale not consistent for different values of e.) 
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larger m . The latter function resembles an exponentially decreasing
 

function. As e increases the autocorrelation function resembles
 

increasingly the autocorrelation function of the original pseudo-random
 

sequence. This is certainly reasonable because values of e much greater
 

than 1 simply emphasize the heavily weighted sequence. The important
 

point here is that the process of weighting does effect the autocorrelation
 

function and does so in a way which is intuitively reasonable. 

Let us consider the effect on the autocorrelation function of binary 

weights (a1 = 1,az = 2, a3 4, ) .This function is plotted in­

figure 8 for a number of combinations of binary weights. The functions 

fall off in an exponential-like way with each succussive step being about­

1/2 the previous step when all levels are referenced not to zero but to 

the minimum level. 
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a 2 =2
 

a 3 
 = 4 

Figure 8. Autocorrelation Functions for Binary Weights 

(Scale not consistent for different weights.) 
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3.0 Augmented Feedback Shift Registers
 

We turn now to an alternative approach to changing the distribution
 

obtainable from a feedback shift register. Actually there are two ways
 

of implementing this approach. Itwill be shown that these ways are
 

related to each other and likewise are related to a lesser extent to the
 

approach just discussed in Section 2.2. Before we consider the two ways
 

available under this alternative approach we must briefly consider the
 

defining or characteristic polynomial for the feedback shift register.
 

3.1 The Characteristic Polynomial
 

The state of a feedback shift register is completely specified by its
 

initial conditions and a so-called characteristic polynomial which
 

interrelates outputs from various stages and the input to the first stage.
 

One form of the characteristic polynomial for a feedback shift register
 

with n stages connected to generate a maximal length sequences is­

Dn2)An Dn-l ®An-2 Dn -2 + ... 6AID1QD = 0 (15) 

where 0 stands for the modulo 2 sum. This operation isdefined inthe
 

table below. 

0 0 1 

1 1 0, 

Table 6
 

The coefficients A- are either 0 or 1 depending on the feedback 
J
 

connections in the shift register. D is an operator signifying delay of
 

order equal to its exponent. To clarify this general expression consider
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the particular circuit shown in figure 9,and its characteristic polynomial:
 

> 1 2 3 4 5 

Figure 9. Five Stage Binary Feedback Shift Register
 

DS®D2 ®D° = 0 (16) 

Note first that there is no need or use for a minus sign in modulo 


arithmetic since -1 and +1 are equivalent. Therefore we can put any term
 

in equation (16) on the right side of the equation without changing signs.
 

D5 D2Thus, for example, we can write: = D . (17) 

The interpretation of this expression is as follows. The value in a 

certain stage is equal to the modulo 2 sum of the value two time delay 

periods earlier and the value five time delay periods earlier. Since the
 

shift register shifts values or outputs one position each delay or clocking
 

period, this is equivalent to saying that the modulo 2 sum of the value
 

in the 5th and 2nd stages is equal to the value inthe 0th stage. The
 

latter is a hypothetical stage which feeds the first stage at a clocking 

instant.
 

Since D simply stands for delay we can increase the exponent of each
 

term in (17) and still have a correct equation. Thus, for example 

D1
D6(H)D3 = (18)-_
 

Similarly, this can be repeated any number of times, a property which 

will be very useful in the sections to come. The characteristic equation
 

also tells us that values instages are independent as long as the stages are
 

2 
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no more than S delay periods apart. In general, values are independent
 

if stages are no more than n delay periods apart where n is the number
 

of stages in the feedback loop.
 

3.2 Added Stages
 

We are ready now to consider the first of two alternative ways to 

change the distribution available from a feedback shift register. Consider 

the circuit of figure 10. 

output
Analog Adder 


KIa1 aI a3 aa 6 ak.- a.
II
 
m
 

1 2 3 4 
 S 6 .. k m. 

Figure 10. Augmented Feedback Shift Register
 

The basic feedback shift register is identical to that of Figure 9.
 

To this we have added m-5 delay stages which are part of the shift
 

register but are not in the feedback loop. In much of our discussion to
 

follow, we will assume that the weighting factors related to the stages
 

in the feedback loop are all equal to unity.
 

Consider as a first example the problem where m = 31 in Figure 10.
 

Let a1 through a6 equal one and all other factors equal zero. That is,
 

we are adding the outputs of the five stages plus one additional stage
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delayed one clocking period from stage S. Call this analogsum "S6 ". 

S6 = D1 + D2 + D3 + D4 + D5 +6 (1) 

We know from section 2 that the sum of the first five stages is
 

binomial. But the addition of a sixth stage adds a dependency which makes
 

D6
the resulting sun non-binomial. To see this we substitute from 

equation (18) into equation (19) and collect terms to obtain: 

S6 = D1 + D2 + D 3 + D4 + D5 + (DI(D 3) = D2 + D4 + D5 + 

[D1 + D3 + (DIl6D)] (20) 

The terms within the bracket were collected because they are inter­

dependent. The total bracketed term and the first three terms are independent 

and the resulting distribution of the sum can be found by the convolution 

D2 , D4 
techniques developed in section 2. The distribution of the terms 


and D5 is binomial of order 3. That is, it is of the form. [0 3 3 1]. 

The distribution of the complex term in the bracket? cannot be found 

from convolution techniques. It is possible, however, to find the 

distribution using a table of possible states as shown below. 

3 1l 3 11 +1 3 + D1 3D 

0 0 0 -0 

0 1 1 2 

1 0 1 2 

1 1 0 2 

I Table 7 

1 3 1 3
The resulting distribution of [D1 + D3 + (D + D3) is: [1 0 3]. 
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D2 D4 D5When we convolve this with the distribution for , and we 

finally obtain: 

[1331] [103] = [1 3 6 10 9 3] 

(see Column 6 of Table 3).
 

If we now change the problem so that the output of the seventh stage
 

is added to the first five we have:
 

DI + D2 + D4 + D5 = DI . + 2S7 = + D3 + D7 D3 + D5 + [D + D4 + (D2 ®D)] 

(21)
 

and the resulting distribution is as in the previous example since the
 

structure is the same.
 

Now, however, consider the case where the added term is in the ninth
 

stage. Then we have:
 

S9 D1 + D2 + D3 + D4 + D5 + D9 

= D1 + D2 + D3 + D4 + D5 + D6 ®D4 

DI + D2 + D 4 + D5 + D1 ®D 3QD4 

1 + D3 + 3D2 + D5 + [D D4 + (D 1®D D4 )] (22) 

In this case the dependency is in three stages rather than two and the
 

distribution changes. Using the basic approach above, with an 8 column table
 

in this case, we finally obtain the distribution, [1 2 7 12 7 2 1]- or,
 

dropping the all-zero term, [0 2 7 12 7 2 1]. 

After two examples ie are led to the general question, what is the 

2 3 4 5distribution for. -1S. = D + D + D + D + D + Di where j can be any
J 
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number from 1 to 31? First, we should establish our range of interest 

on j as 31 (or 25-1). We will not exceed 31 since any value of j 

greater than 31 is equivalent to some j betwveen 1 and 31 . This 

follows from the fact that the maximal-length pseudo random sequence 

repeats every 2n-1 (25-1=31 in this case) clocking periods. Furthermore, 

we note that every S. involves a different combination of the first 2J 

five stage terms. For if the Di term consisted of exactly the same 

D2 D4combination of (D1 , , D , and DS) for different values of 3 the 

sequence would have a period equal to the difference of the values of- j in 

question. Thus there are 31 different combinations of terms arising in 

S which should be considered indetermining the possible distributions J 

obtainable. 

Not all of these combinations produce different distributions. (We saw 

above that S6 and S7 had the same distribution). Since the distribution 

isdictated by the structure, which reflects the number of interrelated 

terms, it is fairly obvious that there are 5 possible distributions 

depending on whether there are 1, 2, 3, 4, or 5 interrelated-terms in a, 

particular combination. 

The question of how many ways there are to obtain a particular distributior 

is easily answered. There is just one way in w¢hich all five terms can be 

interrelated. Thus, one of the 31 possible values of j leads to the 

distribution typical of the case where all five terms are interrelated.
 

There -are 5 distinct ways of combining four dependent terms. That is,
 

the combinations of five things taken four at a time is five. And, in fact, 

the combinaterial law is used to find the number of values of j which lead 

to a particular distribution. The distributions which are obtained by
 

adding one additional delayed value are summarized in the following table 8. 
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Included for reference is the binomial case where there are no dependencies.
 

In all cases the all-zero term has been ommitted.
 

Number of Interdependent Number of Ways to 

Stages Obtain Distribution Distribution 

0 1 [0 5 10 10 5 1] 

1 5 [0 4 7 8 4 1] 

2 10 [0 3 6 10 9 3] 

3 10 [0 2 7 12 7 2 1] 

4 5 [0 1 10 10 5 5] 

5 1 [0 0 15 0 15 0 1] 

Table 8 

The above example is limited of course to a shift register with five stages 

in the feedback loop and to a single added stage augmenting the basic five 

stages. It is of interest to generalize and expand our development. 

Consider first the case where we allow more than one additional stage. 

Thus, for example, we might consider the sum: 

$67 = D1 + D2 + D3 + D4 + Ds + D6 + D7 

D5 1= + [D1 + D3 + (D + D3)] + [D2 + D4 + ( 2 + D4)] (23) 

The bracketed terms, identical in structure to the bracketed term in 

_quation (20), have the distribution [1 0 3] as shown earlier. Thus, the 

total distribution of S67 is: 

[1 11 - [1 0 3] [1 0 3] = [1 1 6 6 9 9] 

or, dropping the all-zero term:
 

[0 1 6 6 9 9] 1 (see column 7 of table 3) 
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This is a new distribution as we might have expected. Once again,
 

there are a large number of different ways of adding 2 more values. Thus,
 

many different distributions can be obtained depending on which two delayed
 

values are selected. We can, of course, extend the number of added stages
 

to 31 with a very great many different distributions obtainable.
 

A second way of expanding on the possible distributions is by letting
 

the weighting factors, A. , take values other than 1. (Insection 2, we
 

essentially covered this situation for the case where j was between 1 and
 

n .) Allowing A. to take any value leads to literally countless different
 

distributions. I 

A final generalization is to allow n (5in the above example) to take
 

any value. Again, this opens up a whole new range of distributions.
 

No attempt has been made to chronicle any significant number of the
 

infinite number of possible distributions. The basic procedure is sumnarize(
 

below.
 

1) Obtain the characteristic equation corresponding to the feedback
 

--shift register-of interest (assume its length is n
 

2) Write down the sum S in terms of the first n values of
 

Di(1 < j < n). Use the characteristic equation to express values of Di 

for j<n in terms of values of EP for 1 < j < n
 

3) Separate the'terms in S into independent groups.
 

4) Find the distribution of each independent group through the tabular
 

method shown above.
 

5) Convolve the distributions of the independent groups to find the
 

overall distribution of the sum.
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3.3 Added Logic 

The approach used in section 3.2 suggests an alternative to adding
 

additional stages. Since we can express any sum in terms of the first n
 

values of D3 we can obtain any sum by simply using logic (modulo 2 adders)
 

prior to analog summing. Assume, for example, that we wished to obtain the
 

sum S6 defined in equation (20) as: 

S6 = DI + D2 + D3 + D4 + D + (D1 + D 3 (24) 

This sum is easily realized by the circuit shown in figure 6.
 

output 
Analog Adder 

Figure 11. Synthesis of Sum S6 

It is apparent that this basic approach can be used to synthesize any
 

sum discussed in section 3.2. In a particular practical case, itwould be
 

necessary to decide whether it would be more desirable to use additional shift
 

register delay stages or additional logic circuits. No general role seems
 

to hold for all situations.
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It is also apparent that the above scheme can be used with different
 

weighting factors to produce a wide range of different distributions.
 

4.0 Infinite Sums 

Inthis section we are concerned with a problem closely related to
 

that of the first three sections. We seek the probability density function
 

of the random variable:
 

x- ak Ek (25)
 
k=l
 

where "a" is a constant, and Ck is a random variable. The relation to
 

our earlier work is evident when we write the sum as obtained in section 2.3
 

as:
 

S = k E k (26) 

where Ek isa pseudo-random variable which takes values 0 or 1 with nearly
 

equal probability.
 

Here we extend the problem to the infinite sum where "a"can take any 

value and k can be any random variable. The problem is solved with 

comparative ease for some cases and isnot satisfactorily solved for other1 
cases., We start with the easy case (a= f k binary with equal probability
 

of either state) and consider later the more difficult cases.
 

4.1 The Uniform Case 

We consider first the random variable:
 



39 

X= 1 (l)kc (27) 
k=l 

where Ck is a binary random variable wich takes the values c and d
 

with equal probability. That is:
 

= 
= P( d) = ,, for all k (28) 

We assume further that the Ek'S are independent. This problem has
 

been solved (for c = 0 and- d = 1 ) by Blake and Thomas[46 ]. Hence, we
 

are working with the problem of the infinLte sum of independent random
 

variables of the form ak~k . We will use a characteristic function
 

approach. It iswell-known [40] that the characteristic function of a sum
 

of independent random variables isthe product of the indivLdual characteristic
 

functions.
 

X(W) = 1 k(W) (29)
k=l
 

- ~w) , the characteristic function of ak k , is: 

k + eJWd/2k= -jw'c/ 

w c+d) 2k+1 Cos w(d-c) (30) 
2
 

Applying (29) we obtain:
 

,jw(p#+d)/2 w (d-c) (1

jc +d)/2 W(c) ~ dc
 

k 4l 2k­

/ w(d-c) (2
e si - (32)
 

w-T­



40
 

The two infinite products of equation (31) are found as indicated in 

equation (32), in the appendix. The characteristic function of equation (32' 

iS that of a uniformly distributed random variable with range from c to d. 

That is: 

fx(X) Lo1-E' c< 
otherwise 

x< d 
(33)
 

This is a most interesting result, namely that the infinite sum in
 

equation (27) is uniformly distributed. This ,problem has been considered, 

though not originally in a probabilitie framework, for a long time. It 

was shown by Vieta ( ee Kac ) that any real number t , 0 < t < 1, 

can be expressed uniquely as: 

1 + 2 63 (34)
 

where G. is either 0 or I for each j The problem isdiscussed in 

some detail by Kac. 

4.2 General Weights (a= 1/2) 

We turn now to the general problem of the distribution of:
 

x 0= ak (35) 
k=l
 

where -a can be any number from 0 to . This problem isnot solved 

here in any closed form. Rather we suggest some of the results and point 

out problems which are still under consideration.
 

We are tempted of course to simply apply the transformation approach'
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used in section 4.1. This leads us to a transform of X given by: 

) = ejw(c+d)a 2 / ( -a) cos w(d-c)ak+l (36) 
k=I 

It is seen that the first infinite product, involving exponentials,
 

reduces to an easily expressed "phase" term. The second product, however,
 

isnot Imown to have a simple solution. So the method of section 4.1 does
 

not lead to the closed form solution for which we might hope. In fact,
 

further consideration of the range of X suggests some very real problems.
 

a) 	 Case 1:a 1 

When a = T X is a continuous random variable on the range [c,d].1
 

However, if a < it is not possible to obtain all values of X between
 

the minimum and maximum. In analogy to the formula of Vieta (see equation 34)
 

consider for following expression.
 

t = ela1 + e2a 2 + e3 a3 + (37) 

a 

is 	-0 < t <a
If e. can be either 0 or 1 the range on t 
:11 

For example, if a = ,we have: 

e
 
+ 


eI e2 

t = 1+2 3 "'" 	 (38)
 

and 	the range on t is [0, ]. However, there are many values of t which 

cannot be generated by any combination of e.'s . For example, none of the
 

numbers in the open sub-range I-,wI can be obtained. In fact, the closed 

-range [0,] has an infinite number of open sub-ranges in which no number 

can be generated by equation (38) with any combination of ei's .
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Let us turn now to a consideration of the distribution of F . This 

problem is discussed by Feller.[48) As we shall see it turns out to be 

essentially meaningless to speak of the probability density function (PDF), 

so we shall look at the cumulative distribution function (CDF). The CDF 

has an infinite number of flat regions separated by jumps which are 

infinitely small. The largest flat region is (-,)
which iscentered at
 
1 £1

X 1 and had a length of There is also a flat region centered- . 

about 1 with a length of and another of length centered-

at 7 . The CDF for these regions only isplotted in figure 12. The CDF 

for these regions plus the next set of regions between these is shown in
 

figure 13. As the number of terms in equation (38) taken into account is -­

increased, the size of the jumps in the CDF, F(X), decreases. (See figure 14.)
 

These jumps go to zero in the limit as all terms are considered. Hence, the
 

CDF becomes continuous, and yet no PDF exists. Feller [48 ] refers to this
 

as a slar distribution.
 
1 

The example above is for a = but the same type of distribution arises 

for all 0 < a < 1 Work is presently underway to effect a more meaningful
2 

representation of the distribution for this case.
 

1 

Case 2: 7 <-a < 1 

We consider now the range of t in 9quation (37) under the assumption 
1 a 

< a < 1 .The maximum and minimum values are 0 and . The range
a 

on t is continuous; that is, every number t between 0 and a can 

be expressed as in equation (37) with appropriate e-'s . To see this we 

consider the way in which we generate appropriate values of e-'s for a­

given t.
 

j
The procedure is to subtract from t the largest value of a which
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Figure 12. Partial CUF of X (3 open regions shoun) 
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0.0 	 A"
 

10 1 2 - 3 4 '5 6 7 8 9
 
4 24: 24-24 24 24 24 24 24
 

Figure 13. Partial CF of X (7 open regions shown)
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Pirire 14. Partial CDF of X. (-anv onon regions shown.) 
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is less than t . For this value of j we let e. = 1 . For each smaller3
 
=
value of j we let ej 0 . We now try to subtract aj+l from the-new 

difference t - a5 . If we can do so without leaving a negative remainder, 

we let e3+ 1 = I , if not then ej+1 = 0 . We proceed in like manner with 

j+2 
a etc., generating new values of ej+k based on whether or not the
 

corresponding a5±k can be successfully subtracted from the new difference.
 

We continue until the last difference is zero. This may be possible only
 

in the limit as the number of terms approaches infinity.
 

Suppose that at any point in the procedure the original number t -or
 

a new difference t - a2 - aj+k falls, as itmust, within the range:
-

n n+1
a < t < a (39) 

A necessary and sufficient condition that the procedure can be carried out
 

with an eventual difference of zero (ifonly in the limit as the number of
 

terms is unbounded) is that:
 

t - an+ < a (0 
tn+2"h (40)
 

for every t and every n . Equation (40) simply says that after any
 

an+l subtraction the terms left to subtract must add to a number at least
 

as large as the new difference. The largest value of t in the range given
 

by (39) is aln so the worst case in (40) is:
 

an n+l a
 
f 1-a
 

which reduces to
 

2
(l-a)2 < a (41)
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1 

1 
Note that the equality in (41) ismet for a = , but the inequality 

fails for a < I . This is in agreement with the argument of the preceding 

section. However, the inequality holds for < a < 1 . Hence, any 

0 < t < can be realized by a proper selection of e-'s as long as
1-a 

Y < a < 1 . Thus, we have established that the range on t iscontinuous
 

Yo< a < 1.for 1

We now direct our attention to the random variable defined by equation (35) 

The range on X is the same as the range on t ; following the argument 

above, 0 < X < a and X- is continuous in this range.ITwrafge. I 

We consider next the distribution of X . For a = X was found 

to be uniformly distributed. More precisely, the expression,
 

x-Y a) .= 0 (42) 
j=1 

can be satisfied only by a unique set of Ej's for a particular X . That 

is,there is one and only one combination of gjls in equation (35) for 

a given value of X in the range [0,i]. 

if < a <-1 this situation no longer holds. As an example let 

a = 0.6. There is only one way to obtain X = 0 ; it is necessary that 

E. = 0 for all j Likewise, we obtain X = 1.5 only if g. = 

for all j . However, we can obtain numbers in between in many ways. The 

number 0.96 El I , 1 , g. 0 foris obtained from the set = g2 = j 

j > 2 . It can also be obtained by letting C1 1 E2 = 0 and C. 

(for j > 2) take on any appropriate values to add to 0.36 . That this 

ispossible is demonstrated by the fact that: 

) (0.6)3 = 0.54 , (43) 
j=2 



which isgreater than 0.36
 
1
 

Hence, we have shown that for < a < 1 the random variable X is
 

continuous and isnot uniformly distributed. Work is continuing on the
 

determination of this distribution.
 

We close this section with the comment that we believe that as "a"
 

approaches 1,the distribution of X will probably become Gaussian-like.
 

Case 3: a= 1
 

For this case consider equation (35) with finite range.
 

N 
x = I k (44)k=l 

This is simply the problem of N independent trials and the distribution
 

of X is of course binomial of order N . As N increases without bound
 

the distribution of X asyptotically approaches a Gaussian distribuzion,
 

according to the DeMoivre-Laplace Theorem.
 

Case 4: a = 2 

Again, we let the number of terms be finite 

N 2k (45) 

kz0 

As was shown in section 2.3, the resulting distribution of X is
 

uniform.
 

Case 5: 1 < a < a - 2 

Little work has been done on the wide range of "a"greater than 1. 
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There is,however, an intriguing synnetry or mirror effect of the type of 

distribution with respect to a = 1 . Note again that for a = 1 the 

distribution is approximately Gaussian. For a and a = 2 , the
 

distribution is uniform. There is a strong temptation to suggest an analogy 

1between the ranges (0,j)and (2,-) We are continuing to explore these 

relationships. Figure 15 suamarizes the above 5 cases, including the 

speculations suggested for case 5. 
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6.0 Appendix: Infinite Products
 

jw(c+d)/2k +l
 

1) Simplify H e
 

ja c d
11 eJWcd/ e 1 + IF+ 1.)a(c+d)"1 116 +
jw(c+d)/2k+l 

k=l
 

11=0
 

(A-1)e=
ejw(c+)12 


1=O
Since i =2 

(70
 

2) Simplify l cos w(d- c) 

w(d-c) w(d-c) w(d-c) 
w(d-c) 2 2 Cos -2 

c OS0 0 -rOCO COS 4 O 

84 

sinT- sin -'2 (A-2) 

0 = 0o8 si8,0-A2 

Cos cos sin 

Cos C sin (A-3)
osCos1/6--6 


As the trigonometric identity is continually applied to the last (sin y)
 

y term, that term approaches unity and the infinite product becomes:
 

0 
sin Y- =-i Cos L (A-4), 

Y k=1l 2k+ 
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which suggests that­

w(d-c)

w(d-c) sin 2
11=- OS w(d-c)
 

k=1l 22
 


