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ABSTRACT

Surface, heat-fluxes:and mean temperature profiles inia
turbulent boundary layer were measured along a porous flat
plate in the presence of uniform transpiration (blowing ér

"suction) and relatively strong favorable pressure gradients.
‘The acceleration parameter, K , blowing fraction, F , and

surface temperafure were held constant. The range of boundary

conditions achieved were: (1) 25 < U < 123 ft/sec,

(2) -0.004 < F < 40.006, (3) -20 < (t-t,,) < 43°F,

(%) 0 < K'< 1.45x107° . These data apply to 2-diménsional,

incompressib}e, turbulent boundary layers. The free stream

and injected fluids were air. When supplemented with :

Julien's [2] hydrodynamic data taken under the same flow:.

conditions, the resulting data afford a unique opportunity to

study both boundary layer developments relative to the lécal

surface heat, flux. ' ;
Signifigant reductions in Stanton number are reported

at F =0, K = 1.45x10—6 . 'Superposing both blowing and

favorable pressure gradient may increase St above the

"K = 0 equilibrium" level (i.e. at a particular Re, , the

experimental St may be larger than the zero pressure gradient

St data of Moffat [3] at the same Re, ). There exists a

zritical combination of positive F and K (denoted as

FC ’ KC ) where St appears unaffected by the:imposed

favorable pressure gradient. If KC is held constant and

F < F, , the resulting St drops below the "K = 0 equilibrium"

level. When F > F_ , the Stanton number increases above

"K = 0 equilibrium”t The critical F, increases with X .
Regardless of F , at any streamwise position the ratio

of thermal layer thickness to hydrodynamic thickness, 6T/64’

becomes greater as K increases. At any particular level

of K, ST/6 continues to increase with streamwise distance.
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Comparison of the tt y+ and Ut - y+ profiles in the

constant K region reveals a significant difference in

shape; the thermal boundary layer penetrates far outside the
hydrodynamic layer. With constant, positive K flows, both
u* and t* ‘"overshoot" their accepted zero pressure gradient,
fully turbulent, logrithmic levels., All temperature profile
data taken in the pressure gradient region exhibit inner

(t* - y*) ana outer (t - y/6p) region similarity.

Stanton numbers in the constant free stream velocity

-section following a favorable pressure gradient of

K = l.45xlo_6 show a trend toward the "K = 0 equilibrium"
behavior only when F <0 . The data for F > O show Stanton
number receding from "K = O equilibrium" once the pressure
gradient is removed.
In the recovery section, the inner region of the temperature
proflle recovers to the zero pressure gradient shape much
faster than the outer reglon. For F > O , the temperature
profiles show outer region similarity over 90 percent of the
the}mal boundary layer but the shapes are much different than
the zero pressure gradient data of Moffat [3] and Whitten [47.
The concepts of (l) reduced turbulent energy and momentum
diffusivities near the wall, (2) energy transport by molecular
mechanisms beyond the hydrodynamic thickness, were used with
simple m1x1ng length theory to predict the mean (time averaged)
hydrodynamlc and thermal boundary layer characteristics w1th
uniform transplratlon and favorable pressure gradlents.
Utilizing the hydrodynamic sublayer correlations of Julien [2]
and-particular = Prp correlations, satisfactory predictions
of St , Cg., mean velocity and mean temperature profiles
were achieved for -0.002 < F < +0.006, 0 < K < 1.45x107°
uéing the Van Driest continuous eddy viscosity model.
Satisfactory predictions for O < F < +0.006 ,
0 < K< 1.45x107° , and -0.002 < F < 0 , K < 0.77x10
were also obtained using a 2-layer model. Experimental
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Stanton number behavior at and beyond the critical conditions
(i.e. F > F, , K,
The correlation

st 6. 9 9

) were successfully predicted. .

K=0 -

predicts St within 10 percent for =-0,001 < F < +0.,006,
O < K < 1.45x107° . This correlation can also be used to
predict whether or not St will be greater than thre zero.

pressure gradient value at the same ReA .
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CHAPTER I

INTRODUCTION

‘ All methods of predicting the characteristics of tﬁrbu-
lent boundary layers utilize some degree of empiricism. Only
recently has there been general agreement that adequate

. hydrodynamic prediction methods exist for the incompressible,
constant property, turbulent boundary layer with mild favor-
lable and adverse pressure gradients [1]. Reliable experi-
mental data pertalnlng to the more complex flows must be
supplled Follow1ng a brlef ‘review of experimental, turbu-
lent boundary layer heat transfer studies with transpiration
(blow1ng or suctlon) and/or favorable Pressure gradients,
and some. dlscus31on on the shortcomings of current prediction
methods, it will be evident that heat transfer with transp1-;
ratlon and strong favorable pressure gradients cannot be
successfully predicted and virtually no experimental heat
transfer data for these flows are available. A summary of
experimental, hydrodynamic, turbulent boundary layer work
with favorable pressure gradients and/or transpiration can

'be found in reference 2.

A. Review of Previous Experimental Work

A.1. Zero Pressure Gradient, Permeable Wall (F #.O)

A fairly complete set of hydrodynamic and thermal

,data is prov1ded by Moffat [3], Whitten [4], and Simpson [5].

The writer is inclined to favor these data because of a

close association with the experimental apparatus and testing

techniques. These authors provide an adequate review of the
current status of prior analyticai and experimental work in
:this area. Their work with constant and variable blowing _
rfraction (F), constant and variable surface temperature (t_),
., covered the range -0. OO8 < F < +0.010 . Stanton numbers

1



(st), mean temperature and velocity profiles, and skin
friction (Cf) form a part of these data and provide a base.
from which suitable theories may build for the zero pressure

gradient case.

A.2., Favorable Pressure Gradients, F = O

Moretti and Kays [6] provide surface heat-flux

data for flows with 0 < K < 4x10'6 (K is a pressure gradient.

parameter where K > O denotes acceleration); however, no
hydrodynamic or temperature profile data are furnished. Much
of the data was obtained with constant K flows. 'Morétti
concludes that for X > 3x10'6 , the heat transfer racze
rapidly approaches the laminar boundary layer leﬁel, sug-
gesting a severe reduction of the turbulent transport
mechanisms. Similar hydrodynamic¢ behavior at this level of
K has been observed by Schraub and Kline [7] and Patel, et.
al. [8]. Moretti includes a summary of the heat transfer
work performed in this area prior to 1965.

In support of Hatton's analytical studies [9], Hatton
and Eustace [10] experimentally determined Stanton number
distributions at various levels of pressure gradient. Mean
velocity profiles were taken and .Cp values were calculated
from Prestdn tube measurements. Température profiles were
hot presented. The pressure gradient range was .

0 < KK 0.56x10"0 . Constant K flows were sustained for
a distance of 25 inches. _

Back, et. al. [11] verified that up to 50 percent re-
duction in heat transfer below the typical turbulent boundary
layer level was attainable in supersonic rocket nozzles.
Back's hot gas convergent nozzle studies (variable K )
covered the range O < K < 20x10-®  but no temperature or
velocity profile data were feported in the pressure gradient
region; This investigation spanned 20 < Pg < 250 psia and
1000 < tg < 2000°R . |



-

-

Back and Seban [12] performed heat transfer and hydro-
dynamic experiments with variable K 1in the range
0 <KX 6){10'6 . Mean velocity and temperature profiles
were taken. It was concluded that the mean velocity profiles
were laminar-like near the wall but the mean temperature
profiles indicated the presence of eddy transport.
. Boldman, et al. -[13] measured wall heat-flux in addition
to obtaining velocity and temperature profiles in the con-
vergent section of a supersonic nozzle. A large hydrodynémic
boundary layer thickness wa's established in the uncooled
inlet section (prior to acceleratlon) without noticeable effect
on nozZle heat transfer. ! ,
In their reverse traniition (relaminarization) studies,

Badri Narayanan and Ramgee 15] established variable and -

vconstant K flows in the range 0 < K < 8)(10'6 . Mean

veloc1ty profiles, distributions of longitudinal velocity
fluctuations, Cf', and wall heat transfer rates were obtained.
Most of these data were taken at large values ol K where
laminar-like behavior was evident. Heat transfef reductions
ion the order of 80 percent were reportedly measured.

A.3. Favorable Pressure Gradients, F # O

: Only one source of»experimental data that includes
a relatively wide range of blowing fractions was found in the

.open literature. Romanenko and Kharchenko [(16] present

experimental 'cg and St data for +0.0001 < F < +0.007 .,
0 < K £ 0.3x107 (
Air, Freon-12, 002 , and He were used as injectants. Their

estimated). The free stream fluid was air.

constant property Stanton number data appear unaffected by

the favorable pressure gradients. It is difficult to estimate
;reliability of these data; insufficient documentation of the
test apparatus and free-stream conditions precludes adequate

appraisal.



In summary, it is felt that a sufficient amount of
accurate hydrodynamic and heat transfer data are available
for the zero pressure gradient, permeable wall, low velocity,
constant property flows to allow development of more sophis-
ticated theories applicable to these conditions.  These data
cover the range of practical interest -0.008 < F.< +0.010 ,
and include variable wall temperature and variable surface
injection boundary conditions. Simpson, et al. [19] have
calculated .turbulent Prandtl number (PrT) distributions for
these flows from the available mean temperature and velocity
profiles. There exist ample Stanton number data for
0 < KK 2x%0"6 , F =0, but only a token amount of hydro-
dynamic and thermal profile data have been reported. Except

for reference 16, there exists virtually.no.experimental data

related to:turbulent boundary layers with favorable préssure
gradients and transpiration.

B. Shortcomings of Current Heat Transfer Prediction Methods

Most of the prediction methods employed today solve ap-
propriate integral or differential equations of momentum
and/or energy. The Ambrok solution as used in reference 6
is of the integral type and requires a unique relationship
between local Stanton number and local Reynolds number based
on enthalpy thickness (ReA). This relationship, normally
derived from zero pressure gradient'flows, is substituted‘
into the steady-flow energy integral equation‘to yield an
ordinary differential equation which can be solved by a
variety of methods. Moretti and Kays [6] used this method
‘for prediction and achieved satisfactory results fbr mildly

accelerating flows (K < O.5x10‘6), but over-predicted Stanton

number at larger values of K . They also demonstrated that-
this method can also be applied to problems with variable
wall temperature. The Ambrok solution considers only the
energy equation, thereby neglecting development of the

i
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hydrodynamic boundary layer. With mild favorable pressure
gradients this deficiency is not serious, but modifications
must be made when considering strong favorable pressure
gradients, ‘ _
Back and Seban [12] constructed a 2-layer model with
ey = T(CpsReg) 1in the outer region, and Von Karman sublayers
in the inner region. The corresponding heat transfer results
provided some improvement oVer the Ambrok method. Only the
outer portion of the temperature profile wake was adequately
predicted. '
Elliot, et al. [14] solve the energy and momentum
integral equations simultaneously for flows with K > 0 , -
F =0 . 1In this way the thermal and hydrodynamic development
can be incorporated into the solution. The weakest asspmptions

~associated with this prediction method are: (1) Ce and St

possess the same relationships as with zero pressure gradient,

.constant surface temperature flow on a fiat plate at the

same Ux , to , 8 , A (2) boundary layer shape parameters
6/5 , op/5 , H are evaluated from 1/7 power profiles
(temperature and velocity). With strong favorable pressure
gradients and blowing, these assumptions are no longer valid.
Boldman, et al. [13] used this method and overpredicted heat

transfer in the convergent and throat regions of a super-

sonic nozzle.

P
|
i
i

Those methods which solve the energy and momentum partial
differential equations [9,17,18] utilize various empiricai
relations to describe distribution of the exchange coef-
ficients and/or turbulence quantities. The experimental

' data upon which the empiricism is based is often times in-
,complete and iﬁaccurate. Although valid for mild pressure
"gradients, there 1s no evidence corfoborating use of the
! "law-of-the-wall" in strong favorable pressure gradient

flows,



The ratio of thermal boundary layer thickness, &g , to
hydrodynamic boundary layer thickness, © , increases with
favorable pressure gradient (shown and discussed in Chapter
IV). Beyond the hydrodynamic thickness b , the transport
mechanisms are primarily molecular. In the fegion between
& and b , a significant contribution to the overall
“thermal resistance can develop in strong and/or prolonged
favorable pressure gradients. Many prediction methods restrict
the thermal layer from developing outside the hydrodynamic '
layer. l A

To summarize the success of current predictioh methods, -
it can be said that heat transfer in flows with mild favor-
able pressure gradients, without transpiration, can be
.adequately predicted from integral methods assuming Cg and -
St obey the accepted zero pressure gradient relations at the
same local conditions. The differential methods of predicting
heat transfer under the same conditions are also successful
assuming the "law-of-the-wall" is valid. As K exceeds
approximately O‘,5x10_6 , these assumptions are no longer
applicable. Growth of the thermal boundary'layer relative
to its hydrodynamic counterpart must be considered as well
ashdeviatiqns from the "law-of-the-wall" (shown and discussed
in Chapters IV and V). Temperature profiles have not been
satisfactorily predicted for these flows due, in part, to
the scarcity of profile data and insufficient knowledge of
the PrT distribution. No predictions of heat transfer orl
mean temperature profiles with surface injection and favor-

able pressure gradients were found in open literature.

C. Objectives of Present Research

1. Obtain meaningful and reliable heat transfer data
applicable to 2-dimensional, low velocity,-constant
property, turbulent boundary layers with transpira-
tion. (blowing or suction) and favorable pressure

gradients.
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2. Obtain mean temperature profiles for such flows. -

3. Develop a Stanton number corfelation for use in the
simpler integral methods which will reflect the
effects of favorable pressure gradient and surface
injection.

L. Develop a method which will adequately predict heat

transfer and mean temperature profiles for the range
of conditions established in this study.

D. Approach

The acceleration parameter K = — —— 1s a convenient

measure of strength of the imposed pressure gradient. This

parameter appears explicitly in a particular form of the
2-dimensional integral momentum equation

Co ~ dRe,
5 - Reg(l + H)K + F = 3%, (1)

;which can be derived by substituting‘
i

Usogy

Re = "

X

"into the following common form of the 2-dimensional integral
momentum equation [20]

Ce _ a8 1 dUp . 1 dpe
> ole+8) T+ ax



. Examination of Eq. (1) without surface injection reveals
dRee

that if K were positive and constant, the term JRe
X

might vanish if Cf s Ree and H reach appropriate values.

Schlicting [21] presents an exact solution to the
laminar boundary layer momentum equation for flows in con-
vergent channels_(K = constant) without surface injection.
This solution provides a unique relationship between K
and Ree demonstrating that laminar flows with constant,
positive K yield constant Rey .

Townsend [22] considers an exactly self-preserving
turbulent boundary layer with constant, positive K and
shows 1t possessing constant Rey . Launder [23] established
a constant; positive K , turbulent flow over an impermeable
wall and achieved near-constant Ree .  Launder and
Stinchcombe [24] present constant, positive K data also
indiéating-near—constant ~Ree |

With uniform surface injection (F = constant) and
constant, positive K , it is possible that a turbulent
boundary layer could achieve constant momentum thickness
Reynolds number. The hydrodynamic condition that exists

dRe

when ggz— = O 1s defined as asymptotic. This flow 1is
X

characterized by constant Ree s, K, F . If the hydrodynamic
profiles are completely similar, then H and therefore Cf
also become constant. 4 '
Two important variables appearing in the differential
momentum equation, neglecting the X-derivatives (Couette-
3/2 ‘
+ Cf + Cf
flow model), are P = K/N\=—]" and V_ = F/§— . The

onset of relaminarization has been associated with the
magnitude of X and/or PY [8]. All these parameters are .



constant with asymptotic boundary layers having similar
hydrodynamic profilles.
To satisfy the stated objectives, constant, positive
K flows were established on all test runs. In addition,
all runs were restricted to constant F , constant .to s
boundary conditions. Studies of relaminarization have
established 3x10°~ as an approximate level of K ‘beyond
which laminar-like flow exists. To cover as large a range
of favorable pressure gradients as possible without com-
pletely losing the turbulent characteristics of the boundary
layer, experiments were restricted to 0 < K < 1.45x10°
Limitations imposed by the experimental apparatus restricﬁed
the injection parameter to -0.004 < F < +0.006 . This
'range of F 1is suited to many problems of practical interest;
the upper limit is near blow-off (F = +0.010), and asymptotic
suction conditions are rapidly approached at F = -0.004
Julien [2] studied the isothermal hydrodynamic develop-
mént under the same test conditions; all hydrodynamic data

dpéumented in this study were obtained from his work.



CHAPTER IT

EXPERIMENTAL APPARATUS

The test section is composed of a flow duct with 24
porous plates forming the lower surface. The rectangular
duct is 8 feet long, 20 inches wide, and 6 inches high at
the beginning of the test section. A flexible upper wall
can be adjusted so as to produce any desired variation in
free-stream velocity. All data were taken on the center
6-inch span of each porous segment.

A brief description of the apparatus is given below.
A more detailed account can be found in reference 3.

A. General Description

The subsystems providing the desired boundary conditions
are: (1) Main Air System, (2) Transpired Air System, (3)

‘Heater Power-Porous Plate System. A schematic of these sub-

systems 1s shown in Fig. 1. The porous plate assembly is
illustrated in Fig. 2.

A.l1. Main Air System

The main blower can deliver 2000 scfm to yield 44
ft/sec at the test section entrance. Regulated flow of main
stream air passes through a O.7-micron-retention-air filter
prior to entering the main blowér. The primary air is
delivered to a single-pass fin-tube heat exchanger which can
maintain exit air temperature between 66CF (full open) and
100°F (full shut), depending on the ambient conditions.

Once through the heat exchanger, the main air passes through
fine screen(s), acting as flow straighteners, then into a
4:1 (area) converging nozzle. The converging nozzle is com-
pletely surrounded by insulation to minimize growth of a
thermal boundary layer. A 6-inch, noninsulated, plexiglaés'

"
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transition" (not to be confused with hydrodynamic transition)
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piece connects the nozzle to the porous plates. A 3/8-inch
wide strip of coarse grit garnet paper (Carborundum type
() provides a boundary layer trip just upstream of the
porous plates.

The test section consists of the following: (1) lower
porous plate test surface, (2) %—inch thick plexiglass side
walls, (3) flexible,; plexiglass upper surface. One of the
side walls has 48 static pressure taps, 0.040 inch diameter,
located on 2-inch centers, l-inch above the porous surface.
The upper flexible surface can provide a constant <i 1

2
percent) freestream velocity region with uniform and variable

(steps included) blowing conditions.

A.2. Transpired Air System

This system provides individual control of the air
flow rate through each of the 24 porous plates. The tran-
spired air first passes through a O.7-micron-retention
filter, then through a blower, then is cooled to within
1°F of ambient temperature by a heat exchanger. The flow
rate to each plate can range from 0.5 to 18.0 scfm. This
system can operate with no surface injection and has the
capability to blow and suck thfough different plates
}simultaneously.

A.3. Porous Plate Test Assembly

Each porous plate is described as follows:
size: 0.25 by 18.0 by 3.975 inches

Composition: Special grade bronze filtef
material, 0.002 to 0.007 inch
spherical sintered bronze

particles

Surface Finish: 50-200 microinches (RMS) measured
with a 0.0005 inch radius stylus

11



Thermal Conductivity: 6.5 Btu/(hr—ft—oF) minimum
(experimentally determined)

Total Emissivity: : 0.37 average (experimentally
determined)

Porosity: Uniform within 6 percent over
the center 6 inch section '

The plates were designed (and to a large extent manu-
factured) by Moffat [3]. Each plate was individually in-
spected and tested using specially developed techniques to
insure the 6 percent tolerance over the center 6-inches
was not exceeded.

A cross-sectional view of the porous plate, aluminum
casting, and associated underbody components is shown in
Fig. 2. When blowing, the transpired air enters_ﬁhe first
cavity through ﬁhe delivery tube. This cavity 1s lined with
balsa wood to minimize energy transfer from the fluid. The
alr then passes through a commercial grade porous bronze
preplate which directs the flow into the second cavity below

ne test plate. A 3/8-inch layer of reinforced phenolic
honeycomb (1/4-inch hexagon) is bonded to the back of each
test plate to prevent creation of local energy sinks by
‘circulating fluid,

A1l plates are heated by electrical energy dissipated
from 0.012 inch diameter, teflon insulated, nichrome wires.
The wires are glued into grooves. on the back of each platéq
The grooves are cast on 0.333 inch centers and yield neg-
ligible temperature variation along the plate surface,

Fluid temperature in the second cavity is measured by
an iron-constantan thermocouple placed above the preplate.
This temperature'is used to describe the thermodynamic state
of the fluid in the absence of temperature gradients.
Because the T-state temperature is a measure of the fluid's
thermal energy, it is important to minimize the energy loss

12
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from delivery (temperature designated as tirl ) to the test
plate. Temperature of the aluminum casting could be con-
trolled, providing a near isothermal environment within the
- first cavity. |

The plate's surface temperature is determined from the
arithmetic average of five iron-constantan thermocouples
imbedded 0.040 1nches from the upper surface (main-stream
side). The flve thermocouples are positioned relative to
the geometric center as follows: at the plate's geometric
center, 3 inches to the right, 3 inches to the left, 1 inch
"upstream, 1 inch downstream.

Tests were conducted to determine if the free-stream
static pressure gradients could cause significant preferential
flow of transpired fluid through the porous plates. Under
' maximum dP/dX conditions (K = 1.45x10“6), the upstream plate
temperatures (relative to center) were not cbnsistently
higher than their downstream counterparts. This test
'demonstrated, qualitatively, that the effects of preferential
ﬁlow were small enough to yield no significant surface tem-
perature gradient in the streamwise direction.

. The maximum disturbance in transpiration flow necessarlly
occurs on the last plate in the accelerating region, where
the local value of dP/dX is largest. The combination of
strong acceleration (high K) and low blowing (low F) produce
the largest percentwise variations. Pressure drop data from
the highest K(K = 1645x10‘6) and lowest flow (F = +0.001)
indicate a S%Fdifference between the transpiration flows
. at the upstream and downstream edges.

B. Instrumentation

‘
1

The basic instruments used in the data téking processes
are listed in Table 1. The method of calibration and
estimated accuracy are also included.

|
i

!
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B.1l. Probes*

All stagnation pressures were measured with pitot
tubes. Small flattened-mouth boundary layer probes were con-
structed from INCO tubing. The elliptical mouth had a 0.011
inch minor.0.D., 0.035 inch major 0.D., and 0.0025 inch wall
thickness.. In the range 0.053 < Pgyn < 0.44 inches of water,
a yaw or pitch angle of at least +10 degrees produced no
oetectable change in 1nd1cated maximum pressure.

Pitot probe readings are affected by turbulent fluctua-
tions, v1scous and wall effects, yaw and pitch. - Simpson (5)
studied these probes and concluded that only the effects of
laminar viscosity are important. An appropriate correction :
"~ was used at low Reynolds numbers. '

- The boundary layer temperaturelprobe consisted of an
iron-constantan thermocouple whose junction was flattened to
a height of 0.009 inches. The "junction end consisted of
0.375 inches of bare wire pitched downward at -an angle of °
approximately ?'degrees. .Smaller>sized probes having wire
diameters 0.003 and 0,005 inches were also used but not
successfully. ‘ _

Electrical COntinuity was used to establish location of
‘the contact peint. Identical results were obtained by noting
the location of a iarge relative change in temperature,; as
the probe moved off the wall.

B.2. Distances

All X- pos1t10ns refer to the dlstance from upstream
edge of the first plate to probe tip. A l-inch displacement
micrometer, having a least count of 0,001 inch, provided the
means of measuring vertical displacement.

* ¥ 3 . 3 .
See references 3,4,5 for a more detailed discussion.
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3.3. Static Pressures

Test section static pressures were obtained using
sidewall static pressure taps. The taps were sharp edged
holes perpendicular to the surface of the side wall, 0.040
inches in diameter. Reynolds number (wall shear effect)
corrections were found to be negligibly small.

Static pressure sensed by a wall port is not necessarily
the same as that existing in the center of the rectangular
duct at the same X-position. Differences could be attributed
tb corner vortices, a flexible top which is not planar, and/or
a;vertical static pressure gradient in the potential core re-
sultlng from an imposed pressure gradient,

Two particular free-stream static pressure dlstrlbutlons
(Etreamw1se) were measured using the following 1nstruments
(1) Pitot-Prandtl probes positioned in the center of the
duct, (2) wall static ports l-inch and L-inches above the
plate surface, (3) static ports located on the flexible top
in the center of the duct. One static pressure distribution
was made at F = O , the other at F = +0. 004 ., The free-
stream velocity ranged from approx1mately 35 to 65 ft/sec in.
both cases. A1l differences that existed between the individ-

ually measured static pressure distributions were within the

uncertainty of the measurements. Vertical (referenced to
plane of test surface) static pressure probing 1n the potential
-core yilelded negllglble static pressure gradient under maximum
dP/dX conditions. By virtue of the preceéding experimental
results, the following are concluded:

(1) There'is no significant vertical static pressure

gradient in the potential core for 0 < K < l.M5x10—6

(2) Wall static pressure taps located l-inch above the
poroue plates adequately measure local static pres-
sure in the center of the duct. | '
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¢. Determination of Wall Heat Flux

The surface heat-flux, qo , was calculated from an energy

balance performed on a specified control volume covering the
center 6 inches of porous plate. This control volume, shown
in Fig. 3, includes different portions of the plate assembly
and free-stream depending upon the type of test (normal
blowing, normal sucking, energy balance). Applying the 1st .
Law of Thermodynamics to the control volume yieldsl

q! = ENDEN-ECONV - ) LOSSES (2)

The varioué energy terms appearing in Eq. (2) are described

as follows:

ENDEN: Electrical power density in the center 6-inch

test section.

ECONV: This term expresses the convective ehergy flux
' through the plate. It is calculated from the equetion

ECONV = m”c(to-tT)[1+f(m2KCONv)]

The experimentally derived function f(m", KCONV) 1is a
‘correction which accounts for the difference between mixed-
mean temperature of the transpired fluid leaving the plate

suxface and the indicated mean plate thermocouple ‘reading.

LOSSES " Each loss was first computed analytlcally

Where significant differences existed between the analytical

pred¢ctlon and experiment, a correction coefficient was .
employed so as to minimize the difference. All losses are
lListed below.

. . y )

e e L
a) Top Radiation = Fl(to - tcover
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SKFILE

‘ ’

SKFILE is a FORTRAN callable subroutine which calls a peripheral
package that skips over a specified number of files on a tape unit.
An example of its use is as follows:

N=2

FILE=SLTAPE1

CALL SKFILE(FILE,N)

where FILE=file name in display code, left

justified in the word.

N = the number of files to be skipped over.

(N is restricted to be less than 409610)

The "L" hollerith code is used to generate
‘, the file name in display code, left

justified in a word.

Q



SKFIL

SKFIL is a control card callable program which calls a peripheral .
package that skips over a specified number of files on a tape unit. An
example of its use is as follows:

JOB, 7, 100, 40000. JONES, 62411, AFWL

REQUEST TAPES.

SKFIL (TAPES, 2)

789

The first argument is the file name. The second argument is the
number (in decimal) of files to be skipped over. (This number is

restricted to be less than 409610.)



The coefficient Fl was obtained analytically using the
experimental plate emissivity. .

b) Web Conduction = (ty - tbase)/Rl

The effective resistance Rl was, established experimentally.

c) Laterel Plate Conduction = (tO - tbase)/R2

The effective resistance R, was established eéxperimentally.
The conduction path is out of the center 6-inch control

volume,
d) Back Air Conduetlon = (t, - tbase)/R3 .
R, was obtained analytically and is only applied when " -~ 0O

This loss accounts for energy conducted through the stagnant
air in the underbody compartment,

e) Back Radiation: This particular energy loss was
computed differently than Moffat [3]. ‘The contribution of
the'honeycomb in radiation exchange was considered in detail
as were differences between heater wire and plate. temperatures,
' The new model considered radiant energy exchange between.the
plate and heater wires (considered independently), hex-cell
'honeyCOmb, and porous bronze preplate, The net back radiation
became an eiplicit function of plate power input (beceuse of
wire temperature dependence) and T-state temperature (assumed
to be the sink temperature), The only experimental inputs’to
the model are plate power, sink temperature, and physical |
‘properties of the materials, '

c.1, Energy Balance Tests

To qualify the test rig, a series of energy balance
tests were performed. These tests are normally conducted
every 6 months to establish the adequacy of the thermal mode 1
described above. Energy balance tests do not utilize main-
stream flow; the top cover is removed so as to provide 1-
dimensional flow of the transpired (or sucked) fluid. Under

17



these conditions qg = O thus enabling the individual energy

transfer mechanisms to be properly evaluated for each plate.
Comparing Moffat's original energy balances with those taken
for this study indicate no significant change in rig charact-

eristics. The energy balance results are shown in Fig. 4,

C.2. Active Mode Tests

The active operating mode utilizes all ehergy terms
in Eq. (2), This is the normal methodAof determining wall
heat-flux. The free-stream air is precooled to approximately
68°F and the test plates are maintained at about 1OOOF°

Wnen the'blowing rate becomes large, the two dominant
energy terms in Eq. (2) are ECONV and ENNET. Under these
conditions, large uncertainty in the calculated surface heat-
flux results and the normally small loss terms assume'a much

‘more important role. When the surface heat-flux uncertainty

exceeded a prescribed amount (discussed later), another type

of test procedure was used.

¢.3, Passive Test Mode

To reduce ﬁncertainty in surface heat-flux at large
blowing rates, no electrical power is applied to the plates.
Thus, one of the two dominant terms in Eq. (2) is eliminated.
The plates are supplied energy from the free—stream.fluid,
which is maintained at approximately 920F as a resuit of not
being cooled by the main stream heat exchanger. Since there
1S nho plate temperature control, operating in;the passive
mode results in a slight sﬁrface temperature gradient in the
streamwise direction (approximately BOF overall drop) .

There exists a relatively small range of blowing rates

‘where both active and passive test modes can be used to cal-

culate surface heat-fluxes. Comparing results from both
passive and active modes provides a check on the accuracy of
the calculated heat-flux. Whenevervthis comparison was made,
good agreement was found. In general, the tests for |
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F = +0.006 were conducted in the passive mode, both active
and passive modes were used at F = 4+0.004, and all runs for
F < 0,002 utilized the active mode.

D. Uncertainty

Two causes of uncertainty were considered. One was
aésociated with reading the instruments (i.e. interpolation
between divisions on a scale, fluctuating values of measurahd,
etc.), the other reflected random errors resulting from un-
controlled test conditions (barometric pressure, humidity,

"ambient temperaturé, etc.). All uncertainties were calculated

by the method of Kline and McKlintock [25].
The following basic uncertainty intervals were assumed:

Powef ' 0,25‘watts

Flowmeter ' 0.10 centimeters
Pressure . 0.002 inches of water
Temperature 0.250F with active mode

. O.lBoF with passive mode
" Vertical position, y 0.001 inches

Calculated uncertainties in pertinent quantities are listed
in Table 2. A more detailed account of the hydrodynamic
uncertainties cdn be found in reference 2. '

Stanton number "uncertainty" was calculated from .the

equation

AQ )
Y U (to—ts’oo)c (3)

o0 T 00

ASt = ASti +

ASt, 1s the Kline and McClintock uncertainty in Stanton”
number resulting from uncertainties in plate power, temper-
atures, flow rates, free-stream velocity. The second term-
in Eq. (3) is a Stanton number based on an energy balance
olas, AQ . This AQ was obtained by multiplying an avefage
percent bias (based on heater power) from the energy balances
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(Fig. 4) by the plate power. Although depicted as uncertainty,
the bias contribution to ASt 1is really a fixed error. It
was assumed that no bias was present when operating in the
passive mode. The bias errors are small relative to AStl' 4
except for the high suction runs (F = -0.002, -0.004). -
In summary, the results of this study are believed to.be

reliable within 0.,0001 Stanton number unlts for all but the : L Td
higher suction runs (F = -0.002, -0.004). | o
E. Roughness -
By definition, all porous surfaces are mechanlcally rough. %
In order to be classified as hydrodynamlcally smooth, the wall -
protuberances should not contribute additional resistance to
fluid flow. A maximum roughness of 200 microinches (RMS) was 3 -
established using the tracer method with a O. 0005 inch radius
stylus. The plane of particle crests was chosen as the : ; ﬁ
"effective no slip surfece", i.e., the wall. '
With F = O , one usually considers a flat-plate boundary o
layer as having a laminar sublayer thickness terminating at
y+ = 5 ., Utilizing this criterion and an accepted flat-plate %;
skin friction correlation yields a 0.0015 inch thick laminar = E
sﬁblayer at Ree = 500 , U, = 125 ft/secl° Assuming an‘average ’ }i
protuberance height of 0.0002 inch (maximum RMS roughness ), -
the porous bronée surface can be considered hydrodynamically é
smooth [21] under these conditions. . ' Jli
One of the conclusions derived from the experlmental '
data presented in this study and in referénce 2 is that favor- i ;
able pressure gradients thicken the effective viscous sub- i g
layer Therefore, roughness effects will be less pronounced ';_,§
when K > O A _'g
The effects of roughness are not establlshed for the -;E
case of F # 0 ; - Simpson [5], among others, established that < %
the laminar sublayer thickness, in y+ ~coordinates, de- ' ;
creases with blowing and increases with suction. Nhius J’!
20 N



experimental conditions of this research most conducive to
roughness effects are zero pressure gradient, large blowing
fraction, and high free-stream velocity. Large F (+0.006)
and U (75 ft/sec) were establiéhed:hltherecovery section
following an acceleration of K = 1,45x10'6 . At these con-
ditions, Simpson's smooth wall correlation for Ce predicts
a 0.001 inch thick viscous sublayer even if the laminar sub-
layer is assumed to terminate at yt =1 (Simpson'é data
suggests a much larger sublayer thickness). If the flat -
plate findings in reference 20 are applied with blowing,
the recovery seutlon can be considered hydrodynamlcally
smooth.

In support of the roughness study, experiments were per-
formed with no blowingAat three different values of constant
free-stream velocity: 42, 86, 126 ft/séc. Velocity profiles

-were taken at three axial stations ang local Stanton numbers

determined at each level of free-stream velocity. The
velocity profile data can be found in reference 2. At each
free-stream velocity, the calculated virtual origins (assuming
0 « XO 2) at each axial station agreed within 3.8 percent.
Unblown values of skin friction were calculated from
the 2-dimensional momentum integral equation using the same
method as Simpson [5]. At the higher free-stream velocities
the sublayer method of obtaining Cf was not applicable
since the pltOt probe height extended far outside the laminar
sublayer. The log-cross plot method was also investigated
for obtaining Ce , but the resulting uncertainty was too
large for this method to be useful. Friction factor can be
estimated from the heatltransfer data using the constant
property Reynolds analogy [20]

Cp/2 = St prO-4
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The values of Cg/2 ‘derived from the momentum integral
equation and Reynolds analogy are presented in Fig. 5 for

all values of free-stream velocity.

Rotta [26] found the constant C in the fully turbulent

law-of-the-wall

A % log vy + C
'krUT
to decrease with increasing roughness parameter ( " )
Rotta shows C decreasing from its smooth: impermeable wall
k U

value of 5.0 (x = 0.41) to zero at 5 T =50 .

All data except the Stanton numbers corresponding to
the last three porous test plates at K = 0. 57x10'6 were
taken with U, < 86 ft/sec. The unblown, flat-plate velocity
profiles compared favorably with established 2-dimensional
profiles at U, < 86 ft/sec. Skin friction exhibited the
same relationship to Ree as one would predict using an
acceptable 2-dimensional correlation., For these reasons,
in addlt;on to those mentioned previously, it is concluded
that all data for U, £ 86 ft/sec Dbehave 2-dimensionally.
The ‘calculated Cp values at F =0, U, = 126 ft/sec,
are consistently higher than an acceptable 2-dimensional
Re6
8 percent. The constant C (law—Of-the—wall) decreased to
approximately 4 at U, = 126 ft/sec. These differences can
be éttrlbuted in part, to the uncertalnty 1n Cf () percent)
Tt is concluded that all data documented in thlS study are

correlation, the maximum difference belng approximately

suff;clently unaffected by surface roughness.

F. 2-Dimensionality

Some possible methods of checking 2-dimensionality are:
(1) Cf agreement with the 2-dimensional momentum integral
equation, (2) similarity of profiles taken across the flow
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(transverse direction), (3) hot wire information on the
z-component of velocity, (4) pitch and yaw information from
total pressure probes, (5) agreement between A calculated
from profile measurements and A calculated from the 2-
dimensional energy integral equation (hereafter‘designated
as the enthalpy thickness check). All of the above methods
except hot wire determination of the z-component of velocity
~ were considered. ;

The enthalpy thickness check was found to be the mosf
sensitive measure of 2-dimensionalityc Shortcomings of the
other methods are: (1) for the most part, the Cp values
of Julien (2). were obtained from the 2-dimensional momentum
integral equation,. (2) small differences in transverse velocity
profiles can yield relatively large differences in momentum
thickness Reynolds number, (3) only large cross flow com-
.ponents of velocity can be detected from pitch and yaw pres-
sure probe readings. | |
L Two equations were used to evaluate enthalpy thickness.

. One equation was provided by the definition of enthalpy thick-

. ness and involves only temperature and velocity profile data.

o

l | : pr(hS-hs’oo)dy
| Y N - R ‘ (4)
IR (hS,O‘—hs,m) .

" The other equation was obtained from the 2-dimensional energy

* integral equation

. dUu . dp
dA 1 0 1 ©
St+Feggt A *topoax)
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by solving for A, i.e.,

o
>
=

[+ ¢}

, |
o = G0 ([ o2s e max Dt (5)
O

Julien's veélocity profiles [2] and the present temperature

profiles were used to calculate A from Eq. (4). Experimental

St, U F were utilized in Eq. (5) to calculate A .

oo

In Eq. (5), Ai is the enthalpy thickness at the begln—

~ning of thé porous test section correspondlng to a surface

temperature to and free-stream temperature t_ . At an
entrance velocity of 25 ft/sec (corresponding to the runs at
K= 1. Mﬁx10'6), enthalpy thickness in the transition- plece_
(At).precedlng the porous plates was calculated from measured
temperature and velocity profiles. Knowing the transition-
piéce surface temperature (tt), Ai can be calculated from

the expression

In general, A; was approximately 0.006 inches for the
active runs”,

At 41 ft/sec (entrance velocity for K = 0,57x10_6)

, the

~ boundary. layer thermal resistance over the transition piece

" is Smalllrelative to the other'resistancés yiélding a very

smail temperature difference (tt—tm) . Neglecting A; in
these runs is, therefore, a valid approximation.

Moffat [3] did not consider A; in his results. The ambient
- temperature .corresponding to most of his data was approxi-
mately equal to the free-stream temperature, thus minimizing

Ai

2k

R

{a.

L.
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Since A at the start of K =_O,77x10-6 acceleration
was approximately 0.10 inches, omission of 4; in Eq. (5)

- does not seriously affect the resulting Re, distribution.

In summary, Aj was applied only with the test runs cor-
responding to K = 1.45x10" » .

| The uncertainty in A from Eq. (4) ranged from 3 to 8
percent for -0, OOl < F <40, 006 . Uncertainty in A from
Eq. (5) ranged from 2 ‘to 6 percent for -0.001 < F < +0.006 .
It was concluded for F > -0.001 that when A from Eq. (4)
was within 8 percent of A calculated from Eq. (5), the
boundary layer development along the test surface was suf-
ficiently 2-dimensional. Excluding the first temperature
profile, that being in the constant U region preceding'
acceleration, all data for . -0.001 < F < +0.006 met this
2-dimensionality criterion. ‘ - ,

The uncertainty in A from Eqs. (4) and (5) became
‘greater than 10 percent for F < -0.002 ., This large un-
certainty made the enthalpy thickness check an ineffective
method of establishing the presence of significant 3—diﬁensional
effects. All flat-plate skin friction and heat transfer A
data corresponding to F = -0.002 agreed with the 2- d1mens1ona1

zero pressure gradlent data of Moffat [3] and Simpson [5].
At F = -0.004 , uncertainties in the calculated hydro-
dynamic and enefgy gquantities became very large. The heat

transfer data at F = -0,004 reflect these uncertainties.

_ At a particular X-position, the enthalpy thickness was
not always uniform across the flow (transverse direction).
In the constant U, region preceding K < O. 77x10‘6 , the

" transverse A dlstrlbutlon across the center 6 inches was

saddle-shaped. The enthalpy thickness check, applied in this
reglon, could not be closed within 8 percent but correspondlng

) Stanton numbers agreed with Moffat's data within + 5 percent

In those cases where the enthalpy thickness di Lference

jexceeded 10 percent, a notlceable difference in the centerline



th - y+ profile resulted (relative to a profile having an |

acceptable enthalpy thickness check). The Stanton number
normally used in defining tt represented an average dver
the center 6 inches of porous plate. When Re, was cal-
culated from profile measurements and used to calculate St
from an acceptable 2-dimensional correlation, the resulting
tt - y+ .profile appeared 2-dimensional.

When the entrance velocity was reduced to 25 ft/sec
( to achieve K = 1.45x10'6), the following behavior was
observed: (1) a 30 percent difference in the enthalpy thick-
ness check existed in the pressure gradient region, (2)
. Stanton numbers and skin friction in the zero pressure_gradient
region did not agree with appropriate 2-dimensional cor--
relations. To improve this situation, a new set of screens
was substituted for the single 50-mesh screen and an ad-
ditional boundary layer trip was positioned in the converging
part of the primary nozzle. The new set consisted of one 100-
mesh screen followed oné-inch downstream by a 50-mesh screen.
The additional trip was a 1/l-inch wide by 1/16-inch high{
‘bakelite sfrip extending across the bottom of the convérging
nozzle. As a result of these improVements, the enthalﬁy
thickness check was reduced to within + 8 percent in the
pressure gradient region. The resulting transverse temperature
and velocity profiles at X = 14 inches are displayed in
Fig. 6 for F.= -0.002, +0,004

Conclusions regarding 2-dimensionality of the flow are
as follows: ' a .

(1) The pressure gradient and recovery section data

describe the characteristics of a sufficiently 2-
dimensional turbulent boundary layer.

(2) Prior to acceleration, the experimental Stanton
numbers obeyed an acCepﬁed smooth wall, 2-dimensional
correlation within + 5 percent (excluding St on the
first porous plate). '
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- study.

(3) The initial enthalpy thickness, Ai , .is significant
only for the K = 1.45x10°® data. The initial
enthalpy t?ickness is negli%ible for test runs cor-
responding to K < 0.77x107~ .

G. Main Stream Conditions

_ A uniform hydrodynamic and energy potential flow core
existed on all test runs. Velocity was uniform within

+ 1/2 percent throughout the core. Maximum temperature dif-
ference within the core (transverse direction) was less than
O.QSOF, the maximum difference in the vertical direction
being 0.33°F . When operating in the passive mode (main
stream air not cooled), the maximum temperature difference
in the core was approximately 0.10°F . '

A hot wire. anemometer was used to obtain the free-stream
turbulénce level at various free-stream velocities. With the
ériginal screen, a maximum turbulence intensity of 1.2 percent
was measuredvat"Uoo = U4 ft/sec. Simpson [5] shows this

level of main stream tufbulenée has no noticeable affect on

. ' his hydrodynamic data. At 25 ft/sec, the free-stream

turbulence intensity decreased to 0.8 percent with the new

. screen-set. It is concluded that free-stream turbulence

has not significantly influenced the data.taken in this

-y
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CHAPTER III

FOTABLISHING THE LESIRED FLOW AND DATA REDUCTION

A. Asymptetic Boundary Layer

An asyﬁptotic hydrodynamic boundary layer was desired on
all test runs prlmarlly because (1) skin friction can be
accurately ‘determined, (2) it is much easier te correlafe the
hydrodynamic and heat transfer data for prediction purposes.
All tests were conducted at constant surface temperature, _
constant K , and constant F . The data of Julien (2), parﬁ
of which is listed in Appendix B, show that a neareasymptotic
boundary layer was achieved for these conditions. ‘

Some mention should be made of the relationship between
asymptotic and equilibrium- turbulent boundary layers.
Clauser [27] defined equilibrium boundary layers as those ex-
hibiting hydrodynamlc similarity in the outer regions. . Clauser
~also established that equilibrium flows could be obtained by |
restricting a particular pressure gradient parameter

o o
B = — dX  to a constant. Flat-plate (B = O), turbulent
0 :

boundary layers without surface injection exhibit similarity
in the outer regions and are therefore classified as equilib-
rium flows. '
Mellor [28] extended the work of Clauser and derived a

specific family of defect profiles covering the range

-O.5ig B <o . In effect, Mellor specifies that equilibrium
‘turbulent boundary layers (nonseparating, V, = 0) exist for
all constant B flows in the range stated above. A result
of Mellor's analysis is that the asymptotic Reg for

-0,5 < B < » is infinite. As Launder and Stinchcembe [22]
point out, finite asymptotic Reg . can exist only for

-2/3 < B < -1/2 . |
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The Clauser pressure gradient parameter can be rewritten
as
—HReeK )
B = ——r— . (6
Cf/2 _ _
N
If an unblown hydrodynamic boundary layer is asymptotic,
Eq. (1) can be substituted.into Eq. (6) to yield

-H : ‘
B = g | -

i

- For laminar, asymptotic flows at F = O , the shape factor, -

H, equals-2, and B = -2/3 . If, with turbulent boundary
layers, H does not vary with X(i.e. if the profiles aré
similar), B Dbecomes constant. It can be concluded, there-
fore, that all asymptotic flows with constant H are equilib-
rium flows but the converse 1is not true.

In this study, the definition of "asymptotic" has been
restricted to the hydrodynamic boundary layer. It is possible
to achieve an "asymptotic" condition with the thermal boundary
layer. The 2-dimensional energy integral equation with '

variable surface temperature may be written as

d[Re, (t -ty) ]
dRex.

= (tytg @) (St + F) ‘ (8)

Launder and- Lockwood [29] show that a constant ReA flow will
exist if the surface temperature varies as U_Y (where v
is a positive constant).

With constant surface temperature, Eq. (8) becomes

dRe

A
dRe

= St + F. (9)'
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Unlike the 2-dimensional integral momentum equation, tﬂis _
form of the 2-dimensional energy .integral equation does not
explicitly, contain a pressure gradient term, Since St > -F
when F <O, ReA can never decrease regardless of pressure

gradient.

B. Experimental Set-Up

A constant free-stream velocity region was provideq up-
stream of the accelérating region to establish equilibrium
between the energy and hydrodynamic boundary layer deyelop—
-ments. When Ree at the start of acceleration was approxi-
mately equal to the asymptotic Rey the flow adjusted to
its asymptotic condition in a relatively small streamwise
distance. "It was not always possible to achieve this condi-
tion and in some cases thejinitial Ree either excee@éd
(hereafter designated as an "overshot" boundary layer), or
was below (called "undershot" boundary layer) the asymptotic
value. ' '

Once the desired value-of K was chosen, an acceptable

zero pressure gradient Cf correlation was substituted into

dReQ

JRe = O to yield an estimate of the asymptotic
L x . .

~Eq. (1) with

Re, . This then became the desired value of Re, at the
start of acceleration. The same flat plate skin friction
Cbrrelation was then used in Eq. (1) to relate Ree‘ to
axial position; thus indicating the X-position at which
acceleration should begin.‘ ’

For example, if F = O , the acceptable flat-plate cor-

relation

(@}

£
1

-0.25

= 0.0128 Reg

"
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can be substituted into the asymptotic form of Eq. (1), setting
H=1.29, to yield ' ‘

Re, = 0,0157 x0-8

'This approximate method of establishing the initial _Ree ‘
yielded suprisingly good reSults as will be shown.  The success
was partly due to the fact that Cf and H were relatively
insensitive to the imposed favorable pressure gradient [2],

Shape of the flexible top is governed by the magnitude

. of K, Applying continuity to the definition of K without
- surface injection yields the following:

K=Y dE (10)

where H is the' vertical distance from test surface to
flexible,‘plexiglass top. The subscript (f')e is used to .
denote conditions at the beginning of acceleration,

To achieve constant K flow at F =0 , Eq. (10) shows

d

. that a constant slope - aH is required by the upper wall.

Displacément thiqkness effects were found to be negligible.
When F # 0 , Eq. (10) can still be used as a reasonable
approximation to'the desired slope.

For fixed inlet velocity, high values of K are
achieved at the expense of testing length. Thirty-two inches

- of test surféce were exposed to the maximum K achieved in

this study (1.45x107%). At k = 0.57¢x1070 , the testing
length 'increased to approximately 44 inches (11 plates). 1In
general, X varied from its initial level (K = 0) to its °

‘maximum in about 1.4 feet, and after acceleration recovered

to K =0 1in about 1.0 feet,
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Static pressures from 48 static pressure taps were used
au,

o0

to calculate the distribﬁtion of K . The derivative I

was calculated assuming a parabolic distribution between

three equi-distant points.

C. Data Reduction

c.l. Temperature Profiles

The indicated mean temperature is affected by (1)
thermal radiation from the probe, (2) conduction from the
thermocouple Jjunction along‘éhe wire, (3) temperature and
velocity fluctuatiohs. An error in vertical position cor-
responding to the indicated mean temperature can result from
(1) improperly measuring vertical distance from porous plate
to probe, (2) a flow disturbance caused by the probe near a
wall ("wall effect"), (3) the presence of a boundary layer
temperature gradient. -

" Neither a radiation nor a turbulent fluctuation cor-
‘rection.was applied to the indicated temperature. Errors

induced as a result of "wall effects" were assumed negligible.

The length of bare thermocouple wire exposed to the flow was
selected to minimize conduction loss from the junction. It
Was assuméd that the indicated probe temperature corresponded
to the y-position occupied by the probefs half-height (one-"
half the thickness of the welded junction). The uncertainty
in y-position was assumed to be +0.001 inch.

~ In high-speed flow, the thermocouple probe senses an
"adiabatic probe" temperature which differs from the local -
stagnation temperature. The "adiabatic probe"” and stagnation

temperatures are related by the expression

‘ 2
_ 1._U
baw = ¢+ 3T g.cd
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This equation was used in calculating local stagnation temper-
ature with r = (Pr)l/3 . Local velocities were low enough
so as to yield no significant différence between "adiabatic
probe" and stagnation temperatures

Measured stagnation temperatures near the wall differed
from those predicted by the constant property, laminar sub-
layer relation (applicable in the region between the wall
and y* = 10)

tt = —l— [exp(V Trryt)-1]
' V

On most test runs, this difference could be eliminated by
adjusting all the y-positions (at a particular axial location)
by a fixed amount ranging from zero to 0.0025 inches. It is

felt that the rather large probe size is partly responsible

for the differences that exist between measured and predicted

'Sublayer temperatures. Smaller sized thermocouple probes.

(0.003 and 0.005 inch diameter) were utilized without success.
No attempt was made to match the measured temperatures to
those predicted by the sﬁblayer relation,

In the wall dominated region of the bdundary layer,

where the characteristic turbulent length scale’'is %— s

T
the differential energy equation can be written in terms of '
the dimensionless variables t+ B y+ . For constant proper-

ties

t+—’ts—t° \]—T‘ ) t\|Cf/2
- q" =N o/p - St
N« P
pc
Y
+
-
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The variables t* and y+ were calculated at each point,

the properties being evaluated at free-stream conditions.
The experimental Stanton number associated with each proflle
was corrected to a suitable constant property value using the

relationship

0.4

ct

St = st(g2)

o0
The isothermal skin friction, obtained from reference 2, was
evaluated at the same free-stream conditions. '

A suitable length scale for the outer region should re-
flect the thlckness of the thermal boundary layer. Some of

the temperature proflles are plotted in T, y/6 coordinates.

The outer length scale, 6T , is defined to be 99 percent of

the thermal boundary layer thickness.

¢.2. Velocity Profiles

No hydrodynamic profile data were obtained in the
presence of heat transfer. The reduction of all isothermal
hydrodynamic data can be found in reference 2. A study.was
undertaken to find a method of applying the local, isothermal,
hydrodynamic profile data to the heat transfer case so as to
calculate local A and Rey . The following were assumed
as possible relationships existing between the temperature
gradient, ( )H , and isothermal, ( )I , proflle data: '

AP \ AP
dyn _ .dxn
Aden,w/ ] BPayn, e ]

el
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<

3
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o

el

8 |&

SG‘-D
S
s}



Experimental temperature and velocity profiles wére taken
at constant free-stream velocity, F = O » under ( )I and
( )H conditions. A similar experiment was performed at
F = +0.006 , K = 0.77x206 | Analytical ( ); and (),
temperature and velocity profiles were also obtalned from
simultaneous solution of the momentum and energy equations
(discussed in Chapter V). The three relationships listed
.above were applied to the ( )I‘ data (experimental and
‘analytical). The following were concluded:

If the free stream conditions are similar for the iso-
thermal and nonisothermal cases, the relationship which ylelds
is

minimum difference between (Ree)H and (Re )I

(u/u,,) = (U/U,) T This same relationship also results in
mlnlmum ReA difference. These results apply when :
0.95 < tm/% < 1.05 and were verified by both experimental
and analytical approaches. The error in Ree and ReA
resulting from this correction is less than 1 percent.

C.3. Stanton Number

The method of determining wall heat-flux was
described in Chapter II. The Stanton number was calculated
"from its definition
i
pt>°U°°(hs,o-hs )

k]

St =

. where

(o]
n

o

‘ hs,o—hS,oo = c(ty-ty) -

m
0
oy

| for constant specific heat, c¢ . _ _
| All experimental St were corrected to constant
 property values using the relation
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| 6 0.4
St = St { +—
0 : c.p. T

This'correction was applied to correspond with the constant

property Stanton number predictions., The maximum difference
between 7ReA and (ReA)c.p, is approximately 2 percent for
all runs. Both St and Stc.p. are tabulated in Appendix

A . _

Many investigators choose to exhibit experimental
Stanton numbers in terms of local Re, . Certainly, for
dP/dX = O and F = O this is useful and convenient; distance
from the virtual origin is easily obtained and one can
physically relate surface heat transfer to the point in
question. With variable free stream and wall boundary con-
ditions, the utility of the virtual origin concept is question-
able, It seems appropriate, thereforé, to consider the pos-
sibility of, relating Stanton number to local variables. .

At constant F , Moffat [3] correlated Stanton number
with both Re, and Re, . Whitten (4] successfully cor-
related his constant B andvmildly'varying F heat transfer
data with local Re, - On all graphs, Stc.p. is displayed
versus Re, . ‘

Moffat's data [3] at F =0 , K= 0 , corrected for

constant properties, can be correlated with the expression

-0,25

Sty ,, = 0.0152 Re,

.

1

In the present study, the 2-dimensional, zero pressure
gradient, unblown, constant property Stanton number is assumed

to obey this correlation,
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CHAPTER IV
EXPERIMENTAL RESULTS

A. Results

- The range of test conditions are summarized below:

Free Stream Velocity 25 to 123 ft/sec
Blowing Fraction -0,004 to +0.006
(ty = to) -20 to 43°F

Acceleration Parameter, K O to 1.45 x 10"6

Four values of K were experimentally achieved: O ,
0.57 x 107® |, 0.77 x 106 , 1.45 x 106 . one temperature

.profile was taken upstream of the acceleration region, three

or four profiles in the coristant K region, and three more
profiles in the recovery section (if provided). The results
are grouped according to the level of K , then subdivided
according to the value of F . The Stanton number data are
tabulated in Appendix A, the temperature and velocity data
in Appendix B. Hydrodynamic'conditions for each run are
discussed in detail ian reference 2. _

Figures 8 - 20 graphically display the Stanton number
and profile data for the following conditions:

0.57 x 10‘6; -0.002 < F <+0,004

K = 1.45 x 1070, -0.002 < F <+0.006

K

In some cases Stanton number and tt predictions are in-
cluded, based on the method described in Chapter V.

As discussed previously, the 2-dimensional enthalpy
thickness check (see Chapter II) prior to accelération did
not always cbnvincingly indicate 2-dimensional flow. In
those cases where the A difference exceeded 8 pércent,
the t* values differed by a constant percent from cor-
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responding profiles having an acceptable enthalpy thickhesé
check., Adjusting St , in the manner suggested in Chapter-
11, Section F, yielded acceptable, 2-dimensional .t+—y+'
behaVlOT | ‘

Temperature proflles taken in the constant velocity
region (recovery section) following K = 1.45 x 107~ are
illustrated in Figs. 2l.

Figure‘22 displays the F = 0 Stanton number depehdence
on local ReA at different values of K . Figures 23, 24, and

[

25 exhibit the relative effects of blowing and pressure gradient

on Stanton number,

B. Discussion of Résults

If a strong favorable pressure gradient is imposed cn a
turbulent boundary 1ayer, a rather substantial chahge ib,the
turbulent structure can occur. The resulting boundary layer
may have many lamlnar like characteristics, notably much
lower Stanton numbers, higher shape factors, and "rounder"
looking temperature and velocity profiles. This reVersion
from turbulent to laminar-like behavior has been called re- .
1am1narlzatlon (6,7,8]. |

None of the data taken in this study for F > -0.001
show  any 51gn1f1cant evidence of laminar behavior. The o
exoerwmental Stanton numbers are much greater than correspond-
ing laminar values at the same Re.A . The mean velocity
profile data of Julien [2] also indicate the presencevof a -
turbulent boundary layer (i.e. the U/U, - y/S profiles
are 'steep' near the wall, ut - y* profiles depict a
logarithmic region) for these flows,

At F = -0.002, K = 0.57 x 10‘6~, the heat transfer
and hydrodynamic data have the same turbulent charactéristics
as described above. With flows for K > 0.77 x 1070 s
F = 20.002 , the last U' - y* profile in the constant K

region exhibits a laminar-like shape but the U/U, - y/©
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profiles and shape factor appear turbulent [2]. At the

same ReA , the corresponding Stanton numbers are mucg lower
than at K = O . It is felt that for K > 0.77 x 10 s

F = -0.002, the boundary layers are possibly undergoing re-
laminarization since they are not fully laminar and cannot

. be classified as typically turbulent.

The hydrodynamic profiles corresponding to F = -0.004,
k > 0 , display a laminar-like appearance [2]. Stanton number
echieves the magnitude of the sucking fraction with these |
flows.
: In general, Julien's [2] last two_velocify profiles in
ﬁhe constant K region demonstrated the presence of a near-
asymptotic boundary layer. Table 3 provides best estimates
of the asymptotic Reei for all experimental conditions of
this study. Largest departures (percentage) from the estimated
asymptotic condition were experienced with flows for large
negative F , large positive K . _

In Figs. 7, typical development of some important boundary
layer quantities is shown for flows at K = 1.45 x 107~ ,
F = -0.002, 40,004 , Several important observations can be

made from Figs. 7:

(1) A near-asymptotic boundary layer can be achieved.

(2) Re continues to grow as Eq. (9) predicts.

A
(3) Both & and by are affected by the imposed favor-
able pressure gradient; the hydrodynamic boundary

layer thickness being reduced much more (percentage)

than its energy counterpart.

(4) The hydrodynamic variables 6 , & , respond faster
to acceleration than their thermal counterparts

(8,54) -
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B.1. Stanton Numbers

Moffat's [3]'ﬁeat transfer data for zero pressure-
gradient, uniform blowiﬁg, constant surface temperature, and
Whitten's [4] data for variable blowing and arbitrary surface
temperature variation, all show a strong local behavior-in
that

St = St(ReA,B)

for all sloﬁly varying wall boundary conditions. In ‘the
above studies, the thermal and hydrodynamic boundary layers
were well developed, hydrodynamic outer region similarity »
existed [5], and B = 0 . Thus the flows could be classified
as equilibrium in the Clauser sense [(27]. " In the following
discussion, the phrase "K = O equilibrium" refers to the
'St(ReA,F)'behavior established'by Moffat [3]. |

As illustrated in Fig. 22, the Stanton number data  for
F =0, K>O 1lie below the "K = O equilibrium" relationship;
“i.e., for a given ReA the value of St 1is less than phe
flat-plate value. As the favorable pressure gradient in-
.cfeases, departures from the "K = O equilibrium” become
greatér. At a fixed level of K , the Stanton number displays
a greater percentage reduction (relative to "K = 0 equilib-
rium") as Re increases. The data at K = 2.5 x 10_6 [30]
show a very large decrease in St which may indicate a
significant reduction of turbulence. The St—ReAV‘trends
~ shown in Fig. 22 substantiate the results of Moretti and
Kays [6]. | |

Selected results of reference (6] at K = 0.41 x 10~
and K = 1.4 x 107® are shown in Figs. 26. There are

6

quantiﬁative differences (compared to Fig. 22) suggesting that
1l ocal behavior cannot be relied upon in these flows, i.e.,

st # St(Re,,K)

4o

A,




Moretti's hydrodynamic boundary layer is highly "under-
shot”™ at the start of the test run for K = 0.4] 1070 |
whereas it is strongly "overshot" at the beginning of the
run for X = 1.4 x 10™° . In the bresent study, the entrance
Rey, for all runs with K < 1l.45 x 10_6, F =0, was within
+ 20 percent of the estimated asymptotic value. These hydro-
dynamic differences in the region breceding acceleration are

Vbelieved to be partly responsible for Moretti's different

St values at the same ReA » K . It is felt that another
important factor is how long (streamwise distance) the
boundary layer has been exposed to the constant K condition._
If the pressure gradient is maintained for a long streamwise
distance, the thermal boundary layer will penetrate sub-
stantially beyond the hydrodynamic layer producing a signi-
ficant resistance to surface heat transfer (discussed later).
The effects of highly "overshot" or "undershot" boundary
layers on the surface heat flux were notrexperimentally in-
vestigated in this study. Results from computer experiments
with "overshot" boundary layers, utilizing the prediction
method discussed in Chapter V, indicated that the &t - RéA
relationship in the constant K region could be substantially
altered by varying the hydrodynamic and thermal boundary layer
developments prior to acceleration.
A relatively long test section is required to develop
significant thermal resistance between the hydrodynamic &
and thermal 6T . With strong favorable pressure gradients,
the testing length becomes quite small and one cannot ac-
curately evaluate this effect. Again, results from computer
experiments with prolonged favorable Pressure gradients
showed that this form of resistancé could significantly
reduce St , especially at large K . For flows with
F =0, K>0, the greater bercentage drop in st
is:

(relative to "K = 0 equilibrium") with increasing Re ,
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believed to be caused, in part, by this outer region
resistance. ‘ '

One achieves a reduction in St at F = O when a favor-
able pressure gradient is imposed. Moffat (3], among others,
proved that blowing without pressure gradlent also reduces
St . The results of‘thls study, however, prove that super-
posing both,blowing ggg favorable pressure gradient may, .
in fact, increase St above the "K = 0 equlllbrlum level.
There ex1sts a critical combination of positive F andf K
(hereafter denoted as FC s Kc) where St appearé unaffected
by the imposed pressure gradient, i.e., St vs. ReA is the
same as with "K = O equilibrium." The critical combinations
were found. to be approximately Fc = +0.002 and K. = 0.57

bl 10—6 s Foo o= +0.,002 and K, = 0.77 x 10_6 s FC = +0.004

and K, = 1.45 x.10_6 . If K, is fixed and F < F, , the
resulting St drops below the "K = O equilibrium” level.
When F > F, the Stanton number is larger than "X = 0.
equ;llbrlum The critical FC increases with K .

With favorable pressure gradients and suction, Stanton
number always drops below the "K = O equilibrium" level.

The asymptotic suction condition is achieved quicker w1th a
favorable pressure gradient. Dramatic proof of this can be
seen in Fig. 14d where substantial reduction in St is
achieved at F = -0.002, K = 1.45 x 10'6 .  Although no
graphs are prdvided, Stanton number achieves the magnitude
of the sucking fraction almost immediately at F = -0,004,
K = 1.45 x 10~

Stanton numbers in the constant free-stream velocity
section following K = 1.45 x 10_6 acceleration display a
very interesting characteristic. Stanton numbers indicate
a return toward "K = O equilibrium" only when F . For

<0
F > 0, the Stanton number data recede from "K = O

equ111br¢um
in the recovery section, as Fig. 25 1llustrates. Even though

Stanton number seems unaffected by the imposed pressure
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gradient at Fc’ KC s once the pressure gradient is removed,
Stanton number deviates quite substantially from the zZero
pressure gradient equilibrium behavior (see Fig. 194d).

B.2. Profiles

In this section, the meaning of "k = 0 equilibrium"
1s expanded to include the shape of the T - y/6T profiles
at zero pressure gradient, constant F . Departure from
'K = 0 equilibrium" implies departure from the T - y/ b
shape (at constant F) that Moffat [3] and Whitten (4] display
in their zero bressure gradient, temperature profile data.

The data of this study show that regardless of F , the
ratio of thermal layer thickness to hydrodynamic thickness,
6T/6 » becomes greater as K increases., At any particular
level of K , GT/B continues to increase with X . Com- ,
paring the t%t - y+ and Ut - y+ -profiles in the accelera-
tion region reveals g significant difference in shape; the
thermal boundary layer develops substantially outside the
hydrodynamic layer.’ '

The outer region of the thermal boundary layer has been
mentioned as a possible source of significant thermal re-
sistanée. Near the edge of the hydrodynamic layer, the eddy
conductivity 1s very small because of the very low momentum

| diffusivity, Beyond & , heat is transferred primarily by

molecular mechanisms (neglecting free stream turbulence),

The relatively large t+ - y+ wakes in the pressure gradient
region indicate a region of low thermal diffusivity. This
reasoning, EOupled with the data, support the notion that the
outer region thermal resistance can become important with:
prolonged and/or'strong favorable pressure gradients,

The data of Moffat [3] and Whitten (4] show t+ - y+
similarity in the inner region (wall dominated). All temper-
ature profile data taken in this study for constant K,
constant F show inner (tT,y") and outer (E}y/ST) region
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similarity. Selected outer region temperature profiles for
flows with F = -0.002, 40,004, K = 0.57 x 10 ~ , 1.45 x 10'6

are shown in Figs. 1l4c and 19c¢. In these figures it is rather

surprising that all outer region profile shapes are approxi-.
mately the, same at a particular ‘F even though the levels of
pressure gradient are quite different. At F = -0.002, the
outer region temperature profiies for K< 1.45 x 107" are

the same as for "K = O equilibrium." As F and K increase,
shape of the outer region departs further from "K = 0 equilib-

rium." ]

At F.= -0,002, K < 1.45 x’10‘6 , outer region similarity

exists over approximately 90 percent of the boundary layer,
the shapes show no s1gn1f1cant departure from K 0 equlllb—
rium, ' yet. the Stanton numbers are substantially 1ower than
the "K = O equilibrium” level. This behavior suggests_that
at these conditions the inner region (y/BT < 0.1) contains
most. of the thermal resistancé. ' L

At F = +0.004, K < 1.45 x 10'6.,nouter region simil-
‘arity (at each level of K ) spans about 90 percent of .the '
boundary layer and the profile shape agrees with "K = 0
equlllbrlum' over the outer 50 percent of 6T . For thesé'
conditions, the Stanton numbers are equal to or slightly
larger than the "K = O equilibrium" values.

In the acceleration region, the U+ - y+ .profiles of
Julien [2] differ from those established at zero pressure
gradient. With all velocity profiles for K > O , U* "over-
shoéts 1ts accepted zero pressure gradlent fully turbulent
1ogrithmlc level. The temperature profiles also exhibit this
t+ "overshoot" as shown in Figs. 8-20.

One possible cause of this "overshoot' is a decrease in
effective viscosity near the wall. Julien [2] suggests ‘this
based on his hydrodynamic data as does Patel, et. al [8].

- Schraub and Kline [7] show a reduction in turbulent burst .
rate near the wall with increasing K . This idea of a

4
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reduced turbulent viscosity near the wall has been incorporated
into the prediction scheme, i.e., greater laminar sublayer '

thickness in a 2-layer model and smaller e near the wall

in the Van Driest model. .

In the recovery section the inner region of the temper-
ature profile recovers much faster to "K = 0 equilibrium"
than does the outer region. Temperature profiles, depicted
in outer region variables, are shown in Figs. 21 for
F = -0.002, 0, +0.002, +0.004 ,

For F > O , the recovery section profiles show simil-
arity over 90 percent of the thermal boundary layer but the
shapes do not show evidence of a return toward the "K = O
equilibrium" shape. As F increases, the T - y/6p shape
departs further from "K = O equilibrium." As indicated
earlier, Stanton number also exhibits this trend away from
"K = 0 equilibrium" as F increases.

At F = -0.002, Stanton numbers in the recovery section
show quick recovery to "K = O equilibrium" but outer region
similarity in the temperature profiles does not exist (Fig.
2la). The first profile, taken shortly after the acceleration
had terminated is typical of those in the préssure gradient.
region; shapes of the two subsequent profiles depart from
"K = 0 equilibrium,"

In the recovery section, 1t 1s apparently the outer-
region of the temperature profile which contributes signifi-
cant thermal resistance at the larger blowing fractions. At
large suction fractions the inner.region contains most of the
thermal resistance and therefore Stanton number would be
expected to recover quickly once the pressure gradient is
removed. This behavior has been previously noted and 1is
additional evidence supporting the reduced effective vis-
cosity concept discussed earlier. -

Tt is felt that "K = O equilibrium" would have been

chiéved in the recovery region given a long enough test
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section. This opinion is based on the following: (1) the
data indicate that A/6 slowly approaches the appropriate
equilibrium value; (2) the recovery section phenomena have

been adequately predicted utilizing equilibrium physics (see

Chapter V). It appears as though the slow St recovery to
the "K = 0 equilibrium" behavior is primarily attributable

to the slow response of the thermal boundary layer. This is
apparently due to the fact that after prolonged accelerafion,
there is a substantial amount of thermal energy stored ih

the outer part of ﬁhe boundary layer where the eddy con-

ductivity is extremely small.

C. Stanton Number Correlation

When predicting impermeable wall heat transfer with
favorable pressure gradients, some choose to apply a suitable
correction to the zero pressure gradient Stanton number cor-
relation before application of the 2-dimensional energy in-
tegral equation [14,31]. This correction usually takes the
form (G/A)n, and is an attempt to_bring the effects of hydro-

dynamic development into the energy integral equatibn. Argu-

ments in favor of this particular correction follow what was
stated earlier with regard to the decrease in St . as a re-
sult of the difference between 6 and 5p . In principle,
this type of correction does not account for any decrease in
effective turbulent viscosity near the wall resulting from
an imposed favorable pressure gradient.

The following results of Moffat [3] and Whitten [4],

-0.25

s (11)

K=0, F=0: St = 0.0152 Re
K=C, F#0: (St)y o = {?ﬁn(l+B)]/§} St (12)

were used in establishing the correlation
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The ratio (6/A)K=O‘is approximately 0.95 for F >0 . Figure
27 displays Eq. (13) relative to the data.

This correlation predicts whether or not St wil be
greater than the zero pressure gradient value at the same
Re, . Equation (13) predicts the Stanton number data within
10 percent for -0.001 < F < +0.006, 0 < K < 1.45 x 1079
Equation (12) does not accurately predict (St)K=O with suck-
ing; at F = -0.002 the error is approximately 13 percent.
Use of Moffat's data at F = -0.001 in place of Eq. (12)
ylelds the dotted data points in Fig. 27.
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CHAPTER V

PREDICTION t

The equations governing steady-state heat, mass, and

. momentum transfer are elliptic in form. Introducing the

usual boundary layer approximations [21] reduces the form of
these equatidns to parabolic. Solutions of the resulting
boundary layer equations, after suitable Simplifications,'are.
usually obtained using integral or differential techniqués.
The differential approach is deemed a more generally useful
method of éolution since the effects of variable p{pperties,_

. viscous dissipation, and chemical reactions can ultimately be
" considered. Another advantage of the differential approdch,

is the abilit& to account for arbitrary growth of the thermal
boundary layer. In this gtudy, the Patankar-Spalding finite

~ difference method of solving parabolic equations (18] was

utilized.

The momentum and energy boundary layer equatidns can be
expressed in X - ¥ co-ordinates (v 1is a stream functibn
satisfying continuity). using the von Mises transformatiéﬁ:

Conservation of Momentum in X-direction:

3X T3¢ pU &X
Conservation of Sfagnation Enthalpy

-%% = %7 [4"-Ur] | (15)

Equations (14) and (15) apply to plane flows. The tur-
bulent contributions to shear stress and heat flux are“added
to their viscous counterparts to yield an effective shear' _
stress T and effective heat flux @" . The effective shear
stress and heat flux are expressed in termé of effectivé:ex—

change coefficients in the Boussinesq manner, i.e.,
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T = Herr 3y
§" _Fefr dn
! - Prepe O

The effective viscosity, Herp > is the sum of the
laminar and effectlve turbulent viscosities, i.e.,

Heee = H + Heurp

The effective turbulent viscosity was calculated from Prandtl S
mixing length hypothesis

2
Miurb = P4 ' l | (16)

The effectlve turbulent Prandtl number can be found from the

equation
Herr  p Mturp
Pr =P T Br
eff T
K  Meurp | ‘
where the term ﬁ;E—— represents the effective turbulent,

energy diffusivity multiplied by local density.

It seems reasonable to consider the ‘turbulent boundary
layer as being composed of two distinct regions: the inner
region which is significantly affected by the presence of
the wall and the outer region which is relatively independent
°of the wall. The mixing length (£) dietribution through the
boundary layer was chosen to reflect this inner and outer
region idea. Near the wall, £ was proportional to distance
from the wall and in the outer region, £ was constant and

vnproportional'to the hydrodynamic thickness (recommended by

Escudier [32]). This inner and outer region mixing length
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representation is analagous to the inner and outer length

scales — and & used to exhibit profile similarity.

Ue

Very little information exists on the turbulent Prandtl
number even for flat-plate flows (K = O, F = 0). Many tur-
bulent boundary layer prediction schemes consider Prp '

constant th;oughout the boundary layer. Simpson, et. al [19]

are the firgf to establish the Prqp distribution through a
transpired turbulent boundary layer (-0.001 < F < +0.004) in
the absence‘of pressure gradient. No Prp data were found
applicable to favorable pressure gradient flows with or with-
out trdnspiratién. A
Attempts to accurately predict the impermeable wall,
ilat plate temperature profiles with a constant PrT were
not successful, but satisfactory overall heat transfer pre-
dictions were obtained. It became apparent after these,
jnitial prediction attempts that an inner and outer Prp
digtributien, patterned after the mixing length, was needed.
The dependent variables vary significantly in the region
tounded by the wall and first finite difference nodal point.

In this region the velocity and X-derivatives are small making

the X-wise convection of momentum and energy locally negli-
ginle., Neglect of these terms in the momentum and energy
voundary layer equations constitutes a "Couette flow' model,
and ordinary differential equations result. The solutions

to these ordinary differential equations are used as boundar§
conditions for the main finite difference program.

With strong favorable pressure gradients, at F = O , the
'couette Tlow' region becomes very small. A correction to the
rydrodynamic "Couette flow" equation was applied in regions
where validity of the "Couette flow" assumption was question-

~

able [2]. 1In general, the "Couette flow" region extended to

4

vy~ = 50 for all cases considered.
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Two different models were chosen for study. Oﬁe was a
2-layer model characterized by a fully laminar inner region
and a fully turbulent outer region. Van Driest's continuous
eddy viscosity model [33] comprised the second. Each of
these models will be discussed individually. Both of these N
models were used by Julien [2] invpredicting the isothermal, -
hydrodynamic characteristics of turbulent boundary layers
under the same pressure gradient and constant conditions

achieved in this study. The same effective viscosity rela-
tions used by Julien, were employed in this study.

A. 2-Layer Model (2L)

The "Couette flow" region includes the laminar sublayer
and part of the fully turbulent region., The effective tur-
bulent viscosity is zero in the laminar region and, likewise,
H =0 in the fully turbulent domain,. Outside the "Couette

flow" region, however, no restrictions on U or are

Hturb
imposed,

For zero pbressure gradient flows with blowing, Julien

[2] matched Simpson's [5] fully turbulent law-of-the-wall to

the laminar sublayer eéquation-and obtained the laminar sub-

. layer thickness as a function of V; . With sucking, Julien

applied Simpson's profile data in the same manner. The sub-~

layer_thickness, for flows with zero pressure gradient, was

found to be adequately approximated by
+ +

= 11- 18v

(yz ioc ©

‘For all constant K flows of this study, Julien [2]
used the experimental, hydrodynamic profile data in cor-

relating (y£+) in terms of V;' and P" . The same

loc
matching technique as described above was utilized. This

correlation is in tabular form and can be found in reference

i

P

51



Julien [2] used the following mixing length distribution:
L = xy ; 0 <y < Ap/x
L = a6 vy > A/

where x = 0.44% . The inner and outer mixing length idea
alluded to earlier is quite evident in the above representa-
tion, |

With most boundary layer flows at F = O , the constant
of proportionality, A , is approximately 0.085 [32]. At low
Ree , however, the data of Simpson [5] suggests a A depen-
dency upon Ree . Julien [2] found the following correlation
to yield satisfactory results for all experimental conditions
of this study:

A= 0.25 Re9'0‘125

(1 - 67.5 F) , (17)
- If Eg. (17) exceeded 0.085, X was set equal to 0.085 .

One remaining quantity needed in the energy equation is
the effective turbulent Prandtl number. The Prqp results of
reference 19 arebillustrated in Fig. 28. Although no data
points are shown, there is no obvious dependence on blowing
fraction. One can conclude, however} that a larger PrT is
needed very near the wall (inner 10 percent) whereas the
outer 60 percent of the boundary layer requires a relatively
constant Prop (except very near the outer edge).

In the inner region, Prq was correlated with y+ and

(Prp)g . (Prp)g is the turbulent Prandtl number at the edge
of the laminar sublayer which satisfies oy = (eH)ﬁ . The
condition a, = (EH)E occurs when

+
(PrT>E = Prx(yy )loc

The turbulent Prandtl number was considered constant for
7> 15 v
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The resulting constant property' Pro distribution*(for
air) used in the 2L, model is expressed as follows:

(Pr,) ,-0.87
Pro, = +T £ T (y+—yg+) + (PrT)E s vy <yt <1 vy*
Yy ‘1-5Y£

(18)

o+ +
PrT = 0.8{, Yy > 1.5 Yy

The 2L model is artifical in the inner region, therefore
the corresponding Prp  distribution should likewise reflect
thls artificially. Equation (18) provides the same trend as
exhibited in Fig. 28, i.e., large PrT near the wall and

constant PrT in the outer region.

B. Van Driest Model (VD)

In the;Van'Driest model [33], the mixing length, 4 , is
represented by a damping function which becomes zero at the
wall and approaches Ky at reasonable distances from the
wall. Julien [2] applied Van Driest's mixing length distribu-
tion in.the form |

IS
l

Ky[l - exp { -y \J-T_p‘/(uA*)}J. 3 0 <y < AB/x
‘ﬁ = A0 3 ¥y > A/k

where local shear was used instead:of wall shear in an attempt
to account for pressure gradient and transpiration effects
[18]. For flat plate flows, A* = 26 . As with the 2-layer
model, x = 0,44

As shown above, the mixing length possesses an inner
and outer region distribution. The proportionality constant,

A, s identical to that proposed in the 2-layer model, i.e.,
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-0.125

A = 0.25 Re, (1 - 67.5 F)

truncated at A = 0.085 .
- With zero pressure gradient flows, Julien [2]'used the

above mixing:length distribution in a "Couette flow" analysis

to match Simpson's fully turbulent law-of-the-wall with
blowing.' With sucking, Julien matched Simpson's profile data
in the same manner. Proper matching was achieved by adjust-
ment of A* . In this way, Julien correlated AY  with Vg .
For all constant K flows, Julien used his hydrodynamic
profile data to correlate A* with VZ and PV . The same-
matching technique as described above was applied. This cor-
relation is in tabular form and can be found in reference 2.

With zero'pressure gradient. flows at F = 0 , Pr., was.

. T

correlated with eM/v in the inner region and was set equal.

to a constant in the outer region, ,
With favorable pressure gradients and F # O , the inner

region PrT correlation was modified by the variables Pt

and A* . The,outer Pr became a function of F . The re-

T _
sulting Prqg 'distribution is represented by the following

5 0.4
1 26\ T\| M +
PI‘T = ﬁ[l-* .l<:;\—_);> | —V](l + 20P )

truncatedfat

expression

Prp = 0.86(1 + 52F)

At the wall, with flows for F =0, K= 0, PrT achieves
the same value as that predicted from the Jenkins model (as
presented in reference 25). The range of PrT for all test

conditions is illustrated in Fig. 28.
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C. Discussion of Predicted Results

In general, the experimental values of Cf .and mean-
velocity profiles were satisfactorily predicted with both
models. The velocity profile and Cs Dpredictions can be.
found in reference 2. The constant property mean temperature
profile and Stanton number predictions are displayed in
Figs. 8, 10, 12, 13, 14, i6, 18, 19, 20 for K = O.57x10'6
and K = l.45x10'6 '

C.l. Zerc Pressure Gradient

C.l.a. Stanton Number

Results of the Stanton number predictions
for impermeable wall, Zero pressure gradient flows can be
found in Fig. 29, With both models, the predictions at
F = 0 show excellent agreement with Moffat's data [3]. At
F = -0.0024, which represents a relatively large sucking
fraction, both models. yield very good results. Good agree-
ment with Moffat's data is also achieved with both models
for F < +0.00%. The 2-Layer model is not recommended for
F > +0.006. Even at very large blowing fractions (F =-+0.0078),
the Van Driest model can be used to achieve a’reasonable'.st
prediction. It should'be noticed, for iater reference, that
.at larger ReA s both models prédict a greater St at .

‘F = +0.004 than Moffat's data suggests. Also, the 2L model
predicts a larger Stanton number than does the VD model for
F > +0.006

C.1l.b.. Temperature Profiles

The predicted temperature profiles at,

il

F'=0 are in excellent agreement with the data (see Fig. 10a).
This suggests that the correct - PrT distribufion was achieved
since the predicted velocity profiles also matched the hydro-
dynamic data [2],

At F = -0,002, the experimental, hydrodynamic starting
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condition (at the start of sucking) was different than that

‘used in the prediction method. As a consequence, the pre-

dicted Reg/Rep ratio is different than what was provided .
experimentally. The 2-layer model displays very good aéreé;
ment with the profile data (Fig. 8a). The Van Driest model
does not predict the data as well due, in part, to the dif-

vferent Ree/ReA~ ratio.

Reasonable agreement with the profile data is achiéved.
with both models for F < 40,004 (Fig. 12a, 13a). It is
evident that the prediction models need a larger PrT near;
the wall to achieve inner region (yt < 60) agreement with
the data. This same deficiency can be seen in the profile
predictions at F = +0.006 (Fig. 20a). It should be pointed.
out that at F = +0.006, the predicted and experimentalipro—

files are compared at different conditions (Ree s Re which

A)

1
H

account for some of the discrepancy.

C.2. Favorable Pressure Gradients and Recovery

i

C.2.a Stanton Number

Stanton number predidtions with both models
for K < 1645x10_6’, F =C, are in very good agreement with

‘the data (Fig. 10d, l6d).: The Van Driest model more accurately

predicts the magnitude of St at K = 1.u5x10_6 . The re-

sults from both models show excellent agreement with experi-
mental St data in the recovery section, i.e., the region
where K has returned to zero (Fig. 16d). 1In the regioh
where K increases from zero to its constant value, both
models predict a greater decrease in Stanton number than the
data suggest. Although not shown in Fig. 16d, the same
behavior is found when K returns to zero 1i.e., Stanton
number rapidly achieves the flat plate equilibrium value
once the pressure gradient is removed, but then quickly re-
turns to the recovery section behavior displayed in Fig. l@d).
Part of the reason for this behavior apparently lies in '
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correlating the sublayer thickness (2L model) and A" (VD

model) with P¥ . Possibly the rate of change of Pt or K
should be considered in these highly nonequilibrium regions.
At relatively large sucking fractions, F = -0,002,
adequate St predictions were achieved with both models at

-K = 0.57x10""; the 2L model showing closer quantitative agree-

ment with the data (Fig. 8d). Solutions could not be Obtained
with the 2L model at K = 1.45x10_6 » F=-0.002 . As shown
in Fig. 14d, the Van Driest model predicts .St behavior

" relatively well at K = l.45x10_6, F = -0.002 even though

this flow has been shown to exhibit laminar-like behavior
[2]. Pfedicted heat transfer in the recovery section shows
excellent agreement with experiment at these conditions.

As pointed out in Chapter IV, the data suggest a critical

blowing fraction at K = 0;57x10‘6, of approximately +0.002

Figure 12d shows that both models predict this "eritical"

.. behavior, i.e., St appears unaffected by the imposed favor-

able pressure gfadient.
At K ;,O.57x10'6 » F = 40,004 , the data are adequately

'predicted using both models. When first observed, the in-

crease in experimental St over:'the "K = O equilibrium"
level was unexpected and was believed to be caused by some

‘new and undefined phenomena. Successful prediction of the

- Stanton number data at. this condition is gratifying and it

is suggested that nothing "mysterious" is happening. This
increase in Stanton number is merely a result of the complex
coupling betweenthe effects of favorable préssure gradient - and
blowing. : ,

The critical blowing fraction at K = 1,45x10‘6 :isf
approximately +0,004, Adequate St predictions are achieved

with both models at this condition (Fig. 19d). 1In the non-

~equilibrium region (rapidly changing X ), the deérease in
'St predicted by both models is not substantiated by the
-data.
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At the highest blowing fraction corresponding to the
strongest favorable pressure gradient, both models yield
acceptable St predictions (Fig. 20d). The VD model yields
better St predictions; however, Julien [2] indicates better
Cy agreement with the 2L model at this condition. When com-
pared with Fig. 29, Fig. 20d shows that the increase in

Stanton number was predicted by both models. ‘
| With large blowing fractions, the experimental Stanton
numbers showed no sign of returning to the "K = O equilibrium”
level once the pressure gradient was terminated. As shewn
in Figs. 18ﬁ, 19d, 20d, this same behavior has been success-
fully predicted. In viewing these results, one must make
reference te Fig. 29 to determine each model's zero pressure .

gradient behavior. Adequéte prediction of the recovery section

Stanton numbers from equilibrium considerations suggeste that
return to’the "K = 0 equilibrium”" level would have been
achieved given a long enough test sectlon :

C.2.b.- Temperature Profiles

As Figs. 10b and 16b illustrate, both models.. .

yvield exeellent predictions of the temperature profiles for
K< 1.45x10°®, F =0 . The Van Driest Prp correlatlon _
apparentiy yields the correct turbulent Prandtl number dlS-
tribution over most of the boundary layer.

Very good agreement between experimental and predicted
temperature profiles were achieved at relatively large sucking
fractions and mild favorable pressure gradients (see Fig. 8b5.
.Wiﬁh strong favorable pressure gradients, the‘predieted tem-
perature profiles at sz -0.002 seen to suffér from having
too small a Prp near the wall (Fig. 1k4a). This same trend
existed at K =0, F = -0,002 but was not evident at
K o= O.ﬁ?xlo’b . Part of the reason for this behavior at.-
P o= -0,002, K = 1.45x10“6 might be attributed to the laminar-
like appearance of the hydrodynamic profiles [2]. 1In their
present forms, the 2L and VD models cannot be used to satisf
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factorily predict the characteristics of a relaminarizing

boundary layer.

With mild favorable pressure gradients and F > O , the

temperature profile predictions deviate from the data in the

same consistent way as with the zero pressure gradient pre-

dictions (compare Fig. 12a with 12b, and 13a with 13b). Since

St and Cpy were adequétely predicted at K =~O.57x10‘6 ,

F >0, it appears that Pr

T should be greater near the wall.

.with blowing. The 2L model yields somewhat better agreement

with the data at these conditions.

At K = 1.45x10‘6 ,- the predicted temperature profiles
show good agreement with the data for O < F < +0.006 (see
Fig. 18D, 19a, 20b). Deviation from the data at F = +0.002
is consistent with the zefo pressure gradient behavior. As

the blowing fraction increases, the profile predictions be-

come better.

‘'D. Summary of Predicted Results

Predicted Stanton numbers from both models for zero pres-

sure gradient flows agree quite well with data for

-0.002 < F < +0.006. Predicted

models show excellent agreement with the data at K
F =0 . As blowing fraction increases, predicted t

profiles depart from the data in
signifying the need for a larger
the wall. Sufficiently accurate

of Pr very near the wall with

T

t+

- y+ profiles from both
0,
S+
-y
the inner region (t° < 100)

+ + 1

turbuient Prandtl number near
information on the variation
blowing is lacking; the

present correlation under-predicts the desired PrT in this

region.
With mild favorable pressure
for -0.002 < F < +0.004 , excell

gradients (K = O.6x10—6)
ent agreement was achieved

between predicted and experimental Stanton numbers using both

modelé. Stanton number behavior
condition and the increase in St
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level were successfully predicted with both models. Adequate
t* - y* profile predictions for these conditions were also
obtained. The profile dlfferences that exist are of the same
type as found for zero pressure flows, i.e., with blowing,.
a greater Prq 1s required near the wall. '
With strong favorable pressure gradients (K = 1. 5xlO 6)
for. 'O < F'< +0.006 ", the predicted Stanton numbers from both
models are in very good agreement with the data. Stanton
number data at and beyond the critical condition (F > F.)
were satisfactorily predicted. At K = 1.45x107° ,
0 < F < +0.006 ,Athe temperature profile results from both
models show closer agreement to the data than at K = 0.57x10
The particuiar 2-layer model used in this study should’
not be used, when suction is applied with strong favorab}e
presshre gradients; The Van Driest model adequately.predicts
the Stanton number and t* - y¥t profile data at F = -Q.ooz,
K = 1.45x1076 |

The Stanton number behav1or in the recovery sectlon, for -

-0.002 < F < +0.006 , has been satisfactorily predlvted. As

the data indicate, the St predictions do show a significant-

trend away from the "K = O equilibrium" level at large blow-
ing fractions. This predicted behavior suggests,thatgtne
slow Stanton number recovery to its "K = O equilibrium"
behavior is primarily attributable to the slow response of
the thermal boundary layer, since the hydrodynamic boundary
layer responds qulckly to removal of the pressure gradlent
(discussed in Chapter IV). .

Julien's [2] sublayer thickness and inner region Ky urb
correlations were derived from data applicable to near-

asymptotic flows. It is'not'yet known how well the'prediction

method will work for flows with rapidly changing K in the
Streamwise direction. Referring to Fig. 16d, it is noted
that as K increases from zero to 1. 45%x10° s the predlcted
Stanton numbers are ‘lower than the data suggest.

60

-6



Successful prediction of the data was achieved uéing

simple mixing length theory. In the 2-layer model, all
blowing and favorable pressure gradient effects were taken

into account merely by varying the laminar sublayer thickness,
One need only to adjust A* in the Van Driest modei to
satisfactorily represent the effects of favorable pressure
gradient and surface injection for the range of experimental
data covered in this study.
4 The importance of achieving the correct'turbulent Prandtl

number distribution in the inner region and the success of
Julien's correlationsA[Z] suggest that for the data of this
study, the effects of favorable pressure gradient and blowing
are primarily concentrated in the inner regions of the flow.
However, with a very strong and/or prolonged favorable pressure
gradient, significant thermal resistance can result from the '
near molecular transport of thermal energy outside the hydro-

dynamic layer.

61



CHAPTER VI

SUMMARY

A. Conclusions

Experimental surface heat flux distributions were obtained
along a porous flat plate in the presence of uniform trans-
‘piration (biowing or suction) and relatively strong favorable
pressure gradients. Mass flux ratio, F , acceleration param-
etef, K , and surface temperature, to , were held constant.
The boundary conditions achieved in this study are as follows:

Free Stream Velocity 25 to 123 ft/sec
Blowing,Fraction ' -0.004 to +0.006:
o :
(to = too) o -20 to 43°F
Acceleration Parameter, K - 0 to l.45x10‘6

These data apply to 2-dimensional, incompressible turbulent
boundary layers. The free stream and injected fluids are
air, A

Mean tempefature profiles were taken in the pressure

gradient and recovery regions. When supplemented with i
Julien's [2] mean velocity profiles. obtained under the same
flow conditions, the resulting data afford a unique op-
portﬁnity to study and evaluate the effects of both boundary
layer developments relative to the local surface heat flux.

The -following conclusions can be drawn: '

1. The Stanton number data for F =0 , K> 0 lie
below the "K = O equilibrium" relationship, i.e.,
for a given Re \ the value of- St "~ is less than

the flat-plate value. As the favorable pressure

gradient increases, departures from "K = 0 equilib-
rium" become greater. At a fixed level of X , the
Stanton number displays a greater percentage re- o

62



(W3]

duction (relative to "K = O equilibrium") as Re -

increases.

The results of this study show that superposing
both blowing and favorable pressure gradient may
increase St above the "K = 0 equilibrium” level.
There exist critical combinations of positive F
and K (denoted as FC,KC) where St appears un-
affected by the imposed favorable pressure gradient
(i.e., St vs. Re, 1s the same as with "K = 0
equilibrium")., If K. 1is fixed and F < F, , the
resulting St drops below the "K = 0 equilibrium"
level. When F > FC » the Stanton number is greater
than "K = 0 equilibrium." Thé critical F, in-
Creases with K . '

With favorable pressure gradients and suction,
Stanton number always decreases below the "K = 0
equilibrium" level. The asymptotic suction condition,
St. = -F , is achieved at iower values of F with a
favorable pressure gradient than in a flat-plate

- flow.

Stanton numbers in thé constant free stream velocity
section following K = 1.45x10_6 acceleration in-
dicate a return to "K = 0 equilibrium" only when

F <O . The data for F > 0 show Stanton number
receding from "K = 0 equilibrium" once the pressure
gradient is removed.

Regardless of ‘F s at any streamwise position the
ratio of thermal layer thickness to hydrodynamic
thickness, 6T/6 » becomes greater as K increases.
At any particular level of K s BT/B continues to
increase with streamwise distance. Comparing the
t*-y* and  Ut-y*+ profiles in the constant K
region reveals a significant difference in shape;
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the thermal boundary layer penetrates significantly
beyond the hydrodynamic layer. With constant,
positive K flows, both U" and t* '"overshoot"
their accepted zero pressure gradient, fully tur-
bulent, logarithmic levels.

All mean temperature profile data taken in the
pressure gradient region exhibit inner (tf - y+)<
and outer (t - y/8yp) region similarity. At

iy ='—0.002, the outer region temperature profiles
for K < 1.45x10°® are the same as for "K = 0
equilibrium." As F and K increase, shape of the

outer region departs from "K = O equilibrium."

In the recovery section, inner regioﬁ of the temper-

ature profile recovers to the zero pressure gradient

shape much faster than the outer region. At

F = -0.002, outer region similarity did not exist.
Forf F > 0 , the temperature profiles show outer
region similarity over 90 percent of the thermal
bouhdary layer but the shapes do not show evidence

~of a return toward the "K = O equilibrium shape.

As F increases,.the t —‘y/@T shape departs
further from "K = O equilibrium."

The concépts of (1) reduced turbulent energy and
momentum diffusivities near the wall, (2) energy
transport by molecular mechanisms beyond the hydro-
dynamic thickness, Qere used with simple mixing
length theory to predict the mean (time averaged)
hydrodynamic' and thermal boundary layer character-
istics with uniform transpiration and favorable
pressure gradients. Utilizing the hydrodynamic sub-
layer correlations of Julien [2] and particular Pro
correlations, satisfactory predictions of St , Ce
mean velocity and mean temperature profiles were
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achieved for -0.002 < F < +0.006 , 0 < K < 1.45x10-6
using the Van Driest continuous eddy viscosity model.
Satisfactory predictions for O < F < +0.006 ,
0 < K< 1.45x1076, and -0.002 < F < 0,
K < 0.77x10~° -6 were also obtained using a 2-layer

' model. Experimental Stanton number behavior at and
bexond the critical conditions (i.e., F > F, ) |

were successfully predicted.
I
9. Experimental Stanton number behavior in the recovery

section, for -0.,002 < F < +0.006 , was satisfactorily
predicted utilizing simple mixing length theory

As the data suggest, the Stanton number predlctlons
‘do show a significant departure away from the ”K ~

0 equlllbrlum level at large blow1ng fractions.

10. The corrqlatlon,

fn St '[5.19 x 10%x - 1ooy] [9 - (9) ]
. StK:O , | | A A K=

predicts St within 10 percent for -0.001 < F <

+0.006, 0 < K < 1.45 x 10-®, This correlation can
also be used to predict whether or not St will be
greater than the K = 0 wvalue at the same ReA .

B. Recommendations for Future Work

1. Heat transfer and hydrodynamic data with blowing and
sucking should be obtained at larger values of K .
Hot wire information should be provided to ascertain
whether the boundary layer is truly turbulent. Inter-
mittency data in the region between & and QT should
be relatively easy to obtain and would provide additional
proof that the degree of turbulence in this region is
negligible.
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The effects of highly "overshot" and "undershot"
boundary layers on heat transfer should be explored.

The recovery phenomena should be further analyzed.
Additional data is needed to prove that the "K = 0
equilibrium" level will eventually be achieved.

The F and t, boundary conditions should be varied

to determine the corresponding effects on heat transfer

and Cf

One of the weakest links in all heat transfer pre-
diction methods is the Prp  distribution. The tem-
perature profiles reported here and the velocity
profiles of Julien [2] can provide valuable informa—
tion on the PrT distributibn with blowing, sucking,
and favorable pressure gradients.

For flows with rapidly changing K , the A* cor-
relation should be modified so as to reflect the
appropriate effective turbulent viscosity distribu-

tion. At present, the Van Driest model holds promise

of being able to predict the relevant heat transfer
and hydrodynamic quantities through relaminarization.
This work should be continued.
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UNCERTAINTY INTERVALS

TABLE 2

(20:1) 0dds

*

(P) denotes passive mode

 Obtained from reference 2

,71

" AStx103 ReA(qua)AKx106 ARey  bu,  AFx10°
(avg.) (ave.%) (%) (%) (max.%) (max.)

P = -0.004 . _
K = 0.57x10 0.20  20.0 10.0  15.0 0.5 0.07
K = 0.77x10°6 0.20 35.0 16.0 15.0 0.5 C.09
K = 1.45x10- 0.20 35.0 11.0 10.0 0.5 0.10
F = -0.002
K = 0.57x10-6 0.20  13.0 9.0 4.7 0.5 0.02
K = 0.77x10-6 0.20  1k.0 k.o 8.0. 0.5 0.02
K = 1.45x10-6 0.20 13.0 10.0 8.5 0.5 0.02
F = -0.001
K = 0.57x10" 0.10 5.0 10.0 3.1 0.5 0.01
K = 0.77x10-6 0.10 5.0 17.0 6.0 0.5 0.02
K = 1.45x10-6 0.10 5.0 10.0 5.0 0.5 0.02
F =0
K = 0.57x10°6 0.05 2.0 8.0 2.3 0.5 0
K = 0.77x10-6 0.06 2.4 13.0 L,0 0.5 0
K= 1.45x10-6 0.07 2.4 10.0 5.0 = 0.5 0
1 = 40,001 o
K = 0.57x10-6 0.06 2.0 10.0 2.5 0.5 - 0.01
K= 0.77x1070 0.07 2.1 4.0 4,1 0.5 0.02
Ki= 1.45x10-6 0.07 2.0 10.0 4,0 0.5 0.02
fie = 40,002 ¢ . -
K = 0.57x10~ 0.08 2.3 10.0 2.1 0.5 0.02
K = 0.77x10-6 0.09 3.0 4.0 3.4 0.5 0.02
K = 1.45x10-6 0.08 2.4 10.0  L.1 0.5 0.02
1= +0. 004 6
K = 0.57x1076(P) 0.07 2.0 8.0 1.5 0.5 0.07
Ko 0.57x10-g 0.10 2.l 8.0 1.5 0.5 0. 09
K o= 0.77x1079(P 0.08 2.3 13.0 2.7 0.5 0.10
K = 1,u5x10-§§P§ 0.07 2.1 10.0 3.5 0.5 0.10
K = 1.45x10-6 0.10 2.1 10.0 3.5 0.5 - 0.10
o 10,006
o= 0.77x1070 Pg 0.09 2.0 13.0 2.5 0.5 0.09
K = 1t45x}O‘O§P 0.08 1.9 10.0 3.0 0.5 0,10
(recovery)k=0 0.07 1.6 100.0 0.6 0.5 0.10



TABLE 3

BEST ESTIMATE OF'ASYMPTOTIC REYNOLDS NUMBER

K x 10 F Asymptotic Ree
0 greater than %
zero
0.57 -0.002 700
-0.001 1150
1600
+0.001 197C
+0.002 2600
+0.004 3700
0.77 -0.002 540
' -0.001 920
- 1250
+0,001 1580
+0.002 2080
+0. 004 2950
+0.006 3600
1.45 -0.002 300
' -0.001 - 520
' 750
+0.001 950
+0.002 1130
+0.004 1570
+0.006 2000
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Blowing and Favorable Pressure Gradient
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The tests are identified according to RUN and RUN NO.

APPENDIX A

STANTON NUMBER DATA

in the following manner:

Test

080468-1

where O80468 refers to RUN and the 1 refers to RUN NO. -
Additional nomenclature is listed below.

AMB TMP
BARO
BASE TEMP
DATE

DELTAZ2

F
G TEMP

K
PL NO.
REENTH

RELHUM

ambient temperature, °F
barometric pressure, in. Hg.
base casting temperature, °F
date of test

A;calculated from Eq. (5), in.
m'"/p U,

t , OF

o]

K
plate number

ReA

relative humidity
St

Stc.p.

‘temperature of inside surface of flexible

top, OF u
effective surface temperaturé of porous
plate, Op

T-state temperature, OF

local U, ; fps
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