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ABSTRACT 

INTER-OBSERVER AGREEMENT AND MODELS 

OF MONAURAL AUDITORY PROCESSING 

IN DETECTION TASKS 

by 

Gordon Wells Wilcox 

Previous studies have shown that the output of an electronic energy
 

detector is correlated with the responses of human observers in monaural
 

auditory detection tasks. However, an experiment performed by Ahumada
 

showed that when the signal (pure tone) is present in the observation
 

interval the correlation is greatest if the filter in the energy detec­

tor has a considerably narrower bandwidth than is necessary for maximum
 

correlation when only noise is presented. Since this result is incon­

sistent with a simple energy detection model of auditory processing,
 

Ahumada proposed a filter-bank model to account for his findings.
 

The present study presents a quantitative development of the linear­

uncertain model which is a generalization of the energy model. The form
 

of the linear-uncertain model is derived from the assumption that the
 

observer is uncertain regarding the exact specification of the signal
 

he is trying to detect. The decision variable of this model is the
 

weighted sum of a linear function and a quadratic function of the input
 

waveform. The relative weight of each component is determined by the
 

observer's level of uncertainty regarding the signal. It is.shown that
 

the linear-uncertain model includes as special cases the linear, energy,
 

and envelope models fbr auditory processing and like the filter-bank
 

model can give an explanation of Ahumada's findings.
 



Predictions of the level of correlation between observers derived
 

from the linear-uncertain model and the filter-bank model are coipared
 

for several experimental conditions. In the experiment the decisions
 

of human observers are compared with the outputs of two electronic devices.
 

The first device is an analog multiplier which computes the cross­

correlation between the signal and the noise waveform sample on each trial.
 

The second device is an energy detector which computes the energy of
 

the noise waveform sample during the presentation intersal in a narrow
 

frequency band centered at the signal frequency.
 

The linear-uncertain model predicts that the correlation between the
 

human observers and the cross-correlation is not zero and should increase
 

when a continuous sinusoid is added to the background noise. Neither of
 

these predictions is verified. Since the energy detector receives only
 

noise at its input in this experiment, the model also predicts that the
 

correlation between the observers and the energy detector should be less
 

on trials when signal ispresent than when it is not present. The results
 

show the correlations to be weakly significant in the opposite direction.
 

It is concluded that the linear-uncertain model and its special cases,
 

the linear, energy, and envelope models, represent an inadequate approxi­

mation to the actual form of human monaural auditory processing in detec­

tion tasks.
 

Predictions from the filter-bank model agree with the above results,
 

but cannot account for an observed decrease in inter-observer correla­

tions when the signal presentation interval is shorted. A modification
 

of the filter-bank model is suggested to account for this discrepancy.
 



A final result remains unexplained by any of the models considered.
 

A decrease in inter-observer correlations is found when a continuous
 

sinusoid is added to the background noise for either of two signal dura­

tions. It is emphasized that this unexpected finding implies that there
 

is a serious deficiency in current models of monaural auditory processing
 

in detection tasks.
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CHAPTER I
 

DIRECT COMPARISONS BETWEEN OBSERVERS
 

1.1 Introduction
 

Many auditory detection experiments have investigated changes in
 

observer performance as the result of variation of the physical parameters
 

of the input waveform or characteristics of the observer's task. Measures
 

of performance which have been used include indices of the quality of the
 

observer's decisions and studies of the shape of psychometric functions
 

and receiver operating characteristic curves. The physical parameters
 

that have been varied include frequency, phase, amplitude, and duration
 

of a signal, spectral characteristics of background noise, signal-to-floise
 

ratio, and addition of pulsed carriers and continuous waves to the noise.
 

Task characteristics which have been studied include single, double, etc.,
 

and random presentation intervals, pulsed versus continuous background
 

noise, binary and multiple response categories, payoff structures, and
 

probability of signal occurence (cf. Swets, 1964; Green and Swets, 1966).
 

The performance measures in these studies I shall call indirect
 

comparisons between observers. Probability of a correct respons- and
 

the area under the ROC curve compare the observer's performance with the
 

specification of experimenter defined hypotheses. d' compares observer
 

performance with an optimum observer for the same task. Studies of the
 

shape of the psychometric function, ROC curve, or "iso-bias" curve all
 

compare observer performance with a model-specified in a similar task (a
 

Glossary of Symbols and Terms appears in Appendix III). These comparisons
 

are indirect because they do not compare observers on a trial-by-trial basis.
 

Direct comparisons between observers do compare inter- or intra-observer
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performance on individual trials. Green (1964b) has termed attempts to
 

predict single trial performance "molecular psychophysics" as contrasted
 

with molar psychophysics. In this sense, direct comparisons can be either
 

molar or molecular depending upon the use to be made of the performance
 

measures.
 

The purpose of using different kinds of comparisons is the same:
 

the ultimate aim of detection theory is to discover the exact
 
form of the distributions [of sensory events] using (1) the physical
 
parameters of the signal and noise and (2) the character of the
 
sensory detector.. .The major obstacle of this endeavor is.. .our
 
ignorance about the nature of the sensory detector (Green and
 
Swets, 1966, pp. 53-54).
 

1.2 Comparison of Observer Performance with an EZectronic Detector 

The first direct comparisons between human observers in an auditory
 

detection task and that of an electronic device were made by Sherwin,
 

Kodman, Kovaly, Prothe, & Melrose (1956). They recorded on magnetic
 

tape 50 samples of a 1 kHz burst of several durations (0.03, 0.10, 0.30,
 

and 1.0 seconds) in four different listening conditions. The tone bursts
 

occurred at randomly spaced intervals in a background of noise (0-4 kHz). The
 

tapes were played back through earphones to observers and simultaneously
 

through a 60 Hz wide passive filter, centered at 1 kHz. The output of
 

the filter served as the input to a square-law detector and exponentially
 

decaying integrator. The time constant of the integrator was set at one­

half the tone duration for approximately optimum detection (sic). The final
 

output of the electronic detector was recorded on a pen recorder which
 

marked the times that signal was present.
 

The amplitude of the signal was adjusted so that the observers had
 

a hit rate ("correct detections") of approximately 60% at each condition
 

of signal duration. A criterion for the output of the electronic device
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could be set by the experimenters so that it also had a 60% hit rate, thus
 

matching the performance of the device with the human observers during
 

the presence of a signal. They found that when this match was made, the
 

false-alarm rates ("incorrect detections") for all observers were lower
 

at each signal duration than for the electronic device, with the smallest
 

difference at a duration of 0.30 seconds. 
It was also for this duration
 

that the sample distributions of the output of the device, conditional
 

upon observer hits and misses, respectively, were most highly separated.
 

That is, at 0.30 second duration the hits and misses of the electronic
 

device had the highest correlation with the hits and misses of the observers.
 

Unfortunately, a similar statement could not be made for intervals during
 

which the signal was not present. In fact there appeared to be no associa­

tion between the observers' responses and the output of the device during
 

noise intervals, which is partly in evidence from the fact that the
 

observers maintained lower false alarm rates than the device. 
The authors
 

suggest that using a filter about 30% narrower that the one they employed
 

would have led to approximately the same performance for the device and
 

the observers. This in itself, of course, would not demonstrate a closer
 

association between an observer's decision variable and the average power
 

statistic computed by the device. It is possible that improving the
 

performance of the device would not improve the correlation during noise
 

intervals.
 

1.3 Association of Observer Performance with an Energy Detector
 

The next experiment involving direct Comparisons was reported in
 

Watson's Ph.D. thesis (1962). The experimental method made several
 

improvements over the procedure used by Sherwin, et al. Discrete
 

observation intervals 0.25 seconds long containing pulsed noise waveform
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samples were used. A signal, again a 1 kHz tone, was added to the noise
 

on approximately one-half of the observation intervals. The observers
 

could make one of four responses on each trial indicating their confi­

dence that signal had or had not been presented. There was no immediate
 

feedback as to whether the response was correct or not. The input to the
 

observers was simultaneously recorded on magnetic tape for further analysis.
 

This analysis was made by passing the pulsed waveforms through a filter
 

approximately 100 Hz wide centered at 1 kHz and then measuring the number
 

of times voltage peaks from each burst exceeded each of eleven different
 

levels. A "voltage contour" was defined as the percentage of times
 

voltage peaks exceeded a given voltage level plotted versus the voltage level.
 

.The area under the voltage contour was interpreted as an approximate
 

index of the energy in a 100-cycle band centered on the signal-frequency.
 

Voltage contours could then be plotted conditional upon the observers'
 

responses and upon whether or not signal was presented, averaging across
 

all bursts ih one of these eight conditions. The results showed that the
 

area under a voltage contour was monotone increasing with the rating
 

response on both trials containing signal and those which did not contain
 

signal. No attempt was made to predict trial by trial responses of the
 

observers based on the energy statistic. However, two observations about
 

the data were made. First, consistent with the assumptions of the theory
 

of signal detectability an observer's decision variable could be ordered
 

on the basis of a physical parameter of the stimulus. Second, the results
 

showed that there was association between the responses of an observer
 

and the physical parameter on both signal and noise-alone trials, contrary
 

to the findings of Sherwin, et aZ.
 

Watson had stated in his introduction "... the energy within the
 



critical band has been shown in theory and by experiment to be a primary
 

parameter of the auditory stimulus [in masking experiments]". Nevertheless,
 

it is.apparent from Watson's data that the observers' responses were not
 

determined by the area under the voltage contour alone, since every
 

response occured at every voltage level. It could be postulated, as did
 

Sherwin, et al., that the relevant physical parameter had been determined,
 

but that the observers also had fluctuating criteria for making their
 

responses. Equally well, in terms of these two experiments, it might
 

be hypothesized that association between the measured physical statistic
 

and the responses was due to the fact that both the statistic and the
 

responses were associated with a physical parameter not measured if the
 

experiment. Such a parameter might account for the trial by trial
 

responses of the individual without assuming a fluctuating criterion.
 

1.4 Intra-Observer Consistency
 

Green (1964b) fully realized this latter possibility and set out
 

to determine the level of inconsistency of an observer's response regard­

less of the relevant physical parameters of the stimulus. Pairs of
 

noise samples without signal in either interval were recorded and inter­

spersed with pairs containing signal in one of the intervals. In this
 

2-interval forced-choice task, percentage self-agreement scores were
 

determined on the no-signal pairs by having each of these pairs presented
 

twice in the experimental session.
 

InGreen's first experiment the "signal" was an increment of power
 

in the wide-band background noise. Three signal-to-noise ratios were
 

used. The results indicated that percentage agreement of responses to
 

identical pairs of no-signal samples was approximately 65% for each
 

observer regardless of the percentage of correct detection responses
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which averaged 60%, 74%, and 91% for the three S/N ratios, respectively. In
 

a second experiment the signal was a 0.10 second gated sinusoid at a
 

frequency of 250,-500, 1000, or 2000 Hz in four separate conditions. The
 

average percentage self-agreement scores across observers and tapes was
 

approximately 70% at all frequencies except for the 1000 Hz condition, for
 

which the average was 78%. Several other experimental conditions were
 

studied with the same general result: self-agreement scores differed little
 

from 70% although there was a small but consistent trend for tapes using
 

sinusoidal signals to generate somewhat higher scores than tapes for which
 

the signal was an increment in the background noise. Green conjectured,
 

but could not measure in his experiments, the possibility that the incon­

sistency could be attributed to several causes. The first would be
 

response bias--either pure, i.e., preference for the first or second
 

interval, or sequential, i.e., a bias depending upon the previous response
 

or previous feedback. Another possible cause is "internal noise" which
 

has been variously defined as a fluctuation in the observer's criterion
 

or noise-in his sensory apparatus. Green made several calculations which
 

indicated that response bias effects should be small, and therefore
 

proceeded to estimate the level of internal noise which would lead to the
 

observed percentage agreement scores. His calculations suggested that,
 

as a first approximation and minimum estimate, the ratio of external to
 

internal noise is about 1.0. No thesis was advanced to explain the
 

difference in agreement scores as a function of the kind of signal pre7
 

sented. Green concluded that this 70% consistency, since it appears
 

independent of the sensory task, represents an upper bound on any attempt
 

to predict trial-by-trial human detection responses.
 

Apparently following a suggestion made by Green in his article,
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Pfafflin and Mathews (1966) studied the consistency of observer responses
 

to computer generated no-signal noise pairs, some of which had an iden­

tical noise sample as each member of the pair. In addition, they added
 

a 312.5 Hz tone to one or the other member of some of the pairs. The use 

of computer-generated and-controlled stimuli provided relatively accurate 

- reproduction of waveform samples and permitted the presentation,of stimulus 

pairs in a large number of different orders, with the hope of greatly
 

reducing any possible effect of response biases. A spectral analysis was
 

made on each of the 12 samples of noise used in the experiments. The
 

spectral analysis determined the relative energy in frequency bands, approxi­

mately 100 Hz wide as a function of the center frequency. It was thus
 

possible to determine the relative energy difference in a frequency band
 

100 Hz wide centered at the signal frequency of 312.5 Hz between the
 

members of each pair of waveforms.
 

The probability of correct detection tended to increase, with con­

siderable scatter, for three observers as a function of the relative
 

energy difference for pairs containing a signal, whether or not the indi­

vidual noise samples in the pair were identical. However, some inversions
 

(a response preference for the member of the pair with the lower rela­

tive energy level) occurred, most often for pairs with low relative energy
 

difference. The authors could not find inter-observer agreement on inver­

sions, nor could they find relevant physical parameters that might account
 

for inversions of a single observer. Another experiment was performed
 

using the same noise samples, where this time the observers were asked
 

to judge if either interval contained a signal.- Since the preference
 

probability tended to increase with the probability that a pair was
 

judged to contain a signal for signalless different-noise pairs, it
 



was concluded that at least for these different-noise pairs, the obser­

ver must have been trying to detect a signal in the previous experi­

ment. Corresponding results were not conclusive for signalless identical­

noise pairs. This could have been due to the procedure under which
 

the observers knew that some pairs contained no signal. The authors
 

concluded that the energy increment produced by the signal, or some
 

quantity closely related to it, is the chief physical parameter relevant
 

to detection behavior. They thus agreed with Watson on the nature of the
 

sensory processing.
 

Pfafflin and Mathews' major contribution to Green's original effort
 

on intra-observer consistency would seem to be the demonstration that the
 

percent agreement for signalless pairs is dependent on the particular noise
 

pair and perhaps, although this is not demonstrated conclusively, dependent
 

upon some physical parameter of the noise samples. Estimating by eye,
 

it would appear from Pfafflin and Mathews' Figure 4 that the average per­

cent-agreement for signalless different-noise pairs is about 60-70% for
 

each observer, in agreement with Green's results.
 

1.5 Correlation of Observer Decisions with a Variable-Bandwidth Energy Detector
 

The most recent study involving direct comparisons is reported in 

Ahumada's Ph.D. thesis (1967). In a context of attempting to measure criti­

cal bandwidths directly, Ahumada had observers respond ("Yes" or "No") to 

single 100 msec noise bursts which sometimes contained a superimposed tone, 

as in Watson's experiment. An electronic detector with specifiable bandwidth 

was simulated on a digital computer as in the Phafflin and Mathews study.
 

The observers' average responses from 5 replications to the same stimulus
 

were correlated (Spearman's rank correlation coefficient corrected for ties)
 

with the outputs of the simulated energy detectors. The correlation was
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computed separately for signal-plus-noise and noise-alone trials to determine
 

the bandwidth for which there was maximum correlation. The bandwidth
 

associated with the maximum correlation should provide a fairly direct
 

estimate of the critical bandwidth. A surprising result was found. A
 

filter with a 10 or 20 Hz bandwidth had maximum correlation with the 

- observers' responses for signal-plus-noise trials. But on noise trials 

a wider filter with 100 to 200 Hz bandwidth had maximum correlation. This
 

result, of course, can not be predicted from the simple energy-detection
 

model. Such a model predicts that the same width filter should correlate
 

best with responses to signal-plus-noise and noise-alone stimuli. Ahumada's
 

finding deals a serious blow to the conclusion that the energy in a
 

narrow band is the primary physical parameter. The most that can be concluded
 

is that the energy in a given band is associated with the physical determinants
 

of detection behavior.
 

Ahumada suggested a "filter-bank" model to account for his data.
 

According to this model the observer can monitor the output of a number
 

of narrow-band filters with a total bandwidth of about 150 to 200 Hz.
 

The observer makes the detection response when any of the individual out­

puts exceeds some critical value. On signal trials the output of the
 

narrow filter centered on the signal frequency almost always has maxi­

mum output, whereas on noise-alone trials any member of the bank has equal
 

likelihood of exceeding the criterion.
 

Ahumada's filter bank model is not contradicted by the data of
 

Sherwin, et al., Watson, Green, or Pfafflin and Mathews. In the case of
 

Sherwin, et al., who used a 60 Hz wide filter, the lack of association
 

of its output with false-alarms intervals could be explained by the fact
 

that the filter was too narrow. Incidentally, this would predict that
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narrowing the filter asjthe authors suggest should decrease the association
 

with observer responses in false-alarm intervals. In Watson's case the
 

filter was 100 Hz wide, or in the middle range, so that one would expect
 

about equally poor (or good) association with responses on signal and noise
 

trials, as is consistent with an examination of his data. Also, the same
 

conclusion appears verified from Ahumada's data. With respect to Green's
 

data, a variance in the observer's criterion would still decrease the per­

centage self-agreement. In fact, if the observer is limited to monitoring
 

the output of a 200 Hz filter-bank, then a fluctuation in the center
 

frequency of the bank would account for the increased decrement in percent
 

agreement for signals which are increments in the power of wide-band noise,
 

as Green found. Such a fluctuation would not cause a further decrement
 

when the signal is a sinusoid. Finally, since the maximum output from a
 

single narrow-band filter should be only poorly correlated with the total
 

energy in a 100 Hz band, Ahumada's model can give a post-hoc explanation
 

for the fact that Pfafflin and Mathews found inversions in preference
 

for signalless different-noise pairs with low relative energy difference.
 

It would appear that the filter-bank model with its associated
 

decision rule is adequate in a qualitative fashion to account for the data
 

from direct comparisons between human observers and electronic devices
 

currently available.
 

1.6 Objectives of the Present Work
 

The filter-bank model has a certain appeal by its analogy to the
 

physiology of auditory system. (This analogy is briefly discussed by
 

Ahumada. However, the details do not concern us here.) On the other
 

hand, the simple energy detection model has had an appeal in auditory
 

psychophysics at least partially because it represents an optimum mode
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of processing under certain conditions (c.f. Green, 1960; Pfafflin and
 

Mathews, 1962; Swets, 1966, Ch. 8).
 

In this thesi I shall develop (in Chapter III) the lineaT-uncertain
 

model which dictates an optimum mode of processing for an observer with
 

uncertainty regarding the specification of the signal. The linear-uncertain
 

model turns out to be a slight generalization of the optimum observer with
 

a noisy stored reference signal .derived by Birdsall (1960). The energy 

model and several other processing .modelsare found to be sPecial cases
 

of the linear-uncertain model. Moreover, the linear-uncertain model, 

unlike the energy model, is not completely frustrated by Ahumada's.findings 

(Chapter IV). An experimental attempt is made to discriminate between 

the filter-bank model and the linear-uncertain model based on the predictions 

that these models make for the degree of concordance between observers in
 

several tasks (Chapter V). 



CHAPTER II
 

REPRESENTATION THEORY
 

2.1 Introductioh
 

Auditory detection and recognition tasks in the laboratory often
 

involve the presentation of complex waveforms to human observers. It
 

is assumed that the observer makes a judgmental response based upon
 

certain operations which he performs on the input to his ears. Models
 

which attempt to describe the observer's judgmental performance must
 

also describe the operations performed on the input which could give
 

rise to the observer's performance. There is a need, then, to obtain
 

a description of the impinging stimulation or input process itself.
 

A description of or rel.resentation theory for auditory waveforms
 

can be developed at many different mathematical levels, depending on
 

the rigor desired and the degree of error that can be tolerated. For­

tunately, in psychoacoustical tasks a relatively simple representation
 

theory is often adequate. In particular, acoustically presented wave­

forms are usually of sufficient bandwidth and duration that a finite
 

Fourier series approximation to a sample waveform is sufficiently accurate
 

for many purposes. Green and Swets (1966) hold this view and have
 

presented such a model for the representation of sample waveforms
 

generated by a real-time stochastic process.
 

This chapter presents a representation model for waveforms in the
 

frequency domain which is identical to the model used'by Green and Swets.
 

However, the temporal representation model presented by Green and Swets
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is inconsistent. This fact is discussed in some detail because we wish
 

to make extensive use of the geometrical properties of representation
 

models.
 

Finally, this chapter establishes a notation which will be exploited
 

throughout the remainder of this work.
 

2.2 Representation of Waveforms in the Frequency Domain
 

Following Green and Swets (1966) we assume that a finite Fourier
 

series approximation to a waveform x(t) with nod.c. component in the 

interval- 0 < t < T is sufficiently accurate for our model construction.
 

This approximation to x(t) is given by
 

IaT 
x(t) = j [aici(t) + bisi(t)], (2.1)

i=l 

where W is highest frequency component in the series,
 

ci(t) = cos (2.2a) 

s2(t) =jsin it (2.2b) 

and T 

ab Tf x(t)cs(t) dt (2.3a) 

b i = 

0 
T 
fT-x(t)si(t) dr, (2.3b) 

0 

for i = 1, 2, ... , i. 

The functions ci(t) and si(t) form an orthonormal set over the
 

interval [0,T], i.e.,
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T T


J c2(t) dt s2(t) dt = 1 (2.4a)
 

0 0
 

and
 

T T T

Jcjit)sj t) dt'= f cit)c.(t) dt f sijt)s.(t dt 0024b 
0 0 0 

for i j j and i,j = 1, 2, ..., WT, as is well known and easily verified.
 

A less often noticed fact is that the functions 2ci (t) and 2si (t) form an
 

orthonormal set over the interval [0,T/2]. We shall use both of these
 

orthonormal sets of functions below.
 

The form of Equation 2.1 indicates that x(t) may be identified with
 

the (column) vector
 

Xf = [a, a2, ..., a,,,b 1 , b2, ..., bMT]' (2.5) 

in a 2WT dimensional vector space (the prime " ' " denotes the transpose 

of a matrix). The set {c1 t), ..., ciaT(t),s 1 (t), ... , sWi,(t)} is an 

orthonormal set of basis vectors for the space. This 21T dihensional 

vector space, denoted P, will be called the frequency representation space. 

We follow Green and Swets (1966) for our model of noise waveforms. 

Bandlimited Gaussian noise is a real time-parameter stochastic process 

{n(t,n)} where the vector n of random variables has a multivariate normal 

distribution N( n,Zn) with mean vector pn and dispersion (variance-covariance 

matrix tn. For a particular sample n = [a,, ..., a1Tbl, ..., bW ]ofn 

the corresponding noise waveform sample n(t) = n(t,n) is approximated 

in the interval 0 < t < T by the series
 

WT,
 
n~t) = Z [aic.(t) + b.s.(t)] (2.6)

i=l i
 

where W is the bandwidth of the noise process.
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The noise is said to be white when
 
n= (N0/2)1 (2.7)
 

where I is an identity matrix, N0 = N/ W is the noise paler density 

and N is.the average noise power. Also, note that det Zn = /2) 

and that -'nI = (2/N0)I. 

The multivariant normal density function of n for a bandlimited
 

white Gaussian noise process may be written explicitly as
 

T " _/1 2 e- /2 [nlZn 
n ]
 

f(n) = (2r) (detX)
 

-
= (rN0)-T e [n'n/NO] (2.8) 

2.3 Representation of Waveforms in the Temporal Domain 

Green and Swets (1966) have stated that there exist a set of 

interpolationfunctions {tp(t)), j = 1, ... , 2WT such that 

i) the set V2W ij(t)} is orthonormal over the interval [0,T], 

2 rT
 
ii) R(t) = I il(#)jlP(t), and 

iii) Pj(t) = ) [a(j) ci(t) + b(J)isi(t)],
i=1l1
 

where a(j)i and b(j)i are constants. 

The assertion that (i), (ii), and (iii) hold simultaneously is
 

not strictly true. I shall show conditions under which the frequency
 

and temporal representations give nearly equivalent results.
 

According to (ii)we require functions tp.(t) such that
 

NT 2qT I NT
X [aici(t) + bisi(t)] = ! Y [aic.(47) + bisi )]f j (t)2
ij=l i=l
i=l 
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WT 21ff 21Vf 
i l ai Il cidwPt) + b. I sikhti 

i~ j=l W :1=1 2 

According to (i) we may multiply each side of this expression by
 

p.(t) and integrate with respect to t over [O,T] to obtain
 

T T
 

i [ai c (t)tj(t) dt + b.3 si(t)' d(t]
 

0 0
WT (__
 

. [aici .Cj (7)c + b s1(2 2 .
 

Equating coefficients of a. and b. we have
3. 1
 

T 

fc(t)3'(t ) dt = 2Wi
 

T0

and 


_
si t)1 j (t)dt = 1 si (- )
 

0 

But according to (iii) these integrals are the coefficients a(j) i and
 

b(j)i, respectively, in the finite Fourier series representation of
 

P.(t). Therefore, we may write
 

I IVT1 
iV(t) = -w [el ci (t) + si 2ws(t) (2.9) 

(Green and Swets omitted reporting this explicit form for Wp.(t).)
 

However, consider the integral
 

T 1f 1ff T
 

f vm yt)nt) = 2~ I=j+ fCi (W i t i)(t)] si(2c)tS 


0 , 
 0
 

[c(Q)cj(t) + sj()s.(t)] dt
 

= 2 [c()cdI( + si(1)si-, (2.10)
i=l
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-=1(l2 i i i i 

According to (i) this must be equal to 1/2W when m = n and 0 when
 

m j n. This will be approximately true under certain conditions stated
 

below.
 

The following lemma is a consequence of "sampling theorems" for
 

bandlimited waveforms (Middleton, 1960, Ch. 4).
 

Lenma 2.1. If x(t) and s(t) are two waveforms, Fourier transform 

band-limited to the same frequency interval [-W,W] and the integer 

2WT >> 1, then their cross correZation 

T 21f
 

x(t)s(t) dt = sk,
x!LWIX (2.11) 
0 1
 

where the error in the approximation to the integral for fixed W is 

of order I/T. 

Over the half interval [0,T/2] Equation 2.11 may be expressed as 

J x(t)s(t) dt- x=js( 

(2.12)
 

W 2WT
2W >I (21 

where the error i s of order 2/T. We may apply this latter expression
 

to the following integral:
 

T/2 WT
 
(t )]dt  + s.n Sn( ][c(t)cn(t)f + Sm n 22W [cm ( 2) en2 

0 

However, when m = n the left hand side is simply 1/2 + 1/2 = 1 and zero 

otherwise. We have proved
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Theorem 2.1. When 2WT >> 1 

WT 2W if m n 

[c.m( 2!) cn(-2!W) + s.m2-W-) Sn (t)] - (2.13)
l [ )S0 	 if m n 

where the error -inthe approximation to the sum is of order 2/T.
 

The 	theorem is not new (see Goldman, 1953, Appendix VI).
 

Corollary 2.1.1. The functions vi2tp(t) given by (2.9) form an 

approximately othonormal set over the interval 0 < t < T when 

2W >> 1. 

We have shown that the three conditions which Green and Swets
 

impose on the functions j
i(t) are not strictly satisfied simultaneously. 

We can find 7p. (t)which do in fact form an orthonormal set over the 

interval. In this case it will be impossible to express the functions 

exactly by a finite Fourier series as required by condition (iii). Alter­

natively, we can require condition (iii) in which case orthogonality of 

the interpolation functions will not be strictly satisfied. In-neither 

case will condition (ii) be strictly satisfied. Of course, the differences 

between the frequency and temporal representations of x(t) become small 

when 2WT is sufficiently large. It is instructive to pursue this approxi­

mate equivalence somewhat further, although doing so represents a digression 

from our main purpose. 

2.4 	On the Relation Between the Temporal and Frequency Representations 

when 2WT >> 1. 

We may apply Lemma 2.1 to Equations (2.3) to obtain
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and 

a. a 
1"J-aj 

b.= 6= T 

2W 

y
2W j=l 

2W 

x2(7 0 s((2.14b) 

(2.14a) 

Thus as an approximation to i(t) we may write 
Vr 

2(t) = x(t) = [a (t) + (t ) ] 

il 

4(;)[
1Wj= 

+ s s 

AW i (t) 

(2.15) 

j=1 

+ s.C0,sCt) 

where ip.(t) is defined by (2.9). 

The vector of weighted samples of x(t) we denote by 

x 1 
= ­ r[I 1 

... , x( 2WT)] (2.16) 

We also let 

and define the 

x 2 E111[aI, 

2WT x 2IVT matrix 

a1VT1fll F61WTI(2.17) 

- 1c1 (A) 1
2 2-A- ... 1CWCTGAs 1GA-)S%-

C 1 c ( 
22" 

c 2 (- ) ... c~WT(J)si~ 

2 
... sw~j 

2 
(2.18) 

2W!'
21. . . . . CW 21ff )2 2W!' .. 21f

2I 
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Then Equations 2.14 may be expressed in matrix notation as
 

f = C0x. (2.14') 

Theorem 2.2. The matrix C is approximately orthogonal for
 

2WT >> 1. 

Proof. A necessary and sufficient condition that C be orthogonal 

is that CC' = I where I is a 21ff x 21ff identity matrix. By picking 
th C'th 

the M---row of C' and the n- column of C and adding the product of corres­

ponding terms, one of the following expressions is obtained:
 

1 121ff c J2 c 

j2l m2W n2W ' 

2WrI 1
j=1 
 W 

n or 

2WT 

2W j Sm2 n(2W1 " 

1 

But according to Lemma 2.1 each of these expressions is approximately
 

equivalent to a corresponding integral. Examination of Equation 2.4 identi­

fies these integrals and completes the proof of the theorem.
 

Thus, when 21f becomes large x(t) approaches i(t) and the frequency
 

and temporal representation spaces F and T, respectively, become equivalent
 

differing only by a choice of axes in the space. We shall, however, take
 

as our primary mode of approximation the frequency representation space
 

of Section 2.2.
 

2.5 Representation of Certain Linear Filters
 

The action of a linear filter A on a,waveform x(t) may be conveniently
 

represented by a linear transformation on xf S F.
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Let Af be a (possibly singular) linear transformation on F.' Then
 
2
 

Af is a projection operator if (i) Af = Af and (ii) Af = A', that is, 

if Af is an idempotent and symmetric matrix. 

Projection operators on F are of particular interest because they 

may be used to represent idealized square-bandpass filters. A 2WaT 

dimension subspace F of F is generated by the projection operator Af 

if for any xf e F, Afjf e F . The rank of Af is 2Wa 

The output yf of a filter A-is defined by 

(2.19)f = Aff. 

More complex (and more realistic) representations for filters
 

may be constructed. The objective here, however, is not to find a repre­

sentation for such physically realizable filters as might be used elec­

tronically in real time. Rather, the purpose is to indicate idealized
 

operations which might be performed on a waveform by a device with memory
 

which can record waveforms for short periods of time. For such a device
 

the operation indicated in Equation 2.19 could be performed.
 

When the input to a fixed filter A represented by Af in the frequency
 

domain, is a noise vector nf, the output Anf of the filter also has a
 

multivariate normal distribution, although degenerate if the rank of Af
 

is 2W T < 2WT. Artificial difficulties in describing the distribution
 

of the output of the filter may be overcome when the action of the filter
 

is a projection operation.
 

Suppose that {sl' s .. , sk } is a set of k orthonormal vectors 

in F. Let B be a 2WVT x k matrix with columns l, 82, ... ,I k i.e., 

B = [sIs 2 ... sk]. (2.20) 

It is easily verified that Af = BB' is aprojection operator on F.
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Furthermore, since 

AfSi = RB' i = ai, i = 1, ..., k, 

2 .I may be considejed an orthonormal set of basis vectors
 

for the k-dimensional subspace'F* generated by the action of Af on vectors 

of F. In fact, for any xf E F, 

S{Xf
 

y = Atf : BB'xf = B SF'f (2.21) 

x f 

= (sIXf)s8 + (SIXf)S 2 + ... + (sIxf)Sk. 

With y* = B'Zf, Equation 2.21 establishes an isomorphism between y and 

y* given B. 

Definition. A rectanuiarfilter is a k-dimensional projection 

operator on F which has the form Af = BB' where B is a matrix whose k
 

columns form an orthonormal set of vectors.
 

Theorem 2.3. The output of a rectangular filter with bandwidth 

Wa, whose input is white Gaussian nosie with bandwidth W > W , is white 

Gaussian noise with bandwidth IV 

Proof. Let nlf have the density of Equation 2.8, and let Af = BB' 

be a rectangular filtering operation where B is the matrix of Equation 2.20. 

Then the output of the filter is represented, up to isomorphism by the 

random vector 

n= B'nf. (2.22) 

Since the rank of B is k, n* has a multivariate normal distribution with 

mean vector v(n*) = E[B'nf] = B'E[nfl = BIn, and dispersion matrix 
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X*= E[B' iii'B] BIZnB 

= B'(No/2) = (NO/2)B'B 

= (No/ 2 )I k 

where Ik is a k x k identity matrix. The proof is completed by letting
 

2W T k.
 

It should be noted that passing from the space F to its subspace F*
 

is not, in general, a reversible process. Given only the output vector
 

n*, there exist infinitely many vectors nf such that n* = B'nf when
 

B has rank less than 2WT.
 

The next chapter develops a general class of models for human
 

monaural auditory processing in detection and recognition tasks based
 

on the representation theory developed here.
 



CHAPTER III
 

MODELS OF MONAURAL AUDITORY PROCESSING
 

3.1 Introduction
 

Several models have been proposed in the signal detection literature
 

to account for the performance of human observers in monaural detection
 

tasks. The models postulate a processing mechanism by which the observer
 

derives information from the input acoustic waveform regarding which of
 

several alternative experimenter-defined hypotheses is presented. Recently the
 

"linear", "energy", and "envelope" models have been extensively reviewed
 

in Green and Swets (1966). These particular models have in common the
 

fact that they describe sensory operations which would give rise to an
 

optimum decision variable for some task (not necessarily the one in which
 

the observer finds himself).
 

The primary objective of the present chapter is to develop a new
 

model, the linear-uncertain model, which includes the linear, envelop and
 

energy models as special cases. The theory is presented in a form which
 

requires the observer to use all the information available to him in a way
 

which is optimum given a residual uncertainty regarding-parameters of the
 

signal. A discussion of empirical predictions from these models is presented
 

in the next chapter.
 

3.2 Task Considerations
 

It is assumed that the acoustic input to the observer is Gaussian
 

noise, to which occasionally a constant waveform is added. The constant
 

waveform is the signaZ and its presence has a one-to-one correspondence
 

with the experimenter-defined input hypotheses. Thus, the observer's
 

task is one in which the signal is specified exactly. It is not, of course,
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a foregone conclusion that the observer knows precisely the experimenter's 

exact signal specification. 

Denoting the input wavefokm sample by x(t) and the signal waveform 

by s(t), 0 < t < T, the alternatives presented-to the observer are 

HI:1 x(t) = n(t) + s(t) (3.1) 
HO: x(t) =n(t). 

The task also requires that the observer make a judgmental response r 

indicating which hypothesis alternative was actually presented. For the
 

task to be effective, the observer's ability to discriminate between
 

H1 and H0 through r must depend only upon the information contained in the 

input waveform. This task requirement may be stated in terms of the
 

conditional independence of the response from the presented hypothesis,
 

given the presence of the input waveform. 

Assumption 3.1. For every response r in the observer's repertoire 

and input waveform x 

P(rlx,H) = P(rlx) (3.2) 

where H is either HI or H0 * 

In our presentation of models for sensory processing we will use the 

representation theory for waveforms developed in Chapter II. Thus, the 

sample space X may be interpreted as either F or T and x(t) may be repre­

sented by x defined at Equation 2.5 or 2.16 when 2WT is large. We also 

restrict the space of all possible signal vectors to X. Thus, for example, 

a particular signal vector s identifies a one-dimensional subspace of X, 

namely, the set of vectors in X proportional to s. 
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In terms of the representation theory the experimenter-defined hypotheses
 

of Equation 3.1 are
 

(3.3)
 

HO: x= n. 

As in Chapter II we shall not assume that the mean of the 

noise pn is zero and shall continue to adopt the more general position
 

that the multivariate normal density of the noise vector is
 

f(n) = Nn (3.4) 

where as before the dispersion matrix Xn = (N0/2)I. 

The conditional densities of the input vector x are, from (3.3) and 

,(3.4), 

HI: f1(X) = f(x - ) = N(n+sZn) 

H0 : fo(x) = f(x) = Nn, n). 

It is assumed that every observer knows the distribution of the noise, 

including the mean of the noise. Some observers may have, however, uncertainty
 

regarding the signal, since it is not always present in the background of noise.
 

If the signal a is only known to an observer through an a priori distribution
 

G(s) of possible signals, then the unconditional distributions of the input
 

known to the observer are
 

HI: hI(x) = Jf~x - s)dG(s), and 

X (3.6) 

H0 : h0jx) = f(x) 

respectively, where f is the normal density of (3.4).
 

It is well known that the likelihood ratio 4(x), or some monotone function
 

of it, z, is the optimal decision variable for discrimination between hypotheses
 

HI and H0 (Peterson, Birdsall, and Fox, 1954). From (3.6) the likelihood ratio
 

Y(x) is, 
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t(x) = h1 (x)/ho(x) 

f (x - s)dGts)/If() (3.7) 

( -UdG(s)-

where Z(x Is)dG (s)
 

where
 

({xls)= f1(x)/fo(z) = f(x - s)/f(x) (3.8) 

is the conditional likelihood ratio given that s is known exactly.
 

3.3 Signal Uncertainty
 

Models of the ideal observer have been constructed for various tasks
 

by evaluating (3.7) for the unconditional likelihood ratio function of the
 

input process. This is done by assuming that in the task the signal is not
 

specified exactly, but rather has a distribution G(s). A resulting model
 

model of human observer performance
of the ideal observer is then taken as a 


in a task in which the signal is specified exactly. The rationale for this
 

approach to model construction appears to be based on the argument that
 

prior uncertainty regarding parameters, which are actually constant in the
 

task and characterize the signal, should result in a response performance which
 

is the same as would arise from an observer with precise knowledge of the
 

actual uncertainty of signal parameters. However, a close look atEquation
 

3.6 shows that one should not expect this assumed equivalence. The.H1 condi­

tional density hI(x) is the density of the input process assumed known to the
 

observer. The density hi(x) does not necessarily represent the knowable distri­

bution density of the input to a perfectly informed observer. For the latter
 

observer, G(s) represents the actual or experimenter-defined signal uncertainty
 

in the task.
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The assumption which will be made here, perhaps gratuitiously, is
 

that the processing operation performed on the input by a human observer
 

is determined by the likelihood ratio Equation 3.7, where the distribution
 

G(s) represents the "internal" observer-specified uncertainty regarding
 

the signal. In tasks where the signal is fixed the distribution of the
 

processing function or decision variable determined by (3.7) is completely
 

determined by the distributional characteristics of external and internal
 

noise.
 

Assumption 3.2. An observer's prior uncertainty regarding the signal 

a, in tasks in which s is specified exactly, may be represented by a multi­

variate normal density function 

g(s) = dG(s)/d = N(pas) (3.9)
 

with mean vector pa and dispersion matrix Zs. The random vector s is inde­

pendent of the noise vector n. 

It will be shown that (3.9) in connection with (3.7) is quite general
 

enough to specify a processing function which includes as special cases
 

most previously proposed models of human monaural auditory processing.
 

3.4 A General Structure for Processing Models
 

Assumption 3.2 allows evaluation of the observer-specified distribu­

tions of the input defined at (3.6). Under input hypothesis HI the con­

volution integral may be found using (3.5) and (3.9), so that
 

h1 (x) = J(j + ,4 + Xs)n n 

(3.10)
 

= N(wm,Xm), 
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where
 

Pm = tn + 
 (3.11)
 

Zm = Xn + Zs
 

Under H0 , as before,
 

ha(x) = N(pn4n). 	 (3.12)
 

It is convenient to define the precision matrices 

m1 = -1 (3.13)
'M (Xn +Zs) 

and 

The likelihood ratio of (3.7) is then found directly by using (2.8):
 

£(x) =h €)/hoW
 

-wr . 4(X*-PPQ X	 (3.15)-
(2) 	 WT(detQ X e) 

-WT - 4(x-pVn)' Q(x--pn)
(detQn) e
(27) 

Or, 	simplifying in terms of the logarithm of the likelihood ratio,
 

= £n[C(x)] 

/detQ 2 m1 in C - ~ ~-p) 

+2!-x - ) 'Q - pn)11n	n(x 


1 (detQm +'!(x 	 -
Qm) (x 

))x ) (3.16)= - detQn 2 n)'(Qn -n 

+ 11Qm~x-
-n 1-i"Qm1' 

In the following the constant term of (3.16) will be of no interest and
 

)
may be ignored without loss of generality. It may also be seen that (x - n


is an invariant translation of the input, regardless of the specification of
 

the parameters Qm and p." Thus, we shall take the following form as the
 

general structure for our processing models:
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z = Y (n - Qm)y + i'Q (Y - ji, (3.17) 

where
 

y = x'- un, (3,18) 

and (3.11) and (3.16) have been used.
 

The decision variable*z of any particular observer within the general
 

class of observers covered by assumption 3.2 may be evaluated by specifying
 

and pa in (3.17)
Qm 
3.5 The ModeZ of the Ideal Observer.
 

As an application of the foregoing discussion we may obtain the decision
 

variable of the ideal observer for the case of signal known exactly (Peter­

son, Birdsall, and Fox, 1954).
 

Since the signal is specified exactly in the listening task the ideal
 

observer knows the specification exactly and it follows that the ideal
 

observer's prior specification of the signal is the signal itself; i.e.,
 

Va = s. Since the specification is exact, .s = 0. It then follows that 

+Xm = Zn Zs =Zn and Qm = Qn = (2/N0)I. The desired values of Qn and Qm 

having been obtained, they may be inserted into (3.17) to give
 
" 2 1
 

z= 0 + sl ( I)(y Is)N2 
2 . I 

(3.19)N (S Y ­

as the decision variable of the ideal observer. Of course, there are other
 

functions, monotone with zi, which would serve as well.
 

It may be seen from Chapter II that s's = E is the energy of
 
s 

the input signal (since s is represented exactly by a finite Fourier
 

series). Defining the dimensionless quantity
 

d = 2Es IN, (3.20) 

the decision variable may be written in the form 
z = 2 _ 1d (3.21) 

- NO - 2 

which has a straightforward geometric interpretation in F. 

Formally, we may identify the judgmental responses r with ordered sub­
sets of the range of z.
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The projection of y onto the line determined by s in F is the vector 

Sly s. Thus z is a linear function of the magnitude of yin the direction 

of a inF. 

In the usual analysis of the two alternative single-interval task (the "Yes-

No" experiment) an observer sets a cutoff value for z, say za, such that when 

the modified input y produces a value of z greater than z,, the observer makes an 

R1 response, i.e., "Yes -- sinal was present". The set R = {ylz(y) I 8, y c F1 

is called the criterion region. In the case of the ideal observer -it is easy ­

to determine a criterion region based on the decision variable z of Equation 

3.21.
 

A fixed value 8 of zI determines a hyperplane in F perpendicular to the
 

line of s. This is illustrated in Figure 3.1. The plane of the figure is taken
 

to be the plane in F-determined by y and s. The dashed line represents the
 

intersection of the hyperplane perpendicular to s and the plane of the paper..
 

As was seen in Chapter II certain linear operations in F may be viewed 

as filtering the input. Such is the case here for the action of the ideal 

observer in producing the decision variable z . The subspace of F onto which 

the modified input y is projected is simply the line of s. The filtering is 

perfectly "matched" in frequency and phase to the signal. By definition," 

the decision space of an observer is the range of his decision variable. In 

this case the range is isomorphic to the line of a. (The isomorphism results 

from the fact that the metric of F carries over to the decision space of the 

ideal observer.) 

3.6 A Model for Human Monaural Processing: The Linear Uncertain Model 

The general structure developed in Section 3.4 for a linear observer
 

with uncertainty could be taken directly as a model of human monaural­
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R,: Criterion Region 
"Accept WI" 

\ ' I 

l 	 line of s 

C 0 13 
I 	 I-

I\~. hyperplane 
perpendicular 

R0 "Accept No" 10 2WT Space P. ./ 
. \ 	 /
 

Fig. 3.1. 	 Representation space of the ideal observer for signal specified
 
exactly. The paper represents the plane in F determined by the
 
modified input y and the signal vector s. A criterion region R
 
in F is det6rmined by the cutoff value 6 on the decision axis
 
which is isomorphic with the line of s. In the case illustrated,
 
y lies in the region .R which is equivalent to the fact that its
 
projection onto the line of s is above the cutoff S.
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in the task with signal specified exactly. However, without additional 

simplifying assumptions the model is too general in the sense that as 

parameters we would have all the entries of ii and " Most of this freedom 

is quite unnecessary to obtain strong predictions from the model. I will 

assume that the human observer knows a region of F occupied by the true signal 

a, but isuncertain about the exact magnitude of the components of s within 

that region. This assumption is made more explicit in the following. 

Assumption 3.3. The dispersion matrix 7s of the prior distribution for
 

an observer a is proportional to a projection operator D on F. Furthermore,
 

the subspace F generated by the action of D on vectors of F contains
 

n'I 	VLand s.
 

The assumption implies that
 M0 
+D,
1 	 (3.22) 

where M0/ 2 is the constant of proportionality, and that D has rank 2aT
 

which is less than or equal to 21T, the dimensionality of F. Since D is
 

indempotent, it preserves the magnitude of every vector in F .- In particular;
 

DaJn = lin' 	 ,[3.23a) 

DU1 = pal 	 (3.23b) 

and D a = s. 	 (3.23c)
a 

D0 represents a rectangular linear filter in F(see Chapter II), and corres­

ponds to idealized square band-pass filtering of the modified input.
 

As we shall see, it is convenient to think of the constant in (3.22) as
 

representing the observer's uncertainty (or imprecision, or variance)
 

regarding the signal amplitude, per unit bandwidth of the signal. It is only
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appropriate to scale such uncertainty relative to physical measurements;
 

in this case the uncertainty in the input is the variance N0 of the noise
 

process per unit cycle. The ratio of internal uncertainty to the total
 

uncertainty, therefore, is defined to be
 

A 0 (3.24) 
10 + NO 

It follows that X is a nonsingular transformation of the scaled value of
 

MO, i.e.,
 
A
 

Me0oIN0 - A
 

Now QM can be found directly:
 

Qm= (n + Xs) 

N0 M0 -l
( 2 + TD) 

2 1 (3.25)
 
N (I NO0u 

R (I - AD). 

The last step is easily verified since D is indempoteit. As a consequence, 

Qn 2 2 

0 0 

= 2X D. (3.26)
N0o
 

With the explicit representation for the precision matrices in (3.25) and
 

(3.26), the decision variable z for observer a is found by substitution into
 

Equation 3.17:
 

or,= 
z1

DD)y +- 01 3= - -his]edues,)
aN0 aN0
 

or, since VpI = p jj'D this reduces to 
a a a a
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X D 2p'D ( aly 
Ze = NO + 2 a) a - 'a (3.27) 

a N0 (-x N 
The decision variable z of the linear-uncertain observer is thusa'
 

a convex combination of the standardized energy of the projection of the
 

modified input y onto F and a linear-term depending upon the cross correla­

tion of y with the supposed signal Vo. From Equation 3.24 it is seen that
 

as the prior internal specification of signal becomes poor, that is the uncer­

tainty M0 becomes large relative to NV the uncertainty parameter X approaches
 

1 and a will behave like a pure energy observer. On the other hand as the
 

observer a becomes increasingly certain of the correctness of the internal
 

specification signal ve, A approaches zero and a behaves like a pure linear
 

observer. When X lies between the extremes of 0 and 1, the decision variable
 

zQ may be seen to be a linear transformation of the squared radius S of the
 

hyperspheroidal cylinder
 

(1-A_) ID + = 

with center at -y-Du in F. 
DAaa 

The decision regions for a are depicted in Figure 3.2 (compare with
 

Figure 3.1). Here the plane of the paper is determined by the true signal S
 

and the prior specified signal P . The center of the region R0 lies on the
 

line of p., but on the opposite side of the origin. The modified input y is
 

projected onto the subspace F .
 If the image of y lies outside the hypersphere
 

then za > a + b (where 0 is the squared radius and a and b are appropriate 

constants) and observer a accepts the hypothesis that the input contains the
 

signal. Otherwise, the image is in R0 and the observer rejects that hypothesis.
 

As A.increises the center moves toward the origin and the direction (phase)
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/
/ 	 N. 

R1"Accept 11" 
of ui.c /


* "line 

\ ,.H ". /line of s' ' 

%-inrersection of the plane I 
I with the hyperellipsoidal 

!I A/ 	 cylinder Z.= g 
, t / 	 / 

Ro "Accepf H-0 , 2W.,T Space "4--­

-o..... 

Fig. 3.2. 	Representation space of the linear-uncertain observer. The 
paper represents the plane in F. determined by the signal vector 
s and the observer's mean representation of the signal pa. A 
criterion region Rl is determined by a cutoff value B on the decision 
axis which is isomorphic to the squared radius of a hyperspheroid 
in F. As X - 1 the center moves on the line of V. to the origin 
0 of ?he space and the observer becomes a simple energy detector. 
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of Vpbecomes irrelevant. As X -*0 the center moves away from the tip
 

of Pa and the decision boundary becomes a perpendicular hyperplane at-the 

point of intersection with the line of pa . The observer's decision variable 

then behaves like the ideal observer's decision with variable z., but with 

a substituted for s.,
 

It is perhaps surprising that the linear-uncertain model of the observer's
 

dbcision variable is a generalization of most previously proposed detection
 

theory based models for human monaural auditory processing. This will be
 

demonstrated in the next section.
 

3.7 Special Cases of the Linear-UncertainModel 

The models of this section are obtained from the fundamental Equation 3.27
 

for the decision variable of the linear-uncertain observer.
 

The linear observer. When X = 0 in (3.27)
 
2 1
 

a Daa -r (3.28) 

and the observer performs purely linear operations on the input waveform. 

If Pa= s and D. = I, the linear observer is optimum since za = zI of 

Equation 3.19. The observer is even optimum if D t I since according to 

Assumption 3.3 D cannot degrade s. Thus, non-optimal performance of the linear 

observer must be due to the fact that p s or be due to additional internal 

noise or criterion variability. 

The energy observer. When X = 1 in (3.27) 

z= y'Day (3.29)
N.
 

and therefore the decision variable of observer a is based only on the
 

energy of the modified input passing through an idealized square band-pass
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filter with bandwidth W . Other forms of an energy model have been proposed.
a 

A more usual assumption is that it is the input x itself whose energy is
 

found at the output of the filter, ,i.e., 

x'D x 
zza N a (3.30)
 

0
 

The two models are identical only when mean of the noise is the zero vector.
 

When the mean is not zero, these energy models make different predictions for
 

observer performance for some tasks, as will be seen in the next chapter. 

The envelope observer is a very special case of the 

Equation 3.29. Let sjlt) be the HuIbert transfornationof the signal wave­

form s(t), 0 < t < T (cf. Hancock and Wintz, 1966). If Ix(t)I is the
 

instantaneous modulus of x(t), then in quite general terms the function
 

En(t) = CIs/t) + IstL(t)j)1 2, 0 < t <T, (3.31) 

is the (instantaneous) envelope of s(t). For example, if s(t) = Asin 2nft, 

then sj_(t) = Aces 2 awt and En(t) = A, as one might expect. The Hilbert 
n
 

transform is orthogonal to the original waveform, i.e.,
 

T 

s(t)so(t) = 0. (3.32) 

0 
If s8j is the vector of F corresponding to s_L(t), then (3.32) implies that 

s's-_= 0. (3.33) 

Now if s(t) is a sinusoid, then s(t) and sj_(t) differ only in phase. 

If observer a knows s but does- not know the phase of s then it may be shown 

that a should let 

a = ss'/lIsII + sjpj/Ijs.I 13.34) ( 

in Equation 3.29 (cf. Wainstein and Zubako, 1962, Sec. 33). It.may also
 

be shown that D is then a projection operator by the methods of Section 2.4. 
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The idempotency of D follows with help of (3.33). When the substitution
 

of D of (3.34) into (3.29) ismade it results in the decision variable of
 

an envelope observer:
 

(sy)2 C ) l
IsJ 2/1ljIs 
Z N (3.S) 

It is clear from (3.35) that z for the envelope observer is the squared
 

radius of a circle lying in the plane of s and sj inF with center at the 

origin. This is illustrated in Figure 3.3. The modified input y is projected 

onto the plane of s and s_. If the length of the projection is greater than 

8, then it lies outside a circle z = in the criterion region RI. The 

circle defines a hypercylinder in F whose inside is R0 ' 

It has been pointed out elsewhere that the energy model and the envelope
 

model make similar predictions in a variety of tasks (Green and Swets, 1966).
 

In a general way this is apparent from the geometry for the two observers.
 

The primary distinguishing characteristic of the envelope observer would
 

appear to be his narrow and precise bandwidth as an energy observer. This
 

conclusion is also born out by a comparison of the statistics of VT-with 
a 

the statistics of the output of a narrow-band filter excited by Gaussian
 

noise (Green and Swets, 1966, Section 6.5.2, and references there cited).
 

3.8 The Noisy Linear-Uncertain Model
 

An assumption of noise-free processing has been implicit in the presen­

tation of the linear-uncertain model in the previous two sections. For any
 

realizable system, e.g., a human processor, this is certainly a generous
 

assumption. Two kinds of internal noisehave often been suggested. The
 

first is that noise is added to the input x before it is processed. The
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/ N, " 

R,"Accept W1" 

I 

R0'Accept WJ 

Fig. 3.3. The representation space of an envelope observer. The paper
 
represents the plane in F determined by the orthogonal vectors
 
s and sj_. A criterion region R1 is determined by a cutoff value
 
0 on the decision axis which is isomorphicto the squared radius
 
of a circle with center at the origin in the plane. If y projects
 
outside the circle in the region RI , the observer accepts the
 
hypothesis Hl.
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second is that the response is a noisy transformation of the decision
 

variable z . Less often it has also been suggested that the observer may
 

have a noisy memory for the specification of signal parameters relevant
 

to good detection performance. A noisy memory would lead to a fluctua­

tion in the processing of the input. The details of this latter source
 

for degradation of observer performance will be considered first.
 

Noisy memory modeZs. It is possible that the observer-specified signal
 

varies in a random manner which-is not under observer control. If this
 

were then the case, we might suppose that observer specified signal vector
 

could be adequately characterized as
 

p* =p + e (3.36) 

where as before Ua is the mean of the prior distribution for s and e is
 

a random error term, perhaps with a multivariate normal distribution density
 

with mean vector 0 and dispersion matrix Ze.
 

If the linear-uncertain observer is unaware of the variability in the 

mean of his prior distribution, then his decision variable would remain in 

the form given by z in (3.27), but with p* of (3.36) replacing p. It is a ~ aa 

important to realize that the distributional character of za is thereby 

changed as well.
 

Another possibility may be considered byj assuming that the observer
 

specifies the signal from memory on each trial, but that there is random
 

error in this specification. The error could be due to changing uncertainty
 

regarding signal parameters, for example. If the observer is aware of the 

fluctuation in his memory, then it may be shown that the observer should be
 

a linear-quadratic processor of Equation 3.17, where X is the dispersion

5 
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matrix of the memory signal vector It whose mean is (presumably) the true
 

signal s (Birdsall, 1960). This version of the noisy memory model
 

differs formally from the linear-uncertain model only in that V = s, and
 

thus is another special case of the latter.*
 

The sensory-noise model. If we suppose that the sensory encoding produces 

random fluctuations in the input waveform, this could be represented by 

replacing the input x in the linear-uncertain model by 

x* = x + e. 1 (3.37)
 

Birdsall (1960) has shown that a linear processor with Gaussian inter­

nal noise added to the input has quite different psychometric functions from
 

his noisy memory model mentioned above (for the special case where 2WT = 1).-


This is to be expected since x* is the effective input to the observer and
 

would not change his mode of processing when e is normally distributed.
 

The noisy decision variable model. Perhaps the most common assumption
 

made in one form or another is to consider that the decision variable itself
 

is noisy; i.e., that
 

z* = z + e (3.38)

a a 

replaces the decision variable za. Strangely enough, however, only until
 

very recently hive some of the implications of this plausible model been
 

investigated (Wickelgren, 1968).
 

There are, of course, many other ways of degrading an observer's decision
 

variable. The uncertainty parameter A could be made a random variable. The
 

center frequency of the pass-band could fluctuate (a possibility recently
 

investigated by Henning (1967)); The quality of the decision variable could
 

vary, and so on. For the present, however, let us be content with noise
 

Birdsall's work (1960) provided much of the incentive for developing the
 
linear-uncertain model.
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added to the input (e1), unknown fluctuation in the observer's specification
 

in his prior mean (e2), and perturbations of the decision variable itself
 

(e3).
 

The decision variable of the noisy linear-uncertain observer is, then,
 

z* - [X(y+ e)'D(y + e) + 
a N0 .t 1 (3.39) 

+ (1 -X)C2 + e 2) ' D [ 2 ( y + e1) -- (Ia + e2)] + e3. 

In order to be concrete in the following, we suppose that e3 is normally
 

distributed with mean zero and variance V3, and that e2 and e3 are each multi­

variate normal with mean vector zero and dispersion matrices
 

N0V2 N0V3
= 02 I and = 2 , 

respectively. Further, el, e2, e3 and the noise vector n are assumed mutually
 

independent.
 



CHAPTER IV
 

MEASURES OF CONCORDANCE BETWEEN OBSERVERS
 

4.1 Introduction
 

The previous chapter outlines the basic theory of a general model
 

for monaural auditory processing, the linear-uncertain model. This
 

chapter investigates a variety of predictions of the model. Since the
 

linear-uncertain model includes as special cases a number of previously
 

proposed models for auditory processing, the methods of this chapter apply
 

equally well to them. The derivation of the level of association between
 

observers appears here for the first time. Possible methods for estimating
 

parameters for the linear-uncertain observer using non-parametric measures
 

of association are considered. The psychometric function for the linear
 

uncertain observer is approximated, and the relation between measures of
 

performance and concordance are investigated.
 

4.2 Observer Performance
 

In a two-alternative task an observer's decision variable z may be con­

sidered as having the distributions F0(z) and Fl(z) conditional upon H0 and
 

HI, respectively. If the observer uses the rule "say HI if z >zc, other­

wise H0" then the observer's hit rate would be
 

P(H) f dF1 (z) (4.1) 

and his false-alarm rate would be 
z 
c 

P(F) f dF0 (z). (4.2) 

z 
An observer's receiver operating characteristic (ROC) curve is the set
 

of ordered pairs [P(F),PQI)] parameterized by zc (Peterson, Birdsa'll, and Fox,
 

1954).
 

- 44 ­
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If the observer'uses the rule (2)"say rc if z = , where rczc 


is a strictly increasing function of zc, the probabilities P(H)'and P(F) re­

main defined for 	each value of vc but have no'special significance except as
 

coordinates of the ROC curve. Clearly the ROC curves determined by z using
 

either decision rule are identical.
 

The ideaZ observer may be characterized as that observer whose hit­

rate is at least as great as the hit-rate of any other observer with the
 

same false-alarm rate (Birdsall, 1966). This characteritation is more general
 

than that given in the last chapter where it is assumed that the signal is
 

specified exactly.
 

It is clear from the definitions that the area under the ROC curve
 

for ideal observer must be at least as great as the area under the ROC curve
 

for any other observer in the same task. An important result regarding the
 

area was obtained by Green (1964a).
 

Lemrna 4.1. If zal and zao are two independent samples of an observer's
 

decision variable, conditional upon HI and HO$ respectively, then the area
 

PA under the ROC curve generated by the decision variable z (using either rule
 

(1) 	or rule (2) above) is given by 

P= f Fl(zc)dFI(zc) = P(Za, > za0 ). (4.3) 

A proof is given in Green and Moses (1966). I have generalized somewhat 

the language over the original statement of the result since Green interprets 

the probability on the right as the probability of making a correct response 

in a two-interval forced-choice task in which the observer knows that exactly
 

one of the intervals contains signal-plus-noise and it will be shown that the
 

ROC area is related to non-parametric measures of association between observers.
 

4.3 Nnparacetric Measures of Association
 

We review two popular nonparametric measures of association which will
 

be uieful in the discussion of observer performance and concordance.
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Following Kendall (1962), for two random variables z_ and z8 and 

two independent, joint samples (zaiz ) and (z j,z~j) of the variables, 

define 

aij= sgn(zi - zaj) 

I-if z- Zz > 0 

al Ia 

= 	 if zai - zaj = 0 (4.4) 

if- z . - z .j< 0. 

Similarly, 

bij = sgn(z i - z j). (4.5) 

Then, tau is defined by 

T Corr(aij,bij). (4.6) 

If (z,z ) has a continuous bivariate distribution, 

T = E(aijbij), (4.7) 

since in this case E(a..) = E(bi) = 0 and Var(a..) = Var(b..) = 1. 

Another way of looking at tau is in terms of the probability of agree­

ment and disagreement of the sign of the difference between samples of the
 

decision variables. With
 

P(S) = P(aijbij > 0) 

and (4.8) 

P(D) = P(ai bij < 0), 

it is readily shown that 

E(aijb) = P(S) - P(D). 	 (4.9) 

Goodman and Kruskal (1954) were interested in indices of association
 

for bivariate, ordered contingency tables. In this case thc'random variables
 

are not continuous. The probability of a tie in.one or the other of the
 

variables is
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P(T) P(aijb.j = 0), (4.10) 

so that
 

P(S) + P(D) + P(T) =1. 

The Goodman-Kruskal coefficient gacmia is based on only the untied pairs of 

the variables: 

y - [P(S) - P(D)]/[1 - P(T)] (4.11) 

For continuous variables P(T) = 0, so that y = T in this case. 

It is also possible to view gamma as a conditional correlation between 

signs. 

Proposition 4.1. 

y = Corr(aij,bij aij 1 0, bij 0). (4.12) 

4.4 The ROC Area as a Measure of Association Between Decision Variablis
 

We may define the perfect decision variable by
 

[1 if HI
zp = (4.13 

' Lo if H0 ( 

This is the experimenter's "decision variable" and, of course, does not 

depend upon the input x. 

Theorem 4.1. Let PA be the area under the ROC curve for observer a 

with a continuous decision variable z., and y the Goodman-Kruskal coefficient 

between the perfect decis.ion variable zp and za. Then,
 

PA = (y + 1)/2. (4.14)
 

Proof. Let (z ,z ) afid (z' ,z') be two independent joint samples of
 apa p
 

the decision variables. Then, since the value of z specifies the hypothesis,
p 

P[(z - z' )(z - Z' ) > = P(z > z0).C&Z a p p3) 0 al O 
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The right hand side is PA by Lemma 4.1. The left hand side is apparently
 

P(S)/[l - P(T)]. But, P(D)/[l - P(T)] 1 - P(S)/[l - P(T)], so that
 

P(S)/[l - P(T)] = (y+ l)/2, completing the proof.
 

The theorem's importance lies in the fact tat it suggests a way to
 

make reasonable estimates of the ROC area, even when the observed decision
 

variable is not continuous. In Appendix I it is shown that if P(TQ) is the
 

probability of a tie in the observed decision variable z, an appropriate
 

estimate of the area under the ROC curve is given by
 

est PA =[est Corr(aij,bij b..i 0) + 1]/2
 

1 P(S) - P(D) +11 (4.15) 
= - P(T jT) [1 - P(Tp)] 

where T is the event b. 0. A computing formula is also given. 
p ij-

When both decision variables, z and za, are considered continuous the 

estimate of tau is given by 

T8 = est Corr(aij,bij) 

P(S) - P(D) (4.16) 

41 - P(Ta)][1 - P(T)] 

4.5 The Relation Between Parametric and Naonparametric Measures of Association
 

The exact distribution theory for the noisy linear-uncertain model is
 

extremely difficult and is apparently unsolved. (Inthe internal noise-free
 

case, however, the distributions can be shown to be non-central chi-square.)
 

However, the moments of z* are relatively less difficult to determine. This
 
a
 

opens the possibility of trying to approximate the theoretical value of T 

between z and z using only the moments of the joint distribution of z 

and z8. It is at least plausible that sample estimates of T could then be 

used to make estimtes of the unknown parameters entering into an observer's 

decision variable such as his uncertainty parameter X or bandwidth-time product 

1 T. We shall call such a procedure "nonparametric estimation".
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Perhaps a somewhat less ambitious approach than nonparametric estimation
 

would be to try to find experimental situations which would discriminate
 

between alternative models using nearly any measure of concordance. If
 

such experiments could be found, then statistics such as the linear corre­

lations could serve at the theoretical level, and tau could serve at the
 

empirical level. This latter procedure is the one followed here. It is
 

worthwhile to give a more complete justification, however.
 

Greiner's relation. The ordinary product-moment (linear) correlation 

between two decision variables za and z will be denoted by 

PaR = Corr(z ,z ). 

If z and z have a bivariate normal distribution with correlation p 8 . 

then it is known (Kendall, 1962; Greiner, 1909) that 

pa8 = 8 /2).sin(TTa (4.17) 

When the stated assumptions are tenable this relation provides a consistent 

estimate of po from an estimate of -r,, 

Griener's relation is a special case of a more general-approximation to 

t based on the joint moments for non-normal variation of random variables. 

Kendall (1949) assumed that the joint distribution may be closely approximated 

by 	a truncated Gram-Charlier series. With standardized moments defined by
 

f[z( -E(z a) i FzB - N~z) 1 l 
ain = Tv1 L{L;arhJ2	 [Var(z)FJI
 

and p p08 = Ph, Kendall's approximation* to T is given by 

2 sin-1 + 
a 7 24(l-p2 ) 3/2 [(1140 + 104 - 6)(3p - 2p 3) 

(4.18)
 
-4(13 + i3 - 6p) + 6p(p' - 2p2 1)] 

-	 3 + 223 -0)] 

* 	 Kendall's original expression, his Equation (25), was given in terms of 
the cumulants of the joint distribution. 

http:sin(TTa(4.17
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If the decision variables are-jointly normal the correction term (in
 

braces) to Greiner's relation is zero.
 

A small amount of empirical data presented by Kendall suggests that
 

the unfortunate complexity of the correction term to Greiner's
 

relation cannot be safely ignored for precise results in many situations.
 

Unfortunately little more seems to be known regarding estimating p from T.
 

For the linear-uncertain model the correction term is zero only if
 

both observers are linear, i.e., X = I (X= I - X). Otherwise the 

correction term is not only non-zero, but contains moments of the physical 

waveforms not ordinarily measured, e.g., 

JT s4(t)dt,
 

0
 

for a constant signal waveform s(t). (Interesting results can be obtained
 

when the signal is a sample of Gaussian noise, which however does not
 

concern us here.) In the general case the correction term is extremely
 

complicated for linear uncertain observers and it would require advanced
 

computer techniques in non-linear estimation to obtain estimates of model
 

parameters. I am forced to conclude that, although feasible, non-parametric
 

estimation is not presently practical.
 

The alternative mentioned above to non-parametric estimation depends
 

upon an approximately monotone relation between c and p. An examination of
 

Kendall's approximation to Tis not very revealing in this regard. The
 

difficulty is that factors which affect p may also affect the value of the
 

other joint moments in some unknown fashion. In our situation,'however,
 

we know that the association between linear-uncertain decision variables depends
 

upon common elements of the noise process at the input. As was seen in
 



Chapter III the decision variable of the linear-uncertain observer is a linear 

transformation of the squared radius of a hyperspheroidal cylinder in the 

representation space. By assumption two observers'share a common subspace 

in the frequency representation space. Thus, at least in the case where 

the cosine of the angle between Va and p is not negative, the radii will 

tend to increase and decrease together, i.e., will be to some extent concor­

daht. Both T and p are measures of concordance in this sense (Kruskal, 1958) 

and therefore may be expected to be highly correlated with one another. 

4.6 The Correlation between Observers
 

The results of this section make the implicit assumption that to a first
 

order of approximation the joint distribution of the decision variables may
 

be considered bivariate normal. Somewhat more accurate results for some
 

purposes, with a corresponding increase'in technical difficulty, might be
 

expected if marginal monotone transformations of the variables are made prior
 

to the computation of the moments. Some possibilities for normalizing trans­

formaitons are considered in Lamphier and Birdsall (1960).
 

We consider the general case where the modified input to observer a is 

Ya = y + sa and the input to observer 8 is y, = y + s,. It is convenient 

to have the following definitions (we assume the observers' filters overlap 

in F): ps = a (4.19)
a 

R u'D u, r 2R IN (4.20)
a a aS aS ao ( 

Ea =R a, d =2E /N (4.21) 

Thus, for example, r means 2p'D s /N the standardized cross-correla­
as caS S0'0
8 


tion in the joint subspace determined by Da = DaD between the prior mean 

vector pa and signal vector s, presented to observer S. Of course, if s 

is the null signal 0, then r = 0 and rs = 0 regardless of the value ass sa
 

of p or a, respectively.
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Theorem 4.2. The covariance between noisy linear-uncertain observers
 

with decision variables z* and z* as given by Equation 3.39 is given by

a 8
 

Cov(z*,z*) = XAX[6 rs ] +XA r
a8 a0 a sas a 8
as(4.22)
 

+ A s +a Ar 

Further, the variance of z* is given by
 
a
 

Var(z*) . X2[6(l+ V ) 2 + d (I V)] + 27 X r (I + Vai:Y 

+A{6V2 [2( + V 1) + Va2] (4.23)
 
a aczai a 

+ da(I + Val + Va2) + (ds - ras )Va2} + Va3. 

where 6 min{6 ,6 1 & = W T and A = a X.
aO iT aThe proof of the theorem86 isagivena in Appendix If. 

The linear correlation between noisy linear-uncertain observers is
 

thus given by
 

Cov(zt , z*)
 
Pa** =-Corr(z*,z*) (4.24)


a' [Var(z*)Var(z*)]1/2
 

There are, of course, many special cases which could be considered
 

by assigning parameter values. There are over 2000 such cases for extreme
 

values of parameters of which perhaps 100 might be considered "interesting"
 

for some purpose. We shall consider only several of these interesting cases.
 

Theorem 4.3. The necessary and sufficient conditions that two noisy
 

linear uncertain observers have identical correlation on signal-plus-noise
 

trials (H1 ) and noise-alone trials (H0) are that
 

i) both observers are linear processors, i.e., XA = 0, and that 

ii) neither observer has'a noisy memory-specified reference signal,
 

i.e., Va2 = Va2 = 0. 



S -S3 

Proof. Under H1 , s =s so that rs sS dsa s
 

p is obtained by inserting these values into (4.24). Likewise under
 

H, 8a = sa = 0, so that r =
0sos ras = r = rss8 rsB =d = d = 0
asa s
 
a0) a (l)a 0 

which when inserted into (4.24) gives p . Requiring that P_ = p(0 

for any (non-trivial) values of pa and p0 can then be seen to be equivalent 

to conditions (i)and (ii). 

CoroZZary 4.3.1. Under conditions (i)and (ii)of the theorem the 

correlation is
 

1[d (1 + Val + Va3][d (1 + V8 1) + V03]}112 (4.25) 

and Greinerts relation holds so that
 
(C1) T(0) 2 .-1
 

T . = = T = - sin p. (4.26) 

It would be desirable to have the theorem stated in terms of T rather 

than p. The sufficiency of the conditions for equal T values on and H0
1 


is given in the preceeding corollary. That equal T values imply the conditions
 

remains a reasonable conjecture.
 

An interesting situation arises if one of the observers is an electronic
 

energy detector which receives only noise at the input on both H and H0
 

trials. In this case A = I, Va = 0, Va3 = 0, and p, = = 0 under 

both 11 and H0 ' Further, we let
 

Varl(z*) = Var(z*lsa = s) 
".(4.27)
 

and Varo(z*) = Var(z*ls = 0)

0a aa
 

from (4.23). It is clear on inspection that Varj(z*) is always greater than
 

or equal to Var0(z*) regardless of model parameter-values. But, from (4.22)
 

we have for both H and H0 that Cov(z*,z*) = A 6 This prows
1 0 aS aaa
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Theorem 4.4. The correlation between a noisy linear-uncertain observer
 

and an electronic energy detector which receives only noise is never less
 

on noise-alone trials than on signal-plus- noise trials.
 

The importance of the theorem stems from the fact that the opposite
 

result is expected from the filter bank model discussed in Chapter I. The
 

filter bank model assumes that the human'observer responds to the maximum
 

of outputs from narrow-band filters in the filter bank. A relatively
 

narrow band electronic filter will respond to components of the noise in a
 

narrow frequency band around the center frequency of the signal and so
 

should be only poorly correlated with the observer's response on noise-alone
 

trials. On the other hand, when signal is presented to the observer the
 

maximum output of his filters will nearly always occur in the passband of the
 

energy detector and thus increase the communality of the two observers.
 

It may also be argued that if the signal is presented to a narrow band
 

energy detector on signal-plus-noise trials then both the filter bank model
 

and the linear-uncertain model predict increased correlation on signal trials.
 

Thus, that experiment does not provide the comparison between the models
 

afforded by giving the energy detector only noise. An experiment using
 

the special conditions of Theorem 4.4 would be necessary only if the linear­

uncertain model can predict the results of Ahumada's experiment reported in
 

Chapter I. We now show that it can.
 

- The squared correlation between the linear-uncertain observer and an 

energy detector with identical inputs on signal-plus-noise trials is 

[X (6 + d ) + A r ]2 
2 = as [a (4.28)


Varl(z*)(68 + ds) 
I a 5 
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On noise-alone trials this reduces to
 

P = (XazO)2 (4.29) 

VarO(z)6 s 

Since 6 = min(6 ,6 ) and Varo(z*) does not depend upon 6, p2 is maximized 

-
by setting -6 = 6e. For p2 it is clear on inspection that the~expression 

will be maximized by taking 6, a So we may set 6 =6, To investi­

gate further we differentiate the logarithm of p2 with respect to 60 (ignoring 

the constant Var (z*)): 

-- {2 n[X (6 + d) + J -tn(6 + d
36a a as $ 5 

2X 
a 1­

+A(6 ds ) + ars 

By setting the expression equal to zero and manipulating, we obtain
 

as
 
a 

as the value of 60 which maximizes p2 (as long as the right hand term is 

less than 6a). If ras = ds, as in the noisy memory model, then the solution 

is reasonable if the linear-uncertain observer has somewhat less memory noise 

M0 than N0 , since X/A = N0/MO. 

4.? The Performance of Linear-uncertain observers
 

Ithas been found empirically that the ROC curves of human observers
 

often appear rather like straight lines when plotted on double-probability
 

paper, that is when the coordinates PQ(H) and P(F) are transformed to deviation
 

scores for a standard normal distribution. Such ROC curves would be exactly
 

straight when there exis ts a monotone transformation * of z such that the
 a 
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conditional distributions %0[*Cz)] and Fl[T(Za)] are both normal. It has
 

been shown that in a task with signal specified exactly, strictly speaking, 

there exists no such transformation 'p unless the observer is equivalent to 

a linear processor of the input (Wilcox, 1967). 

To a first order of approximation, however, we may take the observer's
 

decision variable za as being normally distributed with mean E(za) and variance
 

V(z ). Generally the means and variances will be different on H1 and H trials.
 
a 1-

Theorem 4.5. Let an observer have a decision variable z which is distri­

buted normally with mean V, and varianc& a2 on H1 trials and with mean 10 and 

variance o2 on H trials. Then, the area under the ROC curve generated by 

z is given by 

fz 

P J (t)dt, (4.30) 

where 0(t) is the standard normal density function and
 

)
v'2(p1 - 110

d' = (4.31) 

The proof is made straight-forward by inserting the appropriate normal 

densities into Equation 4.3 and making a simple change of variables in order
 

t reverse the order of integration.
 

It may be noted that if the observer is the ideal observer we find that
 

d1/2
ddJF s =d = (4.32)
 
0
 

as is well known.
 

We shall call d' obtained from (4.30) the sensitivity index* That is
 
z 

if PA is known
 

Jeffress (1967) has defined index d which is d' of Equation 4.31. I prefer
 
z z 

the more general definition of d' of Equation 4.33, of which d is a special

z z 

case.
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d' V'CPA) (4.33)
 

where 4Dis the standard normal distribution function.
 

Theorem 4.6. The sensitivity index of the noisy linear-uncertain
 

"
 obeserves with decision variable z' is given approximately by
a
 

C[X d /2 +T7rI 
d' as- aas (.4z* 1/2 (4.34)
a [Var0 (z*) + Var(z)]
 

where Var0 and Var1 are given by (4.27).
 

The theorem follows from the fact, proved in Appendix II,that
 

E(z*) : 2a[6 (1 + V ) + d /2]

a 
 (4.35)
 

+X a[ras da/2- 6Vai
 

The efficiency na of an observer a is defined as a ratio of signal
 

energies (Tanner and Birdsall, 1958):
 

no = Hz A s (4.36)
 
a
 

where Ez isthe signal energy necessary for the ideal observer to perform
 

at the same overall level as observer a. We shall take this to mean that
 

Hz is the signal energy necessary for the area under the ROC curve of the
 
a­ideal observer to be equal to the area under the ROC curve of an observer
 

a who has signal energy E in his detection task. Then, for the case in which
 

signal is specified exactly, Ez may be found from
 
a
 

d' = /2E IN0 . a a 

Thus, 

no = (d /ds')2. (4.37) 

a 



Plots of P(C) (the probability of a correct response inaa two-interval
 

forced-choice task), PA' log na, or log (d' )2 versus log d are examples of
 

psychometric functions. The first is most commonly used, although the latter
 

two are definitely superior for comparing processing models.
 

Birdsall (1960) has investigated the shape of psychometric functions
 

of noisy-memory observer in the case 2W T = 1. McGill (1967) has obtained
 

the psychometiic functions for the internal-noise-free energy model for
 

several values of 2W T.
 

4z8 The Relation Between Performance and Concordance
 

Thoorem 4.?. Let na be the efficiency of a linear observer a with no 

reference signal noise (Va2 = 0) and let p be the correlation between a and 

the ideal observer. Then, 

a = p 2 . (4.38) 

Proof. p is given by (4.25) with d = ds, V01 = V83 = 0. n is 

given by the square of (4.34) divided by ds and with X = 0, Va2 =0. 

The equality (4.38) follows. 

- Apparently the efficiency of the noisy linear-uncertain observer in the 

general case cannot be expressed solely in terms of the linear correlation 

with the ideal observer. 

Theorem 4.8. Let p. = Corr(z*,z*IHi3, Vi = Var(z*IHi) i = 0,1.
1 a $ acl 

Then 

iPiFAVai.V81  V_ =x Vaa B~V d' + X [ ~- d' (4.39) 
al BI 0 o 0 2-V- a [o 2- a 

The theorem is proved by writing out (4.39) in detail for noisy linear­

uncertain observers. The theorem provides a way to predict inter-observer 

correlation differences from the observer sensitivity indices and observer 

correlations with the ideal observer. First note that Va0/Va= va is the 
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slope of the ROC curve plotted on double probability paper, as long as
 

the straight line approximation is good (Green and Swets, 1966, Ch. 3). By
 

dividing both sides of (4.39) by VValVe we obtain
 

A, av 11 1/2 X .r,+111/2 
+ 2_" d' (4.40) 

Since d' d ' v and vB may be estimated from performance data, the remaining 
a B 

unknowns are a single parameter in the form Xa/IiF for each observer. 
a "Val 

Suppose that observer 0 is the ideal observer, which may be simulated by a 

cross-correlator when signal is specified exactly. Then Xa = 0, v I 

and d' z8 
= v' -.s In this case (4.40) can be written in the form 

Pi - PO (4.41) 

al s 
which provides an estimate of A /AV from the correlations of observer a with 

a ali 
the ideal observer. These estimates may be inserted into (4.40) to provide 

a prediction of the quantity p, - p0vrv- for each pair of observers. 

Obviously such predictions should be considered only as good as the estimates 

of v and v. 



CHAPTER V
 

AN EXPERIMENTAL INVESTIGATION OF INTER-OBSERVER CONCORDANCE
 

5.1 Predictions of the Models
 

An experiment was conducted to examine the effects of several input
 

conditions on the level of concordance between observers in a single-inter­

val detection task. The observers were three human observers and two
 

electronic devices. The first device was the "ideal observer" (CC), that
 

is, it computed the cross-correlation of the signal waveform with the noise
 

waveform present in the presentation interval. The second device, the
 

energy detector (ED), computed the energy of the filtered noise waveforms in the
 

presentation interval. The human observers gave responses indicating
 

their confidence that signal was present in the presentation interval.
 

A nonparametric measure of concordance was computed on both H1 and H0 trials
 

between all pairs of the five observers in each of the conditions of the
 

experiment.
 

As discussed in Chapter IV, several models of monaural auditory pro­

cessing make different predictions for the levels-of concordance between
 

observers. The major predictions for these experiments are:
 

i) Linear observers with non memory-specified reference-signal noise
 

have equal correlations on H1 and H0 trials.
 

ii) If the noisy linear-uncertain observer has a linear component in
 

his decision variable (X J 1) then the absolute value of the corre­

lation between the observer and the cross-correlator (with a noise-only 

input) is not zero and is greater on H1 trials than on H0 trials. 
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iii) 	 Under the same conditions as (ii)the insertion of CW (carrier wave)
 

into the noise cannot decrease the correlation between the observer
 

and the cross-correlator (with noise-only input).
 

iv) The linear correlation between a filter-bank observer and the
 

cross-correlator is zero on both H and H0 trials.
 

v) 	The correlation between a noisy linear-uncertain observer and the energy
 

detector (with a noise-only input) must be greater on H0 trials
 

than on H1 trials.
 

vi) 	 The correlation between filter-bank observers and the energy
 

detector should be greater on H1 trials than on H0 trials.
 

vii) 	 Insertion of a continuous sinusoid (CW) into the noise background
 

with the same frequency and phase as the signal should increase
 

the correlation between filter-bank observers.
 

5.2 	Method
 

The experiment was conducted at the Sensory Intelligence Laboratory,
 

The University of Michigan. It involved the presentation of a 1000 Hz tone
 

pulse, the signal, in a background of Gaussian noise. Three observers listened
 

monaurally (one ear) to identical inputs through earphones. On each trial
 

a random selector determined whether signal was to be present (H1) or not
 

(H0) in the noise background. The observers were asked to report on each
 

trial their confidence that the hypothesis HI was correct. During the presen­

tation interval the noise waveform was also gated to two electronic devices.
 

The first device computed the cross-correlation of the noise with the signal.
 

The second device computed the energy of the noise in a 50 cycle band centered
 

at the signal frequency. The outputs of these devices were compared with
 

observer reports on HI and H0 trials separately.
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Apparatus. The experiment was programmed on a system known as N.P.
 

Psytar which has been extensively described elsewhere (Green, Birdsall, and
 

Tanner, 1957). N.P. Psytar contains a white noise source, ocillators for
 

producing tones, an automatic random niumber generator, amplifiers, attenua­

tors, audio gates, and the necessary logic and timing circuits to completely
 

automate the presentation of acoustic waVeforms and record observer responses.
 

N.P. Psytar was augmented in the present experiment by two analog multipliers
 

with outputs fed to gatable analog integraters, a digital voltmeter (iewlitt
 

Packard) with printed output (Hewlett Packard) and response sliders one
 

foot long attached by a dial cord to a ten-turn linear potentiometer. The
 

trial type, H1 or H0, was punched automatically on computer cards.
 

A block diagram of the analog multiplier and integrator circuits is
 

shown in Figure 5.1. The signal and noise sources shown were also used to
 

generate the inputs to the earphones. The analog gates to the integrators
 

were closed (ungrounded) simultaneously with the presentation interval. The
 

gates across the integrator capacitors were opened at the onset of the presen­

tation interval and remained open until the offset of the observers' response
 

interval during which the digital voltmeter recorded the stored charge on
 

the capacitors.
 

Following the response interval the digital voltmeter also recorded
 

the positiqn of the sliders by measuring the voltage drop across the slider
 

potentiometers. The input to the digital voltmeter was determined by a
 

stepping relay which was reset after each trial. The voltmeter was allowed
 

250 ms to stabilize on each reading before the result was printed.
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NoiseSignal 
Source 
 Source 
 .CROSS-CORRELATOR
 

CAC
 

CA
 

Narro-EEG-EET
 
and Filter
 

Figlok51. iagamo£gletrni Oberr. DA s curee a 0mlirF 

CA 

Fig. 5.1. Block diagram of Electronic Observers. CA is a current amplifier,
 
- DA a differential amplifier, I an operational amplifier in an 

integrator configuration, and G is an analog gate circuit. The 
differential output voltage of the multiplier is proportional to 
the product of the input currents.
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The offset voltages of the integrators varied slightly from day to'
 

day but were quite stable during each two hour experimental session.
 

The narrow-band filter used in the energy detector was a'single 

tuned passive filter with center frequency at 1000 Hz and 3 db power 

points at 974 Hz and 1025 Hz. Therefore, the 3 db bandwidth was 

W~db = 51 Hz and the equivalent square band-pass was approximately 

W = (r/2)W3db = 80 Hz. 

Signal and noise levels. The detectability of a signal specified 

exactly in atbackground of white, Gaussian noise is appropriately measured 

by the index d = 2E/N 0 which is the square of the sensitivity index 

of an optimum observer in the task. E is the signal energy and N0 is 

the noise power per unit bandwidth. The method used to measure the 

ratio is described in Green and Swets (1966, Appendix III). In the 

conditions with a signal duration of 100 ms, d was equal to 28.8, and for 

signal durations of 40 ms, d = 28.5. In conditions with CW added to 

the background noise the CW had a level of 14 db above the average noise power 

density N0. The CW does not affect the computation of d since it is ignored 

by the optimum observer.
 

Subjects. Three female undergraduate students served as observers in
 

the experiment. Observer 1 (OB 1) had served in a previous experiment which
 

required confidence judgments. OB 2 was also an experienced observer, but
 

had not previously used the confidence mode of response. OB 3 had had no
 

previous experience as an observer in psychoacoustic experiments. The
 

observers were paid at a base-rate per hour commensurate with their previous
 

experience. In addition, bonus points were computed on each trial and
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were converted to money in such a way that for averageperformance an
 

observer could, in effect, increase her hourly wage by 50%. However, all
 

bonus payments were made after the completion of the experiment contingent
 

upon continued attendance..
 

Payoffs. The bonus points were computed on each trial according to
 

thefollowing formula.
 

r2);
H1 trials: B'=1- ( 

H0 trials: B = (1 - r2), 

where B is the number of bonus points and r is the confidence rating as 

a proportion of distance along the slider scale. With this payoff scheme 

observers should maximize their subjective expected bonus by reporting their
 

"true" subjective probability that signal was present on that trial. The
 

bonus points for a day's session were usually reported to the observers
 

on the following day before their next session.
 

Preliminary training. The observers were given four sessions each
 

with 500 to 700 trials in which two response buttons were used. The
 

responses were labeled "Yes" and "No" regarding signal occurrence. The
 

two-button sessions were followed by eleven sessions in which four response
 

buttons were used. The observers were instructed to use the buttons to
 

indicate (1)"1 am quite sure signal was presented", (2)"I am not certain,
 

but I think the signal was presented", (3)"I am noc certain, but I think
 

the signal was not presented", and (4) "I am quite .certain that signal was
 

not presented". In order to acquaint the observers with the way bonus points
 

would be computed when they used the slider a modified bonus scheme was
 

used in the four-button sessions. Also, the observers were told to keep
 

inmind that later on in the experiment they would be using a continuous
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slider to indicate their confidence and that they should think of the
 

four buttons as being approximately evenly spaced along the scale of the
 

slider. These sessions continued until it was ascertained that the a
 

posteriori probability of H1 given a response was a monotone function of
 

the button number for each observer for four -days in a row. The observers
 

had-some experience with each of the four experimental conditions described
 

below. Following the four button sessions, the observers were given two
 

sessions with the slider response before the data reported here were
 

obtained.
 

Procedure. A trial, from an observer's point of view, consisted
 

of four intervals in time, each marked by a separate neon indicator. The
 

duration of a trial was about 5.6 seconds. The first 500 ms was a "get
 

ready" period. The presefitation interval of 100 ms in conditions I and III
 

or 40 ms in conditions II and IV immediately followed. A two second response
 

interval followed during which the observer was to position the slider to
 

indicate her confidence that signal was presented. After eleven slider
 

sessions the observers complained that the response interval was too long.
 

For the remaining five sessions the response interval was decreased to 1
 

sec so that the total trial duration became about 4.6 sec.
 

Each day's session consisted of five to seven blocks of trials. Each
 

block consisted of 100 trials after which the observers were given a one to
 

two minute rest. Halfway through each session observers were given a ten
 

to fifteen minute break. Each session lasted approximately 1 1/2 hours.
 

Sixteen experimental sessions were conducted,using the slider response,
 

The first two sessions were for practice (from the experimenter's point of
 

* 	 Use of a mechanical analog to a continuous rating response has been used 
previously by Watson, Rilling, and Bourbon (1964). 
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view). The data of two other sessions were omitted from analysis because
 

of equipment problems. The remaining twelve sessions were divided into
 

three sessions each for four experimental conditions.
 

Condition I had a presentation interval of 100 ms and no continuous
 

sinusoid (C) added to the background noise. Condition II bad'a 40 ms
 

presentation interval with CW. Condition III had T = 100 ms and CW.
 

Condition IV had T = 40 ms and C. The three sessions of a condition
 

were run on sequential days except.for session 3 of condition I which was
 

the last of the experimental sessions.
 

Preliminary data analysis. The trial-by-trial responses of each
 

observer and device, which were-read by the digital voltmeter, were punched
 

on computer cards and analysed by a preliminary data analysis program on
 

an IBM 7090 computer. This program converted the response values to stan­

dard scores for each observer and device. These scores were separated
 

into two groups corresponding to H1 trials and H0 trials, respectively.
 

The scores for the three sessions for each condition were then merged. The
 

program generated many cut-points for the data and determined the frequency
 

distribution of scores for each observer and device. From these distribu­

tions it could be determined which cut-points would give approximately ten
 

equally probable categories of response. The program then obtained the ten
 

joint frequency distributions for each-pair of observers'and devices for
 

each of the four conditions on H1 and H0 trials separately. Thus, a total
 

of 80 = 10 x 8 joint frequency tables were obtained in this way. The
 

joint frequency tables were used to determine the level of concordance
 

between observers and devices.
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In order to obtafn empirical ROC curves the cut-points were determined
 

which would give approximately ten equally probable categories of response
 

regardless of H or H0. The progtam then determined the 2 x m (m = 9 or
 

10) frequency table of hypothesis (HI or H0) versus response category for each
 

observer and each device for each of the four conditions. From these data
 

tables the empirical ROC curves, the area estimate and several other perfor­

mance measures could be determined.
 

5.3 Results 

Observer perfornance. The ROC curves for each of the four conditions
 

are presented separately for each observer in Figures 5.2, 5.3 and 5.4.
 

Each curve is based on approximately 1,800 trials. The ROC curves for the
 

two electronic devices are not shown since they fell nearly perfectly along
 

the chance line as expected. (Both devi&es, it will be recalled, were
 

presented only the noise waveform sample on each trial.)
 

The shape of the observer ROC curves indicate that they would be only
 

poorly approximated by a straight line on double probability paper. If any
 

generalization can be made it would be that the curves differ from straight
 

lines with unity slope by having a slightly smaller slope and are somewhat
 

concave toward the chance line. Also the curves appear quite similar in
 

shape across conditions. This conclusion is most pronounced for OB3 who
 

had the highest efficiency in all conditions.
 

The performance of all observers is better when CW is present. Observers 

1 and 3 show better performance with T = 40 ms when no CWV is present, but 

show better performance at T = 100 ms when CIV is present. There appears 

to be little effect of duration on the performance of observer 2.
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Fig. 5.2. 	 Empirical ROC curves for observer 1. The curves are based on
 
1,800 trials each and are plotted on double normal-probability
 
paper. The line of chance performance (P(H) = P(F)') in the
 
task runs from the lower left-hand corner to the upper right
 
of the figure.
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A comparison of measures of observer performance is given in Table 5.1
 

for each observer under each experimental condition. The estimate of the
 

area under the ROC curve based on the conditional correlation between signs,
 

est PA' was computed according to Equation Al.17 in Appendix I. Trap PA
 

is the estimate of the area based on using the trapezoidal rule for integra­

tion and was computed using Equation A1.18. d' is the sensitivity index
z 

computed from est PA using Equation 4.33. d' is an index of performance
A e 

which may be defined as 20-1 (P), where P.is the hit-rate at which the ROC 

curve crosses the negative diagonal. Finally q is the efficiency of an 

observer computed from d' and d = 2E/N 0 according to Equation 4.37.z S 

For all observers and conditions trap PA is a little less than est PA as
 

it should be. For the fairly large number of cut-points used here the trape­

zoidal estimate is only smaller by about 1%.
 

The values of dt are generally somewhat larger than d'. This constitutes
e z 

partial confirmation of the generalization that the ROC curves are concave
 

downward.
 

There is an interaction effect of Oq with duration. The efficiencies
 

are smaller for T = 100 ms than for T = 40 ms when no CW is present.
 

This inequality is reversed when CW is present. The introduction of CW also
 

substantially improves the performance of the observers.
 

It was hypothesized that the use of the continuous rating response
 

might have a depressive effect on observer performance. If so, the obser­

vers should have shown somewhat better performance in the preliminary training
 

sessions where only four response buttons were used. No such consistent
 

differences were apparent using the index d'.
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TABLE 5.1
 

A COMPARISON OF MEASURES OF OBSERVER PERFORMANCE
 

Condition 

-1II II IV 

CW- Cw 

Observer 1 100 40 100 40 

est PA .818 .850 .953 .930 

trap PA .807 .839 .945 .923 

d' 1.28 1.47 2.37 2.08 
z 
d' 1.31 1.45 2.44 2.32 
e 
n .057 .076 .195 .152 

Observer 2 

est PA .841 .855 .940 .936 

trap PA .830 .844 .931 .927 

d' 1.41 1.50 2.20 2.16 
z 
d' 1.51 1.61 2.23 2.26 
e 

n .069 .079 .168 .164 

Observer 3 

est PA .861 .897 .960 .937 

trap PA .851 .886 .953 .929 

d' 1.53 1.79 2.48 2.16 

dt 1.54 1.86 2.54 2.31 
e 

ii .081 .113 .213 .164 
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Observer Concordance. Values of tau, corrected for ties, were
 

computed from Equation A1.13 using the 10 x 10 joint frequency tables
 

described above. The'observed vaiues of tau between the cross-correlation
 

and the other observers are presented in Table 5.2 for each condition.
 

Maximum confidence intervals for each value were computed (Kendall, 1962,
 

Eq. 4.12). In Table 5.2 all but three values have 50% confidence intervals
 

which include zero. For the remaining three values 60% confidence intervals
 

include zero. These intervals are generally considered quite conservative
 

so that it may still be worthwhile to look for systematic trends in the
 

data.
 

There seems to be a very small but persistent positive concordance between
 

the cross-correlator and the energy detector. An investigation of the
 

noise source showed a slight skewness in the noise distribution around the
 

zero amplitude value. This non-linearity in the noise waveform appeared
 

to be the most likely cause of the slight degree of correlation found.
 

For observers 2 and 3 the values of tau are a little higher on H1
 

trials than H0 when CW is not present. Even this inequality is reversed
 

for OB2 when CW is present. Thus there appears to be no systematic basis
 

upon which to accept hypothesis (ii)in Section S.I. Furthermore, there
 

appears to be no clear increase in the correlations when CW is present
 

as predicted inhypothesis (iii). Thus, we may conclude that the data pro­

vided by the correlations between the cross-correlator and the human observers
 

can be explained either by the noisy linear-uncertain model with no linear
 

component, i.e., a noisy energy detector, or by the filter bank model.
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TABLE 5.2
 

OBSERVED TAU VALUES BETVEEN THE-CROSS CORRELATOR
 

AND.
 

THE OTHER OBSERVERS
 

Condition
 

I II III IV 

CW Cw 

100 40 100 40 

CC vs ED 

CC vs OB1 

CC vs 0B2 

H 

H0 

HI 

H0 

H 

H0 

-0014 

0082 

-0131 

-0597* 

0160 

-0380* 

0838* 

0225 

0052 

-0056 

0418* 

-0160 

0242 

0181 

-0119 

0080 

-0086 

-0273 

0085 

0162 

-0197 

0082 

-0086 

-0273 

CC vs 0B3 

H1 

H0 

0132 

-0045 

0247 

0015 

-0034 

0094 

0288 

0293 

These values are significantly different from zero at the
 

0.5 level of confidence but not at p < 0.4.
 
Decimal points -omitted.
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The remaining tau values were converted to rough estimates of the
 

linear correlation using Greiner's relation (Equation 4.17). The 50%
 

confidence intervals for the tau values were also converted to correlation
 

confidence intervals. The correlations between the energy detector and
 

the human observers are presented in Table 5.3. Over half the correlations
 

at T.= 40 ms fail to be significantly different from zero at the 0.5
 

level of confidence, while none of the correlations for T = 100 ms are
 

zero at this level. Thus, there is a pronounced decrease in the correla­

tions for the shortdr durations regardless of whether or not CW is present.
 

With no CIV the correlations for HI trials are greater than for H0
 

trials. The differences are significnat for OBI, but not for OB2 or OB3.
 

There appear to be no other consistent differences between the correlations
 

which are also reliable.
 

No specific hypothesis was offered in Section 5.1 to attempt to predict
 

the effect of duration. This is because such predictions can only be made
 

for the linear uncertain model by assuming specific parameter values.
 

This topic is further discussed below. The weak evidence that the correla­

tions are greater on HI than on H0 trials, at least when no CIK is present,
 

tends to reject the noisy linear-uncertain model in favor of the filter-bank
 

model according to predictions (v)and (vi).
 

The inter-observer correlations and their 50% confidence intervals are
 

presented in Table 5.4. The relations between the correlations are highly
 

stable, regardless of the pair of observers considered. With a single minor
 

exception (OBl vs OB3, Condition II vs IV)'correlations on HIl trials indicate
 

lower correlations on 110 trials within comparisons for an observer pair. The
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TABLE 5.3
 

CORRELATIONS BETWEEN THE ENERGY DETECTOR
 

I 

100 

ED vs OB1 

HI p 272 

CI (220,323) 

H0 p 151 

CI (101,200) 

ED vs OB2 

H1 p 204 

CI (150,256) 

H0 p 166 

CI (116,216) 

ED vs 083 

H1 p 228 

CI (175,279) 

H0 p 217 

CI (168,265) 

AND THE HUMAN OBSERVERSt
 

Condition 

II III 

zW_ CW 

40 100 

129 325 


(079,179) (279,369) 


026* 133 


(-024,075) (085,180) 


056 166 


(006,106) (118,214) 


-036* 094 


(-085,013) (046,141) 


094 101 


(044,144) (052,149) 


048 164 


(-001,098) (117,211) 


IV
 

40
 

-017*
 

(-068,033)
 

045*
 

(005,095)
 

-035*
 

(-085,016)
 

057
 

(007,107)
 

001*
 

(-049,051)
 

027*
 

(-023,077)
 

± 	Decimal points ommitted. Each estimate'based on approximately
 

1800 trials. 50% confidence intervals (CI) are given in parentheses.
 

* 	 N.S. for p c 0.5. 
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differences between correlations on 11 and H0 trials with CW are all quite
 

significant (p c .05). The differences when CW is present are smaller
 

but there are no violations of sign. Thus, the hypothesis (i)of linear
 

observers with no reference signal noise is strongly rejected.
 

The H1-H0 correlation differences are larger with O-than with OW. This
 

effect appears primarily due to a decrease in correlations on HI trials.
 

However, with a single exception (the same as before) H0 correlations are
 

higher with CW present for corresponding durations. The decrease on H1
 

trials present a serious difficulty for the filter-bank model according
 

to hypothesis (vii). The CW signal lies in the center of the signal spec­

trum by construction. It could be argued that COW should increase the
 

correlations more on H0 trials than on H trials since the maximum narrow
 

filter output will be more unifornly distributed in frequency when no CW
 

is present. However, it is inconceivable how introduction of CW could
 

decrease the correlation on H1 trials.
 

Itmay be inquired whether the relation between inter-observer core­

lations can be predicted from observer sensitivity measure as described in
 

Section 4.8. The procedure described there required non-zero correlations
 

with the cross-correlator which is doubtful considering the present data.
 

It was decided, therefore, not to attempt the prediction. However, the
 

equation (4.39) derived for linear-uncertain observer suggests that the
 

weighted difference for correlations on H1 and H0 trials should be related
 

to the weighted sum of the sensitivity indices. Examination of the present
 

data shows that with a single exception (OB2 vs dB3, Condition III),
 

P(1) P(0) is a monotone decreasing function of the sum 'd' + d' across
 a- z z
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TABLE 5.4
 

INTER-OBSERVER CORRELATIONS*
 

Condition 

I II III IV 

Cw_ CW 

100. 40 100 40 

OBI vs OB2 

HI p 686 605 472 519 

CI (650,719) (567,640) (431,512) (477,558) 

Ho P 313 326 381 328 

CI (265,359) (279,371) (337,423) (281,373) 

CB1 vs CB3 

H1 p 736 691 498 597 

CI (703,765) (658,722) (458,537) (559,633) 

H0 p 337 400 437 353 

CI (290,383) (355,443) (395,478) (307,398) 

0B2 vs CB3 

H1 p 660 671 513 495 

CI -(623,695) (636,703) (473,551) (453,536) 

H0 P 250 291 382 373
 

CI 
 (201,298) (244,337) (338,424) (327,417)
 

* 	 Decimal points omitted. Each estimate based on approximately 

1800 trials. 50% confidence intervals -(CI)'are given parentheses. 
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conditions for each pair of obervers. I can give no interpretation to this
 

result.
 

5.4 Discussion
 

The noisy linear-uncertain model was developed and proposed as a
 

plausible alternative to the filter-bank model. The linear component in
 

the linear uncertain model is a necessary ingredient in order to account
 

for Ahumada's thesis findings as was seen in Chapter IV. Thus, for the
 

linear uncertain model to remain a viable alternative it is of importance
 

to consider the first three predictions of Section 5.1. The first, that
 

correlations between observers are e4ual on Hi and H0 trials, is unequivacably
 

rejected by the data. The conclusion is that human observers do not perform
 

simple linear operations on the input; at least there must be noise in the
 

memory-specified reference signal. The first part of the conclusion has
 

been verified repeatedly using indirect comparisons. However, the possibility
 

that the observer performs noisy linear operations on the input has never
 

previously been investigated using empirical comparisons.
 

The predictions.(ii) and (iii) are an attempt to face directly the
 

possibility of a linear component in the observer's decision variable regard­

less of whether or not there is reference-signal noise. There appears to
 

be little evidence of correlation with the cross-correlator at all. Thus,
 

the further questfons of whether the correlation is greater on HI trials
 

than on H0 trials or whether the correlation is increased by insertion of
 

CW into the noise are irrelevant. A rejection of the hypothesis of a linear
 

component in the decision variable serves to reject the noisy linear-uncertain
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model as well(in connection with Ahumada's findings). An attempt can be
 

made to explain the small correlations with the cross-correlator by assuming
 

that the linear component is present but has a small weight, i.e., that
 

A<< . However, this is not sufficient to save the model. As was seen
 
a a 

at the-end of-Section 4.7 Aashould be somewhat greater than a for the
 

explanation of Ahumada's finding to be reasonable. Another possibility
 

for saving the linear component is to assume that the reference-signal noise
 

Va2 is quite large. But Va2 cannot be very large before the correlations
 

hmong observers are depressed. However, there appears to be no way to
 

positively reject this latter assumption with the present'data.
 

The linear-uncertain model, temporarily preserved by the assumption of
 

considerable reference signal noise, must still meet the fifth prediction,
 

namely, greater 6orrelation on H trials than on H1 trials with the energy
 

detector. No significant differences were found in this direction although
 

some differences in the opposite direction were weakly significant. Thus,
 

the correlations with the energy detector also provide some evidence for
 

rejecting the linear-uncertain model.
 

The evidence provided by the correlations with the cross-corr6lator,
 

the energy detector and Ahumada's variable bandwidth energy detector lead
 

to the conclusion that the noisy linear-uncertain model, including its special
 

cases, is rejected as an adequate model of human monaural auditory processing.
 

The filter-bank model survives predictions (iv) and (vi) that observer
 

correlation is zero with the cross-correlator and that the correlations with
 

the energy detector art greater on H trials than on H0 trials, respectively.
 

However, the final prediction, that inter-observer correlations- should increase
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with the insertion of CW into the background noise, isnot verified. -The
 

insertion of CW does cause a slight increase on H0 trials but also a
 

pronounced decrease on HI trials." Although this is the first clear evi­

dence against the filter-bank model it cannot be taken lightly. The pre­

diction is strong even though formal development of the filter-bank model
 

has-not been-made.
 

It might be argued that the decrease in correlations with the insertion
 

of CW is an artifact caused by the improved performance of the observers. 

Since they were asked to give their confidence that they would be right if 

they had said HI, one would expect a greater concentration of responses near 

the ends of the slider in CW conditions. This concentration could cause 

a reduction in the association between the observers' responses. An examina­

tion of the response distributions across the slider scale did show increased 

grouping of responses towards the ends of the slider. However, if the drop 

in association is caused by this then tau computed on 2 x 2 joint response 

tables with marginal cut-points at the medians should be relatively unaffected 

or increase (according to prediction (vii)). These tauxalues were computed, 

as usual, correcting for ties. With TV there was a slight increase in the 

range of inter-observer correlations between H and 110 trials. In the C1 

conditions, rather than an increase, both correlations on H and H0 trials 

decreased slightly with the range staying approximately the same as when 

computed on the 10 x 10 joint frequency tables. Thus, it is concluded that 

the result is not an artifact of response grouping. 

There are two experimental results which elude explanation by the models
 

considered so far: (a)the decrease in observer concordance with the energy
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detector when the signal duration is decreased, and (b)the lower inter­

observer cohcordance on H1 trials when CW ispresent.
 

The first can be given an ad hoe'explanation in terms of a modification
 

of the simple energy or envelope model. The modification is described by
 

Jeffress (1967). His "leaky integrator model" has a narrow-band filter
 

followed by a square-law detector (or perhaps a linear rectifier). The
 

output is exponentially weighted with a fixed rate of decay and integrated
 

continuously in time. It is presumed that the observer's decision variable­

is the value of the integral at the termination of the signal presentation
 

interval. Since the rate of decay is constant (about 100 ms according to
 

Jeffress) short signal presentation intervals will cause part of the noise
 

waveform not in the presentation interval to be integrated into the decision
 

variable. However, the energy detector of the present study has an integra­

tion time equal to the duration of the presentation interval. Thus, the
 

decrease in the amount of common noise for the observers and the energy
 

detector could cause the decrease in concordance at shorter durations.
 

The leaky integrator model, of course, suffers the same difficulties
 

as the linear-uncertain model in explaining Ahumada's finding and result
 

that correlations withthe energy detector on H1 trials are greater than on
 

H0 trials. Further, Jeffress' model apparently cannot account for the
 

decrease in inter-observer correlations with the introduction of CW at
 

constant durations.
 

The leaky-integrator model and the filter-bank model can be combined.
 

The leaky integrator computes a short-term power-like quantity for the output
 

of a single narrow-band filter. Assuming that the bandwidth is somewhat
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smaller than the equivalent square band-width of 90 lz estimated by Jeffress,
 

a bank of such filters could be postulated. The filter-bank in this case
 

is computing a portion of the short-term power spectrum of the input. It
 

is reasonable to extend Ahumada's decision variable to be the maximum
 

output in time as well as frequency. I shall call this model the Leaky
 

filter-bank model.
 

The leaky filter-bank model may be viewed as appending a particular
 

decision rule to a processor which continuously computes the short-term,
 

frequency-limited power spectrum of the input. Such a processor could
 

also be implimented by taking the Fourier transform of the short-term auto­

correlation function of the input. Thus, the processor of the leaky filter­

bank model is quite similar to a suggestion by Licklider (1951) that the ear
 

performs a short-term autocorrelation of the input in monaural listening tasks.
 

In summary, the noisy linear-uncertain model is unable to account for
 

most of the results from direct comparisons between observers. A leaky form
 

of Ahumada's filter bank model is able to give a qualitative account of most
 

of the data from direct comparisons, but has serious difficulty with the
 

finding that the concordance between observers decreases on signal trials
 

when CW is added to background noise.
 

5.5 Sumnary
 

Predictions of the level of correlation between observers derived
 

from the linear-uncertain model and the filter-bank mo-el are compared for
 

several experimental conditions. In the experiment the decisions of human
 

observers are compared with the outputs of two electronic devices. The
 

first device is an analog multiplier which computes the cross-correlation
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between the signal and the noise waveform sample on each trial. The
 

second device is an energy detector which computes the energy of the
 

noise waveform sample during the presentation interval in a narrow frequency
 

band centered at the signal frequency.
 

The linear-uncertain model predicts that the correlation between the
 

human observers and the cross-correlation is not zero and should increase
 

when a continuous sinusoid is added to the background noise. Neither of
 

these predictions is verified. Since the-energy detector receives only
 

noise at its input in this experiment, the model also predicts that the
 

correlation between the observers and the energy detector should be less
 

on trials when signal is present than when it is not present. The results
 

show the correlations to be weakly significant in the opposite direction.
 

It is concluded that the linear-uncertain model and its special cases, the
 

linear, energy, and envelop models, represent an inadequate approximation
 

to the actual form of human monaural auditory processing in detection tasks.
 

Predictions from the filter-bank model agree with the above results,
 

but cannot account for an observed decrease in inter-observer correlations
 

when the signal presentation interval is shorted. A modification of the
 

filter-bank model is suggested to account for this discrepancy.
 

A final result remains unexplained by any of the models considered.
 

A decrease in inter-obsetver correlations is found when a continuous sinu­

soid is added to the background noise for either of two signal durations.
 

It is emphasized that this unexpected finding implies that there is a serious
 

deficiency in current models of monaural auditory processihg in detection tasks.
 



APPENDIX I
 

A NONPARAMETRIC ESTIMATE OF THE AREA UNDER THE ROC CURVE
 

AI.1 Theory
 

The notation and definitions of Sections 4-3 and 4.4 will be used
 

here.
 

With sample decision values or response categories ties can occur.
 

The marginal probabilities of a tie are given by
 

P(Ta) = P(aij = 0) 

P(Ta) = P(bij = 0). 

Then it is easily shown that
 

Var(a..) = 1 - P(Ta) 

Var(bi) = 1 - P(Ta 

whereas the expression for the covariance is unaffected by ties:
 

Cov(aij,bij) = P(S) - P(D),
 

as in (4.9).
 

Therefore the estimate of tau (preferred by Kendall, 1962) is given by
 

est = est Corr(aij ,bij 

(Al.1) 

P(S) - P(D) 

[1- P(Ta)][1 - P(T)] 

where the probabilities refer to observed relative frequencies. It has
 

been found that tau estimated in this way is 6ften relatively unaffected by
 

grouping of the variables. That is,if a pair of continuous variables are
 

categorized into 5 or 10 equally probable values we may expect the three corresponding
 

estimates of r to be quite close in numerical value. Of course, it is
 

impossible to obtain consistent estimates of tau using grouped data unless
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the underlying continuous bivariate distribution is known and the grouping
 

procedure is under the control of the statistician.
 

The estimate of gamma used by Goodman and Kruskal (1964) can be viewed 

in exactly the same way as Kendall's estimate of tau. Since
 

y = Corr(aij,bij Ja.ij 0, bij $ 0) 

the estimate is given by
 

est y = est Corr(aij,bij Jaij 0, bij 0) 

P(S) - P(D) 
I - P(T) 

where P(T) = P(Ta U T ) 

In connection with Theorem 4.1 these estimates suggest an appropriate
 

estimator for the area under the ROC curve which attempts to correct
 

for the grouping of an observer's decision variable. The theorem proved
 

that in case the observer's decision variable is continuous
 

PA = (y+ 1)/2. 

Since z is continuous a.. cannot equal 0. Thus, in this special case 
y = Corr(aij,bijlbij y 0). 

According to the preceding estimates we should take
 

-
est P Iest Corr(a . b.b 0) + 1]. 

Now 

P(S) - P(D)
Cov(aij,bij ij 0) = 1 - P(T) 

Var(bijlbij 0 =
0) 1, 

and Var(a ij lbij 0) = 1 -P(T lbij 0) 

= - P(T a) 

Therefore
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est [ P(S) - P(D) + I . (Al.2)
PA - P(T L/1l - P(T8)] 

We can obtain a somewhat simpler expression to work with using the following
 

identities.
 
P (Te ,T 

P(TT= a' 5 
(c 	 ) =31 - P(T8) 

P(T ) - P(T aT) 

1 -P(T) 

But 

P(Ta,T) = P(rl) + P(T) - P(T) 

so
 

P(T)
P(TIT-)=i ­-P(T)P(T) 

and
 

1 P(TIT = 1 - P(T) 

ci13 -P(T3 ) 

Thus (Al.2) becomes 

1 P(S) - P(D) + 11 (Al.3) 
{[1 - P(T)][l - P(T)]I1/2 

Al.2 Computation 

In this section I develop a common notation for the computational
 

formulas*of est PA' est T and the trapezoidal estimate of the area.
 

Let the response categores for two observed decision variables R and
 

R' be R R, Rm and RI, R , ... , Rn, respectively, where R and R 

indicate the greatest confidence in HI and Rm and R' indicate the greatestn 

confidence for the alternative hypothesis H The observed joint frequency
 

table is then in the following format:
 

* Kendall (1962) also gives a similar computational scheme for est T. 
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Rl R2 .--. R 
n
 

RI f1 f12 
 fln flo
 

R2 f21 f22 
 " 2n f2.
 

Rm 1 fm2 fn fm­

f.l f2 f.n f--


To compute P(S) = P(aibij > 0) we may take each joint observation and
 

compare it with any other observation in the table. The comparisons which
 

contribute to P(S) from an observation in a cell (i,j) are all those obser­

vations in cells below and to the right of (i,j). The total number of
 

such observations is
 

In n 

h=i+l Z=j+l
 

Now the comparison is made with each.of the f.. observations in cell (i,j).
 

Therbfore the total number of comparisons in the numerator of P(S) is
 

m-i n-l m m 
= Y II I1 y (Al.4)

i=1 j=l 1 k=J t=1 

The denominator is simply the total number of comparisons 

N = f..(f°° - 1)/2. (Al.5) 

Thus 

P(S) = S/N. (A1.6)
 

The probability of disagreement in signs is computed similarly as
 

P(D) = D/N, (Al.7) 

where
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m n i-I j-1D= I X f- I I l (Al.8) 
k=1 t=l
i=2 j=2 'j 

Now the number of ties T in the decision variable R is simply
 

m 
T= fi(fi - 1)/2 (Al.9)

i=l
 

so that
 

P(Ta) = Ta/N. (AI.10) 

Similarly
 
n 

T= .j(foj - 1)/2 (Al.ll) 

and
 

P(T) = a/N. (Al.12) 

Thus from (Al.1), after slight rearrangement of the N's, we have
 

est T = S -D (Al.13)
 
1(N - Ta)(N -T
 

as the computational formula for est t.
 

To estimate the area the ROC curve we use the data format given below
 

...
R1 R2 


HI fll f12 
 lm f£I
 

H0 f01 f02 
 fOm f0.
 
f .2 f " f f 

Now S and D simplify to
 

m-i m 
S = fli I + AiA.14)
 

a=l j=i+l
 

m-I m
 
D I f0i I flj (AI.15)


i=l j~i+l
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The number of ties T in either variable is 

T N - (S + D). (A1.16) 

Now, 

T= [ l(fl. - 1)+ f0.(f0 . - 1)]/2 

=[f2 . 4:f2. - f + )/ 

(f2 . +f2 

Thus
 
N - T 

1- P(T0) -­

- 1)- f. +f..)
1 0 

2N
 
f2 -f2 
 -f
 

2N
 

The area estimate becomes, upon substitution and rearrangement,
 

=S-D 1 
= 2 + -.( A I .1 7 ) e a A /2(S + D)(f . - f'. - f0.7 

1 0 
This estimate of the area is a distinct improvement over the one I 

proposed earlier (Wilcox, 1967) which was based on using the estimate of
 

gamma given in Section Al.l.
 

For comparative purposes the computational formula for the area using
 

the trapezoidal rule is given below
 

+In
 

trap PA = - -0- (A1.18) 

For two response alternatives this reduces to the probability of a correct 

response 

P(C) ='P(H)P(H 1) + [1 - P(F)]P(H0) 

if and only if P(H1 ) = P(H0) = 1/2. This P(C), of course, is not to be 
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confused with the probability of a correct response in a two interval-forced
 

choice procedure which, under certain assumptions, is PA'
 

Tor less than S response alternatives (Al.18) provides a rather gross
 

underestimate of the area under the ROC curve. With as many as 10 response
 

alternatives that are approximately equally spaced in probability trap PA
 

is almost indistinguishable from est PA'
 



APPENDIX II
 

STATISTICS OF LINEAR UNCERTAIN DECISION VARIABLES
 

The marginal and joint moments for linear-uncertain observers reported
 

in Chapter IV are derived here.
 

A2 1 Preliminaries
 

The decision variable of the linear-uncertain observer a is, from
 

Equation 3.27,
 

N0 [AaY aya apD2 

To compute the moments of za, it is more convenient to express za in summa­

tion notation. Since D is a projection operator, there exists an orthogonal 

transformation of F in which the equivalent projection operator to Da is a 

diagonal matrix with.entries on the diagonal either 0 or I. Since the trace 

of Da is the dimensionality of the subspace Fa, the number of l's in the 

equivalent matrix is ma = 2W T = 26 We shall let m 8 = min{m m } under 

the assumption that there exists a subspace F in F for which F = Fan F 

and F 8 = F or Fa = F . Thus, the decision variable z (with no inter­

nal noise) in"the equivalent representation (i.e., the frequency representation) 

becomes 
ma
 

a0 i= a aa
 

Several further preliminaries are necessary-to ease the burden of the
 

derivations.
 

Definition. The joint central moment of type (i,j,...,k) for a sequence
 

o f random variables (x,y,...,z) is the expectation
 

E(zA]k

ij.. k(x,y,...,z) = E{[X - E(x)]'[y - E(y)] j ... [z -


Thus, pl(x 2) is notthemean of x2; '2(y) = I'l(y,y) is the variance of y;
 

2
and ill(x,y 2 ) is the covariance between x and z = y .
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(The mean vector V of an observer's prior distribution will always
 

contain a Greek subscript and so should cause no confusion with the nota­

tion for joint moments.)
 

Let a, b, and c be independent random variables. We observe that if
 

w = ax + by + c where a and b are independent of x, y, and z, then
 

pll(WZ) = P1lCax + by + c, z)
 

= E(a)i11(x,z) + E(b)pl1 (y,z) + Nll(c,z). 

Further if c is a constant, or independent of z, then v11 (c,z) = 0. Of 

course, these relations may be generalized to joint moments of type (ll,...,l). 

Finally, we recall that 

'll(X,y) = E(xy) - E(x)E(y).
 

Proposition. Let y have a normal distribution with mean zero and variance 

= P2 (y). Then, all odd moments of y are identically zero, and the even 

moments of y are given by 

11(2r)(y) = E(y2r) = 02r 2r)!/2r
 

for r a positive integer.
 

A proof may be found in Kendall and Stuart (1958, p. 60).
 

Corollary. Let y, be a sample of the modified noise vector, i.e.,
 

Yi = n, - . Then, 

2r) = N(2r)!/2 rr! 

The corollary follows from the fact, found in Chapter II,that 

12(yi) = N0/2.
 

Three independent normally distributed internal noise sources are con­

sidered. e1 is added to the input y. .e2 is added to the memory-specified
 



signal vector pa. e3 is added to the decision variable itself. The variances,
 

with convenient scale factors are
 

2(eli)= N0V1/2, 

p2 (e 2 i) = 0oV2/2 , 

u2Ce3) V3. 

The mean of each error source is zero. 

The decision variable with e1 and e2 is 

z= ( e 'D (y + e !) 

[NacacY 0 ' (A2.1) 
+-XE(I a+ e 2)'Da(2(y + el) - (ha + e.2)], 

where the input y has been given a subscript to allow for the possibility that
 

two observers may have different inputs. The noisy decision variable with
 

criterion variability is
 

z* = z + (A2.2)
 

The decision variable for a second observer S is obtained from z* by replacing
 
a
 

each a with the subscript 0.
 

A2.2 Derivation of the Mean
 

The mean z* may be found directly. Since E(e3) = 0,
a3 

E(e1 ) = E(ea2) = 0, and eal, ea2' and ya are mutually independent, we have 

E(z*)= E(z) 
a a 

1A [E(y'Daya) + E(e'1D,)
N0 a a a1 faa) 

+ a [ 21DE(ya) - p1'Dp - E(e2D e 2] 

IF{X[E(y'D y + NV ] 
N 0 aa aa a 0 al 

+. [211DE(y) - E - 6 NV 2 ]I. 

When a signal sa is present (H1) Ya y + sa Then, defining, as in
 

Chapter IV,
 

Ps 8 a
 
a
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aB' O a /N0 

Eo =Rao, do = 2E/N 0
M act a 2Ea 0No 

we have 

E(z*) =J [X(S6N + E + V) A+2R -E + NoV )].a N0 a0 a al a a a a0a2 

and collecting terms, 

ECz) = A(6 (1 + V + d /2] + 7T[r - d /2 - 6 V2] (A2.3)a a a al s a as a a a2l 

A2. Derivationof the Variance and Covariance 

The covariance between two observers is
 

P ( z*,z*) = ll(z(, + e e )

IIl a 0 a a3z + 03 

= 11 (z a'z (A2.4) 

Let y* = y +e and U + e 2 , and similarly for observer 0. 

Then the covariance becomes 

p l(z,z,) = 11 l ay*tDay* + XAP*1D (2y* - P*)"2
 
as N21l[Aa a a a a( a a
 

ay~tD y* + X-pD 8 (2y* -, 

This may be expanded into four terms:
 

N01llCzZoz) = "XBulltY'ayy*D ] 

+ X 1Jl[v 'DO( 2y* - p*),y*'D 

* X A,1[j f*Dot* p*ID (2y*I ­
- a a0liacra 0 

+ - [VI (2y - p*),p* t D (2y* -p)] 
a l a 0 0 8ac 1% 

= A aT1 + XaT 2 + X 8BT3 + X aX 4" (A2.5) 

Each of the four terms will be evaluated for two special-cases, namely 

where the observers are different (a A B) and where they are the same (a = 8). 

The latter, of course, is the variance. Further, we let y = -Y + sha, and 

YS = y + SV, and so consider the possibility that the observers may-be 

presented lifferent signals. Notice that here y denotes the modified noise 
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vector n - Vn" The first term, T1, will be evaluated in some detail; for
 

the other terms the discussion will be brief.
 

Evaluation of Term 1.
 

We first rewrite the moment'in summation notation for the appropriate
 

equivalent representation space:
 

T,= p 1[y*,D y*,ID y*
laa aya" 0 Yf
 

= mm 
m ~y)2'm1yj2
 

i=l j=ljl
 

Now, when i $ j the random variables in the brackets are independent regard­

less of the case being considered, so that such terms are zero. Moreover,p1 1 

by assumption, either Fa is a subspace of F or the reverse. Thus, in'the 

equivalent representation space the summation extends only to m = min1mC I 

These comments imply that T1 may be simplified to
 

ma
 

-= i Tli 

inl 

where the definition of Tiis implicit.
 

For a 8, substitution for y*i and y~i yields
 

T1 = iil[Ey i + e )2,(yi+ e1)2]
 

where theimlctdefinii iio fSi2 SiiSli 

2 2
 

Pll[yai,ysi].
 

However, if a = 8, we have
 
2
ii= 2i ci li p 1f

2
2) + 4u ,y e
Ti = cll(y2iy (Y e + u(e2.,e )
li a 1 a ai'aial all, all
 

where the obviously zero terms have been dropped. For the second term on the
 

right of the latter expression we find
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ell aili)) = e2 ) - [EC>y e ]211ll(Yaieali'yaieu E(y2 

al ali
 

= E(y.)~e 2 li _ [E(y i)E(e i ) ]2
llNoi 

= E~y'QNV 1 12, 

since E(ei) = 0. For the last term, 

Ecii l/ 

:E~e41i ) - [E(e2 XI 

42al, al) 

NoV2 /2, 
0 al'2 

4 

where the proposition was used to obtain E(e i. 

Now collecting terms again, for a = 8, 

T'~ Y~~~ + 2E(Y2i)Noa NgV2 /2.v 


T1, Covariaonce. Since yai = Yi 4 sai and y = Yi + si we have 

Tli = IPll[yiy~i] 
= I'll[(yi + s5i) 2 ,(yi + sji)2] 

= ll[Y1 ,Yi] + 4s is11l[Yiy i]
 

= 2(N0/2)2 + 4s isi(N0/2)
2
 

= N2/2 + 2N s si.
 o 0 al01 
Therefore, 

= 1 Tlii
 

=m N2 /2 + 2N 1 si
0O 0 j l ai i
 

- 6 N2 + 2NoRs s 
aS
 

T1. Varicnce. 

Ti =jl[(y, + s i}2, {yi + Soi 2] 

3 2 i ai2 i + i 

+ 2]N0V 1+ 2E[(y. a .i) + N2v /2
ena at 
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- ~a + 11C4~ 
2
+[E(y?) + s 2V2 /2

1 ai](Oil Ni0YalO 

N2[1 + V2 + 2Vai]/2 + 2Nost(1 + V
al 2V / Val
 

Therefore,
 

)2
T= 6 N2(1 + V + 2NoE s (1 + Val). 

Evaluation of Term 2 

= Yl 	 - p*)(y)]T2 	 1=1ill[icYi aj ii' QYi) 

m 
T2 	 a 11Lt[ 1 [*y*,ai~~J -yv*)a1t~ii 2, f(it* v j21} 

i=l
 

m 0
 

I [2T21 i T
[ ­

1i 22i
 

= 

Pip (y + 211 

T =21il[("ci + e2i)(Yi + e1li),(y8 i + eli)2]
 

2,yi) ll[eiYsieli ]
 
(11 ctvi i ci1 

e li}2]
 T i 	=22
=I[('ai + ee2i)
2 ,(yi + 

= 0. 

T2 , 	 Covariance. 

T21i = p ivllYi + S i,(yi + si )2] 

= p i [2sOi )jI(Yi Yi) ] 

= N Oiais 6i. 

Therefore, m 

T2 =2N0 i paisai 

- 2N0 s 
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T., Variance 

T21i =l aipll[Yi + s1i,(yi + sai)2] 

+ 2pai 111[eali, 
 i + aY ai ] 

= N01 is i + 2paisiP11 [e ie -] 

= N pais i(I t V I) 

Therefore, 

T2= 2N0 R s (1 + V a3. 
a1 
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Evaluation of Term 3.
 

Because of symmetry T3 is T2 with R replacing a:
 

T,PCovariance.
 

T3 = 2NoRS
 

T3, Variance.
 

T3 = 2N0R0 s (1+ V61) 

Evaluation of Term 4
 

T4 uli[ 2 ' y*'Djy *2*fDy *I p**]
1i*Ib ­

4 a a aa 1$ S
 

S) 4p p*yy p* y*] - 2Jl[i* 2*(.1*i) 
1 ai 

1 [ r 2] 

2p[p.i* *y* *1] + p *11[ ci) ,1si 3i 11 ii i Si)
 

m a 

= [4T41 - 2T42 - 2T43 + T44]. 

T41 =P ll[(i + e2(yai + e.li),( 8 i + e 2i)(Yi + e~li)] 

= i l[ , + ll[e li,eliJ 

+ cII 2
Yaiec2i YSi e82i ] + p 1 1 [e ie e8202 ie li
] 

T42 = PI1[0 ai + ea2i)(Yai + eali)'(1]i + e02i ) 21 

1 ICYU(ea2i 2 0ie02i)•
 

By symmetry to T42 

T43 = 1II (2p ie 2iYoie62i) 

T44 = P1 1 I[ai ++ ea 2 ii 22i.
 

4 11[aiea2i' aie02i ] 11 a i.. e2i02i]
= 4p Di e v e + 1 1 [e 

T43 Covariance.
 

T41 = ai V i ll[Yi + sa.,y i + si] 

=N pOi~/2.
 
N40 =i TT 2.
 

T42 T43 =T44=
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Therefore,
 

T= .2NoRa
 

T4, Variance.
 
T u2.{ l[y +i 

41 a.l 1 + i'Yi sail + ,11[e1 ,li'eli 

S +(y. i)ea2isi)e2i,(yi + 

+ 1l11e'2iealiea2i'ali l
 

2
=N 'p.(1 + V ) /2 + 1 . 2.SN i +al/ ll[Yiea2i,Yiea2i ] + sai"lle'2i~e2i]
 
2
+ E(e2 e )


a2i' all) 

=N [p11l + V 1)+ 52. ]/ + N2 I+Vo al caa2l/ 0Na a,/4 
T42 =2P11[(yi + s'a)ea2i ie 2i] 

a 1ia 2il2i'i]
 

= N0 isiV 2 

43 = N0 piaia2 

44 = 4ipll[e 2ie 2i] + pl[e e]2i~e2i] 

=2Np2 V + N2V2/2
o ai a2 0a
 

Therefore,
 

T4 = 2N0[E (I + V 1) + E V I + 26 N2 (1+ V )V
4 l sa2 aO0 al a2
 a
 

2V2
 - 2NR V +2NoEV 2+ 6N
 
0 as a2 + O0aca2 a 0a2
 

Evaluation of l z0)
a(z 


Having completed the derivation of the individual terms of ll(z*,z*)
 

in the previous sections, we may collect the terms as defined in Equation A2.S.
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Covariance. ya = y + sa, y6 = y + a 

.Z6 = + r ] + A A r 
= A(Z8 as)= S a[ 8 (A2.6) 

a (A.6 

Vartance. y v + a 

a al + Vl)] + 2- A r (1++ X16V2( +V ) d(1+ al(A.7
 

+ "P{aV [22(1 + V d) + V 2] + d(1 + Vc + V 2) (A2.7) 

+ (ds 
 r s )va2I + Va3a 



a. 


aij,bij 

A 

b. 


B 


ci(t) 

Corr( , ) 

Cov( , ) 

C 

d 


ds 


da= 


d 


s 

III
z 

d' 

z 

APPENDIX III
 

GLOSSARY OF SYMBOLS AND TERMS
 

2rit 
the coefficient of cos T.-- in the
finite Fourier series.approximation to
 

x(t).
 

signum of the difference z . - z . and

S- zi , respectively. cl cj 

the matrix of a filter A.
 

1 	 the coefficient of sin 2 it T in the 
finite Fourier series approximation to
x(t). 

a matrix such that A = B'B. 
r2 2Trit. 

short hand for COS -T­

population correlation of the arguments. 

population covariance of the arguments.
 

the matrix of an orthogonal linear trans­
formation.
 

standardized energy: 2E/N 0.
 

standardized energy of the signal vector s.
 

standardized energy of the signal vector s
 
presented to observer a. If a is the nul?
 
signal 0, d = 0.
 

a 
standardized energy of the memory-specified
 
reference signal P 
.
 

the square-root of the standardized energy d.
 

s 

sensitivity index of the decision variable z.
 

d' for observer a.
 z 
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det determinant. 

D a projection operator matrix for observer a. 

D B the product D D8. 

Double-prbbability paper graph paper linear in both coordinates with 
standard normal deviation scores. 

e3 an error term added to the decision variable 

Z. 

e a random error vector. 

ea a random error vector added to the modified 
input y for cbserver a. 

8a2 a random error vector added to the memory­specified reference signal 11" 

E the energy of a constant signal waveform 
of duration T. 

E the energy of s. 

a the energy of p 

Ez the signal energy necessary for the ideal 
M observer to performance at the level as 

observer a who uses the decision variable z 

E( ) the expectation operator. 

f( ) a density function of the argument. 

F0 (Z) the cumulative distribution function of z 
conditional on HO -

F1 (z) the cumulative distribution function of z 
conditional on H1. 

F the frequency representation space. 

F a subspace of F generated by the projection 
operator Da * 

False-alarm rate same as P(F). 

g(a) an a priori density function of the signal s. 
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G(s) the cumulative prior distribuzion of s. 

h1 (x),h 0 (x) the distribution densities of the input 
known to an observer conditional upon 
IHI and H0 , respectively. 

HIH 0 the experimenter-specified hypotheses ofsignal-plus-noise and noise-alone, respec­

tively. 

Hit-rate same as P(H). 

I an identity matrix. 

Iso-bias curve jargon for the curve which cuts across 
a family of ROC curves at points of 
constant slope. 

in C) the natural logarithm of the argument. 

t(x) the-likelihood ratio of x. 

M0/2 

n.3 

the imprecision (variance) of an observer's 
specification of a single component of the 
signal in the frequency representation space. 

th 
the j- entry in a noise vector sample n. 

n a sample vector of the noise random vector 

n a random noise vector. 

n f a sample noise vector explicitly repre­
sented in F. 

n(t,n) a stochastic noise process specified by 
the random vector iias a function of time. 

N the total average power of a bandlimited 
noise process. 

N0 the noise power per unit bandwidth N/W. 

N(viZ) a multivariate normal density function with 
mean vector V and dispersion (variance­
covariance) matrix Z­
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Observer a subject or device in a detection task; 
when the stimulus is acoustic subjects 
are also.called "listeners" and devices 
"receivers". 

P A the area under an ROC curve. 

P( ) the probability of an event. 

P(C) the probability of a correct decision. 
The meaning of "correct" depends upon the 
context. 

P(D) the probability that jointly observed 
.differences have Different signs. D is 
the event a..b.. < 0. 

13 1J 

P(P) the probability of a "false-alarm", i.e., 
P(say HIHo true). P(F) is also referred 
to as tie "false-alarm rate" or the "incorrect 
detection rate". 

P(H) the probability of a "hit", i.e., 
P(say H IH1 true). P(H) is also referred 
to as tfle Ahit rate" or the "probability of 
(correct) detection". 

P(S) the probability that jointly observed differences 
have the same sign. S is the event 
a..b.. > 0.

1J 1J 

P(T) the probability that either one or both of 
jointly observed differences are zero. T 
is the event a..b.. 

13 1J 
= 0. 

P(Ta),P(T) the probability of a tie in two independent 
samples of a random variable. T is the 
event a.. = 0, T is the eventa b. = 0. 

iLj 13i 

Psychometric function a graph of the relationship between a per­
formance index and a physical measure of de­
tectability. 

QM the precision matrix (Xn + Zs)­1 

Qn the precision matrix X-n 

r athe standardized inner product (or cross­
correlation) of the vectors Va and s, 
i.e., 2paiDs/N0 . 
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t 


r athe 

s8 

-" 


RlR
 0 


Ras 


ROC curve 


s.t) 


s(t) 

sj(t) 

8 


81 


Sathe 


T 


T 


V1, Val 

V, V 


the standardized inner product of the
 
vectors P'a and PV i.e., 
2VaDcDa1aI0/No.
 

standardized inner product of the V 
vectors p and as, i.e., 2JD sa. When 

=O iO 0. When a8 =, ras8 rasras 

a response vector.
 

acceptance regions in the representation
 
space for the hypotheses HI and H, respec­
tively. R1 is also called the criterion
 
region.
 

the -inner-product (cross-correlation)
 
UID V.
 
a aa 0
 

the theoretical curve (the receiver operating
 
characteristic) [P(F),P(H)] generated by a
 
decision variable z for discrimination
 
between the hypotheses HI and H0.
f - 2it 

short hand for J sinT 

a constant signal waveform defined for
 
0 < t < T. 

the Hibert transform of s(t). 

a signal vector representing s(t)..
 

the representation vector of s4 (t).
 

signal vector presented to observer a. 
Usually on H1 trials a = a and on H0 
trials a = 0. 

the time interval over which x(t) is repre­
sented. Also, the duration of the presen­
tation interval.
 

the temporal representation space.
 

the variance, relative to N /2, of a
 
component of e 
or e , 
if t~e observer
 
is specified.
 

the variance, relative to N /2, of a component
 
of e2 or ea2.
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V V3 	 the variance of e3 oree ..3


Var( ) 	 the population variance of the argument.. 

W 	 the bandwidth of the noise process. 

WCthe 	 equivalent square bandwidth of the 
(hypothetical) interval filter of 	observer
 
a.
 

N -the minimum of Wa and 118, i.e., the overlap 
in bandwidth of the interval filters for 
observers a and S. 

th 

-

*.the i- entry in the vector x. 

x(t) a waveform; the input waveform, sample 
presented to an observer. 

x(t) the finite Fourier series approximation to 

x(j/2 w) 	 the value of x(t) at t = j/2 W. 

Xa 	 representation vector for x(t).
 

f 	 the representation vector of x(t) explicitly
 
with coordinates in the frequency represen­
tation space F.
 

XV 	 the transpose of x.
 

I I I 	 the length of x, i.e., V2Th 

X 	 the sample space of vectors x. X may be 
interpreted as either T or F. 

Y the modified input vector x -n 

y* y + e1 . 

2 a decision variable. 

zc a particular value of z. 

z the "perfect" decision variable.p 

z 	 the decision variable of observer a.
 



02 
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* o0 

Sal 


z 

a 


z 


a 


a 


Y 


Sshart-hand 

6ao 

A 


a 

j(t) 


PIPUO" 


OlO 0 


m 


Zn 


7-

Zn . 

s 


a value of z conditional on II0 . 

a value of z conditional on Il.
 

the decision variable of observer a aug­
mented by including various interval
 

sources of error.
 

the decision variable of the ideal
 

observer.
 

a label for an observer.
 

(1) 	a label for an observer;
 
(2) 	a cut-off value of a decision variable
 

z which determines an acceptance region
 
R1 ­

the Goodman-Kruskal coefficient gamma.
 

for the bandwidth-time product 
W T. 

short-hand for W0T 

the relative uncertainty parameter 
= M0/(M0 + NO). 

short hand for 1 - X 

the efficiency of an observer. 

the jthtemporal interpolation function.
 

the linear correlation between the decision
 
variables z 
and z80
 

the correlation conditional upon HI or H0 ,
 
resnectively.
 

variance.
 

the dispersion matrix Zn + X .
 

the dispersion matrix of the noise process.
 

the inverse matrix of X
 
n'
 

the dispersion matrix of an observer's prior
 
specification of the signal e.
 



Kendall's tau.
 

T(1) T(O) 


Ijm 


n 


aspecification 


U* 


tau conditional upon H1 or H., respectively.
 

the vector sum Pn + pa. 

the mean vector of the noise process. 

same as sa (for consistency'in notation). 

the mean vector of the observer's prior 
of the signal. 

the vector sum P + e 2. 

!. standardized moment of type (i,j). 
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