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ABSTRACT
INTER-OBSERVER AGREEMENT AND MODELS
OF MONAURAL AUDITORY PROCESSING
IN DETECTION TASKS
by

qudon Wells Wilcox

Previous studies have shown that the output of an electronic energy
detector is correlated with the responses of human observers in monaural
auditory detection tasks. However, an experiment performed by Ahumada
showed that when the signal (pure tone) is present in the observation
interval the correlation is greatest if the filter inm the energy detec-
tor has a considerably narrower bandwidth than is necessary for maximum
correlation when only noise is presented. Since this result is incon-
sistent with a simple energy detection model of auditory processing,
Ahumada proposed a filter-bank model to account for his findings.

~

The present study presents a quantitative development of the linear-

uncertain model which is a generalization of the energy model. The form
of the linear-uncertain model is derived from the assumption that the
observer is uncertain regarding the exact specification of the signal

he is trying to detect. The decision variable of this model is the
weighted sum of a linear function and a quadratic funétion of the input
waveform. The relative weight of each component is de;ermined by the
observer's level of uncertainty regarding the signal. It is .shown that
the linear-uncertain model includes as special cases Fhe linear, energy,
and envelope quels for auditory processing and like the filter-bank

model can give an explanation of Ahumada's findings.



Predictions of ‘the level of corrclation between observers derived
from the linear-uncertain model and the filter-bank model are compared
for several experimental conditioms. In the experiment the decisions 1
of human observers are compared with the outputs of two electronic devices.
The first device is an analog multiplier which computes the cross-
correlation between the signal and the'ﬁoise waveform sample on each trial.
The sécond device is an energy detector which computes the energy of
the noise waveform sample during the presentation interval in a narrow
frequenc& band centered at the signal frequency.

The linear-uncertain model predicts that the correlation between the
human observers and the cross-correlation is not zero and should increase
~when a continuous sinusoid is added to the backgroﬁnd noise, Neither of
these predictions is verified. Since the energy detector receives only
noise at itS input in this experiment, the model also predicts that the
correlation between the observers and the energy detector should be less
on trials when signal is present than when it is not present. The results
show the correlations to be weakly significant in the opposite direction.
It is concluded that the linear-uncertain model and its special cases,
the linear, energy, and envelope models, repre;ent an inadequate approxi-
mation to the actual form of human monaural auditory processing in detec-
tion tasks.

Predictions from the filter-bank model agree with the above results,
but cannot account for an observed decrease in inter-observer correla-
tions when the signal presentation interval is shorted. A modification

of the filter-bank model is suggested to account for this discrepancy.



A final result remains unexplained by any of the models considered.
A decrease in inter-observer torrelations is found when a continuous
sinusoid is added-to the background noise for either of two signal dura-
tions. It is emphasized that tilis unexpected finding implies that there
is a serious deficiency in current models of monaural auditory processing

in detection tasks.
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CHAPTER I

DIRECT COMPARISONS BETWEEN OBSERVERS

1.1 Introduction

Many auditory detection experimenés have investigated changes in
observer performance as the résult of variation of the physical parameters
of the input waveform or characteristics of the observer's task. Measures
of performance which have been used include indices of the quality of the
observer's décisions and studies of the shape of psychometric functions.
and receiver operating characteristic curves. The physical parameters
that have been va¥ied include frequency, phase, amplitude, and duration
of a signal, spectral characteristics of background noise, signal-to-noise
ratio, and addition of pulsed carriers and continuous waves to the noise.
Task characteristics which have been studied include single, double, etc.,
and random presentation.intervals, pulsed versus continuvous background
nAise, binary and multiple response categories, payoff structures, and
probability of signal océurence {cf. Swets, 1964; Green and Swets, 1966).

The performance measures in these studies I shall call indirect
éomparisons between observers. Probability of a correct response and
the area under the ROC curve compare the observer's performancé with the
specification of experimenter defined hypotheses. d' compares observer
performance with an optimum observer for the same task. Studies of the
shape of the psychometric function, ROC curve, or "iso-bias" curve all
compare observer performance with a model-specified in a similar task (a
Glossary of Symbols and éerms appears in Appendix III). These comparisons
are indirect because they do not compare observers on a trial-by-trial basis.

Direct comparisons between observers do compare inter- or intra-observer

-1 -



performance on individual trials. Green (1964b) has termed attempts to
predict single trial performance "molecular psychophysics" as contrasted
with molar psychophysics. In this sense, direct comparisons can be either
molar or moleculgr depending upon the use to be made of the performance
measures.
The purpose of using different kinds of comparisons is the same:
«o. the ultimate aim of detection théory is to discover the exact
form of the distributions [of sensory events] using (1) the physical
parameters of the signal and noise and (2) the character of the
sensory detector...The major obstacle of this endeavor is...our
ignorance about the nature of the sensory detector {Green and
Swets, 1966, pp. 53-34).
1.2 Comparison of Observer Perfbrmaﬁce with an Electronic Detector
The first direct comparis;ns between human observers in an auditory
detection task and that ;f an electronic device were made by Sherwin,
Kodman, Kovaly, Prothe, & Melrose (1956). They recorded on magnetic
tape 50 samples ofﬂa 1 XHz burst of several durations (0.03, 0.10, 0.30,
and 1.0 seconds) in four different listening conditions. The tone bursts
qccurred at randomly spaced intervals in a background of noise (0-4 kHz).
tapes were played back through earphones to observers and simultaneously
through a 60 Hz wide passive filter, centered at 1 kHz. The output of

the filter served as the input to a square-law detector and exponentially

decaying integrator. The time constant of the integrator was set at one-

The

half the tone duration for approximately optimum detection (sic). The final

output of tﬁe electronic detector was recorded on a pen recorder which
marked the times that signal was present.

The amplitude of the signal was adjusted so that the observers had
a hit rate ("correct detections") of approximately 60% at each condition

of signal duration. A criterion for the output of the electronic device



could be set by the experimenters so that it also had a 60% hit rate, thus
matching the performance of the device with the human observers during
the presence of a signal. They found that when this match was made, the
false-alarm rates ("incorrect detections") for ail observers were lower

at each signal duration than for the eiectronic device, with the smallest
difference at a duration of 0.30 seconds. It was also for this duration
that the sample distributions of the output of the device, conditional
upon observer hits and misses, respéctively, were most highly separated.
That is, at 0.30 second duration the hits and misses of the electronic
device had the highest correlation with the hits and misses of the observers.
Unfortunately, a similar statement could not be made for intervals du}ing
vhich the signal was not present. In fact there appeared to be no aséocia—
tion between the observers' responses and the output of the deéicg during
noise intervals, which is partly in evidence from the fact that the
observers maintained lower false alarm rates than the device. The authors
suggest that using a filter about 30% narrower that the one they employed
would have ;ed to approximately the same performance for the device and
the observers. This in itself, of course, would not demonstrate a closer
association between an observer's decision variable and the average power
statistic computed by the device. It is possible that improving the
performance of the deviée would not improve the correlation during noise

intervals.

1.3 Association of Observer Performance with an Energy Detector

The next experiment involving direct Comparisons was reported in
Watson's Ph.D. thesis (1962). The experimental method made several
improvements over the procedure used by Sherwin, et al. Discrete

observation intervals 0.25 seconds long containing pulsed noise waveform



samples were used. A signal, again a 1 kHz tone, was added to the noise
on approximately one-half of the observation intervals. The observers
could make one of four respomses on each trial indicating their confi-
dence that signal had or had not been presented. There was no immediate
feedback as to whether the response was correct or not. The input to the
observers was simultaneously recorded on magnetic tape for further analysis.
This analysis was made by passing the pulsed waveforms through a filter
approiimately 100 Hz wide centered at 1 kHz and then-measuring the number
of times voltage peaks from each burst exceeded each of eleven different
levels, A "wvoltage contour" was defined as the percentage of times
voltage peaks exceeded a given voltage level plotted versus the voltage levgl.
- The area under the voltage contour was interpreted as an approximate
index of the energy in a 100-cycle band centered on the signal-frequency.
Voltage contours could then be plotted conditional upon the observers'
responses and upon whether or not signal was presented, averaging across
all bursts in one of these eight conditions. The results showed tﬁét the
area under a voltage contour was monotone increasing with the rating
Tesponse on both trials contéining signal and those which did not contain
signai. No attempf was made to predict trial by txrial responses of the
observers based on the energy statistic, However, two observations about
the data were made. First, consistent with the assumptions of the theory
of signal detectability an observer's decision variable could be ordered
on the basis of a physical parameter of the stimulus. Second, the results
showed that there was association between the responses of an observer
and the physical parameter on both signal and noise-alomne trials, contrary
to the findings of Sherwin, et al.

Watson had stated in his introduction '... the energy within the



critical band has been shown in theory and by expériment to be a primary.
parameter of the auditory stimulus [in masking experiments]”. Nevertheless,
it is.apparen; from Watson's ‘data that the observers' responses were not
determined by the area under the voltage contour alone, since every
response occured at every voltage level. It could be postulated, as did
Sherwin,_et al., that the relevant physical parameter had been. determined,
but that the observers also had fluctuating criteria for making their
responses. Equally well, in terms of these two experiments, it might

be hypothesized that association between the measured physical statistic
and the responses was due to the fact that both the statistic and the
responses Were associated with a physical parameter not measured iﬁ the

experiment. Such a parameter might account for the trial by trial

responses of the individuval without assuming a fluctuating critexion.

1.4 Intra-Observer Consistency

Green (1964b) fully realized this latter possibility and set out
to determine ;he level of inconsistency of an observer's response regard-
less of the relevant physical parameters of the stimulus. Pairs of
noise samples without signal in either interval were recorded and inter-
spersed with pairs containing signal in one of the intervals. 1In this
2-interval forced-choice task, percentage self-agreement scores were
dete?mined on the‘no—signal pairs by having each of these pairs preéented
twice in the experimental session,

In Green's first experiment the “"signal" was an increment of power
in the wide~band background noise. Three signal-to-noise ratios were
used. The results indicated that percentage agreement of responses to

identical pairs of no-signal samples was approximately 65% for each

observer regardless of the percentage of correct detection responses



which averaged 60%, 74%, and 91% for the three S/N ratios, respectively. In
a second experiment the signal was a 0,10 second gated sinusoid at a
frequency of 250, -500, 1000, or 2000 Hz in four separate conditions. The
average percentage self-agreement scores across observers and tapes was
approximately 70% at all frequencies except for the 1000 Hz condition, for
which the average was 78%. Several other experimental conditions were
studied with the same general result: self-agreement écores differed little
from 70% although there was a small but consistent trend for tapes using
sinusoidal signals to generate somewhat higher scores than tapes for which
the signal was an increment-in the background noise. Green conjectured,
but conld not measure in his experiments, the possibility that the inc;n-
sistency could be attributed to several causes. The first would be
response bias~-—either pure, i.e., preference for the first or second
interval, or sequential, i.e., a bias depending upon the previous response
or previous feedback. Another possible cause is "internal noise" which
has been variously defined as a fluctuation in the observer's criterion

or noise .in his sensory apparatus. Green made several calculations which
indicated that response bias effects should be small, and therefore
proceeded to estimate the level of internal noise which would lead to the
observed percentage agreement scéres. His calculations suggested that,

as a first approximation ané minimum estimate, the ratio of external to
internal noise is about 1.0. No thesis was advanced to explain the
difference in agreement scores as a function of the kind of signal pre-
sented. Green concluded that this 70% consistency, since it ;ppears
independent of the sensory task, represents an upper bound on any attempt
to predict trial-by-trial human detection responses.

Apparently following a suggestion made by Green in his article,



Pfafflin and Mathews (i966) studied the consistency of observer responses
to computer generated no-signal noise pairs, some of which had an iden-
tical noise séﬁplé as each member of the pair. In addition, they added

a 312.5 Hz tone to one or the other member of some of the pairs. The use
of computer-generated and-controlied stimuli provided relatively accurate

- reproduction of waveform samples and permitteé the presentation.of stimulus
pairs in a large number of different orders, with the hope of greatly
reducing any possible effect of response biases. A spectral analysis was
‘made on each of the 12 samples of noise used in the experiments. The
spectral analysis determined the relative emergy in frequency bands- approxi-
mately 100 Hz wide as a function of the center frequency. It was thus
gossible to deterﬁine the relative energy difference in a frequency béﬁd
100 Hz wide centered at the signal frequency of 312.5 Hz between the
members of each pair of waveforms.

The probability of correct detection tended to inérease, with con-
sideraﬂle scatter, for three observers as a function of the relative
energy difference for pairs containing a signal, whether or not the indi—
vidual noise samples in the pair were identical. However, some inversions
{2 response preference for the member of the pair with the lower rela-
tive energy level) occurred, most often for pairs with low relative energy
difference. The authors could not find inter-observer agreement on inver-
sions, nor could they find relevant physical parameters that might account
for inversions of a single observer. Another experiment was performed
using the same noise‘samﬁles, where this time the observers were asked
to judge if either interval contained a signal. Since the preference
probability tended to increase with the probability that a pair was

judged to contain a signal for signalless different-noise pairs, it



was concluded that at least for these different-noise pairs, the obser-
ver must have been trying to detect a signal in the previous experi-

ment. Corresponding results weré not conclusive for signalless identical-
noise pairs. This could have been due to the procedure under which

the observers knew that some pairs contained no signal. The authors
concluded that the energy increment produced by the signal, or some
quantity closely related to it, is the chief physical parameter relevant
to detection behavior. They thus agreed with Watson on the nature of the
Sensory processing.

Pfafflin and Mathews' major contribution to Green's original effort
on intra-observer consistency would seem to be the demonstration that the
percent agreement for signalless pairs is dependent on the particular noisé
palr and perhaps, élthough this is not demonstrated conclusively, dependent
upon some physical parameter of the noise samples. Estimating by eye,
it would appear from Pfafflin and Mathews' Figure 4 that the average per-
cent-agreement for signalless different-noise pairs is about 60-70% for

each observer, in agreement with Green's results.

1.5 Correlation of Observer Decisions with a Variable-Bandwidth Energy Detector
The most recent study invelving direct comparisons is reported in

Ahumada's Ph.D. thesis (1967). TIn a context of attempting to measure criti-

cal bandwidths directly, Ahumada had obsexvers respond (''Yes' or "No') to

single 100 msec noise bursts which sometimes contained a superimposed tone,

as in Watson's experiment. An electronic detector with specifi;ble baﬁdwidth

was simulated on a digital c;mputer as in the Phafflin and Mathews study.

The observers' average responses from 5 replications to the same stimulus

were correlated (Spearman's rank correlation coefficient corrected for ties)

with the outputs of the simulated energy detectors. The correlation was



computed separately for signal-plus-noise and noise~alone trials to determine
the bandwidth for which therg was maxim;m correlation. The bandwidth
assoclated with thé maximum correlation should provide a fairly direct
estimate of the critical bandwidth. A surprising result was foundﬁ A
filter with a 10 or 20 Hz bardwidth had maximum correlation with the
. observers' responses for signa1~p1;s—noise trials. But on noise trials
a wider filter with 100 to 200 Hz bandwidth had maximum correlation. This
result, of course, can not be predicted from the simple energy-detection
model. Such a model predicts that the same width filter should correlate
best with responses to signal-plus-noise and noise-alone stimuli. .Ahumada's
finding deals a serious blow to the conélusion that the energy’in a
narrow band is the primary physical parameter. The most that can be concluded
is that the energy in a given band is associated with the physical determinants
of detection behaﬁior.
Ahumada suggested a "filter-bank'" model to account for his data.
According to this model the observer can monitor the outpﬁfwaf a number
of narrow—baﬁd filters with a total bandwidth of about 150 to 200 Hz.
The observer m;kes the detection response when any of the individual out-
puts exceeds some critical value. On signal trials the output of the
narrow filter centered on the signal frequency almost always has maxi-
mum output, whereas on noise-alone trials any member of the bank has equal
likelihood of exceeding the criteriom. .
Ahumada's filter bank model is not contradicted by the data of
Sherwin, et al., Watson, Green, or Pfafflin and Mathews. In the case of
Sherwin, et al., who used a 60 Hz wide filter, the lack of association

of its output with false-alarms intervals could be explained by the fact

that the filter was too narrow. Incidentally, this would predict that
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narrowing the filter athhe authors suggest should decrease the assoclation
with observer responses in false-alarm intexvals. In Watson's case the
filter was 100 Hz qide, or in the middle range, so that one would expect
about equally poor (or good) association with responses on signal and noise
trials, as is consistent with an examination of his data. Also; the same
conclusion appears verified from Ahumada's data. With respect to Green's
data, a variance in the observer's criterion would still decrease the per-
centage self-agreement. In fact, if the observer is limited to monitoring
the output of a 200 Hz filter-bank, then a fluctuation in the center

frequency of the bank would account for the increased decrement in percent
agreement for signals which are increments in the power of wide-band noise,
as Green found. Such a fluctuation would not cause a further decrement
when the signal is a sinusoid. Finally, since the maximum output from a
single narrow-band filter should be only poorly correlated with the total
energy in a 100 Hz band, Ahumada's model can give a post-hoc explanation
for the fact thatéfafflin and Mathews found inversions in preference
for signalless different-noise pairs with low relative energy difference.
It would appear that the filter-bank model with its associated
decision rule is adequate in a qualitative fashion to account for the data

from direct comparisons between human observers and electronic devices

currently available.

1.6 Objectives of the Present Work

The filter-bank model has a certain appeal by its analogy to the
physiology of auditory systeml (This analogy igs briefly discussed by
Ahumada, However, the details do not concern us here.) On the other
hand, the simple energy detection model has had an appeal in auditory

psychophysics at least partially because it represents an optimum mode
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of processing under certain conditions (c.f. Green, 1960; Pfafflin and
Mathews, 1962; Swets, 1966, Ch 8). ‘

In this thesis I shall develop (in Chapter III) the Iinear-uncertain
model which dictates an optimum mode of processing for an observer with
uncertaintj regarding the spegification of the signal. The linear-uncertain
model turns out to be a slight genéralization of the optimum observer with
é noisy stored reference signal.derived by Birdsall (1960). The energy
model and several other processing models are found to be special cases
of the linear-uncertain model, Moreover, the linear-uncertain model,
unlike‘the energy model, is not COméletely frustrated by Ahumada's findings
(Chaﬁter IV). An experimental attempt is made to discriminate between
the filter-bank model and the linear-uncertain model based on thg-predictions
that these models make for the degree of concordance between observers in

several tasks (Chapter V).



CHAPTER 11l

REPRESENTATION THEORY

2.1 Introduction

Auditory detection aﬁd recognition tasks in the laboratory often
involve the presentation of complpﬁ waveforms to human observers. It
is assumed that the observer makes a judgmental response based upon
certain operations which he performs on the input to his ears. Models -
which attempt to describe the observer'; Budgmental‘perfOrmance must
also describe the operations performed on the input which could give
rise to the observer's performance. There is a need, then, to obtain
a description of the impinging stimulation or input process itself.

A description of or xepresentation theory for auditory waveforms
can be developed at many different mathematical levels, depending on
the rigor desired and the degree of error that can be tolerated. For-
tunately, in psychoacoustical éasks a relatively simple representation
theory is often adequate. In particular, acoustically presented wave-
forms are usually of sufficient bandwidth and duration that a finite
Fourier series approximation to a sample waveform is sufficiently accurate
for many purposes. Green and Swets (1966) hold this view and have
presented such a model for the representation of sample waveforms
generated by a real-time sto;hastic process.

This chapter presents a representation model for waveforms in the
frequency domain which is identical to the model used by Green and Swets.

‘However, the temporal represéntation model presented by Green and Swets

- 12 -



- 13 -

is inconsistent. This fact is discussed in some detail because we wish
to make extensive use of the geometrical properties of representation
models.

Finally, this chapter establishes a notation which will be exploited

throughout the remainder of this work.

2.2 Representation of Waveforms in the Frequency Domain
Following Green and Swets (1966) we assume that a finite Pourier

series épproximation to a waveform x(t) with nod.c. component in the
interval 0 <t < T is sufficiently accurate for our model construction.
This approximation to x(t) is given by

- WT

x(t) = §  [a.c.(t) + b.s.(t)], (2.1)

51 il i1

where W is highest frequency component in the series,

Cl(t) = T T (2.2a)
s (t) j—*\]gsin 2‘]{—“ ) (2.2b)
and T
a, =\%J x(t)e, (¢) dt (2.3a)
0
T
b, = \—,‘% J x(t)s, () dt, : (2.3b)
0

The functions ci{t) and si(t) form an orthonormal set over the

interval [0,T], i.e.,
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T T
J ci(t) dt = J si(t) dt =1 (2.4a)
0 0 )
and
T T T
i ci(tjsi(t) dt = i ci(t)cj{t) dt = i si[t)stt) dt = 0 (2.4b)

for 1i#3 and i,j =1, 2, ..., WT, as is well known and easily verified.
A less often noticed fact is that the functions 2ci(t) and ZSi(t) form an
orthonormal set over the interval [O,T/f]. We shall use both of these
orthonormal sets of functions below.

The form of Equation 2.1 indicates that x(t} may be identified with
the f{column) vector -

g = lag, a5 ooy @by, by, Lo, bR (2.5)

in a 2WT dimensional vector space (the prime " ' * denotes the transpose
of a matrix). The set {cl(t), cees CWT(t)’SI(t)’ cees sz(t)} is an
orthonormal set of basis vectors for thé space. This 2WT dimensional
vector space, denoted F, will be called the frequency representation space.

We follow éreen and Swets (1966} for our model of noise waveforms.
Bandlimited Gaussian noise is a real time-parameter stochastic process
{n(t,ﬁ)} where the vector n of random variables has a multivariate normal
distribution N(un,zn} with mean vector Yy and dispersion (variance-covariance

- - - ' It
matrix Zn. For a particular sample »n = [al, . bl, cees bWT] of n

ces B
the corresponding noise waveform sample n(t) = n(t,n) is approximated
in the interval 0 <t < T by the series

-~ m ’

n(t) = ] [aje,(£) + b.s, (£)] (2.6)

i=1

where W is the bandwidth of the noise process.
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The noise is said to be white when
_ 1= 0N/2I (2.7)
where I is an identity matrix, N0 = N/W is the noise pdoer density
and N is. the average noise power. Also, note that det Zn = (NO/ZJZWT
g |
and that - Zn = (Z/NO)I. )

The multivariant normal density function of n for a bandlimited

white Gaussian noise process may be written explicitly as

-1/2[n'Z£1n]
£(n)

2m) " (det zn)‘l/ze

-[n'n/Ng]
(nNO)“WTe ”.

(2.8)

2.3 Representation of Waveforms in the Temporal Domain
Green and Swets (1966) have stated that there exist a set of
interpolation functions {tbj ()}, j =1, ..., 2WT such that
i) the set {fiﬁ'wj(t)} is orthonormal over the interval [0,T],
o
i3) R() = ] RPv.(t), and
j=1 )

1i1) 9 (1) = ig [a(3) ;¢4 () + B(I)ys; (D],
where a(j)i and b(j)i are constants.

The assert_ion that (i), (ii), and (iii) hold simultaneously is
not strictly true, 1 shall show conditions under which the frequency
and temporal representations give nearly equivalent results.

According to (ii} we require functions lpj (t) such that

2WT . WT .
1 {

WT .
§ [ajc. (8) + bys, (£)] = __I_ _g [aici(fz%ﬁ) * bisi(;—w)]}.wj (t)
=1 j=1 li=1
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WT 20T . 2WT 3
Lotayg jgl ¢, )w (t) + b, Z N IHOIR

i=}1

According to (i) we may multiply each side of this expression by

wj(t) and integrate with respect to t over [0,T] to obtain

T T
121 [a j cj(t)wj(t) dt + b, I si(t)wj(t) dt]
0 0
WT

; SETet
=L [23¢; G0 G * 05 ) -
Equating coefficients of a. and bi we have

1 . d
3w S 9

c; (€0, (1) dt

and

1

s; (£)9;(8) dt = =7 5; GP -

O] O]

But according to (iii) these integrals are the coefficients a(j)i and

b(j)i, respectively, in the finite Fourier series representation of

wj(t). Therefore, we may write

WT
1 . .
v(8) = 57 -21 [e; GRe; (1) + s, s, (0] (2.9)

(Green and Swets omitted reporting this explicit form for wj(t).)

However, consider the integral

f WT WT T
0

]

ROING! (zw) L Z J [c; (e, (8) + 5, GRS, (8]

. [cjcg%acj(t) + s, (2w)s (t)] at

1.2 ur m n ! n
Gp® 1 Lo e G+ 5 sy )] (2.10)

i+
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£

= (22 ‘fr[ Gc () + s (AIs ()]
S L aGEW TR * G s (TR

According to (i) this mus% be equal to 1/2W when m = n and 0 when
m # n. This will be approximately true under certain conditions stated
below.
The following lemma is a consequence of "sampling theorems" for
bandlimited waveforms (Middleton, 1960, Ch. 4).
Lemma 2.1. If x(t) and s(t) are two waveforms, Fourier transform
band-limited to the same frequency interval [-W,W] and the integer
2WT >> 1, then their cross correlation
P N
!x(t)s(t) dt = = |} x(gﬁ)s(-zlW , (2.11)
0 - 3=l
where the error in the approximation to the iﬂtegral fof fixed W is
of order 1/T.
Over the half interval [0,T/2] Equation 2.11 may be éxpressed as
T/2 ?T

x(t)s(t) dt = Elﬁ ) x(é%)s(i%) (2.12)

0 J=
where the error is of order 2/T. We may apply this latter expression
to the following integral:

T/ic e, + s (s, 0l = & 1 (e e b + s s o)
m'¢ Smt™ % R AT NI N A
5 =

However, when m = n the left hand side is simply 1/2 + 1/2 = 1 and zero

otherwise. We have proved
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Theorem 2.1. When 2WT >> 1

WT 3 i 5 3 ) 2W if m=n
izl e, G, G * 5y G snGR) = o if min (2.13)

where the error in the approximation to the sum is of order 2/T.

The theorem is not new (see Goldman, 1953, Appendix VI).

€orollary 2.1.1. The functions !/Eﬁlbj (t) given by (2.9) form an
approximately othonormal set over the interval 0 < t < T when
20T >> 1. .

We have shown that the three conditions which Green and Swets
impose on the functions wj(t) are not strictly satisfied simultaneously.
We can find wj(t) which do in fact form an orthonormal set over the
interval. In this case it will be impossible to express the functions
exactly by a finite Fourier series as required by condition (iii). Alter-
natively, we can require condition (iii) in which case orthogonality of
the interpolation functions will not be strictly satisfied. In.neither
case will condition (ii) be strictly satisfied. Of course, the differences
between the frequency and temporal representations of x(t) become small
when 2WT is sufficiently large. It is instructive to pursue this approxi-
mate equivalence somewhat furxther, although doing so represents a digression
from our main purpose.
2.4 On the Relation Between the Temporal and Frequency Representations

when 2WT >> 1.

We may apply Lemma 2.1 to Equations (2.3} to obtain
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2WT
.2 _121 j j
a, = &, =!;.2.ﬁ '|-Z-1 x(-zi%)ci(alﬁ) (2.142a)
and : .
2WT :
. B 2 1 - -
b, = Bi _f:rtz—w 521 x(-zlﬁ)si(gﬁ) (2.14b)

Thus as an approximation to X(t) we may write

Z [a;c, (t) + b.s, (1]
i=1

W
EWJ; Z Z %A Loy (Fpe;
+ 5. ( )s (t)] {2.15)
7 AT ‘
=J-; Z X (¥, (8]
J_

where wj(t) is defined by (2.9).

If]

() = x(t)

The vector of weighted samples of x(t) we denote by

1 1 20T, !
£ = — [X(z_w)’ cens x(_zﬁ)] . {2.16)
V2W
We also let
' T - - T
X -J;- lags «vus am,,Bl, Bm] (2.17)

and define the 2WT x 2WT matrix

B 1 1 1 1 1.7
9GP %GP - geEPsiGP o SR
2 2 2 2 2
C - _l_. . cl('éwj C2 (E'w‘) . CWT(W)S l(ﬁ) . SWT('Z_W‘} (2. 18)
v2W ) : .
2WT 2T 20T,
©Gi? - - - - aelEsiE et seGe
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Then Equations 2.14 may be expressed in matrix notation as
Zo = Clz. (2.14")
Theorem 2.8. The matrix C is approximately orthogonal for
20T >> 1. ‘
Proof. A necessary and sufficient condition that C be orthoéénal
ijs that CC' =T where I is a 2WT x 2WT identity matrix. By picking

the mEE row of €7 and the nEb-column of ¢ and adding the product of corres-

ponding terms, one of the following expressions is obtained:

2WT j 3
Z: ¢, G e, Gp s

L
20 |
j

L°
W .
J

i 20T j
2 1, S0 ea

WT ) .
21 cm(élﬁ)sn(é%ﬁ, or

k
20

But according to Lemmg 2.1 each of these expressions is approximately
equivalent to a corresponding integral. .Examination of Equation 2.4 identi-
fies these integrals and completes the proof of the theorem.

Thus, when 2WT becomes large ﬁ(t) approaches X(t) and the frequency
and temporal representation spaces F and I, respectively, become equivalent
differing only by a choice of axes in the space. We shall, however, take
as our primary mode of approximation the frequency representation space

of Section 2.2.

2.5 Representation of Certain Linear Filters
The action of a linear filter A on g waveform x(t) may be conveniently

represented by a linear transformation on Te € F.
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Let Af be a (possibly singular) linear transformation on F. Then

2
£ £

if Af is an idempotent and symmetric matrix.

= 4 = 4!

Af is a projection operator if (i) A £

and (ii) 4 that is,

£

Projection operators on F are of particular interest because they
may be used to represent idealized square-bandpass filters. A 2WaT
dimension subspace F, of F is generated by the projection oﬁerator Ag
if for‘any e € F, Afmf e F . The rank of Af ;s ZWGT.

The output Yg of a filter A-is defined by

yf = Afrf. - (2.19)

More complex (and more realistic) representations for filters
may be ébnstructed. The objective here, however, is not to find a repre-
sentation for such physically realizable filters as might be used eiec-
tronically in real time. Rather, the purpose is to indicate idealized
operations which might be performed on a waveform by a device with memory
which can record waveforms for short-periods of time. For such a device

the operation indicated in Equation 2.19 could be performed.

When the input to a fixed filter A represented by 4. in the frequency

£
domain, is a noise vector Res the output Anf of the filter also has a
multivariaée normal distribution, although degenerate if the rank of Af
is ZWGT < 2WT. Artificial difficulties in describing the distribution
of the output of the filter may be overcome when the action of the filter
is a projection operation. -

Suppose that {s;, s,, ..., Sk}_ is a set of k orthonommal vectors
in . Let Bbe a 2WF x k matrix with columns §1s Sgs <vey & i.e.,

B = [3132 cae sk]. . (2.20)

It is easily verified that Af = BB' 1is aprojection operator on F.
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" Furthermore, since
Afsi = BB‘si = 8, i=1, ..., k,
{31’32’ A sk} may be considered an orthonormal set of basis vectors
. for the k-dimensional subspace F* generated by the action of Ag on vectors

of F. In fact, for any ze € F,

1 - .
y = Agp = BB'z. = B - N At (2.21)

= (simf)sl + (sémesz + ...+ (séxf)sk.
With y* = B'mf, Equation 2,21 estaglishes an isomorphism between y and
y* given B,

Definition. A rec%anguiar filter is a k-dimensional projection
operator on F which has the form Ae = BB' where B is a matrix whose k
columns form an orthonormal set of vectors.

Theorem 2.3. The output of a rectangular filter with bandwidth
W&, whose input is white Gaussian nogie.with bandwidth W 3.wa, is white
Gaussian noise with bandwidth wa.

Proof. Let ﬁf have the dens;ty of Equation 2.8, and let Af = BB!'
be a rectangular filtering operation where B is the matrix of Equation 2.20.
Then the outpﬁt of the filter is represented, up to ;somorphism by the
random vector

n* = Bfif. _ (2.22)

Since the rank of B is k, n* has a multivariate normal distribution with

mean vector wu{n*) = E{B'ﬁf] = B'E[n,] = B" 0’ and dispersion matrix

£
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™
1l

nx = ElB'0itE] = B'Y B

fl

B'(Ny/2)IB = (N,/2)B'B

(Ng/2) I,
where Ik is a k x k identity matrix. The proof is completed by letting
WT=k,

[+ .

It should be noted that passing from the space F to its subspace F*
is not, in general, a reversible process. Given only the output vector
n*, there exist infinitely many vectors g such that n* = B'nf when
B has rank less than 2WT.

The next chapter develops a general class of models for human

monaural auditory processing in detection and recognition tasks based

on the representation theory developed here.



CHAPTER III

MODELS OF MONAURAL AUDITORY PROCESSING

3.1 Introduction

Several models have been proposed in the signal detection literature
to account for the performance of human obse£§ers in monaural &etection
tasks. The models postulate a processing mechanism by which the observer
derives information from the input acoustic waveform regarding which of
several alternative eXperimenter-defined hypotheses is presented. Recently the
"linear', "energy'", and "envelope' models have been extensively reviewed
in Green and Swets (1966). These particular models have in common the
fact that they describe sensory operations which would giﬁe rise to an
- optimum decision variable for some task (not necessarily the one in which
the observer finds himself).

The primary objective of the present chapter is to develop a new
model, the linear-uncertain model, which includes the linear, envelop and
energy models as special cases. The theory is presented in a form thch
requires the observer to use all the information available to him in a way
which is optimum given a residual uncertainty regardinguparameterg of the
signal. A discussion of empirical predictions from these models is presented
in the next chapter.

3.2 Task Considerations

It is assumed that the acoustic input to the observer is Gaussian
noise, to which occasionally a constant waveform is added. The constant
waveform is the signal and its presence has a one-to-one correspondence
with the experimenter-defined input hypotheses., Thus, the observer's

task is one in which the signal is specified exactly. It is not, of course,

- 24 -
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a foregone conclusion that the observer knows precisely the eXperimenfer's
exact signal specification.
Denoting the input wavefoim sample by x(t) and the signal waveform

by s(t), 0 <t <T, the alternatives presented-to the observer are

HI:' x(t) = n(t) + s(t) ;

(3.1)

H x(t) = n(t).

o0*
The task also requires that the observer make a judgmental response »r
indicating which hypothesis alternative was actually presented. For the
task to be effective, the ob;erver's ability to discriminate between
Hl and H{J through » must depend only upon the information contained in the
input waveform. This task requirement may be stated in terms of the
conditional independence of the response from the presented hypothesis,
given the presence of the input waveform.

. Assumption 3.1. For every response r in the observer's repertoire
and input waveform z

P(r]x,H) = P(r|x) (3.2)

1 07 HO. ‘

In our presentation of models for sensory processing we will use the

where H is either H

representation theory for waveforms developed in Chapter II. Thus, the
sample space X may be interpreted as either F or T and x(t) may be repre-
sented by x defined af.Equation 2.5 or 2.16 when 2WT is large. We also
restrict the space of all possible signal vectors to X. Thus, fof example,
a particular signal vector s identifies a one-dimensional subspace of X,

namely, the set of vectors in X proportionzl to s.
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In terms of the representation theory the experimenter-defined hypotheses

of Equation 3.1 are

=
8
1}

1 n + s; )
(3.3}
H: x=n. :
As in Chapter ‘I we shall not assume that the mean of the
noise Hy is zero and shall continue to adopt the more general position
that the multivariate normal density of the noise vector is
_ Cf(m) = W 7)), .9
where as before the dispersion matrix f = (N/2)I. '

The conditional densities of the input vector x are, from (3.3) and

.(3.4),

le flcr)

HO: focx)

It is assumed that every observer knows the distribution of the noise,

f(xr - 8} = N(u_+s,1.)
noon (3.5)

t

FG) = W 7).

including the mean of the noise. Some observers may have, however, uncertainty
regarding the signal, since it is not always present in the }‘)ackground of noise.

If the signal ¢ is only known to an observer through an a priori distribution
G(s) of possible Signalé, then the unconditional distributions of the input

known to the observer are

le hl (=)

J flx - s)dG(s), and
X (3.6)
Hye ho(:r:) = f(x) )

respectively, where f is the normal density of (3.4).

It is well known that the likelihood ratio Z(x), or some monotoné function
of it, z, is the optimal decision variable for discrimination between hypotheses
Hl and HO (Petexrson, Birdsall, and Fox, 1954). From (3.6} the likelihood ratio

£(x) is,
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It

Yz) = h; (=) /hy ()

= flx - 8)dG(s)/f(x) (3.7)
X

[ f(z - 3)

= |, TEm 6@

o 2z |s)dG(s)
. X
where
Laz|s) = £ @)/E @) = £z - s}/E(@) (3.8)

is the conditional likelihood ratio'given that g is known exactly.
3.3 Signal Uncertainty

Models of thé ideal observer have been constructed for various tasks
by evaluating (3:7) for the unconditional likelihood ratio function of the
input process. This is done by assuming that in the task the signal is not
specified exactly, buf rather has a distribﬁtion G(s). A resulting model
of the ideal observer is then taken as a model of human observer performance
in a task in which the signal is specified exactly. The rationale for this
approach to model construction appears to be based on the argument that
prior uncertainty regarding parameters, which are actually constant in the
task and cha¥ac£érize the signal, should result in a response'performance which
is the same as would arise from an observer with precise knowledge of the
actual uncertainty of signal parameters. However, a close look at .Equation
3.6 shows that one should not expect this assumed equivalence. The.H1 condi-
tional density hl(x) is the density of the input process assumed known to the
observer. The density hlﬁm) does not necessarily represent the knowable distri-
bution density of the inﬁut to a perfectly informed observer. For the latter
observer, G(s) represents the actual or experimenter-defined signal uncertainty

in the task.
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The assumption which will be made here, perhaps gratuitiously, is
that the processing operation performed on the input by a human observer
is determined by the likelihood }atio E&uation 3.7, where the distribution
G(s) represents the “internal® observer-specified uncertainty regarding
the signal. In tasks where the signal is fixed the distribution of the
processing function or decision variable determined by (3.7) is completely
determined by tﬂe distributional characteristics of external and internal
noise.

Assumption 3.2. An observer's prior uncertainty regarding the signal
s, in tasks in which s is specified exactly, may be represented by a multi-

variate normal density function

g(s) = d6(s}/d = F(u L) (3.9

with mean vector Hy and dispersion matrix 25. The random vector s is inde-
pendent of the noise vector =.

It will be shown that (3.9} in connection with (3.7) is‘quite general
enough to specify a processing function which includes as special cases
most previously proposed models of human menaural auditory processing.

3.4 A General Structure for Processing Models

Assumption 3.2 allows evaluation of the observer-specified distribu-
tions of the input defined at (3.6). Under input hypothesis H1 the con-

volution integral may be found using (3.5) and (3.9), so that

h, (=)

N + ua,ﬁn + ﬁs)

(3.10)

B £ )
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where
Moo=t o,
moonoe _ (3.11)
Iy = 2n * L
Under HO’ as before,
ho(e) = Nu,2 ). . - (3.12)
It is convenient to define the.precision matrices
_ -1 _ -1
Q=2 = Uy + 1) (3.13)
and
@ =zt (3.14)
n n - )
The likelihood ratio of (3.7) is then found directly by using (2.8}:
£(z) = h) @)/h,(x)

-¥x-u )'Q (x-u_)
i} e Metgy® ~ ® "

. .15
WT - -'G-un) 'Qn(x-l-ln) (3 )
(27) (deth) e
Or, simplifying in terms of the logarithm of the likelihood ratio,
z¥ = Ln[Ll(x)]
'detQ
_ 1 m 1
3 zu(deth) =gl - - uy)
1
+ 5@ - u)'e @ - w)
1 detQm 1
- = - f - -

1 - - 1
+anm(x un) 'f“uQm”a'

In the following the constant term of (3.16) will be of no inferest and
may be ignored without loss of generality. It may also be seen that (x - un)
is an invariant translation of the_ipput, regardless of the specification of
the parameters ¢, and L Thus, we shall take the following fqrm as the

general structure for our processing models:
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(3.17)

tx%j:n-‘
S

2= 3@, - )y + w'e & -
where
y=a -, (3.18)
and (3.11) and (3.16) have been used.

The decision variable*z of any particular ob;erver wéthin the general
class of observers covered by assumption 3.2 may be evaluated by specifying
q, and u_ in (3.17)

3.5 The Model of the Ideal Observer.

As an application of the foregoing discussion we may obtain the decision
variable of the ideal observer for the case of signai known exactly (Peter-
son, Birdsall, and Fox, 1954).

Since the signal is specified exactly in the listening task the ideal
observer knows the specification exactly and it follows that the ideal

observer's prior specification of the signal is the signal itself; i.e.,

Fa
Z

having been obtained, they may be inserted into (3.17) to give

s. S8ince the specification is exact, ﬁs = 0, It then follows that

1]

m = In t ks = I, and @ =@ = (2/N))I. The desired values of @ and g

2 =0+ s G Dy - 30

1

fl

fl

= Gy - 3ee) (3.19)
0
as the decision variable of the ideal observer. Of course, there are other
functions, monotone with Zs which would serve as well.
It may be seen from Chapter II that s's = Es is the energy of
the input signal (since s is represented exactly by a finite Fourier

series). Defining the dimensionless quantity

d = 2E5/N0’ (3.20)
the decision variable may be written in the form
z =22 14 (3.21)
1 N0 2

which has a straightforward geometric interpretation in F.

*
Formally, we may identify the judgmental responses » with ordered sub-
sets of the range of z.
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The projection of y onto the line determined by & in F is the vector .

T$é¥T-S' Thus z, is a linear function of the magnitude of y in the direction
of g in F.

In the usual analysis of the two alternative single-interval task (the "Yes-
No'" experiment) an observer sets a_cutoff value fér z, say Z,, such that when
the modified input y produces a valug of z greatgr than Zas the observer makes an
R, response, i.e., "Yes -- signal wag.present". The set R, = {ylzty) > B, y e F}
is called the eriterion region. In the case of the ideal observer ‘it is‘easy -
to determine a criterion region based on the decision variable z, of Equation
3.21.

A fixed value 8 of z, determines a hyperplane in F perpendicular to the
line of s. Thié is illustrated in Fiéure 3.1. The plane of.the figure is taken
to be the plane in F-determined by y and s. The dashed line represents the
intersection of the hyperplane perpendicular to s and the plane of the paper..

As was seen in Chapter II certain linear operations in F may be viewed
as filtering the input. Such is the case here for the aéggbn.of the ideal
observer in producing the decision variable_z1° The subspace of F onto which
the modified input y is projected is simply the line of s. The filtering is
perfectly "mafched" in frequency and phase to the signal. By definition,:
the decision space of an observer is the range of his decision variable. In
this case the range is isomorphic to the line of s. (The isomorphism results
from the fact that the metric of F carries over to the decisiocn spaée of the
ideal observer.) .
3.6 A Model for Human Monaural Processing: The Linear Uncertain Model

The general structure developed in Section 3.4 for a linear observer

with uncertainty could be taken directly as a model of human monaural .
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Fig. 3.1. Representation space of the ideal observer for signal specified
exactly. The paper represents the plane in F determined by the
modified input y and the signal vector s. A criterion region Rl
in F is detérmined by the cutoff value B on the decision axis
which is isomorphic with the line of s. In the case illustrated,
y lies in the region R which is equivalent to the fact that its
projection onto the line of s is above the cutoff B.
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in the task with signél specified exactly. However, without additional
simplifying assumptions the médel is too general in the sense that as
parameters we would have all the entries of My and 25. Most of this freedom
is quite unnecessary to obtain strong predictions from the model. I will
assume that the human observer knows a region of F occupied by the true signal
s, but is uncertain about the exact magnitude of the COmﬁonents of g within
that region. This assumption is made more exPlicif in the following.
Assumption 3.3. The dispersion matrix Z; of the prior distribution for
an observer o is proportional to a projection operator Du on F. Furthermore,
the subspace E& generated by the action of Da on vectors of F contains
Y ua and s,
The assumption implies that

Mo
7, =D, . (3.22)

[ o
where M0/2 is the constant of proportionality, and that Da has Tank ZWGT
which is less than or equal to 2WT, the dimensionality of F. Since Du is

indempotent, it preserves the magnitude of every vector in F - In particular;,

Duun =, ‘(3.23a)

= .23b

Dy, = ¥ (3.23b)

and Das = 8, (3.23¢)

Da represents a rectangular linear filter in F(see Chapter II), and corres-
ponds to idealized square band-pass filtering of the modified input:

As we shall see, it is convenient to think of the constant in (3.22) as
representing the observer's uncertainty (or imprecision, or variance)

regarding the signal amplitude, per unit bandwidth of the signal. It is only
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appropriate to scale such uncertainty relative to physical measurements;
in this case the uncertainty in the input is the variance N, of the noise
process per unit cycle. The ratio of internal uncertainty to the total

uncertainty, therefore, is defined to be

A= O (3.24)

It follows that A is a nonsingular transformation of the scaled value of

MO, i.e.,
A
MO/N0 =TT

Now Qm can be found directly:

-1
(z, + £

i

qQ

m

)
—
I
by
+

(3.25)

f

2 (-,
Ng
The last step is easily verified since D is indempotent. As a consequence,

2 2
Q - Q@ =1 -x~{(T-2AD)
fod m N0 N0
= 2. (3.26)
0

With the explicit representation for the precision matrices in (3.25) and
(3.26), the decision variable z  for observer o is found by substitution into
Equation 3.17:

a o

1 2 2 1
z = §y'(ﬁB-Da)y + u&{ﬁa{f - lDa)](y - ¥ ),

or, since p'l = u' = p'D  this reduces to
o K a o
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1

¥'Dy S2ulD (y - 5w )

2,5 h e (-2 28 2o (3.27)
: 0 0

The decision variable za of the linear-uncertain observer is thus

a convex combination of the standardized energy of the projection of the
modified input y onto F and a linear -term depending upon the cross correla-
tion of y with the supposed sigﬁal M Frﬁm Equation 3.24 it is seen that

as the prior internal specification of signal becomes poor, that is the uncer-
tainty Mo becomes large relative to NO’ the uncértainty parameter A approaches
1 and a will behave like a pure energy observer. On the other hand as the
observer o becomes increasingly certain of the correctness Sf the internal
specification signal LI A approaches zero and o behaves like a pure linear
observer. When X lies between the extremes of 0 and i, the decision variable
z may be seen to be a linear transformation of the squared radius B of the

hyperspheroidal cylinder

(1-3) (1-2) -
e e A A ual P
with center at - (é;l) Dfua in F.

The decigion regions for o are depicted in Figure 3.2 (compare with
Figure 3.1). Here the plane of the paper is determined by the trué signal s
and the prior specified signal Wy The center of the region RO lies on the
line of Hyo but on the opposite side of the origin. The modified input y is
projecteé onto the subspace Fa. If the image of y lies outside the hypersphere
then z, > aB +b (where B is the squared radius and a and b are appropriate
constants) and observer o accepts the hypothesis that the input contains the

signal. Otherwise, the image is in R and the observer rejects that hypothesis.

0

As ) increases the center moves toward the origin and the direction (phase)
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Fig. 3.2. Representation space of the linear-uncertain observer. The
paper represents the plane in F, determined by the signal vector
s and the observer's mean representatlon of the signal p,. A
criterion reglon K1 is determined by a cutoff value B on the dec1s1on
axis which is isomorphic to the squared radius of a hyperspheroid
in F, As i -1 the center moves on the line of y, to the origin
0 of %he space and the observer becomes a simple energy detector.
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of My, becomes irrelevant, As XA = 0 the center moves away from the tip

of M, and the decision boundary becomes a perpendicular hyperplane at the
point of intersection with the line of o The observer's decision variable
then behaves 1like the ideal observer's decision with variable Z.s but with
v, substituted for s. .

It is perhaps surprising that the linear-uncertain model of the cobserver's
decision variable is a generalization of most previously proposed detection
theory based models for human monaural auditory processing. This will Ee
demonstrated in the next section.

3.7 &Specigl Cases of the Linear-Uncertain Model

The models of this section are cbtained from the fundamental Equation 3,27
for the decision vaéiable of the linear-uncertain observer.

The linear obser;er. When A =0 in (3.27)

z, = -N% HP W - ) : (3.28)
and the observer performs purely linear operations on the input waveform.
1f B, = 8 and D, = I, the linear observe; is optimum since z, = Z, of
Equation 3.19. The observer is even optimum if Da # I since according to
Assumption 3.3 Da cannot degrade s. Thus, non-optimal performémce of the linear
cbserver must be due to the fact that vy # 5 or be due to additional intermal

noise or criterion variability.

The energy observer., When X =1 in (3.27)

Z = (3.29)

and therefore the decision variable of observer o is based only on the

energy of the modified input passing through an idealized square band-pass
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filter with bandwidth Wa. Other forms of an energy model have been proposed.
A more usual assumption is that it is the input x itself whose energy is

found at the output of the filter, .i.e.,

x'Dax .
z_ = N (3.30)

The two models are identical only when mean of the nois; is the zero vector,
When the mean—is not zero, these energy models make different predictions for
observer performance for some tasks, as will be seen in the next chapter.

The envelope obsérver is a very special case of the
Equation 3.29. Let s,(t) be the Hilbert transformation of the signal wave-
form s(t), 0 <t < T (cf. Hancock and Wintz, 1966). If |x(t)}| is the
_ instantaneous quulus of x(t), then in quite general terms the function

B (1) = (Is/0] + [sy@h??, o<t e, (3.31)

is the (instantaneocus) emvelgpe of s(t). For example, if s(t) = Asin 2mat,
then s)(t) = Acos 2mpt and %£t) = A, as one might expect. The Hilbert

transform is orthogonal to the original waveform, i.e.,
: T

I s(t)s, (t) = O. (3.32)

. 0
If s) is the vector of F corresponding to s (t), then (3.32) implies that

S'S_L-'—‘ 0. (3-33)
Now if s(t) is a sinusoid, then s(t) and s,(t) differ only in phase.
1f observer o knows & but does.not know the phase of s then it may be shown

that o« should let

Da = Ss’/||sl] + siﬁifllsiji (3.34)

in Equation 3.29 (cf. Wainstein and Zubako, 1962, Sec. 33). It.may also

be shown that D, is then a projéction operator by the methods of Section 2.4.
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The idempotency of Da follows with help of (3.33). When the substitution

of Du of (3.34) into (3.29) is made it results in the decision variable of

-

an envelope cbserver:

@92 1s1] + 6 ey]

(V] ' NO '

Z

(3.35)

It is g}ear from (3.35) that z, for the envelope observer is the squared
radius of a circle lying in the plane of s and s in F with center at the
origin. This is illustrated in Figure 3.3. The modified input y is projected
onto the plane of s and 8). If the length of the projection is greater than
B%, then it li?s outside a circle za = B in the criterian region Rl' The
circle defines a hypercylinder in F whose inside is Ry

It has been pointed out elsewhere that the energy model and the envelope
model make éimilar.predictiOns in a variety of tasks (Green and Swets, 1966).
In a general way this is apparent from the geometry for thé éwo observers,

The primary distinguishing characteristic of the envelope observer would
appear ‘to be his narrow and precise bandwidth as an energy observer. This
conclusion is also born out by a comparison of the statistics of JE;'with
the statistics of the output of a narrow-band filter excited by Gaussian
noise (Green and Swets, 1966, Section 6.5.2, and references there cited).
3.8 The Noisy Linear-Uncertain Model

An assumption of noise-free processing has been implicit in the presen-
tation_of the linear-uncertain model in the previous two sections. .For any
realizable system, e.g., a human processor, this is certainly a generous
assumption. Two kinds of intermal noise have often been suggested. \The

first is that noise is added to thé input x before it is processed. The
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Fig. 3.3,

The representation space of an envelope observer. The paper
represents the plane in F determined by the orthogonal vectors

g and s). A criterion region Ry is determined by a cutoff value

B on the decision axis which is isomorphic-to the squared radius
of a circle with center at the origin in the plane. If y projects
outside the circle in the region Rj, the observer accépts the
hypothesis Hj.
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second is that the response is a noisy transformation of the decision
variable Zy Less often it has also been suggested that the observer may
have a noisy memory for the specification of signal parameters relevant
to good detection performance. A noisy memory would lead to a fluctua-
tion in the processing of the input. The details of this latter source
for degradation of observer performance will be considered first.

Noisy memory models. It is possible that the observer-specified signal
¥, varies in a random manner which-is not under observer control. "If this
were then the case, we might suppose that observer specified signal vector
could be adequately characterized as

u; =, + e (3.36)
where as before By is the mean of the prior distribution for s and e is
a random error term, perhaps with a multivariate normal distribution density
with mean vector 0 and dispersion matrix Xe.

If the linear-uncertain observer is unaware of the variability in the
mean of his prior distribution, then his decision variable_;oulﬁ remain in
the form given by z in (3.27), but with u; of (3.36) replacing My It is
important to realize that the distributional character of Z, is thereby
changed as well,

Another possibility may be considered by assuming that the cbserver
specifies the signal from memory on each trial, but that there is random
error in this specification. The error could be due to changing uﬂcertainty
regarding signal parameters, for example. If the observer is aware of the

fluctuation in his memory, then it may be shown that the observer should be

a linear-quadratic processor of Equation 3.17, where 7  1is the dispersion
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matri% of the memory signal vector v, whose mean is (presumably) the true
signal s (Birdsall, 1960). This version of the noisy memory model

differs formally from the linear-uncertain model only in that v, =8, and
thus is another special case of the létter.*

The sensory-nbise modél.‘ 1f we suppose that the sensory encoding produces
random fluctuations in the input waveforﬁ, this could be represented by
replacing the input x in the linear-uncerﬁain model by

z* = x + e, {3.37)
Birdsall (1960) has shown that a linear processor with Gaussian inter-
nal noise added to the input has quite different psychometrié functions from
his noisy memory model mentioned above (for the special case where 2WT = 1}. .
This is to be expected since a* is the effective input to the observer and
would not change his mode of processing when e is nonnélly distributed.

The noisy decision variable model. Perhaps the most common assumption
made in one form or another is to consider that the decision variable itself
is noisy; i.e., that i
_ z; = za + & ‘ (3.38)
replaces the decision variable z - Strangely enough, however, only until
very recently have some of the implications of this plausible model been
investigated (Wickelgren, 1968} .

There are, of course, many othef ways of degrading an observer's decision
variable. The uncertainty parameter A could be made a random variable. The
center frequency of the pass~-band could fluctuate (a possibility recently '

investigated by Henning (1967)). The quality of the decision variable could

vary, and so on. For the present, however, let us be content with noise

Birdsall's work (1960) provided much of the incentive for developing the
. linear-uncertain model.
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added to the input (el}, unknown fluctuation in the observer's specificafion
in his prior mean (ez), and perturbations of the decision variable itself
(BS)'
The decision variable of the noisy linear-uncertain observer is, then,
1
* = —_— | ]
2R Ay + e)'D,(y + ) + , (3.39)
+ {1 -2+ e)D [20y +e)) --(u, *+e))] + ez,

In order to be concrete in the following, we suppose that e, is normally

3

distributed with mean zero and variance V,, and that e, and e are each multi-

3!
variate normal with mean vector zero and dispersion matrices
NV . N,V
P ke S SNPRR  I

1

respectively. Further, e

%

12 ez,'e3 and the noise vector n are assumed mutually

independent.



CHAPTER 1V

MEASURES OF CONCORDANCE BETWEEN OBSERVERS

4.1 Introduction

The previous chapter outlines the basic theory of a general model
for monaural auditory processing, the linear-uncertain model. This
chapter invesf%gates a variety of predictions of the model. Since the
linear-uncertain model includes as special cases a number of previously
proposed models for auditory procéssing; the methods of this chapter apply
equally well to them. The derivation of the level of association between
observers appears here for the first time. Possible methods for estimating
parameters for the linear-uncertain observer usiﬁg non-parametric measures
of association are considered. The-psychometric function for the linear
uncertain observer is approximated, and the relation between measures of
performance and concordance are investigated.
4.2 Observer Performance -

In a two-alternative task an bbserver's decision variable z may be cen-
sidered as having the distributions Fo(z) and Fl(z) conditional upon HO and
Hl’ respectively. If the observer uses the rule "say H1 if z >z, other-

wise H. " then the observer's hit vate would be

0 =2
P(H) = f dF, (2) (4.1)
A
and his false-alarm rate would be ¢
P(F) = f dF  (23. a (4.2)
z

An observer's receiver Operatingccharaateristia (ROC) curve is the set
of ordered pairs [P(F),P(H)] parameterized by 2, (Peterson, Birdsall, and Fox,

1954) .

- 44 -
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if the observer uses the rule (2) ''say T, if z= zc", where r.
_is a strictly increasing function of 2. the probabilities P(H) and P(F) re-
main defined for each value of Ve but have no ‘special signifiéance except as
coordinates of the ROC curve. Clearly the ROC curves determined by z using
either decision rule are identical.

The ideal observer may be cha;acterized as that observer whose hit-
ra£e is at least as great as the hit-rate of any other observer with the
same false-alarm rate (Birdsall, 1966). This characterization is more general
than that given in the last chapter where it is assumed that the signal is.
specified exactly. ‘

It is clear from the definitions that the area under the ROC curve
for ideal observer must be at least as great as the area under the ROC curve
for any other observer in the same task. An important resuit regarding the
area was obtained by Green (1964a).

Lemma 4.1. 1If Z,

and z,p 2re two independent samples of an observer's

1 0
decision variable, conditional upon Hl énd HO’ respectively, then the area
PA under the ROC curvé generated by the decision variable z (using either rule
(1) or rule.(z) above} is given by
®
Py = {fmFl(zc)dFl(zc) = Pz, > z,0)- (4.3)

A proof is given in Green and Moses {(1966). 1 have generalized somewhat
the language over the original statement of the result since Green interprets
the probability on the right as the probability of making a correct'response
in a two-interval forced-choice task in which the observer knows that exactly
one of the intervals contains signal-plus-noise and it will be shown that the
ROC area is related to non-parametric measures of association between observers.
4.3 lNonparametric Measures of Association

We review two popular nonparametric measures of -association which will

be useful in the discussion of observer performance and concordance.
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Following Kendall (1962), for two random variables z, and ZB and

two independent, joint samples‘{zai,zsi) and (zuj,sz) ?f the variables,
define
aij = sgn(zmi - zuj)
1 if z . -2 . >0
) al  Tej
= 0 if 241 * zaj = 0 (4.4)
-1 if z . -2z, <0,
al aj
Similarly,
ij = sgn(zBi - zﬁj)' (4.5)
Then, Zau is defined by
‘ T = Corr(aij,bij). (4.6)
1f (za,zs) has a continuous bivariate distribution,
T = E(aijbij), (4.7)

since in this case E(aij) = E(bij) =0 and Var(aij) = Var(bij) = 1.
Another way of looking at tau is in terms of the probability of agree-
ment and disagreement of the sign of the difference between samplesof the
decision variables. With
P(S) = P(aijbij > 0)
and . . (4.8)

P(D)

P(aijbij < @),
it is readily shown that
E ..} = - . .
(aijblj) P(S) - P(D) (4.9)
Goodman and Kruskal (1954) were interested in indices of association
for bivariate, ordered contingency tables. In this case the random variables

are not continuous. The probabiiity of a tie in.one or the other of the

variables is
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P(F) = Pla;b;s = 0, (4.10)
so that
P(S} + P{(D} + P(T) =1,
The Goodman-Kruskal coefficient gamma is based on only the untied pairs of
the variables: .
y £ [P(S) - PO/ - P(T)] (4.11)
_For continuous variables P{T)} = 0, so that y = 1 in this case.
It is also possible to view gamma as'a conditional correlation between
signs.
Prqposition 4.1.
y = cérr(aij,bij|aij £0, by #0). (4.12)
4.4 The ROC Area as a Measure of Association Betuween Decision Variables

We may define the perfect decision variable by
1 if H1 :
zZ_ = (4.13)

This is the experimentér's “decision variable" and, of course, does not
depend upon tﬂe input x.
Theorem 4.1, Let PA be the area under the ROC curve for observer o
" with a continuous decision variable 2y and y the Goodman-Kruskal coefficient
- between the perfect decision variable Z and z,. Then,
P, = (v + 1)/2. (4.14)
Pr?qf. Let (za,zp) and (z& ,zi ) be two independent joint samﬁles of

the decision variables. Then, since the value of zp specifies the hypothesis,

P[(z, - z; )z, - 2 ) > 0] = Plz ) > 2 o)
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The right hand side is Pa by Lemma 4.1. The left hand side is apparently
P(s)/[1 - P(p)]. But, P(D)/[Ll - P(y})] =1 - P(8)/[1 - P(r)}], so that
P(S)/[1 - P{r)] = (y + 1)/2, completing the proof.

The theorem's importance lies in the fact that it suggests a way to
make reasonable estimates of the ROC area, even when the observed decision
variable is not continuous. In Appendix I it is shown that if P(Ta) is the

probability of a tie in the observed decision variable z,» an appropriate

estimate of the aea under the ROC curve is given by

3
est !A i

%- P(S)_-_F(D) +1 (4.15)
TP T (1 - P(ry))

vwhere T; is the event bij # 0. A computing formula is also given.

[est Corr(aij ,b.J. bij #0) +1]/2

il

When both decision variables, z; and zg, are considered continuous the

estimate of tau is given by

T

B est Corr(aij,b..)

1]
) P(S) - P(D)
/T = P(T) 111 - PCig)]

(4.16)

4.5 The Relation Between Paragmetric and Nonmparametric Measures of Ass?ciation
The exact distribution theory for the noisy linear-uncertain model is
extremely difficult and is apparently unsolved. (In the internal noise-free
case, however, the distributions can be shown to Be non-central chi-square.)
However, the moments of ;; aré relatively less difficult to determine. This
opens the possibility of trying to approximate the theoretical value of 7
between z, and z_, using only the moments of the joint distribution of z,

B
and Zg- It is at least plausible that sample estimates of t could then be
used to make estimtes of the unknown parameters entering into an observer's
decision variable such as his uncertainty parameter A or bandwidth-time product
- o

éa = WaT. We shall call such a procedure 'nonparametric estimation'.
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Perhaps a somewhat less ambitious approach than nonparametric estimation
‘would be to try to find experimental situations which would discriminate
between altérnative models using nearly any measure of concordance. If
such experiments could be found, then statistics such as the linear corre-
latiohs could serve at the theoretical level, ‘and tau could sééve at the
empirical level, This latter procedure is the one followed here. It is
worthwhile to give a more complete justification, howevef.

' Greiner's relation. The ordinary product-moment (linear) correlation

between two decision variables z,, and z, wiil be denoted by

B

paB = Corr(za,zB).

If z, and zB have a bivariate normal distribution with correlation Y
then it is known (Kendall, 1962; Greiner, 1909) that

= sin{mt _/2). 4.17

Pog = SIN(TT _4/2) (4.17)

When the stated assumptions are tenable this relation provides a consistent

estimate of PuB from an estimate of TaB‘

Griener's relation is a special case of a more general- approximation to

T based on the joint moments for non-normal variation of random variables.

Kendall (1949) assumed that the joint distribution may be closely approximated

by a truncated Gram-Charlier series. With standardized moments defined by

- E(z ‘:] i Zg - E(ZB)J j
= L}
[Var(z R [Var(z)1%
and p = paB = “il’ Kendall's approximation* to 1 is given by

L2 - 1 ]
TQB = sin  p+ 24 (1-n 3/2 [(U40 + U04 6)(3p - 2p%)

‘ (4.18)
- 4(uy; + ujg - 60) * Gpluly - 20% - 1]

* Kendall's original expression, his Equation (25}, was givén in terms of
the cumulants of the joint distribution.
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If the decision variables are-jointly normal the correction term (in
braces) to Greiner's relation is zero.
A small amount of empirical data presented by Kendall suggests that
the unfortunate complexity of the correction term to Greiner's
relation cannot be safely ignored for precise results in many situations.
Unfortunately little more seems to be known regarding estimating p from T.
For the linear-uncertain model the correction term is zero only if
both observers are linear, i.e., -i; = ié =1 (A =1-121). Otherwise the
correction term is not only non-zero, but contains moments of the physical
waveforms not ordinarily measured, e.g.,
* T
J s*(t) dt,
0
for a constant signal waveform s(t). (Interesting results can be obtained

when the signal is a sample of Gaussian noise, which however does not
concern us here.) In the general case the correction term is extremely
complicated for linear uncertain observers and it would require advanced
computer techniques in non-linear estimation to obtain estimates of model
parameters. I am forced to conclude that, although feasible, non-parametric
estimation is not presently practical.

The alternative mentioned above to mon-parametric estimation depends
© upon an approximately monotoné'relation between t and p. An examination of
Kendall's approximation to Tis not very revealing in this regagd. The
difficulty is that factors which affect p may also affect the value of the.
other joint moments in some unknown fashion. In our situation,:however,
we know that the association between linear-uncertain decision variables depends

upon common elements of the noise process at the input. As was seen in
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Chapter III ghe decision variable of the linear-uncertain obsefver is a linear
transformatign of the squared radius of a hyperspheroidal cylinder in the
representation space, By assumption two observers share a common subspace

in the frequency representation space. Thus, at least in the case where

the cosine of the angle between n, and p_ is not negative, the radii wiil

B
tend to increase and decrease together, i.e., will be to some extent concor-
dant. Both 1 and p are measures of concordance in this sense (Kruskal, 1958)
and therefore may be expected to be highly correlated with one another. |
4.6 The Correlatioﬁ between Observers ‘

The.results of this section make the implicit assumption that to a first
order of approximation the joint distribution of the decision variables may
be considered bivariﬁte normal. Somewhat more accurate results for some
purposes, with a corfesponding increase in technical difficulty, might be
expected if marginal monotone transformations of the variables are made prior
to the computation of the moments., Some possibilities for normalizing trans-
formaitons are considered in Lamphier and Birdsall (1960).

We consider the general case where the modified input to observer « is
Yy =¥ + S, and the input to observer B8 is Yg =¥ + Sg- It is convenient
to have the following definitions (we assume the observers' filters overlap

in F): ug =8, (4.19)
o
= 1 =

Ryg = MiD glas Too = 2R /N . (4.20)

Eu = Rau’ da = 2Ea/NO (4.21)

T 3 - -

Thus, for example, rasB means 2uaDaBsB/NO’ the standardized cross-correla

tion in the joint subspace determined by DaB = DaDB between the prior mean
vector u  and signal vector Sg presented to observer B. Of course, if 8g
is the null signal 0, then Ty © 0 and oo ° 0 regardless of the value

- B o B
of B, OT 8., respectively.
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Theorem 4.2. The covariance between noisy linear-uncertain observers

with decision variables z; and z; as given by Equation 3.39 is given b;

Cov(z*,2*) = A A [6 . + T ]+ XAr
o ¢ B aB 5 sE‘ o B asB (4.22)

a
AaABraB'

* +

AaASrSuB
Further, the variance of 2% is given by

%) = 132 2 59 y
Var(za) Aa[sa(l + Val] + dsa(l + Val)] + ZAGAarasa(l + Val)

32
+ Aa{GaVa2[2(1 5 Val) + Ya (4.23)

5]
* da(l * Vul * VuZ) * (ds - r S )VGZ} * Va3'

o
wvhere & . =min{é ,6.}, 8§ =WT and A =1%a.
af a’ B o o

The proof of the theorem is given in Appendix II.
The linear correlation between noisy linear-uncertain observers is
thus given by

Cov(z*,z*)
o 8 (4.24)

='Corf(z;,z*) =

B

P xpnx
a*f [Var(z;)Var(zg)]l/2

There are,—of course, many special cases which could be considered
by assigning parameter values, There are over 2000 such cases for extreme
values of parameters of which perhaps 100 might be considered "interesting"

for some purpose. We shall comsider only several of these interesting cases.

Theorem 4.3. The necessary and sufficient conditions that two noisy
linear uncertain observers have identical correlation on signal-plus-noise
trials (Hlj and noise-alone trials (HO) are that

i) both observers are linear processors, i.e., Ay = AB = 0, and that

ii) neither observer has 'a noisy memory-specified reference signal,

V,=YV

i.e., 2 g2 = 0.
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Proof. Under Hl, 8y = 8g =& S0 that Too T d, = dS =d
a B o B

‘p(l) is obtained by inserting these values into (4.24). Likewise under

5"

% - rusa= rsaB - rsgs B dsa - ds53 -
0). Requiring that p(l) = p(q

g8 = sg = 0, so that L 0y
o B
which when inserted into (4.24) gives p

T
s

for any (mon-trivial) values of v and g can then be seen to be equivalent

_to conditions (i) and (ii).
Corollary 4.3.1. Under conditions (i) and (ii) of the theorem the

correlation is
r

= af 73 (4.25)
{[da(l + vul) + Va.S] {dB(1_+ VBl) + Vss]}

P

and Greinef's relation holds so that _
S CO R () % sin“%p. (4.26)
It woqld be desirable to have the theorem stated in terms of 7T rather
than p. The sufficiency of the conditions for equal 1 Yalues on Hl and ﬁo
is given in the preceeding corollary. That equal 1 values_imply the conditions
remains a reasonable conjecture, -
An interesting situation arises if one of the observers is an electronic

energy detector which receives only noise at the input on both H1 and HO

trials. In this case A, =1, V., =0, V_,, =0, and Hg = 8g = 0 under

3] g1 B3
both Hl and HO' Further, we let
Var, (z*) = Var(z*|s = g)
1% o’ a (4.27)
%} = * =
and Varo(za) Var{zalsa N

from (4.23}. It is clear on inspection that Varl[z;) is always greater than
or equal to Varo(z;) regardliess of model parameter -values. But, from (4.22)

‘Thi's proves

1

we have for both H, and H. that Cov{z*,z*) =X 6 ..
0 o o aof
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Theorem 4.4, The correlation between a noisy linear-uncertain observer
and an electronic energy detector which receives only noise is never less
on noise-alone trials than on signal-plus- noise trials.

The importance of the theorem steﬁs from the fact that the opposite
result is exPecte& from the filter bank model discussed in Chapter I. The
filter bank model assumes that the human:observer responds to the maximum
of outﬁuts from narrow-band filters in the filter bank. A relatively
narrow band electronic filter will respond to components of the noise in a
narrow frequency band around the center ffequency of the signal and so
should be only poorly correlated with the Qbserver's response on noise-alone
trials. On the other hand, when signal is preéented to the observer the
maximum output of his filiers will nearly always occur in the passband of the
energy detector and thus increase the communality of the two observers.

It may also be argued that if the signal is presented to a narrow band
energy detector on signal-plus-noise trials then both the filter bank model
and the linear-uncertain model predict increased correlation on signal trials.
Thus, that experiment does not provide the comparison bet&een the models
afforded by giving the energy detector only noise. An experiment using
the special conditions of Theorem 4.4 would be necessary only if the linear-
uncertain model can predict the results of Ahumada's experiment reported in
Chapter I. We now show that it can.

- The squared correlation between the linear-uncertain observer and an

energy detector with identical inputson signal-plus-roise trials is

A (& d X 2
p% - [ a( uf * s) * aras] (4.28)
Varl(z;)(aB + ds)
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On noise-alone trials this reduces to

(8 )2
02 - 0B (4.29)

Za ——
Varotzg)dB

. = s * ) 2 = . -
Since GuB mln(aa,ss) and Yaro(zu) does not depend upon 63, Py is maximized
by setting 6, = 8 . For p% it is clear on inspection that the-expression-
will be maximized by taking ‘SB < 8, So we may set 6018 = 8- To investi-

gate further we differentiate the logarithm of p% with respect to 68 (ignoring

the constant Varl(z;)}:

9 Y =
-a-s-*s— {2 Eﬂ[)\a(ﬁa + d) + AGTGS} - KH(GB + dS)} =

2
o

Aa(68+ ds) * JLaras 8 s

By setting the expreésion equal to zero and manipulating, we obtain

as the value of §, which maximizes p% (as long as the right hand term is

B
less than 5a)' If r =d_, as in the noisy memory model, then the solution

as s
is reasonable if the linear-uncertain observer has somewhat less memory noise
My than N, since i;/la = Ng/M,.
4.7 The E@rfb;mance of Linear-uncertain Observers

It has been found empirically that the ROC curves of human cobservers
often appear rather like straight lines when plotted on double-probability
paper, that is when the coordinates P(H) and P(F} are transformed to deviation

scores for a standard normal distribution. Such ROC curves would be exactly

straight when there exists a monotone transformation ¢ of 2y such that the
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conditional distributions Fo[w(za)l and Fl[w(za)] are both normal. It has
been shown that in a taék with signal specified‘exactly, strictly speaking,
there exists no such transformation ¢ unless the observer is equivalent to
a linear processor of the input (Wilcox, 1967).

To a first order of_approximation, however, we may take the observer's
decision variable z; as being ﬁormally distributed with mean E(za) and variance

V(za). Generally the means and variances will be different on H, and HO trials.

1

Theorem 4.5. Let an observer have a decision variable z which is distri-

buted normally with mean ¥y and variance ¢2 on H, trials and with mean U and

1
variance o% on HO trials. Then, the area under the ROC curve generated by
z is given by ‘
t
raz/./:?
P, = $(t) dt, ) (4.30)

A

-00

where ¢(t) is the standard normal density function and

fftul ~ ¥Hg)

d; = 2)1/2 (4.31)
1

(06 + 0

The proof is made straight-forward by inserting the appropriate normal
densities into Equation 4.3 and making a simple change of variables in order

 reverse the order of integration.

It may be noted that if the observer is the ideal observer we find that

- d? — =4
Z

{4.32)
as ig well known,
We shall call dé obtained from (4.30) the semnsitivity index® That is

if PA is known

* Jeffress (1967) has defined index dz which is d; of Equation 4.31. 1 prefer
the more general definition of d; of Equation 4.33, of which dz is a special

case.
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-1
t =
d! V2% (P,) (4.33)
vhere ¢ is the standard normal distribution function.
Theorem 4.6. The sensitivity index of the neisy linear-uncertain
obeservers with decision variable z: is given approximately by
AR d/2+Tr ]
dr = ¢S o as (4.34)

z; [Varo(z;) + Varl(:c:;)]l/2

where Varo and Var1 are given by (4.27).
The theorem follows from the fact, proved in Appendix II, that

E(z#) = 3 {6 (1 +V_ .) +d /2]
o at o _?1 Sa (4.35)
i ' ¥ Jtu[.rotsa - du/z - 6ava2]

The efficiency Ny of an observer o is defined as a ratio of signal

energies (Tanner and Birdsall, 1958):

n, = Ez /Es (4.36)
o
where Ez is the signal energy necessary for the ideal observer to perform
Fa -
at the same overall level as observer a«. We shall take this to mean that

A
o

ideal observer to be equal to the area under the ROC curve of an observer

E_ 1is the signal energy necessary for the area under the ROC curve of the

o who has signal energy ES in his detection task. Then, for the case in which

signal is specified exactly, Ez may be found from

s 1
dt = Y2E /N. .
Z z "0
i o
Thus,
_ 2
n, = (d;a/dé) . (4.37)
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Plots of P({C) (tﬁe probability of a correct response inaa two-interval
forced-choice task), P,, log Nys OF log (d; )2 versus log dS are examples of
psychometric functions. The first is most gommonly used, élthough the 1at£er
two are definitely superior for comparing processing models.

Birdsall (1960) has investigated the shape of psychometric functions
of noisy-memory observer in the case 2WaT = 1, McGilli[1967) has obtained
the psychometric functions for the internal-noise-free energy model for
several values of ZWGT.

4:;8 The Relaticn Betweén Performance and Coneordance

Theorem 4.7. Let Ny be the efficiency of a linear observer o with no
reference signal noise (Va2 = (0} and let p be the correlation between o and
the ideal observer. Then,

n = p2. (4.38)
Proof. p is given by (4.25) with dS =d, V.=V, =0, n is

8 s Bl B3

given by the square of (4.34) divided by ds and with Aa =0, V., =0.

a2
The equality (4.38) follows. - -

" Apparently the efficiency of the nolsy linear-uncertain observer in the
general case cannot be expressed solely in terms of the linear correlation

with the ideal observer.

i * *
Theorem 4.8. Let o, = Corr(za,zBIHi), 4

wi " Yar{z;lHi), i=0,1.

Then

[Vaﬂ + VBO] 1/2 VBO + vm] 1/2
P1"Va1Ve1 = P0"VaoVeo = AP — 7 déa * "a[‘"—z“— déB (4.39)

The theorem is proved by writing out (4.39) in detail for noisy linear-
uncertain observers. The theorem provides a way‘to predict inter-observer
correlation differences from the observer sensitivity indices and observer

correlations with the ideal observer. First note that Vao/val = va is the
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slope of the ROC curve plotted on double probability paper, as long as
the straight line approximation is good (Green and Swets, 1966, Ch. 3). By
dividing both side;: of (4.39) by m we obtain
A, [v. +171/2 A Fv, + 17172
Py - Ny, = B[a :l dr o+ “[B‘ ] ar (4.40)

0
70 o B ‘/\TBT_Z /m- 2 8

may be estimated from performance data, the remaining

1 Tt 1
Since dz&’dzs’ v, and Vg
unknowns are a single parameter in the form AG/VVﬁl for each observer.

Suppose that observer B is the ideal observer, which may be simulated by a

cross-correlator when signal is specified exactly. Then AB =0, Vg = 1
and d! = /3:. In this case (4.40) can be written in the form
B . :
A p; = D Vs . .
W /a_ -
ol s

which provides an.estimate of Aa//V:I'from the correlations of observer o with
the ideal observer. These estimates may be inserted into (4.40) to provide

a prediction of the quantity Py - po/;;;;- for each pair of observers.
Obviously such predictions should be considered only as good as the estimates

of v and v,.
o ]



CHAPTER V

AN EXPERIMENTAL INVESTIGATION OF INTER-OBSERVER CONCORDANCE ‘

5.1 Predéctions of the Models

An experiment was conducted to examine the effects of several input
conditions on the level of concordance between observers in a single-inter-
val detection task. The observers were three human observers and two
electronic devices. The first device was the '"ideal observer' (CC), that
is, it computed the cross-correlation of the signal waveform with the noise
waveform present in the presentation interval. The second device, the
energy detector (ED), computed the energy of the filtered noise waveforms in the
presentation interval. The human observers gave resﬁonses indicating
their confidence that signal was present in the presentation interval.

A nonparametric measurehof.concordance was computed on both H1 and Hy trials
between all pairs of the five observers in each of the conditions of the
experiment.

As discussed in Chapter IV, several models of monaural auditory pro-
cessing make different predictions for the levels.of concordance between
observers. The major predictions for these experiments are:

i) Linear observers with non memory-specified reference-signal noise

have equal correlations on H, and Hy trials,

1
ii) If the noisy linear-uncertain observer has a linear component in
his decision variable (A # 1) then the absolute value of the corre-
lation between the observer and the cross-correlator (with a noise-only

input) is not zero and is greater on H, trials than on HO trials.

1

- 60 -
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iii) Under the same conditions as (ii) the insertion of CW (carrier wave)
into the noise cannot decrease the correlation between the observer
and the cross-correlator (with noise-only input).

iv) The linear correlation between a filter-bank observer and the
cross-correlator is zero on both Hl and HO trials.

v) The correlation between a noisy linear-uncertain observer and the energy

detector (with a noise-only input) must be greater on Hy trials
than on Hl trials,

vi) The correlation between filter-bank observers and the energy

1 trials than on H0 trials.

vii) Insertion of a continuous sinusoid (CW) into the noise background

detector should be greater on H

with the same frequency and phase as the signal should increase

the corrélaéion between filter-bank observers. -
5.2 Method

The experiment was conducted at the Sensory Intelligence Laboratory,

The University of Michigan. it involved the presentation of a 1000 Hz tone
pulse, the signal, in a backg;ound of Gaussian noise. Three observers listened
monaurally (one ear) to idemtical inputs through earphones. On each trial
a random selector determined whether signal was to be present (HiJ or not
(HO) in the noise background. The observers were asked to report on each
trial their confidence that the hypothesis H1 was correct. During the presen-
tation interval the noise waveform was also gated to two electronic'devices.
The first device computed the cross-correlation of the noise with the signal.
The second device computed the energy of the noise in a 50 cycle band centered

at the signal frequency. The outputs of these devices were compared with

observer reports on H; and H0 trials separately,
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Apparatus. The experiment was programmed on a system known as N.P.
Psytar which has been extensively described elsewhere tGreén, Birdsall, and
Tanner, 1957). N.P. Psytar contains a white noise source, ocillatqrs for
producing tones, an autématic random number generator, émplifiers, attenua-
tors, audio gates, and the necessary logic and timing circuits to completely
automate the presentation of acoustic waveforms and record observer responses.
N.P. Psytar was augmented in the present experiment by two analog multipliers
with outputs fed to gatqble analoé integraters, a digital voltmeter (Hewlitt.
Packard) with printed output (Hewlett Packard) and response sliders one

“foot long attached by a dial cord to a ten-turn linear potentiometer. The
trial type, H1 or HO’ was punched automatically on computer cards.

A block diagram of the analog multiplier and integrator circuits is
shown in Figure 5.1. The signal and noise sources shown were also used to
generate the inputs to the earphones. The analog gates to the integrators
were closed (ungrounded) simultaneously with the presentation interval. The
gates across the integrator capacitors were opened at the onset of the presen-
tation interval and remained open until the offset of the observers' Tesponse
interval QUring which the digital-voltmeter recorded the stored charge on
the capacitors.

Following the response interval the digital voltmeter also recorded
the positiqn of the sliéers by measuring the voltage drop across the slider
potentiometers, The input to the digital voltmeter was determined by a
stepping relay which was reset after each trial. The voltmeter was allowed

250 ms to stabilize on each reading before the result was printed.
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Fig. 5.1,

Block diagram of Electronic Observers. CA is a current amplifier,
DA a differential amplifier, I an operational amplifier in an
integrator configuration, and G is an analog gate circuit, The
differential output voltage of the multiplier is proportional to
the product of the input currents.
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The offset voltages of the integrators varied slightly from day to’
day but were quite stable during e;ch two hour experimental session.

The narrow-band filter used in the energy detector was a single
tuned passive filter with center frequency at 1000 Hz and 3 db power
points at 974 Hz and 1025 Hz, Therefore, the 3 db bandwidth was

W = 51 Hz and the equivalent square band-pass was épproximately

3db

W= (H/Z)WSdb

Signal and noise levels. The detectzbility of a signal specified

= 80 Hz.

exactly in a background of white, Gaussian noise is appropriately measured
by the index d = 2E/N0 which is the square of the semsitivity index
of an optimum observer in the task. E is the signal energy and N0 is
the noise pover per unit bandwidth. The method used to measure the
ratio is described in Green and Swets (1966, Appendix III). 1In the
conditions with a signal duration of 100 ms, d was equal to 28.8, and for

-
signal durations of 40 ms, d = 28.5. In conditions with CW added to
the background noise the CW had a level of 14 db above the average noise power
density NO. The CW does not affect the computation of d since it is ignored
by the optimum observer.

Subjects. Three female undergraduate students served as observers in
the experiment. Observer 1 (0B 1) had served in a previous experiment which
required confidence judgments. OB 2 was also an eXperienced observer, but
had not previously used the confidence mode of response. OB 3 had had no
previous experience as an observer in psychoacoustic experiments. The
observers were paid at a base-rate per hour commensurate with their previous

experience. In addition, bonus points were computed on each trial and
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were converted to money in such a way that for average performance an
observer could, in effect, increase her hourly wage by 50%. However, all
bonus\payments were made after the completion of the experiment contingent
upon continued attendance..
Payoffs. The bonus points were computed on each trial according to
the following formula,
" H, trials: B

1
HO trials: B

5t

1- (lirz);

a -9,

where B is the number of bonus points and r is the confidence rating as
a proportion of distance along the siider scale. With this payoff scheme
observers should maximize their subjective expected bonus by reporting their
"true" subjective probability that signal was present on that trial. The
bonushpnints for a day's session were usually reported to the observers
on the following day before their ﬁext session.

Preliminary training. The observers were given four sessions each
with 500 ‘to 700 trials in which two response buttons were used. The
responses were labeled "Yes" and ''Wo'' regarding signal occurrence. The
two-button sessions were followed by eleven sessions in which four response
buttons were used. The observers were instructed to use the buttons to
indicate (1) "I am quite sure signal was presented", (2) "I am not cértain,
but 1 think the signal was presented™, (3) "I am noc certéin, but I think
the signal was not presented', and (4) "I am quite certain that sigﬁal was
not presented". In order to acquaint the observers with the way bonﬁs points
would be computed when they used the slider a modified bonus scheme was
used in the four-button sessions. Also, the observers were tolq to keep

in mind that later on in the experiment they would be using a continuous
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slider to indicate their confidence and that they should think of the

four buttons as being approximately evenly spaced aldng'thg scale of the
slider. These sessions continued until it was ascertained that the a
Posteriori probability of H; given a résponse was a monotone function of
the buttoq‘number'for each observer for four days in a row. The observers
had -some experience with each of the four experiméntal conditions described
below. Following the four button sessions, the observers were given two
séssions with the slider response before the data reported here were
obtained. ’ .

Procedure. A trial, from an observer's point of view, consisted
of four intervals in time, each marked bf a separaté neon indicator.' The
duratidn of a frial was about 5.6 seconds. The first 500 ms was a "get
ready" period. The presentation interval of 100 ms in conditions I and III
or 40 ms in conditions IT and IV immediateiy followed, A two second response
interval followed duriﬁg which the observer was to position the slider to
indicate her confidence that signal was presentedf After eleven slider
sessions the observers complained that the response interval was too long.
For the remaining five sessions the response interval was decreased to 1
sec so that the total trial duration became about 4.6 sec.

Each day's session consisted of five to seven blocks of trials. Each
block consisted of 100 trials after which the observers were given a one to
two minute rest. Halfway through each session observers were given a ten
to fifteen minute break. Each session lasted approximately 1 1/2 hours.

Sixteen experimental sessions were conducted. using the slider response,

The first two sessions were for practice (from the experimenter's point of

* Use of a mechanical analog to a continuous rating response has been used
previously by Watson, Rilling, and Bourbon {1964).
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view), The data of two other sessions were omitted from analysis because
of equipment problems. The remaining twelve sessions were divided into
three sessions each for four experimental conditions.

Condition I had a presentation interval of 100 ms and no continuous
sinusoid (EW) added to the background noise, Condition II had a 40 ms
presenfation interval with CW. Coﬁdition iI; had T = 100 ms and CW,
"Condition IV had T = 40 ms and CW. The three sessions of a condition
were run on sequential days except-for session 3 of condition I which was
the last of the experimental sessjons.

Prelimirary data analysis. The trial-by-trial responses of each
observer and device, which were read by the digital voltmeter, were punched
on compute} cards and analysed by a preliminary data analysis program on
an IBM 7090 computer. This program converted the response values to sfan-
dard scores for each observer and device. These scores were separated
into two groups correspending to H1 trials and H0 trials, respectively.

The scores for the three sessions for each condition wereggggﬁ.merged. The
program generated many cut-points for the data and determined the frequency
distribution of scores for each observer and device. From these distribu-

tions it could be determined which cut-points would give approXximately ten

equally probable categories of response. The program then obtained the ten
joint frequency distributions for each-pair of observers ‘and devices for

each of the four conditions on H, and H, trials separately. Thus, a total

1 0
of 80 = 10 x 8 joint frequency tables were obtained in this way. The
joint frequency tables were used to determine the level of concordance

between observers and devices.
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In order to obtain empirical ROC curves the cut-points were determined
which would give approximately ten equally probable categdries of response
regardless of H1 or HO. The progr;m then determined the 2 xm (m =9 or
10} frequency table of hypothesis (Hl or Ho) versus reésponse category for each
observer and each device for each of the four conditions. From these data
tables the empirical ROC curves, the area estimate and several other perfor-
mance measures could be determined.

5.3 Results

Observer performance. The ROC curves for éach of the four conditions
are presented separately for each observer in Figures 5.2, 5.3 and 5.4.

Each curve is based on approximately 1,800 trials. The ROC curves for the
two electronic devices are not shown since they fell nearly perfectly along
the chance line as exﬁectéd. (Both devices, it will be recalled, were
presented only the noise waveform sample on each trial.)

hThe shape of the observer ROC curves indicate that they would be only
lpoorly approximated by a straight line on double probability paper. If any
generalization can be made it would be that the curves differ from straight
lines with unity slope by having a slightl} smaller slope and are somewhat
concave toward the chance line. Also the curves appear quite similar in
shape across conditions. This conclusion is most pronounced for OB3 who
had the highest efficiency inﬁall conditions.

The performance of alliobservers is better when CW is present. Observers
1 and 3 show better performance with T = 40 ms when no CW is present, but
show better performance at T = 100 ms when CW is present, Thére appears

to be little effect of duration on the performance of ‘observer 2.
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Fig. 5.2. Empirical ROC curves for observer 1. The curves are based on
1,800 trials each and are plotted on double normal-probability
paper. The line of chance performance (P(H) = P(F)) in the
task runs from the lower left-hand corner to the upper right
of the figure.
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- 72 -

A comparison of measures of observer performance is given in %able 5.1
for each observer under eéch experimental condition. The estimate of the
area under the ROC curve based on the conditional correlation between signs,
est PA, was computed according to Equation Al.17 in Appendix I. Trap PA
is the estimate of the area based on using the trapezoidal rule for-integra-
tion and was computed using Equation Al.18. d) is the sensitivity index
cpmpuied froﬁ est P, using Equation 4.33. d! is an index of performance
yhich may be defined as 2@-1(P), Qhere P is the hit-rate at which the ROC
curve crosées the negative diagsnal. Finally n is yhe efficiency of an
observer computed from d; and ds = ZE/NO according to Equation 4.37,

For all observers and conditions.trap PA is a little less than est PA as
it should be. For the fairly large mumber of cut-points used here the trapé-
zoidal estimate is only smaller by about 1;.

The values of d;, are generally somewhat larger than'dé. This constitutes
partial confirmation of the generalization that the ROC curves are concave
downward.

There is an interaction effect of CW with duration. The efficiencies
are smaller for T = 100 ms than for T = 40 ms when no CW is present.

This inequality is reversed when CW is present. The introduction of CW also
substantially improves the performance of the observers.

It was hypothesized that the use of the continuous rating response
might have a depressive effect on observer performance., If so, the obser-
vers should have shown somewhat better performance in the preliminary training
sessions where oniy four response buttons were used. No such consistent

differences were apparent using the index dé.
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TABLE 5.1

A COMPARISON OF MEASURES OF OBSERVER PERFORMANCE

"

Condition
I 11 111 v
[ cW
100 40 100 40
.818 .850 .953 .930
.807 .839 .945 .923
1.28 1.47 2.37 2,08
1,31 1.45 2.44 2.32
.057 .076 .195 .152
.841 .855 ' .940 .936
.830 .844 .931 .927
1.41 1.50 2.20 2.16
1.51 1.61 2.23 2.26
.069 .079 .168 .164
.861 .897 .960 .937
.851 .886 .953 .929
1.53 1.79 2.48 2,16
1.54 1.86 2.54 2.31
.081 113 .213 .164
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Observer Concordance. Values of tau, corrected for ties, were
computed from Equation Al.13 using the 10 x 10 joint frequency tables
described above. The observed values of tau between the cross-correlation
and the other observers are presented in Table 5.2 for each condition.
Maximum confidence intervéls for gach value were computed (Kendall, 1962,
Eqi 4.12). 1In Table 5.2 zll but three values have 50% confidence intervals
which include zero. For the remaining three values 60% confidence intervals
include ze£§. These intervals are generally considered quite conservative
so that it may still be worthwhile to look for sygtematic trends in the
data, ‘

There seems to be a very small but persistent positive concordance between
the cross-correlator and the energy detector. An investigation of the |
noise source showed a slight skewness in the noise distribution around the
_ zero amplitude value. This non-linearity in the noise waveform appeared
to be the most likely cause of the slight degree of correlation found.

For observers 2 and 3 the values of tau are a little higher on-H1
trials than Ho when CW is not present. Even this inequality is reversed
for OB2 when CW is present. Thus there appears to be no systematic basis
upon which to accept hypothesis (ii) in Section 5.1. Furthermore, there
appesars to be no clear increase iﬁ the correlations when CW is present
as predicted in hypothesis (i'i). Thus, we may conclude that the data pro-
vided by the correlations between the cross-correlator and the human observers
can be explained either by the noisy linear-uncertain model with no linear

component, i.e., a noisy energy detector, or by the filter bank model.
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TABLE‘5.2
OBSERVED TAU VALUES BETWEEN THE-CROSS CORRELATOR
AND.

THE QTHER OBSERVERS

Condition
1 i1 111 v -
o o
100 . 40 100 40
"CC vs ED
H, -0014 0838* 0242 0085
H, 0082 0225 0181 0162
CC vs OB1
T -0131 0052 -0119 -0197
Hy -0597*  -0056 0080 0082
CC vs OB2
B, 0160 0418+ -0086 -0086
H, -0380*  -0160 -0273 -0273
CC vs OB3 ]
T 0132 0247 -0034 0288
H, -0045 0015 0094 0293

-

* These values are significantly different from zero at ths
0.5 level of confidence but not at p < 0.4.
Decimal points -omitted.
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The remaining tau values were converted to rough estimates of the
linear correlation using Greiner's relation (Equatioh 4,17). The 50%
confidence intervals for the tau values were also converted to correlation
confidence intervals. The correlations between the energy detector and
the human observers are presented in Table 5.3. Over half the correlations
at T.= 40 ms fail to be significantly different from zero at the b.S
level of confidence, while none of the correlations for T = 100 ms are
zero at this level. Thus, there is a pronounced decrease in the correla-
tions for the shortér durations regardless of whether or not CW is present.

With no CW the correlations for H, trials are greater than for HO

1
trials. The differences are significnat for OBl, but not for OBZ or OB3.
There appear to be no other consistent differences between the correlations
which are also reliable.

No specific hypothesis was offered in Section 5.1 to attempt to predict

the effect of duration. This is because such predictions can only be made

for the linear uncertain model by assuming specific parameter values.
This topic is further discussed below. The weak evidence that the correla-
1 than on Hy trials, at least when no CW is present,

terids to reject the noisy linear-uncertain model in favor of the filter-bank

tions are greater on H

model according to predictions (v) and (vi).

The inter-observer correlations and their 50% confidence intervals are
presented in Table 5.4. The relations between the correlations are highly
stable, regardless of the pair of observers considered. With a single minor

exception (OBl vs OB3, Condition II vs IV) correlations on H. trials indicate

1

lower correlations on HO trials within comparisons for an observer pair. The



- ED vs (OBl
H:1 p
CI
HO p
CI

ED vs 0OB2

i

CI
HO p
CI

ED vs QB3
Hl )
Cl
Ho p
CI

+ Decimal points ommitted.
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TABLE 5.3
CORRELATIONS BETWEEN THE ENERGY DETECTOR

AND THE HUMAN OBSERVERS'

Condition
I I I11 iV
W CW
100 40 100 40
272 129 325 -017%
(220,323) (079,179) _(279,;69) (-068,033)
151 026* 133 045*
(101,200} {-024,075) (085,180) {-005 ,095)
204 056 166 -035*
(150,256) (006,106) (118,214) (-085,016)
166 -036* 094 057
(116,216) (-085,013) (046,141) (007,107)
228 094 101 001*
(175,279)  (044,144) (052,149) (-049,051)
217 048 164 027+
(168,265) (-001,098) (117,211) {(-023,077)

Each estimate based on approximately

1800 trials. 50% confidence intervals (CI) are given in parentheses.

* N.5. for p < 0.5,
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differences between correlations on H; and H, trials with CW are all quite

0
significant {p < .05). The differences when CW is presenf are smaller

but there are no violations of sign. Thus, the hypothesis (i) of linear
observers with no reference signal noise is strongly rejected.

The HI—HO correlation differences are larger with CW than with CW. This
effect appears primarily due to a decrease in correlations on Hl trials.
Howevér, with a single exception (the same as before) Ho correlations are
higher with CW present for corresponding durations. The decrease on Hy
trials present a serious difficulty for the filter-bank model according
to hypothesis (vii). The CW signal lies in the center of the signal spec-
trum by construction._ It could be argued that CW should increase the
trials than on H, trials since tﬁe maximum narrow

0 1

filter ontput will be more uniformly distributed in frequency when no CW

correlations more on H

is present. However, it is inconceivable how introduction of CW could
decrease the correlation on H1 trials.

It may be inquired whether the relation between inter-observer corre-
lations can be predicted from observer sensitivity measure as described in
Section 4.8. The procedure described there required non-zero correlations
with the cross-correlator which is doubtful considering the present data.
It was decided, therefore, not to attempt the pfediction. However, the
equation (4.39) derived for linear;uncertain observer suggests that the
weighted difference for correlations on H1 and H0 trials should be related‘

to the weighted sum of the sensitivity indices. Examination of the present

data shows that with a single exception (0B2 vs 0B3, Condition III),

1 0} . . . ‘
Dés) - pés) is a monotone decreasing function of the sum d; +-d£ across

a B
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TABLE 5.4

INTER-OBSERVER CORRELATIONS*

(244,337)

Condition
I il 111 v
W CW
100, 40 100 40
~ OBL vs 0B2
H 0 686 605 472 519
c1 (650,719) (567 ,640) (431,512) (477,558)
Hy o 313 326 381 328
cI (265,359) (279,371) (337,423) (281,373)
0Bl vs 0B3
Hy p _ 736 691 498 597
c1 (703,765) (658,722) (458,537) (559,633)
H, ; 337 400 437 353
B (290,383) (355,443) (395,478) (307,398)
0B2 vs OB3
Hy » 660 " 671 513 495
c1 623,695) (636,703) " (473,551) (453,536)
Hy o 250 291 382 373
c1 (201,298) (338,424) (327,417)

* Decimal points omitted. Each estimate based on approximately

1800 trials.

50% confidence intervals -(CI) are given parentheses.
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conditions for each pair of obervers. I can give no interpretation to this

result.

5.4 Discussion

The noisy linear-uncertain model was developed and proposed as a
plausible alternative to the filter—bank.model. The Iinear component in
the linear uncertain model is a necessary-ingredient in order to account -
for Ahumada's thesis finding§ as was seen in Chapter IV. Thus, for the
linear uncertain model to remain a viable alternative it is of_importance‘

to consider the first three predictions of Section 5.1. The first, that

1

rejected by the data. The conclusion is that human observers do not perform

correlations between observers are equal on H, and HO trials, is unequivacably
simple linear operations-on the input; at least there must be noise in the
memory-specified reference signal. The first part of the conclusion has

been verified repeatedly using indirect compari;ons. However, the possibility
that the observer performs noisy iinear operations on the input has never
previously been investigated using empirical comparisons.

The preéicticns-(ii) and (iii) are an attempt to face directly the
possibility of a linear component in the observer's decision variable regard-
less of whether cr not there is reference-signal noise. There appears to
be little evidence of correlation with the cross-correlator at all, Thus,
the further questions of-whether the éorrelation is greater on H, trials
than on HO trials or whether the correlation is increased by insertion of

CW into the noise are irrelevant. A rejection of the hypothesis of a linear

component in the decision variable serves to reject the noisy linear-uncertain
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model as well(in connection with Ahumada's findings). An attempt can be
made to explain the small correlations with the cr&ss-correlator by assuming
that the linear component is present but has a small weight, i.e., that

K; << Au. Howevef, th%s is no? gufficient to save the model. As was seen
at the end of Section 4.7 X;'should be soméwhat greater than Aa for the
explanation of Aﬁumada's finding to be reasonable. Another possibility

f;r saving the linear component is to assume that the reference-signal noise

VaZ is quite large. But Va cannot be very large before the correlations

2
among observers are depressed. However, there appears to be no way to
positively reject this latter assumption with the péesent‘data.

The lirear-uncertain model,-temporarily preserved by the assumption of
considerable reference signal noise, must still meet the fifth prediction,
namely, greater éorrélatioq on H0 trials than on.Hl trials with the energy
detector. No significant differences were found in this direction although
some differences in the opposite direction were weakly significant. Thus,
the correlations with the energy detector also provide some evidence for
rejecting the linear-uncertain model.

The evidence provided by the-correlations with the cross-corrélator,
the energy detector and Ahumada's variable bandwidth energy‘detector lead
to the conclusion Fhat.the noisy linear-uncertain model, including its special
cases, is rejected as an adequate model of human monaural auditory processing.

The filter-bank model survives predictions (iv) and (vi) that chserver
correlation is éero with the cross-correlator and that the correlations with
the energy detector aré greater on H1 trials than on HO trials, respectively.

However, the final prediction, that inter-observer correlations should increase
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with the insertion of CW into the background noise, is not verified. .The
insertion of CW does cause a slight increase on HG trials but also a
pronounced decrease an Hl trials.’ Although this is the first clear evi-
dence against the filter-bank model it cannot be taken lightly. The pre-
diction is strong even though formal development of the filter-bank model
has not been - made.

It might be argued that the decrease in correlations with the insertion
of CW is an artifact caused by the improved performance of the observers.
Since they were asked to give their confidence that they would be right if
they hLad said Hl’ one would expect a greater concentration of response§ near
the ends of the slider in CW conditions. This concentration could cause
a reduction iﬁ the association between the observers' responses. An examiné-
tion of the response distributions across the slider scale did show increased
grouping of responses towards the ends of the slider. However, if the drop
in association is caused by this then tau computed on 2 x 2 joint response
tables with marginal cut-points at the medians should be relatively unaffected
or increase (according to prediction (vii)). These tauwalues were computed,
as usual, correcting for ties. With CW there was a slight increase in the
range of inter-observer correlations between H, and Il trials. In the C¥

1 0
conditions, rather than an increase,-both correlations on Hl and H0 trials
decreased slightly with the range staying approximately the same as when
computed on the 10 x 10 joint frequency tables. Thus, it is concluded that
the result is not an artifact of response grouping.

There are two experimental results which elude explanation by the models

considered so far: (a) the decrease in observer concordance with the energy
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detector when the signal duration is decreased, and (p) the lower inter-
observer céhcérdance on H, trials when CW is present.

Tﬁe first can be given an ad hoc' explanation in terms of a modification
of the simple energy or envelope model. The modification is descriéed by
Jeffress (1967). His '"leaky integrator model" hés a narrow-~-band filter
followed by a square-law detector (or perhaps a linear rectifier). The
output is exponentially weighted with a fixed rate of decay and integrated
continuously in time., It is presumed that the observer's decision variable-
is the value of the integral at the termination of the signal presentation
interval. Since the rate of decay is constant (about 100 ms according to
Jeffress) ‘short signal presentation intervals will cause part of the noise
waveform not in the presentation interval to be integrated into the decision
variable, However, the energy detector of the present study has an integra-
tion time equal to the duration of the presentétion interval. Thus, the
decrease in the amount of common noise for the observers and the energy
detector could cause the decrease in concordance at shorter durations.

The leak} integrator model, of course, suffers the same difficulties
as the linear-uncertain model in explaining Ahumada's finding and resuit
" that correlations withthe energy detector on H; trials are greater than on
H0 trials. Further, Jeffress® model apparently cannot account for the
decrease in inter-obsarvér correlations with the introduction of CW at
constant durations.

The leaky-integrator model and the filter-bank model can be combined.
The leaky integrator computes a short-term power-like quanéity for the output

of a single narrow-band filter. Assuming that the bandwidth is somewhat
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smaller than the equivalent square band-width gf 90 Hz estimated by Jeffress,
a bank of such filters could be postulated. The filter-bank in this case

is computing a portion of the short-term power spectrum of the input. It

is reasonable to extend Ahumada's decision variable to be the maximum

output in time as well as frequency. I shall call this model the Zeaky
filter-bank model.

The leaky filter-bank model may be viewed as appending a particular
decision rule to a processor which continuously computes the short-term,
frequency-limited power spectrum of the input. Such a processor could
also be implimented by taking the Fouyier transform of the short-term auto-
correlation function of the input. Thus, the processor of the leaky filter-
bank model is quite similar to a suggestion by Licklider (1951) that t@e ear
performs a short-term autocorrelation of the input in monaural listening tasks.

In summary, the noisy linear-uncertain model is unable to account for
most of the results from direct comparisons between observers. A leaky fomrm
of Ahumada's filter bank model is able to give a qualitative accoun£ of most
of the ?ata from direct comparisons, but has serious difficulty with the
finding that the concordance between observers decreases on signal trials
when CW is added to'background noise.

5.5 Summary

Predictions of the level of correlatign between observers derived
from the linear-uncertain model and the filter-bank mo<lel are compared for
several experimental conditions. In the experiment the decisions of human
Pbservers are compared with the outputs of two electronic devices. The

first device is an analog multiplier which computes the cross-correlation
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between the signal and the noise waveform sample on each trial. The
second device is an energy detector which computes the energy of the
noise waveform sample during the presentation intervai in a narrow frequency
band centered at the signal frequency.

The linear-uncertain model predicts that the correlatioﬂ between the
_ human observers and the cross-correlation is not zero and should increase
when a continuous sinusoid is added to the background noise. Neither of
these predictions is verified. Since the energy detector receives only
noise At its input in this experiment, the model also predicts that the
correlation between the observers and the energy detector should be less
on trials when signal is present than when it is not present. The results
show the correlations to be weakly significant in the opposite direction.
It is concluded tﬂat-the linear-uncertain model and its séecial cases, the
linear, energy, and envelop mbdels, represent an inadequate apprPximation
to the actual form of human monaural auditory processing in detection tagks.

Predictions from the filter-bank model agree with the above results,
but cannot account for an observed decrease in inter-observer correlations
when the signal presentation interval is shorted. A modification of the
filter-bank model is suggested to account for this discrepancy.

A final result remains unexplained by any of the models considered.
A decrease in inter-observer correlations is found when a continuous sinu-
soid is added to the background noise for either of two signal durations.
It is emphasized that this unexpected finding implies that there is a serious

deficiency in current models of monaural auditory processing in detection tasks.



APPENDIX 1
A NONPARAMETRIC ESTIMATE OF THE AREA UNDER THE ROC CURVE

41.1 Theory ‘

The notation and definitions of Sections 4.3 and 4.4 will be used
here.

With sample decision values or response categories ties can occur,
The marginal probabilities of a tie are given by

P(Ta) 0)

P(TB) 0).

1
[}

P(aij

P(bij

Then it is easily shown that

Var(a;;) = 1 - P(T)

tl

Var(bij) 1- P(TB)’

whereas the expression for the covariance is unaffected by ties:
Cov(aij’bij) = P(S8) - P(D),

as in (4.9).

Therefore the estimate of tau (preferred by Kendall, 1962} is given by

est 1T = est Corr(aij,bij)
(Al.1)
P(8) - P(D)

[T - PTHIIL - P(T,)]

where the probabilities refer to observed relative frequencies. It has

been found that tau estimated in this wav is often relatively unaffected by

grouping of the variables. That is, if a pair of continuous variables are

categorized into 5 or 10 equally probable values we may expect the three corresponding
estimates of T to be quite close in numerical valué. O0f course, it is

impossible to obtain consistent estimates of tau using grouped data unless

- 86 -
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the underlying continuous bivariate distribution is known and the grouping
procedure is under the control of the statistician.
The estimate of gamma used by Goodman and Kruskal (1964) can be viewed
in exactly the same way as Kendall's estimate of tau. Since
v = Corr(a, b, ]?ij £0, bij £ 0)

_ , 37i)
the estimate is given by

est Corr(ai.,b..|a.. £0, b,, #0)

est v i77131%53 ij

= P(5) - P(D)-
R T )

where P(T) = P(T UT)).
a 8 )
In connection with Theorem 4.1 these estimates suggést an appropriate
estimator for the area under the ROC curve which attempts to correct
for the grouping of an observer's decision variable. The theorem proved
that in case the observer's decision variable is continuous
PA = (y + 1)/2.
Since z, is continuous aij cannot equal 0. Thus, in this special case
¥ = Corr(aij’bijlbij £ 0).
According to the preceding estimates we should take

=1
est P, = slest Corr(aij,bij]bij £0) + 1].

Now
- P(5) - P(D)
Cov(aij,bij|bij #0) = = PITy
Var(bijlbij £0) =1,
and Var(aij|bij £0)=1- P(Talbij # 0)

1- p(Ta|TB).

Therefore
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P(s) - P(D)

A - P(T ITI1 - P(T)]

We can obtain a somewhat simpler expression to work with using the following

-1
est PA =3 + 1] . {A1.2)

identities. _
P(T_,T))
= a’ B
PILITY = =5y
i P(T) - P(T,T,)
T -P(T,)
But
P(TG,TB) =P(T )+ P(TBJ - P(T)
SO
_ P(T) - P(TB)
p(TalTs) - P(T,)
and
=~ _ 1 - P(T)
1 - P(T,IT,) = T:'"PTIT';T ,

Thus (Al.2) becomes

" [ P(S) - P(D) ]
est P, = = + 11 . (A1.3)
A2l -emln - p(TB)]}l/2

Al.2 Computation

In this section I develop a common notation for the computational
formulas™of est PA’ est 1 and the trapezoidal estimate Of the area.

Let the response categores for two observed decision variables R and

R' be R . Rm and R!, R!

l’ Rz, b 2’

indicate the greatest confidence in H1 and Rm and Rﬁ indicate the greatest

.y Rﬁ, respectively, where Rl and Ri

confidence for the alternative hypothesis Hy- The observed joint frequency

table is then in the following format:

* Kendall (1962) also gives a similar computational scheme for est T.
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Rj R Lo RY
Ryl f11 | f12 "o fin | f1.
Ry | T3 | £22 e on | fau
Rm fml fm2 to fmn fm=
f.l fez f-n fc [}

To compute P(S) = P(a..b,. > 0) we may take each joint observation and

ij ij

compare it with any other observation in the table. The comparisons which

contribute to P(S) from an observation in a cell (i,j)} are all those obser-

vations in cells below and to the right of (i,j). The total number of

such observations is

m n

fip.
h=i+1 £=j+1 ke

Now the comparison is made with each. of the fij observations in cell (i,j).

Therefore the total number of comparisons in the numerator of P(S) is

. mil nil . % ? .
Dm0 Hogby g M
The dencminator is simply the total number of comparisons
- N=f£ (£, 6 -1)/2.
Thus
P(S) = S/N.
The probability of disagreement in signs is computed similarly as
P(D) = D/N,

where

(Al1.4)

(AL.5)
(Al.6)

(A1.7)
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=

n i-1 j-1

Z f

2 jo2 13 xZ1 pm

o
1l
It £~

WX (A1.8)
i .

Now the number of ties Ta in the decision variable R is simply

m
T, = _{ £, -1D/2 - (A1.9)
i=1
so that
P(T ) = T /N. (A1.10)
Similarly
n
- (f . - 1)/2
Tg _El £,508,5 - 1)/ (A1.11)
3.—
and
P(TB) = TB/N. (A1.12)

Thus from {Al.1l), after slight rearrangement of the N's, we have

est T = S - D (A1.13)

Y(N - Ta)(N - TB)

as the computational formula for est t.

To estimate the area the ROC curve we use the data format given below

R R "ee R
By 1 fn | fi2 e m | fi-
By | fo1 | oz ttT fom | Fo.
fal foz tee fom foo

Now S and D simplify to

mil m
S = f_. f (A1.14)
izl M ojdia 01
m-1 m
D= ] £y £15 (A1.15)
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The number of ties T in either variable is

T=N- (5 + D). - (Al1.16)
Now,
TB = [f1=(f1- - 1) + fO'(fG- - 1)1/2
- 2 2
= [£, « £5, - (£, + £,)1/2
— 2 2
= (flo * fo: - fa-)/z
Thus
N - TB
1 - P[Tﬁ} = —5
- 2 2
_ fco(foc - 1) (flo * fo. fc-)
) - R ) ZN
- _ f__ - fl- - fO-
- 2N

The area estimate becomes, upon substitution and rearrangement,

S-D

S—
va(s + DI(£Z, - £, - £9.)

This estimate of the area is a distinct improvement oveér the one I

est PA =

. % . (A1.17)

proposed earlier (Wilcox, 1967) which was based on using the estimate of
gamma given in Section Al.l.
For comparative purposes the computational formula for the area using

the trapezoidal rule is given below

1 m
. S+3 121 £1if0s -
trap PA = fl-fo- (A1.18)

- For two response alternatives this reduces to the probability of a correct
response

P(C) = PCH)P(H)) + (1 - PA(F)}P(HO)
if and only if P(Hl) = 2(H0) = 1/2. This P(C), of course, is not to be
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confused with the probability of a correct response in a two interval-forced

choice proceéure which, under certain assumptions, is P
,Fof less than 5 response alternatives (Al.18) provides a rather gross

underestimate of the area under the ROC curve. With as many as 10 response

alternatives that are approximately equally spaced in probability trap PA

is almost indistinguishable from est PA‘



APPENDIX 1I
STATISTICS OF LINEAR UNCERTAIN DECISION VARIABLES
The marginal and joint moments for linear-uncertain observers reported
in Chapter IV are derived here.
A2 1 Preliminaries
The decision variable of the linear-uncertain observer ¢ is, from

Equation 3.27,
1 . =
T e + t 2y - R
%4 NO[Auy D&y AauaDa( Y ua)]
To compute the moments of o it is more convenient to express z, in summa-
tion notation. Since Da is a projection operator, there exists an orthogonal
transformation of F in which the equivalent projection operator to J 1is a
diagonal matrix with entries on the diagonal either 0 or 1. Since the trace
of Da is the dimensionality of the subspace F&, the number of 1's in the
equivalent matrix ?s m, = ZW&T = 26&. We shall let Mg = mln{ma,ms} under
the assumption that there exists a subspace FﬁS in F for which FﬁB = Fh‘n FB
and P =F or F _=F_. Thus, the decision variable z_ (with no inter-
aB o af B o

nal noise) in the equivalent representation (i.e., the frequency representation)

becomes

1 Do -
z, = ﬁa.izl [Agrs + Agmys By = w3l

Several further preliminaries are necessary to ease the burden of the
derivations.

Definition. The joint central moment of type (i,j,...,k) for a sequence
o £ random variables (x,y,...,z) is the expectatiomn

pponad ' K

Mg, g OYsees2) = E{X - By - E) ... [z - B2)]).

Thus, ul(xzj is not the mean of x?; ,(y) = uy;(r,y) is the variance of y;

and ull(x,yz) is the covariance between x and 2z = yz.

- 03 -
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(The mean vector M, of an observer's prior distribution will always
containia Greek subscript and so should cause no confusion with the nota-
tion for joint moments.)

Let a, b, and c be independent random variables. We observe that if

w=2ax + by + ¢ whereaand b are independent of X, y; and z, then

ull(w,z) = ullﬁax + by + ¢, 2z)

E(a)u;, (x,2) + E®uy,(v,2) + uy;(c,2).
Further if ¢ is a constant, or independent of z, then pll(c,z) = 0. Of
course, these relations may be generalized to joint moments of type (1,1,...,1).

Finally, we recall that

uy &oy) = E(xy) - E(x)E(y).
Propeosition. lLet y bhave a nommal distribution with mean zero and variance
o? = uz(y). Then, all odd moments of y are identically zero, and the even
moments of y are.given by
Mo @) =BG = o*Tn) 12
for r a positive integer.
A proof may be found in Kendall and Stuart (1958, p. 60).

Corollary. Let Y be a sample of the modified noise vector, i.e.,

. = T, ~ . Then
yl i uni ?

Ey2T) = N (2m) 172775t
The corollary follows from the fact, found in Chapter II, that
uZ(Yi) = NO/Z-
Three independent normally distributed internal noise sources are con-

sidered. e, is added to the input y. 2, is added to the memory-specified

1
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signal vector He € is added to the decision variable itself. The variances,

3

with convenient scale factors are

1l

u2(82i) = NOVZ/Z’
Haleg) = Vs
. The mean of each error source is zero.

The decision variable with ey and e, is
T
za_ -N_O_ Dlo.(ya + eul) 'Da(ya N ealJ
- ‘ i
+A (e )'D (2 +e, ) - bu + e,201s

(A2.1)

where the input y has been given a subscript to allow for the possibility that
two observers may have different-inputs. The noisy decision variable with
criterion variability is

z¥ =z + e

fezo+e . (A2.2)

The decision variable for a second observer 8 is obtained from z; by replacing
each ¢ with the subscript 8. -
A2.2 Derivation of the Mean 3
The m?an z7, may be found directly. Since E(es) = 0,

E(eal] = E(eaz) = 0, and €.1° ©u2° and Yy, are mutually independent, we have

E(zu)

E(z;)

1
ﬁg-{la{E(y&Daya) + E(eéfpaeul)]

* Aa[zuc;tDaE(ya) - u&Dauu - E(e&2paea2)]}

1
ﬁa'{la[E(y&Dayu) * 6aNOchl]
— , ) _
+.Aa[2uaDaE(yu) Ea 6aNOVuZ}}'
When a signal s is present (Hl)” Y, =y + éa. .Then, defining, as in

Chaptei 1v,
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R r = 2RaB/N0’

aB "&DaBuB’ of

Ea = Ruu’ da = ZEa/NO_

we have

1 T ot
B(zg) = Ny [, Ny + E . * S NgVar) + X, (2R, o Eu * SaNgVg0d s

and collecting terms,

E(z) = A [6,0 + V) +,d3u/2] + xa{rasu -d/2 -8V ,]. (A2.3)

A2.3 Derivation of the Variance and Covariance
The covariance between two observers is
e * -
M1 (Zao2g) = up (B * Byga2g * Cgg)

ull(za,zs). (A2.4)

* = + * = + ini bserve .
Let Ye =Y, * ey and HE =Bt e o and similarly for observer B .
Then the covariance becomes

___:_I,-_ *§ * T oyt % o %
ull(za’zﬁ) - N2 Hy [AHG DS+ AgMg Do (g - w3

0 * & % *1 % _ *
AByB DByB + ABNB DB(ZyB uB)].
This may be expanded into four terms:

2 - ™ %
NoH11 (2g0%g) = A Ay [yg Doy ug' Doy

3 * 1 * _ % %1 *
" laABull[ua Da(Zyu uu)’yB DByB]

+ A
a

-

1l Poygve Pe (W' - vl

Ry P - vy g0 - ]

ATy * KAT) + A X To + X X0 (A2.5)

Each of the four terms will be evaluated for two special -cases, namely

fl

where the ohservers are different (¢ # B) and where they are the same {a = 8).
The latter, of course, is the variance. Further, we let Yy, =y *+ s, and
Yg =y * g5 and so consider the possibility that the observers may be

presented different signals. Notice that here i denotes the modified noise
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vector n - u . The first term, T,, will be evaluated in some detail; for

1’
the - other terms the discussion will be brief.

Evalugtion of Term 1.

We first rewrite the moment in summation notation for the appropriate

_equivalent representation space:

T

1= ¥y DYy DY s

m, , e ) )
“ll[izl(yai) ’jél(yBjJ ]

my mB 5 )
121 jzlull[(y;i) e BUE

Now, when i # j the random variables in the brackets are independent regard-
less of the case being considered, so that such My terms are zero. Moreover,

by assumption, either Fﬁ is a subspace of F_, or the reverse. Thus, in the

B

equivalent representation space the summation extends only to Mg = min[ma,ms}.

These comments imply that T, may be simplified to

T

Tag 2 2
. izl (032 082
aB.
=7 T,
i=1 1

where the definition of T1i is implicit.

For o # 8, substitution for Yii and &Ei yields

— 2 2
Ty =Ly * egq3)% Ugs + 814771

I

2 2 ? 2
Wi lOgs * Pi®a1i * %a1iVei T Pei®e1i * %piid

2,2
However, if o = B, we have

- 2 2 2 2
Tyi =100y as) * 10580117 6i%a1) * 1101985100 .

where the obviously zero terms have been dropped. For the second term on the

right of the latter expression we find

g
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X = 2
ullcyaieali’yaieGH) B E( Yai allj - [E (yal al)]
- 2 - 2
E(yg;)E (eall) [E(y ;)E(e ;)]
. - E(yaijNOVal/z’
since E(eai) = 0, For the last term,
ull( ali’ qli) N UZ(eall)
='E(eelll [ECe] a11
_ S(Noval)d i (NOVGI) 2
- 2 2 7
- N2y2
= NOV 1/23
where the proposition was used to obtain E(e! oli }.
Now collecting terms again, for o = B8,
o 2 T (2 2y2
s = #110soYas) + 203 WNoVar * MoV /2
T,, Covariance. Since y . =y, *s,; and yg; =y; * S5 we have

Tys = w1 Dy5075)

it

up [0y * 5302 (g + 56307

uy, vg.vil - 4suissi“11[Yi’yi]
2 2
2(N0/2) + 4saissi(N0/2) .

2
N0/2 + ZNOSGis

Bi®

Therefore,

|
=4
Ny
.
3]
4
N
=2
[
£~
n

2
é BNO + ZNOR

TI’ Varionee.
- 2 2
Tli - ull[(Yi + sai) ’(Yi +5 ‘) }

+ 2E[(y; + sui)2}N0va sz /2
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2 2 2

HEGD + s5INV, * Ngver/2

2 2 2
NZ[L+ V2 o+ 2v 1/2 + WNps2 (1 + V)

Therefore,
- 2 2
T1 = GQN0(1.+ Vul) + ZNOESa(l + val)'

Bvaluation of Term 2
m

of
T, = 21 upplgs vy - wgsds Ogyd ]

SR

al’al B

SR

af

1 [2Tyy, - Tyl
i=1

_ 2
211 © ull[(uu.i * eaZi)(yai ¥ eali)’[ysi * eBli) ]

M1 OaioY8s) + Pgiiia 41197 g1%615)
Taas = ¥13l0iys + €401)% Oy + 41907
= Q. '
Tz, Covariance.
To1i = Mait11lVi * Se0 0 * 5p3)°]
= Mys[28g5007 U701
= NoHosSgs-

Therefore,

It
)
=z
~

oB
Zl {2ugy Dot y2 802 - g [ )2, (rg) %1}
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TZ’ Variance
Toti = MaiPnlVi * Saio Oy * 56507
* 2y [ Oy % sgidensd
= NgtaiSai * PaiSait110% %)
= NohosSes (1% Vop)
Therefore,

T, = MR (1+ V).
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Evaluation of Term 3.
Because of symmetryy 'I‘3 is 'I‘2 with g replacing a.

7., Covariance.,

3’

T3 = ZNORBS
o

., Varignee.

3’

=]
fl

: ZNORBSB(I + Vgy)

Evaluation of Term 4

Ty = wyg[EIDYE - wMD G, Bg Deyg! - wi'Dekg
mas . ,
- * g%
by D Dy wgevgsd - 2003 Dgyvgs o ()%

- 2 2 2
2uy, 03D SMEs Ei] + oyl ’(“si) 1

maB .

izl (4T, - 2T,, - 2T,5 + T,,].

fl

Tap =My l0gg + Sasd Irgs * ogp3) s gy + o3 gy + gy

= BoaMpi M1 Vs sYps] *+ Hyglegg5.841513

* ull[yaieaZi’yﬁieBZi] * Uyple 058011 0882i%p14 ]

2
a2 = Wl ¥ e ) Ugg *+ eyp3)s(ugg * egpi)?l

= u11(ya1 a2i’ “sieszi)'

By symmetry to T,y

Tys = P13 (20,58,05 Y51 %621)

- 2 2
Tag = wypllgg * egp3d % lugy + e5p3)”]
=_4u11[uaiea21’uﬁie821] * u11[ 821]
T g Covariance.
Tgr = Bog¥asbiilys * Spe¥s * gyl
= Nghyi¥pi/2-
T, =T, =T, =0

42 43 44
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Therefore,

T4 =_2N0RaB

T4, Variance.

- 12
Tyy = Mgalug Iy + 545075 + 551 + wpgleq458,4]

gy [+ sp3)e00i0 (g * 544)8404]

*uygleyn3i80017%021%04)

2
Nohgs (1 + V)2 + uy Iy 0557580051 + sgiM11 800158405 ]

* E(edy;.25y4)
= No{uii(l * V)¢ siivaz]/2 + N%Vaz(l +V 4)/4.
Typ = 23, [0y + Sy3)e0504,:8005]
N 2uaisaiull[ea2i’ea211
= NoHaiS0i Va2
T4z = Bo¥ei50i Vo2
Taq = i1 0001080211 * ¥110800198004]
= MougiVyp * NGV2,/2
Therefore,
T, = NG [E (1 + V) + Esavaz] + 26GN5(1 * V10V,
- 2N{}Rasava2 * WGE Voo * SuNSV§2

! ) * E
Evaluation of nll(za,zs)
Having completed the derivation of the individual terms of ull(z;,zg)

in the previous sections, we may collect the terms as defined in Equation A2.5.



- 103 -

Covariance. Yo =Y * Sy Yg =Y *+ 5y

Mo, (2*,2%) = A A J6 , + 1 T+ 2 A
11 a’"8 a B aB sg§§: a B asg (A2.6)
lal B]’.‘uB

+ AGABTBSG +

Variance. y_ =y + s
o v Ca

= 12 2 %
u2(z;) - Aa[sa(l * Val) * dsm(1 * Val)} * ZAqAarasacl * Vul)

=
+ Aa{GGVQZ{Z(l + val) + VaZ] + da(l + val + Vaz) (A2.7)

* (as - rasa}VaZ} * VaS

o



c, (t)
Corr( , )

Cov( , }

APPENDIX 1II

GLOSSARY OF SYMBOLS AND TERMS

2Tit

the coefficient of cos in the
finite Fourier series .approximation to

x(t).
signum éf the difference z . - z . and
Z,. = Z,., respectively. oL )
Bi Bj’ . )
the matrix of a filter A.
the coefficient of sin Zmit in the

finite Fourier series approximation to
x(t).

a matrix such that A4 = B'B,

short hand for E cos 2%-3—'3

population correlation of the arguments.
population covariance of the arguments.

the matrix of an orthogonal linear trans-
formation,

standardized energy: 2E/N0. L
standardized energy of the signal vector s.

standardized energy of the signal vector s
presented to observer a. If s is the nul
. o
signal 0, ds = 0.
a
standardized energy of the memory-specified
reference signal L

the square-root of the standardized energy d.

Vd
- 8
sensitivity index of the decision variable z.

dé for observer a.
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det .

Dﬂ

DuB

Double-probability papex

al

oz

EC)
£()

Fy(2)

F;(2)

False-alarm rate

g(s)

- 105 -

determinant.
a projection operator matrix for observer a.

the product DaDB'
graph paper linear in both coordinates with
standard normal deviation scores.

.an exyor term added to the decision variable

Z.

a random error vector.

- a random error vector added to the modified

input y for cbserver o.

a random error vector added to the memory-
specified reference signal Moo

the énergy of a constant signal waveform
of duration T.

the energy of s,

the energy of My

the signal energy necessary for the ideal
observer to performance at the level as
observer ¢ who uses the decision variable Z,
the expectation operator.

a density function of the argument.

]

the cumulative distribution function of z
conditional on HO'

the cumulative distribution function of z
conditional on Hl' -

the frequency representation space.

a subspace of F generated by the projection
operator Da.

same as P(F).

an a priori density function of the signal s.
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G(s) the cumulative prior distribucion of s.
h, (x),hy(x) the distribution densities of the imput
’ known to an observer conditional upon
~H1 and HO’ respectively.

Hl’HO the experimenter-specified hypotheses of
signal-plus-noise and noise-alone, respec-
tively.

Hit-rate same as P(H).

I an identity matrix.

Iso-bias curve jargon for the curve which cuts across
a family of ROC curves at points of
constant slope.

in () the natural logarithm of the argument.

2(x) ‘ the- likelihood ratio of .

M0/2 _ the imprecision (variance) of an observer's
specification of a single component of the
signal in the frequency representation space.

nj the jzh-entry in a noise vector sample 7,

[ a sample vector of the noise random vector
i,

n a random noise vector.

e a sample noise vector explicitly repre-
sented in F.

n(t,n) a stochastic noise process specified by
the random vector # as a function of time.

N . the total average power of a bandlimited

) noise process.
NO the noise power per unit bandwidth N/W,
N(u,2) a multivariate normal density function with

mean vector v and dispersion (variance-
covariance} matrix ¥. ’



Observer

P( )
P(C)

P(D)

P(F)

P(H)

P(s)

P(T)

P(T),P(Ty)

Psychometyic function
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a subject or device in a detection task;
when the stimulus is acoustic subjects
are also .called "listeners" and devices
"receivers'.

the area under an ROC curve.

the probability of an event.

the probability of a correct decision.
The meaning of "correct' depends upon the

context.

the probability that jointly observed

. differences have Different signs. D is

the event a..b.. < 0.
1] 1]

- the probability of a "false-alarm", i.e.,

P(say H IHQ true). P(F) is also referred
to as the "false-alamm rate'" or the '"incorrect
detection rate'.

the probability of a "hit", i.e.,

P(say H, |H, true). P(H) is also referred
to as the Mhit rate" or the "probability of
{correct) detection'.

the probability that jointly observed differences

have the same sign. S is the event
a..b.. > 0.
13 1)
the probability that either one or both of
jointly observed differences are zero., T
is the event a. .b.. =10
13 1]
the probability of a tie in two independent
samples of a random variable. T0£ is the
event a.. =0, T, is the event™ b.. = 0.
1] B ij
'a graph of the relationship between a per-
formance index and a physical measure of de-
tectability.

the precision matrix (I + ZS)_I

- .. 91
the precision matrix ;n .
the standardized inner product (or cross-

correlation) of the vectors M, and s,
i.e., ZuéDus/NO.
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r the standardized inner product of the
0B vectors ¢ and p,., i.e., 2u D _u,/N..
a g’ P Pa a8 0

Tos the standardized inner product of the V

1 1t
8 vectors By and SB’ i.e., QUQDQSB. When
8g = o, Too = 0. When 8g = &5 Too = Tyo

B B

7 - a reésponse vector.

Rl’RO acceptance regions in the representation
space for the hypotheses H, and H,, respec-
tively. R, is also called the criterion
region.

RaB the inner-product (cross-correlation)

1 .
”aDaBuB'

ROC cuzrve the theoretical curve (the receiver operating
characteristic) [P(F),P(H)] generated by a
decision variable z for discrimination
between the hypotheses H1 and HD'

2 . 2wnit
.{t ™ .

sl( ) short hand for,lT sin =

s(t) a constant signal waveform defined for
0<t<T.

sy () the Hibert transform of s(t).

& a signal vector representing s(t).

8] the representation vector of sljtJ.

&, ; the signal vector presented to observer a.
Usually on H, trials & =g and on H

. 1 o 0
trials s ="0.
) o
T the time interval over which x(t) is repre-
' sented. Also, the duration of the presen-
tation interval.
7 the temporal representation space.
U&,V the variance, relative to N /2, of a
al . g
component of e, ore., if the observer
is specified.
Vs Vo the variance, relative to N,/2, ofa component

of e, or e
o

2 2



._]:{)9..

30 o3 the variance of e3 or. ea_3"
Var( ) the population variance of the argument..
W the bandwidth of the noise process.
W the equivalent square bandwidth of the
{hypothetical) interval filter of observer
a.
w&B _ . the minimum of W, and W , i.e., the overlap
. in bandwidth of the interval filters for
observers o« and B.
: .th .
X, . . the i— entry in the vector .
x(t) . a waveform; the input waveform sample
presented to an observer.
x(t) the finite Fourier series approximation to
x(t).
‘®(j/2 W the value of x(t) at t = j/2 W.
& a representation vector for x(t).
Te the representation vector of x(t) explicitly
with coordinates in the frequency represen-
tation space F.
xf the transpose of x.
]]xl] the length of x, i.e., vx'x:
X the sample space of vectors x. X may be
interpreted as either T or F.
Y the mod%fied input vector x - W,.
y* Lyt
2 a decision variable.
2, a particular value of z.
zp the "perfect" decision variable.
2 the decision variable of ocbserver a.



al

al

A
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2 value of z conditional on Hy-

a value of'zu conditional on HI'

the decision variable of observer o aug-
mented by including various interval
sources of error.

the decision variable of the ideal
observer.

a label for an observer.

(1) a label for an observer;
{(2) a cut-off value of a decision variable
z which determines an acceptance region
R
1°

the Goodman-Kruskal coefficient gamma.

short-hand for the bandwidth-time product
W T. )

o

short-hand for wuBT'

the relative uncertainty parameter

= MO/(MO + NO).

short hand for 1 - Ay

the efficiency of an observer.

the th-temporal interpolation function.

the linear correlation between the decision

variables z and z,.
o B8

the correlation conditional upon H1 or HO’

respectively,

variance.

the dispersion matrix zn + zs.‘

- the dispersion matrix of the noise process.

the inverse matrix of Xn.

the dispersion matrix of an observer's prior
specification of the signal s.



=
[ Wy,

L
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Kendall's tau.

tau conditional upon H, or Hy, respectively.
the vector sum LU
the mean vector of the noise process.

same as s (for consistency-in notation).

the mean vector of the observer's prior
specification of the signal.

the vector sum u_ + e ,.
o a2

a standardized moment of type (i,j).
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