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ABSTRACT

Manned space flight offers the opportunity to couple the astronaut/scientist’s ability to select and
process data and to calibrate, modify and repair instruments with the vantage point for
astronomical observations provided by a platform located above the Earth’s atmosphere.

This paper briefly examines the role which manned space flight may play in the 1970-1990 time
period in meeting astronomy research needs. The instruments and facilities which appear feasible

for that period are described.
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INTRODUCTION

The unparalleled research opportunities offered by our current capability to launch large payloads
into Earth orbit are perhaps nowhere more evident than in astronomy and astrophysics. The
terrestrial atmosphere, while essential for life as we know it, is a major hindrance to astronomical
observations from the surface of the Earth,

A summary of the transmission properties of the Earth’s atmosphere and ionosphere is shown in
Figure 1. The atmosphere is totally opaque to radiation of wavelengths shorter than about 29004,

e., the UV, X-ray, and gamma ray bands of the electromagnetic spectrum. This radiation is
absorbed by ozone, oxygen, and nitrogen in the atmosphere. As a consequence, astronomical
sources which emit strongly in these bands cannot he observed from the ground to full advantage
(as in the case of hot, early-type stars), and in some cases cannot be observed at all (e.g., some X-ray
sources). In the IR wavelength region (0.7 to 100u) and in the submillimeter and millimeter region
(100u to about 10 mm), water vapor and carbon dioxide absorb in broad bands leaving scattered
wavelength windows of varying transparency. In this large region lies the emission maximum of all
stars with effective atmospheric temperatures below 5,000°K, including the interesting
pre-main-sequence objects, plus interstellar clouds and sources of synchrotron emission (e.g., quasi
stellar objects). The Earth’s ionosphere attenuates radio waves longer than 30 m (frequencies less
than 10 MHz). The solar corona and the trapped particle belt surrounding Jupiter are known to
emit in the VLF radio band.

In addition to the inherent attenuation of the atmosphere, variable conditions such as cloud cover
can block all radiation except the middle radio wavelength band. Poor weather has traditionally
driven astronomers to mountaintop locations in the arid regions of the world. Even there, the clear

INTERSTELLAR SPACE
TRANSMISS1ON THROUGH

100 PARSECS
1 PARSEC
I—- EAR SPACé;
1.0 /
Y/

T

|

!
i 1

|

i

l

0.8 |~

//

GEOCORONA
AT 10,000 KM — |_

| o

T

=
o ™~
(

N W

—— 4+ -+ —F +

TRANS PARENCY

e e e o -
o NN &S o0 oo ©

ATMOS PHERIC

-.-——-.J_————.-,.—.._.A_.(._-—-—

r_d_-——___— .—_I

)

| 1
! it 10 ¢ 0 10 ANGSTROMS
micRons 10¢ 10! 10 w0l a2
meters 104 102 10 102 164
Figure 1. Electromagnetic Energy Transmission WAVELENGTH




sky varies in opacity and the microfluctuations of the refractive inde:x of air cause scintiliation and
distortion. Under the best of viewing condition., the Earth’s atmosphere diffusely scatters light
from the sun, stars, and artifical sources. It also contains two sources of line emission, the air glow
and the aurora. As a result the sky is not black; even on the darkest, moonless mights, sky brightness
affects the astronomical spectra,

A final point to be considered is that even in the spectral windows through which *seeing” from
Earth is practical, removal of the neutral filtering effect of the atmosphere through nse of a
platform in space would permit an increase in distance pcnetration of more than an order of
magnitude, i.e., from about 400 m-parsecs or 10? light years (the distance to Bootes cluster), to
5,000 m-parsecs (sce Figure 2), i.e., greater than 10'0 light-years. This distance is beyond the limits
of the universe as predicted by most cosmologists!

To date, with the exception of high-altitude aircraft and balloon flights, the potential of space has
been restricted to unmanned probes and satellites. Sounding rockets have carried radiation detectors
to the outermost fringes of the atmosphere with spectacular results even though the observing times
arc limited to several minutes. Currently, the Orbiting Solar Observatory spacecraft (OSO series)
and the Radio Astronomy Explorer (RAE-A) are recording solar phenomena and surveying radio
frequencies respectively.

In view of the scientific richness of these programs, it can be anticipated that design and
development efforts for unmanned satellites such as the OSO, Orbiting Astronomical Observatory
(OAQ) and the “Explorer’ series will continue in the near term.
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With the advent of manned spaceflight, however, the astronaut/scientists’ ability to select and
process data and to calibrate, modify, and repair instruments can be coupled with the vantage point
for astronomical observations ubove the Earth’s atmosphere, to yield an unprecedented opportunity
for advanced research and observation.

In spite of its vast potential, manned space astronomy will involve relatively large capital
investments and generally be limited to orbits where “‘standard” recovery and communiation
facilities can be utilized. Because of this, unmanned satellites may continue to offer attractive
advantages for certain classes of observations which require simple, reliable instruments and for
observations requiring unique orbital characteristics.

Thus, while the opportunities for important astronomical research from a platform in Earth orbit
are clear, significant planning questions arise. For example, what is the role of manned space
vehicles in space astronomy? Granted that unmanned probes have demonstrated the value of
observation from space, to what degree can the advent of manned operations in space be capitalized
upon to further the aims of space astronomy? Considering the real-life constraints of limited fiscal
and intellectural resources, is there an orderly plan which can be suggested for the accomplishment
of a meaningful and significant research program? This paper examines the role which manned space
flight may play in fulfilling the most critical research objectives of the astronomy community.




THE ELEMENTS OF APROGRAM PLAN--FUTURE MANNED FACILITIES

In developing a Program Plan for Earth Orbital Astronomy, the authors have drawn heavily upon
the recently completed Orbital Astronomy Support Facility (OASF) study conducted by the
McDonnell Douglas Astronautics Company - Western Division for the Marshall Space Flight Center
of NASA.* The specific purpose of that study was: (1) to identify and analyze elements of a
long-range evolutionary plan for the 1974 to 1990 time period that would fulfill the needs of the
scientific community to as large an extent as possible, with flexibility for change as new data about
the universe stimulate new objectives; and (2) to assess the requirements which such a long-range
space astronomy program would place on manned orbital facilities.

In developing the approach to this plan, the study team was faced with several significant
challenges. First, it was important to recognize that long-range programs of national scope require
considerable time for the development of necessary systems and equipment. Long-range planning is
therefore desirable because it offers the promise that necessary long-term fiscal commitments can be
made and that the systems and equipment required will be available by the time they are scheduled
for use. Yet, the team recognized that in scientific disciplines, unexpected rather than planned
events often contribute most significantly to scientific insight, and such unexpected discoveries
could well influence subsequent planning.

Furthermore, while rigid research plans may facilitate the design of the space instruments, they may
stifle innovative research. Recognizing these aspects, the study team sought to develop an approach
that would provide concepis structured well enough for initial planning and for the derivation of
instrument and space station designs but flexible enough to permit change and individual
contributions and participation.

To accomplish the systematic definition of astronomy program requirements, the OASF study was
organized into three major tasks. Task A was the development of a comprehensive baseline research
program and the establishment of space-dependent measurements and missicn requirements. Task B
was the identification of astronomical instruments, the conceptual design of new instruments, if
necded, and the preparation of development plans for time-phased instrument groups. Task C was
the definition of orbital facility concepts, the specification of the scientific instrument groupings
for each concept, and the definition of the operational interface between ground and flight
facilities. Critical supporting research and technology development items to support the
¢volutionary program plan were also identified.

The OASF bascline research program was prepared by a team of specialists using general and
specific recommendations from members of the scientific community. The scientific consultants
provided the major source of iiiiurmation for the formulation of research requirements. Their
rccommendations and advice wcre used to derive specific research objectives and to determine
quantitative requirements for observations and measurements. At several points in the period of
information generation, progress was reviewed with cognizant NASA agencies and the scientific
contributors. At all times, a diligent attempt was made to produce a research program scientifically
valid for the 1974 to 1990 period on the basis of the present understanding of the universe and the
anticipated research needs.

At the start of the work, astronomical objectives were dofined in terms of research steps or
questions, rather than in terms of physical objects. With fundamental research as the starting point,

various subobjectives were established, together with their attendant observation or measurement

*Contract NASS-21023,




requirements.  These  requirements  were summarized and  documented on 91 Observation
Requirement Data Sheets (ORDS). Approximately 50 parameters were tabulated on each of the 91
forms. Of these parameters, those considered to be basic in establishing observation requirements
were Epoch Span: Wavelength: Radiation Flux; Number and Frequency of Observations: Angular
Field of View; Angalar Resolution: and Accuracy of Data Required. Other entries were
mission-oriented or represented initial estimates of data and of instrument characteristics. These
estimates were iterated and augmented during the study to achieve a more refined set of observation
parameters.

The ORDS described measurements across the electromagnetic spectrum except for two regions.
One region was the sector from approximately 1 ¢m to 20 m in wavelength. This sector was not
examined in depth because of the general transparency of the atmosphere in this spectral region.
Similarly, it was believed that adequate data in the millimeter and submillimeter regions could be
obtained at much lower cost by using ground and aircraft observatiors,

While the requirements summarized on the data sheets were considered valid examples of potential
orbital astronomy activities, they were neither research proposals nor an exhaustive grouping of
potential orbital observations. Nevertheless, the measurement descriptions were sufficiently detailed
to provide the initial analysis of needs for instrumentation and support facilities and for
identification of necessary technological advances.

The measurement requirements defined in the ORDS were grouped into classes according to the
degree of similarity of their characteristics. Generic classes of instruments were then identified
which could satisfy the discrete groups of measurement requirements. Figure 3 gives an example of
this process using stellar and planetary observations for the IR, visible, and UV portions of the
spectrum. Each vertical linc indicates the wavelength range and the angular resolution required in
onc of the ORDS: the dot indicates the wavelength at which the angular resolution was specified.
Study of the groupings of observation requirements with respect to the diffraction limitations
inherent in optical telescope performance (sloping lines) and consideration of the observations
available from ground-based observatories (shaded areas), led to the identification of general
instrument classes providing the specified capabilities. The considerations illustrated were the first
step in a sclection process that eventually led to the suggestion for four types of instruments for IR,
visible, and UV measurements:

A. A wide-angle telescope (0.3-m aperture UV Schimidt) for sky survey work in the UV region,
similar to sky surveys that have been made in the visible region with ground-bascd Schmidt
telescopes, and capable of being upgraded with an advanced version (1-m) in later years for
more advanced sky-survey requirements,

B. A telescope of large aperture but less than the highest quality optics (1-m, aperture,
non-diffraction-limited, UV-visible) to provide adequate capability for significant
spectrographic observation in the UV region and for some UV imaging.

C. A large-aperture, high-quality-optics  telescope  (1-m, aperture, diffraction-limited,
UV-visible-IR) for observations with a finer angular resolution than possible from
ground-based telescopes in the visible region, and for fine-angular-resolution observations in
the UV,

D. A very-large-aperture telescope (3-m, aperture, diffraction-limited, UV-visible-IR) to extend
the angular resolution of both visible and UV observations, which is a generation later than
the 1-m diffraction-limited telescope.
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Figure 3. Observation Commonality Assessment

Similar analyses which were conducted for each of the other measurements areas involved a
preliminary consideration of over 60 different instruments. NASA-furnished information on
instrument concepts and designs was used where possible to take advantage of experience from
previous and current design activities; where no data existed, new instrument designs were
conceived.

The study team reviewed the instrument designs with scientific contributors and instrument
specialists. As a result of these discussions, more promising design approaches were made possible
and many design criteria derived from the consultants’ collective experience were included;
consequently, 29 generic instrument types were defined which are considered as meeting projected
orbitai observation requirements through the 1990 period.

Three time periods were used to categorize the evolving level of sophistication of manned space
operation, in general, and astronomical research, in particular. These periods were designated early
(1968 to 1973), intermediate (1974 to 1979), and late (1980 to 1990). The early period reflected
the short-duration {30-day) Orbital Workshop-Apollo Telescope Mount (ATM-A) mission capability.
The intermediate time period reflected a more sophisticated 1- to 2-year space station. The late time
period was predicated upon a six- to nine-man extended life (5-year) space station which could be
anticipated as evolving into a national multipurpose facility in the late 1980’s. These space facility
concepts were treated as representing classes of available technology, rather than as fixed
configurations modified specifically for astronomy. Because the initial Apollo Telescope Mount
(ATM-A) effort has been already defined by NASA, the OASF study emphasized the ATM-A
follow-on or intermediate period (1974 to 1979, i.e., post ATM) and a late period (1980 to 1990).
Table 1 describes the characteristics of the 19 generic instrument types suggested for the
intermediate and late time periods.




Of the 29 generic instruments identified in Table 1, 22 were based on current
instrument-development activities. To provide the information required for Task C, each instrument
in the time-phased groups had to be brought to a fairly uniform level of conceptual design. As
appropriate, instruments based on known designs were adapted or modified or new conceptual
designs were provided. During the conceptual design process, provision for crew pariticpation in the
in-orbit operation of the instruments was reflected in the designs wherever this was judged to
provide the greatest effectiveness.

Analysis of crew operation of various instruments indicated a significant role for main in the
astronomy program. Crew members are expected to participate in orbital astronomy operations
with all instruments, but to varying degrees. Radio telescopes are essentially automatic; however,
man may prove valuable for corrective or periodic maintenance and modifications.

With optical telescopes, man is involved in nearly all functions; i.e., from updating or replacing
sensors or changing film cassettes, to locating specific observational objectives such as areas of high
solar activity. The crew may not be required for operating and monitoring radiation counters.

The manned orbital facilities (O.F.) assumed to be available in the time periods of interest are
illustrated in Figure 4. They included two of the Earth orbital space station (EOSS) class, 2-year,
six-man space stations in low-altitude (200-nmi), low-inclination (30° to 50°) orbits in the
intermediate period. As noted above, in the late time period, the stations were visuaiized as evolving
into S-year, six- to nine-man manned orbital researck laboratory (MORL) class stations in
low-altitude, low-inclination, and polar orbits; then, into a long duration, national multipurpose
facility in a low-inclination, low-altitude orbit. Also considered were a series of short duration,
nonresuppliable missions to synchronous orbit. The orbital facilities utilized have been numbered
from one to eight, in approximate order of launch sequence.

The alternatives for housing and operating instruments in the various orbital facilities can be
classified into three general cateogires:

1. Integrated—-The instrument is attached to, and wholly dependent on, the manned
space-station subsystems (propulsion, power, data management, crew systems).

2. Semidetached (Intermittently-Detached)-The instrument module can operate for limited
times, independently (free-floating) of the manned space station and must have all
subsystems required to support itself as an independent satellite. This module’s normal
mode of operation is attached to the space station.

3. Detached--The instrument’s mode of operation is as an independent, free-floating satellite,
station-keeping with the manned space station and dependent on it for maintenance, repair,
resupply of consumables (e.g., propellants and film), modifications of instruments, possibly
some data management, communication, and experiment program sequencing commands.

To determine general guidelines in optimal operations-mode (integrated, semi-detached, detached)
selection, the unique requirements for radio, optical (IR-visible-UV-XUV-longer than 1A), and
high-energy radiation (X-ray to cosmic ray-shorter than 1A) observations, were examined in some
depth.

Earth-based and low-altitude radio telescopes are limited in their usefulness below roughly 30 MHz
by the reflection, absorption, refraction, and polarization rotation effects of the ionosphere. The
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Figure 4. Mission Plan Forecast

most highly ionized part of the ionosphere is the F-region. Above the F-region ionization maximum,
the electron density falls off, to merge eventually with that of the plasma surrounding the sun. A
long-wave radio astronomy antenna placed above the F-region can both receive signals from outside
the Earth, and be freed from radio noise generated on Earth by the shielding of the ionosphere.

The orbit altitude should be such that the local electron density must be << 9 elec./cm” and the
plasma frequency (f =9 He”2 kHz) must be < 0.5 times the minimum operating frequency (50
kHz). These conditions exist only above the 12,500-mi (20,000-km) altitude.

Besides the requirements for very-high-altitude orbits, which would seriously limit the time available
for manned operations, radio noise interference can be expected to increase near any manned
spacecraft. For these reasons, an unmanned, detached antenna configuration /as suggested as the
normal operating mode for radio astronomy.

Because high-ernergy radiation devices can tolerate coarse attitude control and are not subject to
appreciable degradation by spacecraft effluents, it appeared that this class of instrumentation could
be integrated into the basic space-station configuration, or operated while attached to the station,
without the need for sophisticated mounting provisions.

The selection criteria for the operations mode of the optical group were less obvious and it was
necessary to examine the factors which could influence operations-mode selection for the optical
instruments in greater detail.

Selection and recommendations for optical telescope operatinons modes were based on (1) scientific
and technical performance, as affected by such factors as optical environment contamination,
radiation effects, attitude hold (dynamic isolation). thermai stability, and data management; (2)




operations, as affected by flexibility for modificaticns, maintainability, reliability, useful life,
multipurpose missions impact, discretionary payload, and schedule flexibility: and (3) cost. In
general, the optical group of instruments was characterized by precise attitude-hold requirements (1
arc-sec or lower) and sensitivity to spacecraft effluent environment.

Figure 5 summarizes the criteria which were investigated in attempting to evaluate the potential of
integrated, semi-detached, and detached modes of operations for the optical instruments. Each
mode carried certain advantages and penalties. The potential problem of environment
contamination in the vicinity of a manned space station favored detached module operation. The
potential need to store data on film to avoid saturating the data transmission capabilities, favored
integrated operation (in view of the potential for better shielding provisions on a manned space
station using ecological water). Dynamic isolation of instruments can be achieved in any operational
mode but may be easier to accomplish in a detached module. Detached and semi-detached modes
obviously offer advantages in improved schedule flexibility (equipment does not need to be
launched with a space station), and reduced impact on station operations when several different
observation programs must be accomplished simultaneously. Although no one factor could be
determined which would make one mode of operation mandatory for optical instruments,
examination of the factors considered to be most critical (i.e., environment contamination, dynamic
isolation, data management, maintainability/reliability, multipurpose mission impact, and schedule
flexibility) suggested that a detached module concept for housing optical instruments offered
considerable potential and should be explored in greater depth.

The generic classes of instruments proposed for each of the eight orbital facilities is shown in
Figure 6. The observation programs and their associated instruments generally evolve from simpler
survey or gross data-collection tasks to detailed observations of faint, small sources requiring larger
apertures or more sensitive detectors. The demands on orbital-facility resources correspondingly
evolve to more precise pointing, greater data-handling capability, stricter thermal control, less
optical environment contamination, and specialized orbits for long-term uninterrupted viewing of
celestial objects. This growth is reflected in the distribution of instruments among the orbital
facilities.

The synchronous missions (No. 1, 6, and 7) are utilized in this plan only for radio astronomy
because of the unique requirements of radio observations. If man is present, crew duties might
involve radio telescope deployment, checkout, and monitoring of initial operations. The crew would
then return to Earth after 14 to 28 days, leaving the automated instruments behind. A possible
alternative would be to conduct the entire radio astronomy mission in an unmanned mode.
Determination of the optimal degree of involvement of the crew in these synchronous missions
remains to be investigated.

The low-altitude, low-inclination missions (No. 2. 3, 4, and 8) would be visualized as supporting
evolving groups of instruments in other regions of the electromagnetic spectrum, from gamma ray
detectors through IR detectors. It is anticipated that other instruments besides the 3-m telescope
(Reference 3) will probably orbit with the national multi-purpose facility (iVo. 8). The design of
other instruments for use in this time period, however, must wait for the results of the earlier
astronomy programs.

The polar mission (No. 5), if placed in a sun-synchronous orbit (98%), would offer a unique
opportunity for continuous viewing to an array of advanced solar instruments. The gas Cerenkov

counter would be planned for polar orbit to allow observation of cosmic ray electrons down to 0.1
GeV.
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Figure 5. Operations Wode Comparison

The synchronous orbit is most desirable for general observations of the celestial sphere. From
synchronous orbit, any portion of the celestial sphere can be continuously viewed for periods of at
least 24 hours. In lower altitudes, a 98° orbit provides continuous viewing for most of the ecliptic
plane, relatively small portions of the galactic plane, and short viewing periods for both the center
of the Galaxy and the galactic poles. A 50° orbit provides limited continuous-viewing capability for
a small portion of the ecliptic plane, and for the plane, poles and center of the Galaxy. Each of the
low Earth orbits can view all of the celestial sphere for short periods of time.

Long-duration solar viewing can be obtained only in a sun-synchronous, or near-polar orbit. For
each orbit altitude, there is only one orbit inclination that yields the required precession of
0.936°/day to achieve a sun-synchronous orbit. Deviations from this ideal would reduce the time
for continuous viewing. For example at 200 nmi, the optimal orbit would be 98°. In this orbit,
however, only about 210 days would be available for continuous-viewing, assuming a 100 km
critical atmosphere height; this reduces to less than 30 days of continuous viewing in a 200 nmi
orbit at inclinations of 90°. Longer periods of continuous viewing would be possible in
higher-altitude orbits (above 500 nmi).
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CONCLUSIONS--EARLY MISSIONS ARE
TECHNOLOGICAL STEPPING STONES

The emphasis in manned solar and stellar astronomy in the early time period should be primarily
directed toward conducting coarse surveys in the UV, X-ray and gamma-ray and toward the
development of operational capability with manned vehicles. Ultimately, the highest probability of
significant scientific return can be realized if the ATM-follow-on missions are directed toward
obtaining a better understanding of the role and primary contributions of man before large-scale
commitments are made to the more sophisticated facilities of the late time periods. These early
missions would provide a needed platform to answer the many technology-oriented questions upon
which future design will be predicted, such as those relating to design criteria and operational
techniques for space servicing operations, evaluation of candidate operating modes, determination
of man’s role in data taking, and demonstration of precision pointing and control techniques. Based
upon early mission success, it can be anticipated that the first major long-term scientific facilities
for astronomy which are capable of effectively utilizing man’s working participation would become
available in the intermediate time period.

While the vievs presented herein may be somewhat optimistic and it is recognized that
achievements are more highly dependent upon budgetary than upon technical limitations, the
tremendous potential before us does indeed stagger the imagination. Coupling man’s capabilities
with the vantage point of space will provide a dynamic and viable platform for unprecedented
opportunities to learn more of the universe and even, perhaps, of our eventual destiny.
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