
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

X-711-69-320
PREPRINT

NA 01Q	 ..._ (c 3l^ 3a.

RECENT I"APROVEMENTS
I N THE SDP-3 COMPUTER

r

RODGER A. CLIFF

AUGUST 196.

i90	 GODDARD SPACE FLIGHT CENTER
GREENBELT, MARYLAND

N69- 35442
n

I	(ACCESSION NUMBCR) --	 (THRU)
a
O

(PAO[S)	 (CODE,n
	04ASA CA OR TMX OR AD NUMDERI	 (CATEGORY)

X-711-69-320
PREPRINT

1

RECENT IMPROVEMENTS

IN THE SDP-3 COMPUTER

RODGER A. CLIFF

AUGUST 1969

GODDARD SPACE FLIGHT CENTER

Greenbelt, Maryland

Recent Improvements in the SDP-3 Computer
By R. A. Cliff
Mr. Cliff is in the Flight Data Systems Branch, Spacecraft Technology

Division, Goddard Space Flight Center, Greenbelt . Maryland

Abstract.-The SDP-3 is a small serial computer which will be flown
as an engineering experiment on the IMP-I (eye) spacecraft. In this ap-
plication it will handle data acquisition for four of the scientific experi-
ments. Modifications to the SDP-3 which improve its operation with little
change in hardware complexity include: (1) permitting full-word indirect
addressing in user mode for all instructions which do not modify the con-
tents of memory, (2) extending output channel capability to cover all of
memory, (3) a new subroutine linkage instruction, (4) a conditional skip on
memory zero instruction, (5) byte oriented instructions, and (6) improved
index register manipulation instructions. The use of 8-bit MSI shift regis-
ters produces a significant hardware and power saving at the expense of
deleting all left-shifting, instructions. Further hardware savings are
realized with a speci.-i multiplication instruction which allows the :4Q
register to be delet<sd. As a result of these, and other, modifications tn.
power dissipation of the SDP-3 has been decreased by 2/3 watt and the
number of IC's by 260 while in most respects operation has eitl-er been
unchanged or improved.

Introduction.-The SDP (Spacecraft Data Processor) series consists of
various small stored-program computers designed for small unmanned
scientific spacecraft. These computers are designed to do data compres-
sion, data formatting, and control functions for the scientific experiments.
The SDP-1 is an extremely small machine of limited capability. (Ref. PD
It is a serial machine with a 12-bit --rd, 512 words of scratch pad mem-
ory, and 1024 words of NDRO prog rain memory. We have done a number
of experiments with this computer in order to determine its capabilities
and limitations. We have done these experiments both with a simulated
SDP- 1 and with actual hardware. We plan to report on these experiments
in another paper.

The SDP-2 is a "paper" machine for which the design was never com-
pleted. It was dropped in favor of the more promising SDP-3.

The SDP-3 computer was designed to be the core of the on-board data
processing system of a proposed advanced IMP (Interplanetary Monitoring
Platform) spacecraft. We are flying the SDP-3 in an off-line mode as an
engineering experiment on the IMP-I (eye) spacecraft. In this application
it will service 4 scientific experiments.

With the incorporation of increased capability and a more serial
architecture the SDP -3 became the SDP-3A. The SDP-3A (Ref. [2]) and
its application to IMP-i !Ref. [3]) have been described previously. This
paper covers an improved version of the computer--the SDP-3B. This is
the version which will fly on IMP-I. A block diagram of the SDP-3B
appears in Figure 1.

Two types of changes have been made to convert the SDP-3A to the
SDP-3B. The first type is accomplished by small modifications to tho
hardware. These changes can have significant effect on the utility of the
computer by greatly improving its efficiency in certain applications.

I

Many of these modi:ications appear as changes in the instruction set of the
computer. They are summarized in Appendix 1. The second type of change
involves extensive modification of the hardware. The object of this type is
to reduce either the amount of hardware or the power drain for both) with-
out s;gnificantl •f degrading the capability of the computer. The two sec-
tions which follow cover these changes in detail.

Changes Which Improve Performance .-A review of the SDP-3A design
revealed that improved performance could be easily obtained, at little or
no cost in hardware, simply by changing a few connections between regis-
ters or moving a few wires in the control hardware. These changes are
discussed below.

Interpage Access in User Mode .-The SDP-3 memory is divided into
pages of 256 words each. A prograin in one page can communicate with
another :age only through indirect addressing or via the LINK instruction.
In the SDP-3A design, interpage access by indi .-ect addressing is blocked
when the computer is in ''User'' mode. For program protection, all pro-
grams other than the Time Sharing Monitor (TSM) are run in the user
mode. Since the LINK instruction is controlled by the TSM, this effectively
prevents undesirable interaction between the various user programs.

It has been discovered, however, that several of the user programs will
require more than one page of memory. The only possible communication
between the several segments of one of these programs is via the LD4K
instruction (that is through the TSM). Unfortunately this mode of corn-
mu.nication involves a large amount of overhead.

The problem is solved by permitting user programs to employ indirect
addressing to access any word in memory for those instructions which do
not modify the contents of memory o: transfer control. Instructions which
do modify the contents of memory or transfer control retain the previous
restrictions on interpage access. They hardware required to produce this
functional change is minimal. Previoasly the mode flip-flop enabled frill
indirect addressing. Now the mode clip-flop OR'ed with a SVbset of the
outputs of the instruction decoder is used to enable full indirect addressing.

Figure 2 shows a possible application of the new interpage access
capability. Page A contains a user program which nearly fills the page
and which requires a large data table. The data table is placed in Page B.
The user program can read the table at will, as sho\vn by the broken arrow
from the table to the user program. The user program cannot directly
modify the table, however. When the user program generates new data
for the table it is put in a small buffer table in Page A. Then when this
buffer is full the user program transfers control, through the TSM via
LINK instructions, to a table write subroutine in Page B. This subpro-
gram copies the buffer table from Page A into the large data table in Page
B. It then returns control to the user main program through the TSM via
LINK instructions.

Subroutine Linkage .-Linkage of subroutines via the LINK instruction
(See Ref. [21) is reserved for communication between the TSM and the
user programs because only a few (16) LINK's are available. Txvo addi-
tional instructions were provided in the SDP-3A to facilitate subroutine

2

linkage. These SDP-3A instructions (now obsolete) will be briefly de-
scribed in order to provide an appreciation of the improvement provided
by the SDP-3B instruct-lon which supplants them.

The first of these instructions. XMPL, exchanged the contents of the
Page Counter (PC) and Line Counter (LC) with the location in memory
specified by the effective address (EA) of the XMPL instruction. Since
PC: and LC together determine the address of the next instruction which
wi" be exec>>ted, the result of performing an XMPL. is a form of "transfer
and mark place.''	 is transferred to the location specified by the
contents of word EA. Simultaneously the former contents of PC and LC
are saved in word EA.

If a location SUB is initialized with the address of a subroutine, then

XMPL.	 SUB

will initiate the subroutine. Then repeating the above instruction at the
end of the subroutine will return control to the main program. Because it
permitted transfer to any location in memory, this instruction was re-
stricted to Monitor mode.

The second linkage instruction, STPL, stored the contents of PC and
LC at location EA. The next instruction in the calling program would be
an unconditional transfer to a subroutine. In order to return control to the
main program the subroutine would first add 1 to the stored return address
(to skip over the unconditional transfer instruction), and then do an indirect
addressed unconditional transfer back to the main program.

The XMPL instruction had the disadvantage that it could not be em-
ployed in user mode because it modified the contents of PC. This restric-
tion could have been removed by exchanging only LC in user mode, but the
new linkage instruction which will be described is more flexible. The
linkage using STPL was quite awkward and required 5 machine cycles. It
was possib	 however, to employ the STPL linkage in User Mode because
the uncondi.t, al transfer is constrained to change only the LC in User
mode.

Subroutine linkage in the SDP-3B was streamlined by deleting the XMPL
and STPL instructions and adding a new instruction TSPL (Transfer and
Store PC and LC). This instruction operates in a more conventional
manner than the old ones.

Execution of the instruction

TSPL	 SUBRT

causes the contents of PC and LC (the address of the instruction following
the TSPL instruction in memory) to be stored at location SUBRT. Instruc-
tion execution then proceeds from location SUBRT+1 as shown in Figure 3.
The TSPL instructior had been considered during the design of the SDP-3A,
but it was dropped in favor of XMPL and STPL because they were easier
to implement. Subsequent modifications for other purposes supplied some
of the hardware required for TSPL; therefore it is now the more attractive
alternative. Appendix II gives details of the operation of the TSPL instruc-
tion. It is the most complex of the SDP-3B instructions.

3

Index register Instructions.-The XMXR instruction, which excharged
the contents of the index register (XR) with the contents of the right half
of the word in memory specified by the effective address, has been deleted.
from the instruction list. It was dropped because it was infrequently used.

Index register loading has been modified also. In the SDP-3A the right
half of the word specified by the effective address of the LDXR instruction
was loaded into, the XR. Now, in the SDP-3B, the instruction which loads
the XR is called MDXR (Modify Index Register) and the effective address
itself (modulo 256) is loaded into X1%

The change to MDXR is desirable for sevoral reasons. It decreases
the number of memory accesses (and hence the energy) required to load
the XR It also requires fewer ^%• ords of core storage in the most frequent
applications.

Assume, for example, that the XR contains significant data, but that
the index register is needed to control execution of a loop. Since the STXR
instruction does not affect the left half of the addressed word, it is possi-
ble to save the current contents of the XR in the right half of an MDXR
instruction. Execution of that MDXR instruction subsequent to exiting the
loop will then restore the contents of the XR. Shown below is a sample
program which uses this technique.

STXR	 XRSTO	 Save XR
MDXR	 75	 Load XR

LOOP	 —	 —
Loop 75 times
Using XR

TDXR	 LOOP
XRSTO MDXR	 Restore XR

If the LDXR instruction had been used instead of MDXR, then two addi-
tional memory locations would have been nec.!ssary. One of these would
have been used for temporary storage of the XR contents and the other
would have held the constant 75.

If indirect addressing without indexing is specified for an MDXR in-
struction, then the XR is loaded from the Svc,-d in memory specified by the
address field of the MDXR instruction. For example, the instruction

MDXR I	 ZAP

loads the contents of the right half of location ZAP into the XR On the
other hand, if indexing without indirect addressing is specified for an
MDXR instruction, then the XR is incremented by the address field of the
MDXR instruction. For example, the instruction

MDXR X 3

4

ill cause the XR to be incremented by 3. If both indirect addressing and
indexing are specified in an MDXR instruction, then the XR is incremented
by the contents of the location specified by the address field of the MDXR
instruction. For example, the instruction

MDX R I X G 1,01M

will cause C(XR) + C(GLOM) to he loaded into the X12. Before the MDXR
instruction was created, it took it series of 5 instructions to increment the
XR by an arbitrary constant. Now it can be done with a single instruction.

Byte Operations .-The memory system consumes well over half of the
total power used by the SDP-3. Therefore it is important to minimize the
memory power drain if possible. Fortuitously, the SDP-3 memory is
divided into two separate memories, each with an 8-bit word length. One
of these memories supplies the left halt of the 16-bit SDP-3 word and the
other supplies the right half of the word. These niemories draw significant
power only when they are act,essvd. Consequently, only half as much
energy is required tc: read or write an 8-bit half word as is required to
read or write a 16-bit full word.

The SDP-3B has been modified to take advantage of half-word memory
access in several ways. Indirect addressing in user mode need fetch only
an H-bit line number from the indirect address location for all those in-
structions which alter the contents of memory and for transfer instruc-
tions. The STXR instruction stores a half-word (it leaves the left half of
the addressed memory location unchanged) and an indirect addressed
MDXR instruction loads a half word. At present, Control Registers A and
B (CA and CB) have been reduced to 8-bit length (they arc readily re-
expandable to 16-bits each); therefore, the LDCA and LDCB instructions
now each load a half word.

Memory space is limited in the SDP-3 because the memory is both
bulky and expensive. On IMP-I we will fly 4,096 of a possible 65,536
words. On the other hand, data items are frequently 8-bits or less in
length. Therefore both memory space and power could often be saved by
expanding the use of half-word instructions. Accordingly, the SDP-3 has
been modified to include instructions which load or store half of the ac-
cumulator. These are LDAL and STAL for the left half (using the left half
memory), and LDAR and STAR for the right half (using the right half
memory). To facilitate handling tab,es of half-word data, two half word
compare instructions, CMAL and CMAR, have been added to the SDP-3
repertoire. These two instructions compare the specified half of the ac-
cumulator with the specified word in the same half of the memory and then
skip the next instruction if and only if the two half-words are equal. To
further facilitate handling of half-word data, the instructions RRAL and
RRAR have also been added. They rotate right the left or right lialf,
respectively, of the accumulator.

Several of the mnemonics for instructions which manipulate the accum-
ulator have been changed because the half-word byte oriented instructions
were added. Thee mnemonics contained ''AC" for accumulator. The
present co.ivention is to use "AL" for the left half of the accumulator,
"AR'' for the right half of the accumulator, and "AT" fo the total

I

5

accumulates. Table 1 lists the mnemonics which have been affected by
this change. The functions performed remain the same. These instruc-
tions are also listed in the comprehensive list of changers in Appendix L

Table 1

Old Mnemonic	 New Mnemonic

LDAC L.DAT

STAG STA T

XMAC XMAT

CMAC CMAT

TACZ TZAT

,rACM TMAL

SRAC SRAT

RRAC BRAT

Output Channel. - The output channel of the SDP- 3A computer always read
out page 15. This was quite sufficient for normal operation. Such a restric-
tion	 undesirable, however, when one wishes to dump memory to track
down suspected hardware or software malfunction. For this reason the
enable jt , tput channel instruction, ENOC, has been modified. Now in the
SDP-3B the programmer can specify (by the effective address of the
ENOC) which page he wishes the output channe. to read. The significant
additional hardware required is an 8-bit register in the output channel
which holds the number of the page which is to be read out. As there are
prea-_ntly 16 pages, this number is taken modulo 16 in th, current version
of the computer.

Miscellaneous. -A skip if memory is non-zero instruction (SKNZ) has
been added to the SDP-3B. It is useful as a program switch in coniunction
with the store zero (STZE) instruction. SKNZ can also be used to search
through a table looking for an unused word, or in conjunction with the
arithmetic operations which leave the result in memory. SKNZ is in-
cluded because it is easy to realize and in some programs it will reduce
the number of instructions required.

In the original SDP-3 the HALL1 instruction performed an unconditional
transfe - to the location specified by the effective address (when the com-
puter was restarted). This was fine for operational programs; however,
during debugging it «-as irnpossible to tell which HALT was being executed
if there were more than one which transferred to the same location. To
cure this problem, HALT has been modified to step to the next sequential
instruction when the computer is restarted, rather than transferring. The
address field (which now has no effect on the execution of the instruction)
is then available for use as an identification field. This field will be found
in the line register (LR) when the computer stops. Also. the Page Counter
(PC) and Line Counter (LC) will contain the address of the next sequential
instruction, and thus also serve to identify the 1lALT indirectly.

6

The ri-)sister in the SDP-3 which is compared to the Real Time Clock
(CL) was formerly designated the Clock Register (CR). Occasionally the
functions of the CL and CR were confused by some people. Therefore the
CR has been renamed Time Register (TR) to make the distinction more
obvious. The instruction which loads the TR is called LDTR; its function
is identical to the former instruction LDCR.

These various modifications which have been discussed have consid-
erably improved the usefulness and efficiency of the SDP-3 computer. The
cost in hardware is negligible.

Changes Which R2duc a the Amount of fla rdwa re. - There are several
reasons for desiring to reduce the amount of hardware in a system. In the
SDP-3 the two chief motivations are increased reliability (with fewer parts
there is less chance of failure) and decreased power drain. Additional
benefits are easier packaging and easier testing. For these reasons, the
SDP-3A was analyzed to se e how the amount of hardware could be de-
creased without serious impact on the computer's capability. The result-
ing modifications which have been incorporated into the SDP-3B are
described below.

Multiplication and Division .-When two N-bit numbers are multiplied
together, the resulting product can require up to 2N bits. That this is so
can be seen by observing that (2 N - 1)(2 N - 1) = 2 2N - 2 N ' I + 1. It would
seem, then, that to multiply two N-bit numbers would require 4 N-bit
reg> ;tors—one for the multiplicand, one for the multiplier, and two for the
p rociuct.

Multiplication in a digital computer is usually done by repetitive shift-
ing and adding using the recursion

C,	 a; B 2N +
	

(1)

w^, a re

A	 ^1 a. 2'_ i	 (2)

is the multi plier and B is the multiplicand. It is easily shown by induction
that C N+1 is the product AB 'taking a N+1 = 0). Observe that each bit of the
multiplier is used only once and can then be discarded. Also observe that
the significant part of the partial product C) grows one bit larger each time
j increases by one. As a result only 3 N-bit registers, rather than 4, are
sufficient to perform multiplication. Figure 4 illustrates this method of
multiplication.

Notice that the multiplier register is not very busy. It receives bits
from the accumulator (one at a time) and has only one output (the multi-
plic r bit currently being considered). One of the unique features of the
SDP-3 is its split read/write memory cycle during the E-please of each

7

ii,ztructiun. i. ► c uesired memory location :5 reau into uie storage butter
register, the operation (which was set up during the I-phase) is performed,
and then the storage buffer register is written hack into the same memory
location. Consequently instructions such as add to memor y (ADDM) are
possible.

Using this technique, the hardware multiplier register may be replaced
by a pseudo-register in the memory. Instead of using a 'long right shift
(SRAQ in the SDP-3A) by one bit to shift the new partial product bit into
the muitiplier register and to dispose • of a used multiplier bit, it is possi-
ble to use a new instruction. Th:t, new instruction (called PMUL, for
partial multiply) reads the pseudo-multiplier register from the memory
into the storage buffer register, shifts the accumulator and storage buffer
register one position right, and then replaces the altered contents of the
storage buffer register in the pseudo-multiplier register in memory. The
program must of course be able to tell whether the least significant bit of
the pseudo- multiplier is a 1 or it 0. This can be accomplished by skipping
the next sequential instruction if and only if the bit in question is zero.
Figure 5 shows a block diagram of multiplication using the I'MUL
instruction.

Given that multiplication will be accomplished via the PMUL instruc-
tion, the remaining use for the MQ register is holding the quotient and the
least significant portion of the dividend during division. It happens that
the MQ must be capable of shifting left in order to be useful for division.
Ts,,: section of this paper on MSI registers, however, explains why it is
desirable from the standpoint of hardware reduction to remove all left-
shifting instructions. It is a-.ticipated that division .will be a comparatively
rare operation in the SDP-3; therefore, a fairly involved and lengthy soft-
ware division process should be adequate. As a result, the MQ register
can be deleted from the SDP-3A without serious loss of capability and
with significant reduction of hardware and power drain.

Deletion of the MQ produces a direct saving of about 40 integrated cir-
cuits (IC's) which dissipated about 140 mw. In addition, all instructions
which manipulated the MQ may be deleted. These instructions loaded and
stored the MQ (LDMQ and STMQ) and rotated and shifted the MQ (RRMQ,
SRAQ,AIZAQ). Three more instructions also used the MQ. They were left-
shiftii.g instructions and were also deleted for that reason. These instntc-
tion: .-ere Shift and Invert Bit Order (SIBO), Rotate Left AC and MQ
(RLAQ), and Normalize (NORM). Thus an additional saving of the circuitry
and power necessary to implement 8 instructions is realized.

Actually, the PMUL instruction is considerably more involved than the
foregoing description implies. The SDP-3 is a two's-complement machine;
therefore it is desirable to have the capability of directly multiplying
numbers in two's-complement form Thi; can be accomplished by the
Booth algorithm. (Ref. (4] and Ref. L' 5 1) For this algorithm the recursion
formula is

1
C i	 -	 ^ `t i- t	 a,) B2N + -T C i-t	 (3)

where c o is taken to be 0. Now, the computer must either shift, shift and
add, or shift and subtract depending on the values of a t and a i -I . 1 he

8

PMUL instruction allows for these U, ree possibilities by either passing
control to the next sequential instruction, c..ipping one instruction, or
skipping; two instructions. (See fable 2.)

Table 2

PMUL Instri :tion

Numhe r of
It i
	 a t	 De s i red Function

	 Instructions Skipped

	

0	 •1	 Shift	 2

	

0	 1	 Shift and add	 0

0	 Shift and subtract	 1

Shift	 I	 2

At any stage of the multiplication process, a, will be found in SR. (the
right-most hit of the right half of the storage buffer register). At the
same time a i _ t will be in a new 1-bit register, SX. The SX register is
set to 0 at the bevinning; of multiplication (so that a o = 0) by the TOIM
instruction. the TOIM in itruction also sets the overflow flip-flop to zero.
If the overflow flip-flop was a changed from I to t' by the TOIM instruction,
the instructi n transfers control to the address specified. Otherwise,
execution continues at the next sequential instruction. In tae SDP-3I3 the
'I'OIM instruction replaces the TOVF instruction of the SDP-3A.

In the SDP-3A each add or subtract instruction set the overflow flip-
flop to 0 if that instruction did not cause an overflow and set the overflow
flip-flop to 1 if the instruction did cause an overflow. In contrast, the ads:
and subtract instructions in the SDP-3B cannot sit the overflow flip-flop
to zero; they can only affect the overflow flip . flop by setting it to 1 if the
operation overflows. Consequently, a TOIM instruction tests whether any
addition or subtraction has overflowed since the lasi previous execution
of a TOLM instruction. This allows a single TOIM instruction to check for
overflow in any of the 16 possible additions or subtractions in the multi-
plication subroutine. This can save as many as 15 instructi(-is (more than
1. 1 ms) per multiplication as compared to checking each addition or sub-
traction separately.

A multiplication subroutine which uses the PMUI, instruction is shown
in Appendix III. This subroutine also demonstrates the use of the TOIM,
TSPL, and MDXR instructions. A program uses the multiplication sub-
routine by storing the multiplier at location MPYR and storing the multi-

t.
	 plicand in location MCND. Then the sequence

	

FAZZ	 TSPL	 MULT
TUNC	 ERROR

^	 9

calls the subroutine. Normally the subroutine returns control at location
FAZZ 1 2. It leaves. the most significant part of the product in the accum-
ulator and the least significant part of the product in location MPYR.
In case of overflow, the subroutine returns control at location FALZ+1.
This subroutine takes an average of 52 in:itruction cycles 14.0 ms).

MSI Registers .-Space flight qualified, low-power, 8-bit, TTL Medium
Scale Integration (MSI) shift registers (Texas Instrument SN54L91R.) have
recently become available. These registers are compatible with the Fair-
child LYDTµL circuits which were used exclusively in the SDP-3A. The
MSI registers consume significantly less power than their -discrete''
counterparts (18 mw vs. 36 mw) and occupy less space (1 package vs. 9
packages). The disadvantage of the MSI registers is that only serial out-
put is available; therefore, the original ''discrete'' registers must be
retainer' in all instances where parallel access to the contents of the
register is required.

There are 11 registers in the SDP-3 which can trivially be replaced
by MSI registers. These registers are the page counter (PC), line counter
(LC), index register (XR), 4 registers in the input c hannel (DA, DB, DC,
DD) and 4 registers in the output channel (BA, BB, BP, BL). The resulting
saving is 88 IC's and about 200 mw.

The original Real Time Clock subsystem consisted of a 16-bit ripple
counter for the clock itself (CL) and a 16-bit shift register for the Time
Register (TR). In addition there was a 16-bit parallel comparator which
generated a priority interrupt request whenever the contents of CL were
the same as the contents of TR. In the SDP-313 the 16-bit ripple counter
is replaced by 2 8-bit MSI shift registers 4nd a serial adder. The 16-bit
shift register is replaced by 2 8-bit MSI shift registers. Then, the 16-bit
parallel comparator is replaced by a 1-bit serial comparator. Further-
more, the contents of the new serial CL register are now transmitted in
serial form directly to the memory during the store clock (STCL)
instruction.

In the SDP-3A a 16-b'.t parallel gate was used to transfer the contents
of the CL register (then a ripple counter) to th.e RT register (a multipur-
pose serial to parallel and parallel to serial converter). Another similar
16-bit parallel gate which transferred the state of the interrupt service
request lines into the RT register (for the ''Store Interrupt Request"
(STIR) instruction) was also eliminated. In order to accomplish this, the
STIR instruction now uses the same transfer gates that the priority in-
terrupt system uses. Consequently, the STIR instruction now stores the
stag of each interrupt service request line' ANDed with the corresponding
bit of the Mask Register (MR). This is not a serious restriction because
one can disable the interrupt system, load the MR with all ones, perform
an STIR instruction, restore the MR to its previous state, and then re-
enable the into r nipt system and thereby perform the function formerly
performed by the STIR instruction alone. Together, the modifications of the
Real Time Clock and the STIR instruction save about 60 IC's and 50 mw.

The MSI shift registers (as previously mentioned) do not have parallel
inputs or outputs. Furthermore, any one register can shift in only one
direction. Therefore it is impossible to use MSI registers for left shifting
in the SDP-3 unless they are loaded in serial from a non-MSI bi-directional

10

1

rugi.,,cr. All but one of the left- shu'.i. j;	 in the S1>1'--)A used
the MQ register which has been deleted in the SDP-3B. Furthermore the
left-shifting instructions added relatively little to the capability of the
SDP-3; they «ere infrequently used and they can be simulated (painfully)
by subroutines consisting of only right shifting instnictions. For this rea-
son the remaining left shifting instruction ''Shift Left AC" (SLAC) has
been deleted and the AC (now called the A register) has been converted to
use MSI regist-ers. The saving is 35 IC's and about 100 mw.

Miscellaneous .-The SDP-3A Experiment Interface Unit (EIU) contained
provision for ircerf..cing with 8 Experiment Interface Packages (EIP's).
On 1IMP-I there are only 4 EIP's. Since we have no firm idea how many
EIP's would be used in future applications (it would probably be more than
8 anyway) we decided to delete the EIU hardware which serviced the 4 non-
existent EIP's on IMP-I. We thereby saved 1 .1 IC's and about 30 mw.
Furthermore we helped alleviate a connector pin shortage by saving 16
pins.

Similarly, less than half of the bits of the Control A Register (CA) and
less than half of the bits of the Control B Register (CB) are being used for
IMP-1. Therefore each of these registers has been shortened to half-word
length. The resulting saving is 19 IC's and 72 mw. We also save 16 more
connector pins. An additional benefit is that half-word load instructions
(LDCA and LDCB) use less energy than full word ones would. LDCA
loads from tho left half of the addressed memory word and LDCB loads
from the right half of the word. This facilitates conservation of memory
s pac e.

The Mask Register (MR) and Control B Register (CB) were composed of
clocked flip-flops in the SDP-3A. These flip-flops are packaged 1 per IC and
consume more than 4 mw apiece. In the SDP-3B these registers have been
converted to set-reset flip-flops made of NAND gates which are packaged4
per IC. It takes 3 NAND gates per register stage to realize a flip-flop plus
loading gate. The power dissipation using this method is 1 mw per stage.
The savings realized are 6 IC's and 72 mw. for the 24 stages affected. The
Control A Register (CA) must continue to use clocked flip-flops. The trans-
ient 0 output which would occ%ir from any stage which was a 1 both before
and after an LDCA instruction would disturb external devices connected to
the CA register if set-reset flip-flops were used. 'There is no problem with
the CB register because its output is a short pulse. The MR is sampled only
at times when it is not being loaded, so there is no problem with it either.

Summary .-Full-word indirect addressing in user mode and the sub-
routine linkage instruction TSPL have greatly facilitated the writing of
user programs for the SDP-3B. Byte oriented instructions and improved
index register instructions const-.rve power and .nemory space, both
6_sirabl<-_ goals in a spaceborne computer. Table 3 summarizes the hard-
ware and power savings obtained by the ise of MSI registers and the other
modifications which were discussed. Ti,e SDP-3B exclusive of the mem-
ories consists of 500 IC's which consume about 1.3 watts. Reference to
Table 3 reveals that the SDP-3A had in excess of 50% more IC's and used
in excess of 50% more power than the SDP-3B.

11

Table 3

I

Modification

Delete MQ

M S I Registers

Real Time Clock

Delete Left AC

EIU Reduction

CA and CB

MR and CB

Integrated Circuits
Saved

40

88

60

J .^

15

18

6

Total
	

262

Yowe r Saved
(mw)

140

200

50

100

72

35

72

669

12

Fig. 1 - SDP-3B Block Diagram.

Fig. 2 - Multipage Program Example.

Fig. 3 - TSPL Subroutine Linkage.

Fi b;. 4 - 'The Usual Method of Multiplication.

Fig. 5 - Multiplication Using PMUL.

k

13

Appendix L

Summary of Instruction Set Changes

A. The SDP-3A Instruction Set With Corresponding SDP-3B Instructions

SDP- 3 B
SDP-3A Mnemonic Changes in Operation

OP Code Mnemonic (if Different) for SDP-3B

00 HALT Does not branch

01 XMPL Deleted Deleted

02 XMIN

03 DINT

04 LDCA Uses left half of word

05 LDCB Uses right half of word

06 LDMR

07 LDCR LDTR

10 LINK

11 CMAC GMAT

12 TUNC

13 TDXR

14 TACZ TZAT

15 TACM TMAL

16 TMQE TEAR Uses least significant bit of A

17 TOVF TOIM Resets SX and Overflow

20 SIBO Deleted Deleted

21 RLAQ Deleted Deleted

22 SLAC Deleted Deleted

23 SRAC SRAT

24 SRAQ Deleted Deleted

25 ARAQ SRNU Uses A only

26 RRAC RRAT

27 RRMQ Deleted Deleted

30 STAC STAT

31 STMQ Deleted Deleted

32 STXR Uses right half of word

I

14

SDP- 3 B
SDP- A A Mnemonic Changes in Operation

OP Code Mnenomic (If Different) for SDP-3B

33 STCL

34 STPL Deleted Deleted (see TSPL)

35 STIR Stores requests ANDed with MR

36 STZE

37 XMXR Deleted Deleted

10 LDAC LDAT

11 LDMQ Deleted Deleted

12 LDXR MDXR Loads Effective Address (EA)
into X R

43 XMAC XMAT

44 ADDA

45 ADDM

46 SU BA

47 SUBM

50 IO RA

51 IORM

52 ANDA

53 ANDM

54 EORA

55 EORM

56 MPAA

57 MPSA

60 NORM Deleted Deleted

61

62

63

64

65

66

67

70 ENOC Can read any page

71 DSOC

I

or	 15

SDP-3B
SDP-3A	 Mnemonic

OP Code Mnemonic	 (If Different)

72 X M IB

73 XMIA

74 E IN T

75

76

77

Changes in Operation
for SDP -3B

B. The SDP-3B Instruction Set With Corresponding SDP-3A Instructions

SDP- 3A
SDP-3B Mnemonic Changes in Operation

OP Code Mnemonic (If Different) for SDI'-3B

00 HALT Does not branch

01 LDTR LDCR

02 XMIN

03 DINT

04 LDCA Uses left half of word

05 LDCB Uses right half of word

06 LDMR

07

10 LINK

11 CMAT CMAC

12 TUNC

13 TDXR

14 TZAT TACT.

15 TMAL TACM

16 TEAR TMQE Uses least significant bit of A

17 TOIM TOVF Resets SX and Overflow

20

21

22 RRAR none Byte Operation

23 SRAT SRAC

24 RRAL none Byte Operation

16

SDP- 3A
SDP-3B Mnemonic Changes in Operation

OI' Code Mnemonic (If Different) for SDP-3B

25 SRNU ARAQ Uses A only

26 RRAT RRAC

27

30 STAT STAC

1 STCL

i2 STXR Uses right half of word

)3

34 SKNZ none New Instruction

35 STIR Stores request ANDed with MR

36 STZE

37 PMUL none New Instruction

40 LDAT LDAC

i 1 TSPL none New Instruction

•12 MDXR LDXR Loads Effective Address (EA)
into X R

43 XMAT XMAC

14 ADDA

45 ADDM

46 SU BA

47 SUBM

50 IORA

51 10 R
52 ANDA

53 ANDM

54 EO RA

55 FORM

56 MPAA

57 MPSA

60

61 LDAL none Byte Ope ration

62 LDAR none Byte Operation

63 CMAL none Byte Operation

1

1P	 17

SDP- 3A
SDP- 3B Mnemonic Changes in Operation

OP Code Mnemo.ic (If Different) for SDI-1-3B

64 CMAR none Byte Operation

65 STAL none Byte Op^Nation

56 STAR none Byte Ope ration

67

70 ENOC Can read any page

71 DSOC

72 XMIB

73 XMIA

74 E IN T

75

76

77

I

18

PP

l^

Appendix 11.

TSPL Instruction Dissected

Time Bit
Interval Times Register Transfers Function

q A 8 LC	 LR	 LC+1 -• LC Address of TSPL

PC	 PR	 PC -• PC instruction to memory

q n 4 GM(PR:LR) -• SL:SR

0	 • GM(PR:LR) Fetch and restore
TSPL instruction

q c 4 SL:SR - GM(PR:LR)

SL:SR	 SL:SR

q n 8 SL	 OP, 0	 • SL TSPL to operation
register

SR -•, LR	 SR -- SR Address Indirect
address Location

q F 4 f(GM(PR:LR)) +f'(SL:SR) -- SL:SR	 Fetch and

f(0) 4 f'(GM(PR:LR))	 • GM (PR:LR)	 restore
indirect

q F 4 f(SL:SR) +f'^GM(PR: Lit)) -• GM(PR:LR^	 address
location

SL:SR --SL:SR

q 8 t[S(XR,SR)) + t' SR - LR

0 -• SR	 0	 • SL	 XR -• XR	 Compute
m f SL + (m f)' PR --• PR Effective

Address x{t[S(XR,SR)I+t' SR) +x' LC •	 1,

x m f SL + (xmf)' PC	 • PC

q H 4 0 -• GM(PR:LR) Clear word in memory

€	 q M 8 LR	 LR,	 LR -• LC	 LC SR	 Swaps old and new

PR - PR	 PR - PC	 PC SL	 contents of PC and LC

q 8 LC+1 -• LC Increment LC to skip
^. one instruction

.	 q
J

4 SL:SR - GM(PR:LR) Store former PC and
LC contents

Notes on Appendix IL

x = 1 for instructwns which
transfer (includes 'rSPL)

m = 1 for Monitor Mude

t = 1 for indexing (t-g bit)

f = l for indirect addressing
(flag bit)

0 is any combination of 1's and 0's

GM (PR:LR) is the location in
memory addressed by PR and LR

ti

A

20

MULT DC

LDAT

ADDM

LDA T

MDXR

T O IM

Appendix 111.

Multiplication Subroutine

0	 RETURN ADDRESS FOR OVERFLOW

ONE	 GENERATE RETURN ADDRESS

MULT	 FOR NO OVERFLOW

ZERO	 INITIALIZE

15	 INITIALIZE

.;= +1	 INITIALIZE

A

PM	 PMUL MPYR	 SHIFT

TUNC ADD	 GO ADD MCND

SUBA	 MCND	 SUBTRACT MCND

TDX R PM

GO	 TOIM	 OFLOW

PMUL	 MPYR	 C = 1 / 2 C(16)

TUNC I MULT	 RETURN

TUNC I MULT	 RETURN

TUNC I MULT	 RETURN

ADD	 ADDA MCND

TDXR	 PNI

TUNC GO

OF LO W MDXR -1

TUNC 1 X MULT	 OVERFLOW RETURN

ZERO DC	 0

ONE DC	 1

MPYR DC	 0

MCND DC	 0

r

21

T	 -	 ^

References

[1) R. A. Cliff, "The bDP-1 Stored Program Computer," Trans IEEE, Vol.
AES-4, No. 6, pp 864-870, Nov. 1968.

[2) R. A. Cliff, " The SDP-3--A Computer For Use On Board Small Scien-
tific Spacecraft,'' EASCON ' 68 Record, pp 521-527, Sept. 1968.

[3) R. A. Cliff and S. Paull, ''The IMP-i ^-omputer Experiment," NTC '69
Record, pp 176-183, April 1969.

[4] A. D. Booth, "A Signed Binary Multiplication Iechnique," Quart. Journ.
Mech. and Applied Math. Vol. IV, Pt. 2, pp 236-240, 1951.

[5] Y. Chu, "Digital Computer Design Fundamentals," McGraw-Hill, N. Y.,
N. Y., 1962, pp 32-34.

or

22

C^

U-c`	 O
m

V
J	 J
V	 u

to

w
v1
`' ~ ^ J

O
J CL~

v^
w

::
w a

elf
Ce O J Z O

O
Q

or
`

Z uj
W OC

►—
^—
Q

V

^-
O (D
u cc

2
N

Ln

^ N a Y•	
f̂- w u

.-.

Ckf

O

W
W O

Q
V

Z
VI)
Q

^ u
"'

W
J

O
> d

LJ'-^
►- Q

J
O

O w
V

I	 N
J

I J X
Of

O I
ell-
Q I	

}
LLJ

I ^

'' I	 G ^

V,
LLJ co ZO CO

= m
I	 < Q^

_w
J CL^

I w
J v LLJ

Z Ce

u

ce

Z

L,
cl:f O I I Z0
Q

Q
Q 1	 O< I J

O<
--- Q I rN

'—
= u w

ZZ ^- I	 W>'
Jo
Q

O I	
5E

N
I Im

t^
:

w I	 .^
N ^

I

U-1 ^ ^

u a 1 0Q O

LU
 U-^ ^ I

Q J

I	 ^
O
v ^

I
I w

Z
O^

I	 O
I	 ^^

~
w

~
"-'`"

I

I

~w Z ^-

Of v'
U-i w

^ l̀'

J U' (^

<uj

I

I
U' Z

QO
w
ww

I n- u O w

L-------- ----_j

D —1
" ^ Z
Z Z W Q J J
U.JO ^ ^

^U— u Z ^Z w
C14 w Z (In

u>- Z Q ^' ZQ ~ w
a

X x Z N = O= J
LU

— O
u u

ce
LL-

r— — — — — — — — — — — 7

I

ml
wl
0

V1 7_
VI

L7

Q Z

(N
W

Lu	

af
J (G

W
^ (Q'Grn G

a
U-	 G

a

a l w

m
G Iuui

u(af W
I
 Of

G
^z

^ G
z

1

I
^	 Z
L	 Q	 c^

ujW
W J
^

I
i

a i D	
O

m~
W I

a.

f

^L- - - - - L - - - - -^

N

V
U-

W W^z

W 0Jmm
a^
`— Ln

i

I

Y	 Y

J	 J

L
	

2
r

N

G
WN
J	 _z

J

z

z
J

M

lLO
z
D

^

V
Q~

LLJ

c
 D

O
L"z O

O
d

=
w
m w Z

O Q z Q

Z
0,NX(

O
co

Q^
V Ln

Of

0 0

-^ Q
Q!^

U-

LL

O
F-w

r--
O I Vm

D
L/1

H
Vo I

.•.
V
z

mI	 DN

w
z
F-

n
cn

w
wz

Q =

In L/1

L" z
ce Of0 m
0 H-

Q Ln Of
z O L LczF- z
^Ww LLCeN O
^z

m

Vm
V)

I

J

• • • N I	 . • •

LU

0
Cl-

z
Q

I

i
III
I

I

i

I

I

I

I	 1	 I

I
1I
I

I

I

I	 I

I

I

i

I

I

I

u }
— J= Z
N00

lL

Q N

-- O

V_
lL

Z

7

Ce
_w

Jd
J

DC

0
Z

Z
Q
w

w
w

'N
V
w
w
ce
w_
J

HJ

F-

m

I-

V
0
O
CL

J

Q

f--

Q

F--

I
Z

O
F-

J

`DG

V
V
Q

w

I—

^N
V
IL

ce
w

Q

w
H
N_

w
cef
ne
w
LL
LL

m

'w^
V
Q
ne
O
F-
N

t:
co

L

}

O

wC
O<
w

Z

0
7_
Q
_V

J
CL.

H
J

<J

LA-

Z
O

if)

	GeneralDisclaimer.pdf
	0017A03.pdf
	0017A04.pdf
	0017A05.pdf
	0017A06.pdf
	0017A07.pdf
	0017A08.pdf
	0017A09.pdf
	0017A10.pdf
	0017A11.pdf
	0017A12.pdf
	0017B01.pdf
	0017B02.pdf
	0017B03.pdf
	0017B04.pdf
	0017B05.pdf
	0017B06.pdf
	0017B07.pdf
	0017B08.pdf
	0017B09.pdf
	0017B10.pdf
	0017B11.pdf
	0017B12.pdf
	0017C01.pdf
	0017C02.pdf
	0017C03.pdf
	0017C04.pdf
	0017C05.pdf
	0017C06.pdf
	0017C07.pdf

