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SUMMARY

The optimum landing of a spacecraft at a
fixed point on the surface of the Moon from
a low circular AMS orbit is investigated. Ana-
lyzed are the influence of thrust load, of the
height of the Initial orbit and of the range
of the landing site on the magnitude of space-
craft's final mass. Examples are brought out
of optimum trajectories and optimum control
programs of thrust magnitude and direction.

The landing of a spacecraft on the surface of the Moon is

one of the most power-requirlng among the complexes of maneuvers

during the flight to the Moon. Therefore, it is desirable to
estimate the minimum need of fuel consumption and to investigate
the peculiarities of optimum trajectory landing.

A conslderable number of works are dedicated to this problem

[I-3]. However. in their investigations alJ sorts of simplified
suggestions are used which narrow the range

of application of the obtained results, In'_ /_q the present work the optimum landing is esti-

_ _,_N_..// ,, mated from a circular AM$ orbit on the Moon's
• IJ_--" surface of a spacecraft in which the control

__ of magnitude and direction of thrust and eJe_-

tion velocity is inerttaless and is indepen-
dent of the magnitude of the thrust. The
motion takes place J.n the central Newtonlan

gravitational field of the Moon. The assign-

_ merit of spacecraft's initial position on the
circular AMS orbit is connected with the fact

_ _ that low circular orbits attract attention as
possible intermediate portions of the flight

trajectory of spacecrafe to the Moon with
Fig,l. crel_ on board.
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The denotations used in the work are clear from Flg.l.

Employed here is the Descartes' inertlal system of coordinates
connected with the center of the Hoon: i) is the point of des-

cent from the orbit, 2) is the point of landlng, 3) is the hori-
zontal _t descent from the orbit, 4) is the local horizontal.

Making use of L.S. Pontryagln's maximum principle, the
equations of optimum motions wlll be written as follows:

fi= mP cos_ P mP __._u-- -- _T- x; _ = -- sin_ R3 y;

_- u, _- v; &--_. 9
c

Pm = -- Px, Pv = -- Py, Px = R-T- u (XPu + YPv) •R 3

[ ]Py " _ PV 3v (XpU + YPv) ,Pm = --_ O;R 3 m
(1)

where

A =: (z2+ _l:)':,,0=_(_-_+ p_),h,

_(t)
m = is the dimensionless mass, _ is the consumption of mass m

M(O)

per second, P = P/gE is the dlmensionless reactive thrust, _ is

the constant outflow velocity of reactive Jet, P = gMRN 2, gH, RM
is the acceleration of the free fall on the surface of the Moon

and its radius, gE " 9.81 m/see 2.

Controlling functions: The _agnltude P and the orientation

angle O of the reactive force satisfy the required optimum condi-
tions

silt 0 Pv P":=. _ _-- ; COS 0 _ .... ,
p P

j i',,_._; O > O,
P i O. O<O, (2) _-

6

where 0 TM p + mPm/C.

The questions of special control are not investigated in the
present work, i.e. according to t2), P assumes only the limitlng

values Pmax and O, and the zeros of function 0 serve as change-
over points.

The final value of the mass m(T) = m _ - max, serves as the

maximizing problem of thefunctlonal.
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The controls (I) have for the first integral

g(;(t) P( ml,.,) p...... p "t ........ (a'l,,, + .r,,)1- .p._ -I- vl,. .---.-O..; • c II" • . ( 3 )

The maneuver scheme is pre_ented _n Fig.l, where R = RN + It
snd H are the radius and the height of the initial orbit, the

axis Oy is drawn through the landing point, ip is the angular range
from the assigned poln_ of descent from the orbit (In degrees),
h and L are the current values of altltude above the surface of

the Noon and of the selenocentrlc range (in km). The boundary
conditions have the form

t = 0, u(O) = u ° = Vbound(H)cos ¢, v(O) = v ° = Vbound(H)stn _, (4)

x(O) - x ° - --R sln _, y(O) - y0 = R cos _, m(O) = I,

Imt = T, u(T) = u I = O, v I = O, z _ = O, yl = RN ' p = -- 1. (5)

At the inlclal moment of tlme the values of Pu, Pv, Px, PY,
Pm are unknown. These parameters must be selected In such a man-

ner that the trajectory of system (I) corresponding to t,hem and
to condition (4) pass through the point (5). At the same tlme the

values of P, _ in system (1) must satisfy the conditons (2). Taking

Into account (3), the number of selected parameters wlll be four.

In each trajectory obtained as a result of the solutlon of

the boundary value problem, the maximum prlnclvle and the boundaryJ

conditions are fulfilled, l.e. all the obtained trajectories
satisfy the total combination of required conditions for the local

functlonal's maximum. It is possible to h!t the point on the Moon's
surface at the range ¢ from the fixed point on the orbit by means

of flights with angular ranges _, _ + 360 ° , _ + 720 ° , etc. Only
the landing trajectories on the first orbit are investigated in
this wcrk.

For the solution of the boundary value problem (1)-(5) the
Newtontan method was used with the modification, described in [4].
As a result we obtain the optimum control of thrust and orienta-
tion angle magnitudes and their corresponding optimum trajectory.

_ As an example we shall bring forth the initial data for the--

descent from the orbit B = 200 k_, _ - I00 °, Pmax " 0.4:

Pu: = --0.289265358, p,,0 = 0.283924199,

Pv - 0,046420083, p_0 . --0.538128174;

px ° being determined from the condicton_ = O.

1
i 1
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The values of parameters were assumed as follows: gM = .-
= 1.622 m/sec 2, RM = 1737 km, c = 3100 m/sec. The a" tltude of
the in._.tlal orbit varied fro,n 15 to 200 kin, while the selenocent-
r!c angular range of the landing sector varied from i0" to 180".
The dimensionless spacecraft's mass m I rises with the increase

of the total range (Fig.2), reaching at _ 30* - 4G* a value close
to maximum. This value depends little on the altitude of the inl-

tlal orbit _nd on spacecraft's thrust load (see solid llnes in

Fig.3). Therefore, only the results of computations for the inl-

tial relative thrust load A E = Pmax/gE = Pmax = 0.4 are presented
below.

M t --___.==._°_mw _.,

I. %%,_

'" ' f 1 J # 45

Fig.2 Fig.3

The trajectories shown in Figs.4,5, are typlcal for smaller

and bigger values cf 4. The trajectories are composed of three
portions: those of maximum thrust at the beginning and at the end

_. of descent, separated by a passive sector. Such a condition of
thrust magnitude control is optimum for the entire investigated re-

h.#,Ldgv,,lP --'----t,,#_degrees

ZOO,40.:'_- t ! 8000. tOO

¢00-._.4_".0 V /000 VO0

' ]C 0

Fig.4

r
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glon. This result agrees well wlth [5]. For v;ll,es _ > 15"-20*
the first active sector Is small from the standpoint of ti._,e

(Flg.6) and of the characteristic veloclty AV]. In it, the !_-
pulse for descent from the orbit is in fact glven. The passive
flight sector, following it next, compensates the difference in
range over trajectories with different _. The second active

sector, that of deceleration, over which the velocity IS damped

down to 98%, is fundamental. In the range of small distances
there is no such demarcation of active zectors, and they are com-

mensurate with respect to time and characteristic velocity.

degrees
a_# ......q...... t,,_F.

.,+..,o.t,,,.1.... .....I--- I-,.,,.

# .'#8 _lO Oil 2¢:" I'

Fig.5

Nith the increase of _ (for _ > 20 °) the optimum program of

thrust O"-vector orientation (in the Inertial syste_ of coordinates
- from the horizon at the point of descent from the orbit), ap-

proaches the linear function of t. At the same time, as the total

range increases, the value of 0

t I t 2 ..... decreases and approaches the angu-
ts sec #._ far velocity of the AMS at zero

height. Shown In Fig.7, is the

averaged angular coefficient %_

of the orientation program In the

#°07 _ j • , , , , i , , ,., ,

8 _ _egree _ degree

Fig.6 Fig.7 i

braking sector for those angular distances, vhere ouch averaging

#
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has sense. Owing to small duration of the descent portion of or-
bit, its orientation angle varies insignificantly, the thrust

being directed almost against the veiocity. The averaged orien-

tation angle of the thrust vector Is presented In Fig.8. With
the decrease of total landing range, the impulse approaches the

lateral load. With the increase of initlal orbit's height, so
does the impulse angle of deflection downward from the transverse
direction.

At small values of _ the orientation program is essentially
nonlinear (Fig.4). Such an evolution of the program _t(t) (of

orientation) with the variation of total range is explained by

the chan_e of type _-traJectories [5,6]*. For small landing ran-
ges the _-trajectories are close to elllptical, the angular motion
velocity of the imaginary point is not constant. Nith the increase
of _ the _-traJectorles approach the circular, over which the

motion velocity of the imaginary point is constant (Fig.9). Phy-
sically the described character of programs' It(t) variatiop is ex-

plained by the fact that for small angular landing ranges, the

gravitational forces for the rotation of the velocity vector are

not sufficiently used, and the trajectory distortion is basically
achieved with the aid of the thrust.

d

"F ....--1
,,,.... ,,_
_ *degree i_

Fig.8 Flg.9

/....... .,_x,__
..-Hu"1

o ' _._2 _ ._ ,.,o
100 _V ,_ I_#_ _ degree

Ylg. i0 Fig. 11

* By _-traJecto_ies we un_e]_stend the hodograph of vector --_ =

= -- (Put + Pv_), where t,_ are the ores of axes Ox, Oy.
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Shown in Fig.1O are the trajectories of the braking portion

in the plane (h,L). At landing from orbits I! > I00 km the trn-

Jectortes are close to spiral (with constant angle _).

In conclusion let us note that the equations of optimum
motion (1) are written without taking into account a series of

llmltatlons, posslble in practice. In s series of cases the ob-
tained values of the functional mI cannot be attained in reallty.
Presented in Flg.11 is the altltude dependence of the beginning

of the braking portion on the land#ng range and orbit helgh:

With great _ (when _ > 100 °) the Inltlal height of the brakl.,_
sector is of several kilometers.

Trajectories with greater range are inadmissible even from

the point of view of safety. The fllght's altltude is commensu-
rate with the altltude of lunar mountaln:J over a considerable

part of the braking portion. With angular distances of the order
of 180 ° the solutlon of the variation problem (1)-(5) must be

conducted by taking into account the phase limltatlons, as with
the absence of the latter the trajectories pass under the surface
of the Moon. However, there is no requirement in the use of tra-
Jectories of greater angular range, because the value of the
final mass close to maximum is attained starting with _ - 400-50 °,

The dependence ml(Pmax) obtained in the work (see Fig.3) is
universal. As is well known [7,8], it can be used for the selec-
tion of motive installation from the condition of payload maximum
(in the assumption, that the weight of the engine and the thrust
generated by it are linked unamblgously. For the llnear law

Gb,o - _Pmax without taking into account the weight of tanks the

dependence of relative ml-a Io d " ml KAE on AE - Pmax/g E Is shownp a
in Fig.3 by dashed lines, w_ere it may be seen that it has a well
defined extremum.

* * * THE END * * *
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