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METHOD OF DERIVING ORBITAL PERTURBING PARAMETERS
FROM ONBOARD OPTLICATL MEASUREMENTS OF

AN EJECTED PROBE OR A NATURAL SATELLITE

INTRODUCTION

The principal objective of this analytical investigation is to
evaluate the usefulness of a number of sightings taken from an orbiting
spacecraft to another (secondary) satellite. The sightings determine
the direction of the secondary satellite relative to the fixed stars
by angle measurements only. The sightings are assumed to be made
intermittently over periods ranging from a fraction of one orbit to
many days. The secondary satellite may be a probe which is ejected

from the spacecraft itself or a natural satellite.

This program has been exploratory in nature and, in general, is
concerned with the possibility of deriving a knowledge of forces which
perturb the orbit. From a theoretical viewpoint the feasibility of
navigational systems of this type is already established. What is not
known, however, is the effect of measurement errors on the accuracy of
various perturbing parameters. Further, the determination of the
perturbing parameters and the solution of the navigation problem con-
stitutes a single problem for which solutions mist be obtained simul-

taneously.

The study is conducted primarily with respect to spacecraft orbits
about Mars, Venus, the Moon, and Earth. Some results are shown for
Saturn. The study of Mars utilizes various combinations of one or
both of its natural satellites and an ejected probe as secondaries.
However, for orbits about Venus, the Moon, and Earth, the secondary is
a single ejected probe. The speed of ejection is very small as compared

with orbital speeds.



PROGRAM OBJECTIVES

Figure 1 indicates the geometry of the sightings and the parameters
studied for the case of orbits about Mars and Venus. These parameters arise
from gravitational forces. 1In a following study concerning the moon and the
earth, a more complicated potential will be assumed for the moon, and non-

gravitational forces will be considered for the earth.

As a starting point, effort has been concentrated on the problem of deter-

mining the higher order terms in the gravitational potential of Mars. Since

Natural

e
Satellite Ejected Probe

Ejected Probe

SOLAR SYSTEM

BODY Mars Venus
REFERENCE Natural Satellites -

TARGET and Probe Ejected Test Probe
PERTURBING 3, I3, J ), mass, Direction
PARAMETERS OF and direction of of axis of dynamic
PRIMARY axis of dynamic symmetry, (021’
INTEREST symmetry 521, J2)

Figure 1: Perturbing Parameter Study for Mars and Venus




Mars has two readily viewable natural satellites (Phobos and Deimos), it was
first decided to base the investigation on angular observations of these bodies
rather than to assume that an artificial probe was ejected. This, in turn,
necessitated a prior navigational study involving 12 and 18 unknowns to deter-
mine the basic characteristics of such systems from the point of view of error
propagation., As a result, it was found that systems in which our own satellite
orbit was unknown as well as the orbits of Phobos and/or Deimos were indeed
promising from a navigational point of view. Although the 18 unknown problem
had satisfactory properties, it was decided that observations of a single
orbiting body would be operationally simpler and thus the 12 unknown problem
(our own satellite and Phobos) would form the starting point for Mars perturbing

parameter studies.

After completing the Mars perturbing parameter study based on the use of
Phobos as a secondary, consideration was given to including sightings on an
ejected probe. This was done and proved to yield more accurate results, as will

be shown.

The next phase of the investigation involved the determination of the
gravitational potential of Venus. Since Venus has no known natural satellites,
an ejected test probe of assumed ejection speed but unknown direction was used,
The effect of an error in the assumed speed is also studied. The degree of
interest in the various perturbing parameters is different for Venus than for
Mars., Because Venus is rotating very slowly (rotational period of 247 days
retrograde), it is probably the most nearly spherical of the planets. It turns
out that considerable difficulty is encountered if the direction of the axis

of dynamic asymmetry is treated as an unknown in the total problem.

In the moon study three separate orbits were chosen, each of which had
an eccentricity of 0.1; the secondary being a probe ejected at 4 km/hr. 1In
this case, problem emphasis is quite different from that of orbits about Mars

or Venus for the following reasons:

(1) The moon has a complicated potential in that tesseral harmonics
must be considered.




(2) Earth-based radar measurements are more effective in the case of
the moon or the earth than Mars or Venus. Hence, our method must
be compared with stronger competition.

As many as 10 unknown harmonics coefficients were chosen. In general, our error

analysis yielded accuracies comparable to those obtained from Lunar Orbiter data.

Finally, low and high altitude Earth orbits were investigated. For this
case the potential was assumed known, and unknown drag and radiation pressure
terms were allowed. It was found that if a small error in the speed of probe
ejection were made, a significant error in these parameters would be incurred.
In order to overcome such errors, a geometry was studied in which the probe
was simply released; drag and radiation pressure were then allowed to separate

the probe and the spacecraft.

It is one of the principal objects of the investigation to determine the
number of orbits over which measurements must be made in order to determine the
values of the parameters for various degrees of accuracy. The criterion which
is used in determining what constitutes an acceptable degree of accuracy is the
accuracy with which the parameter in question is known at present. Thus, in
the case of the earth, accuracies must be very great, whereas in the case of
Mars and Venus, where large uncertainties exist, acceptable accuracies need not

be as great.

Measurement Techniques

In performing the present study emphasis has been placed on the analytical
problem and questions of measurement are subsidiary. However, it is desirable
that mention be made of possible methods of measuring the position of the target
relative to the celestial coordinate system as well as the problem of detecting

the target under various viewing conditions.

It is assumed that the angular coordinates of the target are measured to an
accuracy of ten seconds of arc for each sighting. For most of the problems
simulated it was assumed that about 13 sightings were made per orbit. If the
view of the target was blocked by the central body, then that sighting was

omitted. Otherwise, the sightings were uniformly spaced.



In all cases the basic coordinate frame is that which is supplied by the
catalogued position of the stars. Several types of detection instruments could
be used to measure the direction of the target in this frame, e.g. a star
tracker or an optical scanner, A review article describing optical scanners

and theix applications is given by reference [1].
Planetary Constants

The specific technique used in the study of the perturbing parameters
depends on the physical constants of the planetary body in question, Tables
I, II, and III contain relevant data. The quantities in parentheses behind

each number indicate the source,

Table I gives some physical constants for Mars, Venus, Moon, and the
Earth, As can be seen from this table, two of the bodies, the Earth and Mars,
rotate sufficiently fast to have a measurable flattening which, in turn, permits
the computation of the right ascension and declination of their spin axes as
well as several terms in the gravitational potential. (As is shown in Table II,
this is true even to a greater degree for Jupiter and Saturn,) The other two
bodies, the Moon and Venus, are sufficiently close to spherical in shape that
a more general representation of their irregular shape is necessary, and
further, the gravitational perturbations only weakly define the orientation

of the spin axis,

In studying Mars, we utilize the natural satellites, Phobos and/or Deimos,

Some of the characteristics of their orbits are shown in Table III.




Table I: Physical Constants for Mars, Venus, Moon, and Earth
Constant Mars Venus Moon Earth
Ratio of body masg 0.10730 (7) | 81500362 + ,123 x 100 1/(81.300k) + .0007) 1.0
to Earth mass 2) 2)
Radii (km) Re = 3388 + 26 R.e = Rp = 6100 + 50 R1 = 1738,549 + .061 e = 6378.15 + .05
18 < Re - R <36 R.2 = 1738,189 + 061 | R = 6356.63 + .05
) ®) | r, = 1737.470 °
5= 470 + ,061
(9
Reciprocal 150 + 50 (7) | Large (nearly spherical) 298,30 + .05 3)
Flattening
Potential J, | 2,011 x 1073 2.07 x 107% (1082,28 + .3) x 10°
3, - 0.4461 x 1074 (- 2.3 + .2) x 1075
3, - 0.2089 x 10°* (&) | (- 2.12 + .5) x 1078
3 (- .2 + .1) x 1075
3 .8 x20° @)
or (9)
h ,.m s h ..m,ks
Rotational Period | 24 37 22,6689 274 4 4 days retro- 27.32166 days (9) {23 56 &
(7) | grade (6)
Spin Axis  r.a, | 316,55° + ,00675° | 272,75° + 4° ~ - 91° undefined
Direction (t - %905) o o o o
dec, | 52.85° + ,00346° |71,50° + 4 (6) | ~88,5° 90°
(t - 1905) 7)
% onopage 51 of the American Ephemeris and Nautical Almanac i and Q' are tabulated, Declination =

90 - i, right ascemsion = 90° - Q',




Table II: Physical Gonstants for Jupiter and Saturn, From [ 3]
Constant Jupiter Saturn
Ratio ot Sun's mass 1047.355 + .065 3,500 + 3
to body mass
Reciprocal Flattening 15.2 + .1 10.2
Major Radii (km) Ry 71,375 + 50 60,500 + 50
R, 66,680 + 50 54,550 + 50
Potential J .0148 + .0001 .0161 + .00001
I, - 00035 + .00005 - .000865 + ,000026

Table IIX:

Constants of Martian Satellites

Constant Phobos Deimos
Mass tdl -
Diameter (miles) 10 ) 5 %)
Characteristics of Orbit
Orbital Period (days) 0.318910 (5) 1.262441 (5)
Semi-axis (sec at 1 AU) 12.895 (7) 32.389 N
Ellipticity 0.0210 (7) 0.0028 @)
Orbital plane see ref, (7) see ref, @)
Regression of ascending 158.5 (7) 6.5 (7)

node (deg./yr.) 3 3
Mean distance from 9.4 x 107 (5) 23,5 x 100 (5

planet (km)

LIST OF MAJOR SYMBOLS

The following is a list of major symbols used in the sections
ANALYTICAL STATEMENT OF THE PROBLEM and METHOD OF SOLUTION,




S. = celestial coordinate system

S, = inertial coordinate system with k
symmetry

parallel to planet's axis of
3

Rl.(t) = coordinate system which is associated with the ith Kepler arc which
* approximates the spacecraft's orbit for (i - 1) T g t < it

: . .t .
RZi(t) = coordinate system which is associated with the i h Kepler arc which
approximates the secondary's orbit for (i - 1) 71 < t < it

t = time

T = fixed time length
TE 8, = angles which define orientation of S; with respect to S,
il(t) = position vector of spacecraft
ﬁz(t) = position vector of secondary

%k = vector of unknown parameters (constants)

qu

. (&)
(t)

e = declination of secondary's position as viewed from spacecraft

o
e

a = right ascension
EliK(t) = approximate position vector of spacecraft along ith Kepler arc
§2iK(t) = approximate position vector of secondary along ith Kepler arc
I (8) =X - X i - <t <i
8%, ) j(t) xjiK(c), G-171<t<ir

€, a = angles which define direction of probe ejection with respect to 83

r.,s.,z.= components of 8R, (t) expressed im R, (t
§755%4= comp 5 (€) exp 45(6)

AV= ejection speed

In general,

U' = transpose of U
.28
dt
4 = implies 4 » u = 1
fu = error in u
g(u) = standard deviation of a random variable u




ANALYTICAL STATEMENT OF THE PROBLEM

In general, if a second satellite is sighted from a primary satellite,

the time-path observed is a function of:

(1) the position and velocity of the primary at t = O,
(ii) the position and velocity of the secondary at t = O.

(iii) the force field in which the two satellites are traveling.

Since the observed time-path is dependent upon these three factors, it
may be possible to indirectly measure these factors by making measurements at
known discrete times of the secondary's position with respect to the primary's.

Equations of Motion

Since the motions of the primary and secondary satellites are governed by

a sixth order system of differential equations, it is possible to write

R, (6) = TR, ®), B ®), £, B) e
K, (6) = E®,(®), Ry(®), £, F) @)

position of the primary as a function of time,

where ﬁl(t)
R, (£)

k = a vector of unknown parameters (constants),

position of the probe as a function of time, and

Instead of writing the system of equations as three second-order equations, it

is more convenient to consider six first-order equations., To this end, let

t)
£) , a 6 x1vector, i =1, 2.

We will assume that F may be written as



n
FEX, t, k) = F ) + 2k P@, t)
j=1 43
where ik is the vector which arises from the inverse square force field, and
each Fj is a known function of its argument, Hence, (1) and (2) take the form
- - - n - =
X, = FK(xi) +j§1 kj PjCXi, t), i =1, 2. 3)

Constraint Equation

If measurements of the position of the secondary with respect to the
primary are taken, these measurements imply a constraint on the motion of the
two satellites. In this report, we will assume the measured quantities are
the right ascension and declination of the vector from the primary to the
secondary at known discrete times, That is,

Rz(tp) - Rl(tp) = u(cos e cos a i, + cos e sin a j1 + sin e kl) %)

1

£
=a
It}
2]
o
E
i

= [Rye) - Ryce )|
e = declination of R2 - R1 (measured)

a = right ascension of R.2 -'ﬁl (measured)

k. = unit vectors associated with the celestial coordinate system, i
in the celestial equatorial plane and in the direction of the _

first point of Aries, k., in the direction of the North Pole, jl
completes the right-handed coordinate system.

Equation (4) requires that §2 - R, be written with components in the celes-

tial coordinate system (we will denotelthis system as Sl). However, this co-
ordinate system may not be convenient when considering the equations of motion

(3). In order to minimize n in (3), a new coordinate system is chosen with

one axis parallel to the'planet's principal axis of largest moment of inertia. Two

angles, gl and 52, are required to define the orientation of this new.system,

S3, with respect to the celestial system Sl' Hence,
A . o =
i, = i, rotation g, + 90" about El ﬁz
o . & _ 2
RZ k, rotation £, about I, = i,.

10




Now, gl = the right ascension of the planet's principal axis of largest moment
of inertia,
gz = the co-declination of this axis,

Figure 2: The angles gl and 52

Generally, we will choose to write the equation of motion with components in

S3. Now,
I i3
I ) o= AL 3
k1 IE3
where
- sin s - cos g, cos g, cos g, sin £,
A= cos g, - sin £, cos g,y sin g, sin g,
0 sin g, cos g,

11



Hence, (4) becomes

~ ]_ —_—
d(t == A x(t 5

( P) m ( p) 5)

where
cosS e ¢cos a
a(tp) = | cos e sin a
sin e t
P

X = Rz(tp) - Rl(tp) )

= x; 13 + Xy 13 + Xq k3

| 2 2 2

B o= x1 + x2 + x3 .

Equation (5) then is the basic constraint equation implied by the measure-

ments, This equation yields two independent relations which constrain §(tp).
The Problem

The problem may now be stated as follows: Find initial conditions
21(0), 22(0), and force field parameters ks 3 =1, 2, ..., n, vhich imply
il(t) and iz(t) as solutions to (3) such that El(t) and iz(t) satisfy (5) at

the discrete times tP.

In some cases, the angles € and g, must also be treated as unknowns.
This is particularly true for the case of orbits about Venus, Also, if the

secondary satellite is an ejected probe, then.-l-i1 = §2 at the time of ejection,

A complication to the analytical problem is that the number of measure-
ments is expected to be much greater than the number of unknowns., Hence,
because of various errors, no 21(0), iZ(O), and k will exist such that all
constraint equations (5) can be satisfied, Thus, some '"best'" value of the un-

knowns must be found,

12




METHOD OF SOLUTION

There are many methods of attacking the formulated problem, but we will
discuss only one particular approach. The basic technique makes use of a
linearization of the equations of motion and the constraint equation. The
linear equations are then solved to yield improved values of the unknowns., An
iterative computational procedure and an initial guess are required, ILinearization

of the constraint equation is as follows:

The total differential of (5) yields

- X 1 -
Alb6x - " sl + m A x ;

o
fus
I}
T

[

but, wuép X . 6;, since uz =x ¢ X,

So, u6d = Alsx - 28X 37 + A %

2
v
where
- cos e sin a § a - sin e cos a §e
~
84 = cos e cos a é a ~ sin e sin a §e .

cOS e §e

So, pba cos e = (- sin a A1 + cos a Az)[éz - E.:EQE ;] + (- sin a 6A1 + cos a
W -
84,) x
where Ak = kth row of A,
éAk = kth row of §A,
Also,

pée cos e = A3[6§ - 5—;§§§ E] + 6A3 X.
n

But,

13



Pz - x2 - X.X - X.X
6;-;'5;;=—]-' -xxl 2}}2{2 -x1x3 6;
2 2 12 H 2 )23,
- XyXg - x2x3 BT - Xy
~ K 3 2
A = A1 6 €y + (0, A7, - A") & €y
0
where Ak = kth column of A,
Hence,
§ a cos ej) - F 6 ;(tp) +F ) §1 (6)
e 8 €,
where
5 cos(§1 - a) - sin(§1 - a) cos §2 51n(§1 - a) sin gz
wE = 0] sin §2 sec e cos §2 sec e
2 _ x2 - x.x - x.x
H 1 )12,
- b4 - X - XX
x %2 H 2 , 23,
- xlx3 - x2x3 b - x3
[ (&
uF = 1 2 .
0 By
Here,
Wy = - 51n(§1 - a) X - cos(g1 - a) cos §2 X, + cos(§1 - a) sin g, %35

By = sin(ig1 - a)(sin €, Xy + cos gy x3),

W, = sec e(cos §2 X, - sin E, x3).

Equation (6) is two independent relations in §a, ée, Sgl, 689> and

6x(t)) = 8Ry(E) - 6R (E ).

14




Linearization of the Equations of Motion

For the present, let us drop the subscript i from Equation (3)., Now let

X(t) = X (t) + 6X(t) o))

kX =k + 6k

where EK(t) is a reference trajectory (known) of possibly unconnected Kepler

arcs. Thus,

ix = —K(-il()

except for a finite set of points. Substituting (7) into (3) we obtain

o
¥4
]

n
VFK(XK) 68X + ... +.Z

Z kj(iJ_(’xK, t) + v'ﬁj()'fx, t) 6X + ...)

n
- - 5 VI & .
VFK(X.K) 6X +j=1 (koj + 6kJ) Pj (xK, t) (8)
Thus, to a first approximation, 6X satisfies a linear non-homogeneous differen-

tial equation, We may now write the solution to (8) as (Coddington and levin-

son [8])
t

— — -1 n - =
6R(t) = 8(c, t)6R(to) + [ 7NCs, 02 K FEE, 9] 0
t 1=

[+]

where

§ = VF (&) & and §(t,, t,) = L.

The matrix & in (9) is commonly called the transition matrix in the term-
inology of orbital theory, It is the fundamental solution matrix of (8) in

the terminology of differential equation theory,

An explicit solution of § is given by Kochi [0}, To utilize his solution

the components of éi(to) and éi(t) must be expressed in preferred coordinate

15



systems. This point will be considered next. 1In any event, (9) gives a
simple method of calculating an approximation to the deviation from a single

Kepler orbit given 6§(tu) and k .

In deriving an explicit expression for &, Kochi introduced a coordinate
we will call R(t) which moves with the Kepler reference position ﬁK(t). Let
R(t) have associated unit vectors r, §, E.such that r = §K(t)//r§K(t)|, s is
in the plane of the Kepler orbit so that RK(t) . s > 0, and z completes the

right-handed system as shown in Figure 3,

APPROXIMATE POSITION

M)

SR (1) PERIGEE

Y
BODY

R R - LINE OF NODES
SR(t)=r(t) r(t) +s(t)s(t)+ 2(1) Z(1)

Figure 3: The Moving Coordinate System R(t)

With this definition, we may write

N> 0y H>

€
iy ) =B
£

16




where

cO cw' - sQ ci sw! - cQ sw' - s ci cw' s si
B(t) = sQ cw' + ¢ ci sp' - 8Q sw' + ¢ ci cw' - o si
si sw’ si cw’ ci

where c8 = cos ©
s® = sin ©
= inclination of Kepler orbit

longitude of line of nodes

€ D
1]

= argument of perigee
w' =w + V(&)
where

v(t) = true anomaly,

Since we will use § as developed by Kochi, in (9) Gi(to) must have posi-
tion and velocity components expressed in R(t,) while Gi(t) must have these

components expressed in R(t).

Since the perturbing forces kjij are to be computed along the reference
orbit, no single Kepler orbit can be expected to yield accurate results, We
shall choose discontinuous arcs of Kepler orbits as a reference orbit as shown

in Figure 4, Each arc is of time duration, T.
In general, we have for (i - 1) 7 < t < i
— — n —
BX(E) =8, (e, (1~ 1) 1) [6R(G - DT + 3 G, + k) T, () ]
i jo1 o 4 37 7is

where iiK(t) is the position and velocity along the i Kepler arc,
Qi is evaluated using this arc as a reference,

t
Fy =f @;1 s, @ - DD (), 5) ds
(i-1)T

62((1 - 1)T) must have components in Ri((i - 1)T1)

17



ARC OF REFERENCE ORBIT
ém(t, kT)ID (1)

Y, T,

A
COMPUTED ORBIT

3 X(1)
TRUE ORBIT

Figure 4: The True Orbit, Reference Orbit, and Computed Orbit

Pj(XiK(S)’ s) must have components in Ri(s)
6X(t) must have components in Ri(t)'

But we will choose to define 8X(ir) so that.

-— — n —
X (iT) = \l!il:6X((i - D) + sk, Eij]

i=1

where ¥, = ¢, (iT, (1 - 1)T)

i Fij(lT).

Thus, to generate the i + 1 Kepler arc, we use the conditions

18




n Bi(iT) 0

= iiK(iT) + = kbj ¥,E

(10)
j=1 0 B, (ir) 1743

Xi41,x G

In (10) i and X must be expressed with components in S3. After com~

+1,K
puting X. i+1, K(1T), we may find the orbital elements of the 1+1 th Kepler arc,
and hence §i+1(t, it). So, for iT <t < (i + )T,
— — n -—
6R(t) = 8, (c, i) [6K(T) +E ¥ Fip (0]
' . .
_ Bi+1(1T) Bi(lT) 0
6X(t) = &, . (t, iT) ¥y
' . .
0 Bi+1(1T) Bi(lf)
- z ]
[6X(1 1)7) +J z 6k E. + Z kJF1+1,J(t)

the matrix Bi 1(1'1') Bi(iT) differs from the 3 x 3 identity matrix, but its

effect is second order. Hence, for it < t < (i + )T

n
BR(t) = 8, (¢, 1T)[M16X(0) +j21 by Ty + Fypp ()

n —

+Z k., F, .(t)]

j=1 j i+l,]
iT<te< @+ D1
SX((1 + 1)) = M, 6x<o> +J§1 6k v1+1’J (11)

where

Vii =% E 7T 1_1 ety Vig oo ¥y Egy

My =¥y Vi e *1'

So that,

19



Vitr,5 = Vi1 Can,g + V)

Mi1 < ¢i+1 M.

Equation (11) thus gives us the deviation in position and velocity of the
reference position and velocity from the time quantities at t, it < t < (i+l)T,
in terms of these deviations at t = 0, i;, and 6k, In this equation §X(t) has

Coﬂlponellts in R. (t .
b |] )
Linear Equatlo[l in UnknOWnS

Equation (6) is two independent equations expressing a relationship be-
tween errors in the measured direction to the secondary satellite, errors in
the two angles which define the planetary coordinate system with respect to
the celestial coordinate system, and errors in the position of the secondary
with respect to the primary., This equation is useless in itself, for if
errors in the measured quantities are specified (6a and §e) the equations con-
tain more unknowns than independent relations. The dynamics of the problem,
h?wever, do not allow the vectors 5§1 to move at random, In fact, if 6§i(0),
5Ri(0), and k are specified, then 8R;(t) and éRi(t) are determined for all
time, t. This dependence is analytically stated by Equation (11). 1In this
section, we will utilize Equations (6) and (11) to obtain a relationship be-

tween §a, Se, 651, 552, 5k, 521(0) and 522(0).
A trivial transformation yields
6Ri(t) =K 6Xi(t)

where K = (I, 0), I being the 3 x 3 identity; O being the 3 x 3 zero. So, (6)

becomes

ba cos e - _ 6§1
=E K(&Xz(tp) - 5X1(tp)) + F .
Se 6§2
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In the above equation 5§2 and 6§1 must have components in 83. In order to
utilize this equation, it is necessary to rewrite it so that éiz(tp) has com-

ponents in RZi(tp) while 5x1(tp) has components in Rli(tp)’ where
G@-DDT1T<t <iT,
.
Hence,

da cos e - _ 651
= E(BZi(tp) K 6x2(tp) - Bli(tp) K 5X1(tp)) +F
se 652

So, Equation (11) yields

da cos e \
- DZ + Dl + ée = (uz’ - u1, V21 - vll’ v22 - VIZ"°'VZH - vln’F)
x 6Y (0) (12)
n —
where D2 =EB, K Q2i (, 1'r)j§1 k°j %,i,j(tp)
n —
D, = E By; Koy, (¢, ”)jfl Koy B g5t

112 SE By () Ky, G-DO)W 4

Uy =B B () K&y(e,, G-DT)My 4y

(t D)

=E B, X i~ v F
U’Z. 21(tp) Ké,, (tp, i-1T (Vz, i-1, + Fz, i, 3¢

Vi = E By @R, (e, -0 Fp (£))

N T T TR AL
§§2<0)

6%, (0)

8k , a (14 + n) x 1 vector,

68,

8€,

Y (0)

i
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Thus, (12) is two equations in 6?(0). If a sufficiently large number of
measurements are specified we may solve for 6?(0). After finding this vector
Siz(t) and 6§l(t) may be found from (11). Since (12) is only an approximate

equation, an iterative computational process is necessary.,

let us now suppose the secondary satellite is a probe which was ejected

from the primary with a known speed but poorly known direction at t = 0, Then,

R, (0)

R (0) ,

and

'fiz ©) T'zl(O) +av d

where Av = speed of ejection (assumed known) and u defines the ejection direc-

tion. We may choose the reference trajectories so that

Ry (@) =

RllK(O)

R21K(0) = RllK(O) + Av u,, where u, is an estimate of u,

621(0) + AV 06 .

So, 6?2(0)
du

A ~ ~ % ~ . 2 .
Now let u = cos e cos a i, + cos e sin 5’33 + sin E'ﬁ3. Thus,

3
5§2(0) = a§1(0) + 0 (13)

cos & § &
Q 5 &

where
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and the components of 622(0) and 6?1(0) are in 33.

In (12), 522(0) has components in R21(0) while 621(0) has components in
ill(O); (13) cannot be substituted into (12) without rewriting (12) such that

6§2(0) and 6§1(0) have components in the same coordinate system. To this end,
let us rewrite (12) so that 6§2(0) and 5§1(0) have components in SB' Hence,

da cos e
- D, +D1+< ° >= W;, _Wl’V21 LTIt v

Se
where
B!. (0) 0
_ 21
w, -1, 0 B! (0)
21
B!, (0) 0
_ 11
v, -1 0 B! (0)
11

2n

V. _, 670 4)

(2 x 6) matrix

(2 x 6) matrix

and 6?2(0) and 5%1(0) have components in S3. Hence, (13) allows us to rewrite

(14) as

da cos e
- D, +D, +

2 1 se
= (Vz -Wl, v e vl].’ LX) UZn - Vln’ F, BZQ)

21

ail _(0)

8E4
6,

where 52 is a 2 x 3 matrix defined by the last three columns of1ﬂ;.

Other cases may be considered, For example, A; unknown; Av unknown; the

time of ejection unknown; etc.
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1.

Summary of Equations

We now list the equations as developed in the previous sections.

We are given
(a) 21(0) and >'<2(0) in S
(b) k01,__k02, cees K

3
Oon

(c) P, P, «.o., P as a function of spherical coordinates and with compo-
1 2 n

nents in R(t) (for both trajectories)

(d) times of observation t k=1,2, ¢oe, £

k’
(e) §1’ gz
£) 7
(g) - sin €y - cos g, cos E, cos gl sin g,
A= cos gl - sin gl cos §2 sin gl sin 52
0 sin §2 cos 52
MlO = M20 =1 (6x 6), lej = V20j =0 (6 x 1)

X(( - 1)7) = iiK((i = 1)7) (for both trajectories in 53)

Find orbital elements

If tk > iT
@ ¥; =&, (r, (- D)
(®) M = yM; .
iT
(@) By = Fy 0 -[ s, @ -n F, () ds
(i-1)7
@ Vy5 =1y + V5,9
(e) €y =j§1 k°j ¥ ElJ
B, (iT) 0
() X, g0 = X (L)) +T))
0 Bi(iT)

(g) i—-1i+1
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6. 1f tk < it, we obtain two linear equations in the unknowns.
Use i Kepler arc to compute
(a) mean anomaly at t

k
(b) true anomaly

2
a.(l-e) P,
() r, = —J l = d
j 1+ e, cos Vv, 1 + e. cos v,
J J ] J
(d) 1In S3
r,
- ]
RjiK(tk) = Bji(tk) 0 i=1,2
0]

(e) ;(tk) = x,(t,) {3 + x, (ty) 33 + x5(t,) £3
= Ry (6)) = Rygplty)
) u = [x]|

COS € Ccos a

) cos e sin a = -& A X, determines sin e, cos e, sin a, cos a
sin a
cos(§, - a) - sin(§; - a) cos g,, sin(g, - a) sin g,
(h) E =
0 sin g, cos €,
cos e cos e
2 _ 2 s )
e 1 1x2 x1x3
x i - x.X 2 _ 2 -
3 1%2 =% ¥2¥3
* - X.X - XX 2 - x2
173 2%3 W 3
" "
polf M 2
T "

b=
-
1

= - sin(gl - a) % - cos(g1 - a) cos 52 X, + cos(ig1 - a) sin §2x3

By = sin(gl - a) sin € %X, t+ sin(§; - a) cos PN

3 cos §2x -singz N
"Ll; cos e 2 cos e 3
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fx
W F e =] 8t - DD E ) ds
(i-1)7
j =1, 2, ceey, n

L=E8(c IR &t G- DM

vj = E B (K &, (t,, (i- 1)T)(X_Ii_1’j + F,

G

G oag= My, =Us V=V, Y, Y, -V L

a= . 2k x (14 + n)

8. After all measurements the covariance matrix of the output errors is given by

EGSYT(0) §¥(0)) = o (a'a)~L.

PERTURBING FORCES

In this study, the only perturbing forces acting on orbits about Mars,
Venus, and the moon for which numerical results will be shown are those which
arise from higher order terms in a gravitation potential. Let us now give a

short discussion of the gravitation potential,

let (X, Y, Z) be an arbitrary set of right-handed orthogonal axis, and let
(r, ¢, 0) be the spherical coordinates of a point, P, external to a body whose

density is sectionally continuous (Figure 5).

The potential of a unit mass at P due to the body may be written as

V, #, e)=-GerfD—l—;L')—;—‘l’ (15)
. -
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Figure 5: The Body and External Point, P

where B = region occupied by the body

P' = generic position within the body
P = position of external point, P
G = universal gravitational constant
) = density of body at P!
dv = element of volume of P'.

Now, -VV= the gravitational force on a unit mass at P due to the body.

It would be most convenient if the integrand of (15) could be written as

£(P') g(P); for if this were the case, then,

-G g(P) Hf £(B') dv
B
G, &(®),

V(r, 8, 9)

where G1 is a constant which depends only on the shape and mass distribution of

the body. Hence, the force on a unit mass would be known exéept for a single
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multiplicative constant. Unfortunately, the integrand of (15) cannot be written

so simply, instead we must write it in the form

Z £, 8, @) .
So,
V(z, 4, 9 = ¢ g, @ (16)

i=1
where each Gi is independent of T and dependent only on the shape and mass
distribution of the body. The exact form of (16) may be found in [ 9], and can

be written as

n
©® n r
- . Gm &) pm i
V(r, #, 6) = :[1 +n):1 mio <r> Pn(cos ¢S)(Cmn cos m6 + Snm sin m© )]
17)

where Cnm and Snm are constants which are dependent on the mass distribution

of the body,

m = total mass of body
r = equatorial radius of body
G = universal gravitational constant

Pi(x) = associated Legendre function of the first kind of degree k and
order j.

A tremendous simplification of (17) occurs if the body is symmetric about

the Z axis. If this is the case, then

Cnm O, m#0

am 0
and (17) is customarily written in the form

- [e-] b o k
vz, ) =-F1 -5 Jk<-——:-> B, (cos ,s)]

k=1

where Jk are constants (Jk = -Cko)

Pk(x) = Legendre polynomial of degree k = Pﬁ(x)
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In addition, if the origin of the axes (X, Y, 2) is the center of mass of the

body, the J, = 0, thus (17)becomes

1
G @ re k
- _%[1 -kzz I\ P, (cos ﬁ)] (18)

V(r, ¢)

We will use this form in the study of Mars and Venus in this report. Recall

that the validity of this form rests on two assumptions:

(1) the Z axis from which the angle ¢ is measured is an axis of symmetry
of the body, and

(2) the distance r is measured from the center of mass of the body.

The assumption that Mars and Venus have an axis of symmetry appears to be

a good approximation, for there are some reasons to believe that these planets

are more homogeneous than Earth, However, the direction of the axis of symmetry

with respect to the celestial coordinate is not well known beforehand. Hence,
if we choose to use form (18) we are forced to introduce two angles which de-
fine the direction of the axis of symmetry with respect to the celestial system

as unknowns.

The assumption that the coordinate system may be located at the center of

mass of the body introduces no significant difficulties and will be used here.

Let us now investigate the change in the coefficients of (18) for the case

in which the coordinate system chosen lies close to the preferred system.

As before, let S1 be the celestial coordinate system, Also, let S3 be a
system with associated unit vectors, {3, 33, and ﬁ3 such that EB is parallel
to the axis of symmetry. Let €1 and g, be the azimuth and coelevation of ﬁ3

with respect to S1 (Figure 5), Then, the potential has the form (18).
Now suppose we do not utilize the preferred system, S3, but instead write

the potential in a system defined with respect to S1 by angles §1 + 5§1 and
Ey + 8E,. It may be shown that for small 6§1 and 568,
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k k .
=] r -] r
Vi, 6, 8) = - 9—:[1 -kfz 3k<-%> Pk (cos Z)] +k§2<-—i Plt (cos Z)[Ckl cos ®

+ Skl sin 9]

where Jk = Jk Vr
Cpp = = Tk 882V2 _
Se1 = - Iy sin &, 5§1ﬁJ2
z = coelevation of P in new system
® = azimuth of P in new system.

Thus, to a first approximation, Legendre functions of the first order must
be included in the potential if a coordinate system slightly removed from a
preferred system is utilized to describe the position and velocity of a satellite,

NUMERICAL RESULTS

We now will give some results of an error analysis for a series of differ-

ent cases for orbits about Mars and Venus, Moon, and Earth. However, let us first

briefly describe the method of the error analysis.
It has been shown that it is possible to write
sm + D = A 6Y(0) (19)

where sm = a vector of angle deviations from the directions which would be
computed if the primary and secondary were on the reference orbits,

D = a vector which arises because the reference orbits were chosen to
be Kepler orbits,
A =2 2n x m matrix, n is the number of sightings of the secondary, and
m is the number of unknowns in the problems,
6?(0) = a 1 x m vector which represents deviations from their true values

of the initial conditions and the multiplicative constants of the
perturbing forces.

30




Equation (19) was derived by a linearization technique, and hence is only
an approximation. However, we will assume errors in the measured angles to be

10 seconds of arc. For these small errors, we may regard (19) as exact.

Let us assume E(6m + D) = 0, i.e., the expected value of each of the
measured angles is its true value, Also, the distributions of each measured
angle are independent. And, finally, the standard deviation of each measure-

ment is 10 seconds of arc, More precisely, for each i
g = G(sai cos ei) = c(aei) = 10 seconds of arc,

In general, 2n > m; i.e., there are more equations in (19) than unknowns,
Since this is the case, a '"'least squares" solution of (19) may be sought. If
the columns of A are linearly independent vectors, then the ''least squares"
solution of (19) yields

E(6Y(0)) = 0
and

E(5Y(0) §T(0)') = o> (A'A)" 1.

Hence, the mean of the outputs will be their true values, However, even though
the input errors are uncorrelated, the output error may be highly correlated,
In any event, as a measure of the error in outputs due to the input errors, we

will use the standard deviation of the output,

The unit of length is chosen as the kilometer, and the unit of time is

the hour,
Mars

For orbits about Mars, the secondary will first be chosen as one or both
of its known natural satellites, Phobos and Deimos. Later, the effect of using
an ejected probe will be studied. We assume Mars has an axis of dynamic symmetry,
and hence we are justified in assuming a potential of the form (18) if the direc-

tion of this axis is included in the unknowns.
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Position and Velocity Only.- Let us first investigate the errors in position,

and velocity for the case in which the only force field is an inverse square

central field; i.e., that is, no perturbing force exists.

The orbital elements chosen for the spacecraft, Phobos, and Deimos are-

given in Table IV,

Table IV

Orbital Elements of Spacecraft, Phobos, and Deimos

Body a (km) e i w Q Tb (hrs)
Spacecraft 4056.4 0 45° 0 0
Phobos 9400, 0.017 0.95° | 270° | 319°
Deimos 23500, 0.0028 1.3° 0 305°

In Figure 6 is a plot of the distance between the spacecraft and Deimos,
the spacecraft and Phobos, and the intervals of time over which these secon-

daries will be obscured by Mars,

Table V gives the resulting errors in position and velocity at t = 0, For
this case, 132 sightings were uniformly spaced over 10 orbital periods of the
satellite, Each sighting yields two equations, since both azimuth and elevation
of the secondary were utilized, No sightings were utilized during the time inter-

val in which the secondary was obscured by Mars,

Table V gives the results for various cases, Given are the standard devia-
tionsof the position and velocity errors at t = 0, The components of these
error vectors are resolved in the system le(O); i.e., they are given in the
radial, tangential, and cross-track directions (§ = 1, 2), The 12 unknown case
is that in which both the orbit of the spacecraft and Phobos are unknown, Two
6 unknown cases are presented; one in which the orbit of Phobos is known, and
sightings on it are used to compute only the orbit of the spacecraft. The
second 6 unknown case utilizes Deimos instead of Phobos., Finally, an 18 un-

known case is given in which sightings of both Phobos and Deimos are utilized

to compute all the orbits of all three bodies,

32




DISTANCE BETWEEN VEHICLE AND SECONDARY (x103 km)

28

26

24

22

20

18

16

—

DEIMOS

H H H e H H H (o
OBSCURED INTERVALS

PHOBOS

— — — — — — H
- OBSCURED INTERVALS
- ORBIT NUMBER
/ 2 3 4 5 6 7 8 9 /0
] l ] | l | ] | | 1
1 ! 1 ! ) 1 I T I I !
2 q 6 8 o 12 14 16 18 20 22
HOURS
Figure 6: Distance Between Spacecraft and Secondaries as a Function

of Time
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In all cases, the results indicate that the positions and velocities may
be computed within a reasonable error. As might be expected, the case which

yields the smallest errors is that in which an accurately known orbit of Phobos
is utilized, Note that if the orbit of Phobos is treated as unknown, then
the accuracy to which the spacecraft's position is determined is only slightly

poorer,

From this table, the overall conclusion is that the navigational problem
is well conditioned. Moreover, the proper choice of problems is a 12 unknown
problem in which the orbits of Phobos and the spacecraft are determined,

Little is gained by utilizing sightings of Deimos,

Table V was obtained by using a spacecraft orbital inclination of i = 450.
Several different inclinations were also utilized, The results were that the
largest error was obtained for i = Oo, and the smallest for i = 90°, The

spread, however, was not great.

Table V
Position and Velocity Errors at t = 0

132 Sightings, 10 Orbital Periods

Position Errors (km) Velocity Errors No.
Q?H/hr) . of

Body o(r) | a(s) | o(z) z o(t) a(®) | o) Unknowns
s/c 064 | .141 | .os1 | .168 | .380 | .126 | .246 6

Phobos known

6

s/c .113 401 214 468 1.06 330 .583 .
Deimos known

Phobos .071 .190 .079 217 .116 .059 .060
Deimos .375 432 .167 «596. .112 .058 .037 18
S/cC .117 147 .102 214 .391 .338 .237

Phobos .075 .197 .082 226 .119 .062 .062
s/C 125 .159 112 .231 420 .362 262 12

£ =P (x) + P (s) + ()
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r = error in radial direction
= error in tangent direction
Zz = cross-track error

Finally, in Figure 7 we plot what is defined as the total navigational
error for the cases examined in Table V. We define total navigational error

as,

qT
% f NP () + o> (s(t)) + o2 (z(t)) dt

(a-1)T
q=1,2, ...

where T = orbital period of the spacecraft and all measurements are utilized

such that 0 < t < qT.

Unknown Potential Parameters and Coordinate Direction but Mass Known,-Let

us now assume the mass of Mars is accurately known (in the next section, we

allow for an unknown mass) and the potential is given by

4 r k
ver, 8) = +z Jk<-r—e> B (cos )] .

We assume J2, J3, J4, gl, and 52 are poorly known., The angles §1 and §2 define

the direction of the spin axis of Mars,

In the previous section, we showed little was gained by sighting of Deimos
(at least for the navigation problem and a low altitude spacecraft orbit),
Thus, for the rest of our study of Mars, we will only utilize Phobos as the
secondary body. The orbit of Phobos will be treated as unknown. The number
of unknowns in the total problem is then 17 or 15 (in two cases we give results

in which &, and g, are known),

Four different orbits of the spacecraft were investigated., These four

orbits are defined in Table VI, For all orbits, w =Q = E, =0,
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Table VI

Spacecraft Orbit

Orbit Periapsis ht. Apoapsis ht.
No. a (km) e i (am) (km)

1 4056 .40 0 45° 672.06 672.06

2 4056.40 0 0° 672.06 672.06

3 3930.34 0.114494 60° 100 1000.

4 8880.34 0.506737 60° 1000 10000,

Values of the parameters were chosen as follows:

g, = 317.9°
€, = 35.3° from [7]
J, = 2,011 x 1073 from [11]
J3 = J4 =0 when orbits 1 and 2 were used
3, =-5x107°
-6 when orbits 3 and 4 were used
J4 = =4 x 10
No estimates of J3 or J4 are given in the literature.

As expected, the position and velocity errors are now greater than those obtained
for the case in which no perturbating forces exist (compare Table V with Table VII).
Also, for any particular case of the 17 unknown problem, o(2)>0(f)>0(§). Deletion
of the direction of the axis of symmetry as an unknown reduces o(z) and 0(2) more
than the other position and velocity error components, respectively. However, this

deletion has little effect in reducing the potential parameter errors.

At present, astronomic measurements yield c(an)élo-B, 0(651)50(5§Z)= 1°. Hence,
the sighting can be expected to yield considerable improvement in our knowledge of

the Martian potential.

Unknown Mass, Potential Parameters, and Coordinate Direction.-Let us now con-

sider exactly the same case as that presented by Orbit No. 3 in Table VII except
we now assume that the mass of Mars is unknown. Hence, the problem now has 18

unknowns. Results of this case are shown in Table VIII.

From this table, we see the method is very poor if the mass of Mars and the

orbit of Phobos are unknown. Note the large values of o(r), o(8), and g(fm). The
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Table VII: Position, Velocity, and Parameter Errors (Mass of Mars Known)
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68

Position Errors |Velocity Errors Potential Parameter Axis
at t = 0 (km) at t = O(km/hr) Errors - Direction
(sec,of arc)
No, of . . . o(sm
oebice| Body | o(r) o(s) o(z) [o(t) o) o(@)| o(sd,) o(53,4) o(63,) | =22 o(sg)) | otsg,)
Phobos | 547 5.66 27.0 [4.8 464 20 -5 -5 -5
10 s/c 206 37 2.811.3 791 51 1,97 x 10 1,26 x 10 3.33x 10 +18 | 160 792
Phobos | 358 .85 4,1 71 304 3.1 -5 =5 -5
20 s/C 135 28 50l .93 518 7.8 1,23 x 10 5.6l x 10 2,06 x 10 .11 25,8 121

Table VIII: Position, Velocity, and Parameter Errors (Mass of Mars Unknown)




analytic reason for these poor results is obvious, for the equations of motion -

are of the form

+g (x)

LY

G m
-3
x|

23

where.g (;) is small if JZ’ J3, and J4 are small,

Now let AR =T

3 .
A™M = m, where A is a constant.
Since no lengths are measured, the factor X does not appear in the constraint
equations if these equations are expressed in the new variables. However, in

terms of the new variables, the equations of motion become

=
=l

G

+g (R).

wl

&I
Thus, we note, if E = 0, then the equations of motion are independent of A,
Since g is small, it can be expected that T and m are nearly dependent, and

thus cannot be well determined by the measurements. A penalty thus must be

paid for not measuring lengths,

In summary, sighting of Phobos from a spacecraft yields accurate determina-
tion of the spacecraft's orbit, the orbit of Phobos, and the potential para-
meters. However, the mass of Mars cannot be treated as unknown in the total

problem,

Ejected Probe,-Thus far, we have utilized only Phobos as the secondary
satellite in determining the potential of Mars. We have observed that if the
orbit of Phobos and the mass of Mars are treated as unknown, then intolerably

large errors are produced, This result occurs because no lengths are measured.
Let us now investigate the total problem again utilizing Orbit No. 3 of

Table VII for the case in which an ejected probe of known ejection speed is

utilized. Note that the ejected speed introduces a known length.
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Let the probe be ejected so that

AV = 4 km/hr (ejection speed)
o
a =0
° o
eo=45.

The angles o, and €, determine the direction of ejection as shown in Figure 8, .

We will assume these angles to be unknown, but Av known.

1/’\.‘°’
/ (]
_«'PLANET'S CENTER
NORMAL TO yd
SPACECRAFT'S il 4
VELOCITY —=——— v
20

SPACECRAF T —s~

(o)

Figure 8: Direction of Ejection with Respect to System
which Moves with Spacecraft

In Figures 9, 10, and 11 results of two cases are presented, One case
utilizes 10 sightings per spacecraft orbital period on the ejected probe and
10 sightings per period on Phobos; the other utilizes only the sightings on
the probe. The first case in which Phobos is used contains six more unknowns

than the second case, The two cases have 20 and 14 unknowns, respectively,

Figure 9 gives the error in mass of Mars, navigational error of the
spacecraft, and error in J3 for both cases as a function of the number of
orbital periods over which the data is gathered, Here, navigational error is
defined as
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Sighting of Probe Alone, and Probe and Phobos
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= ng(r) + oz(s) + oz(z) at t = 0,

and r, s, and z are defined in Figure 3. Note that the mass determination

is always better if Phobos is used in conjunction with the probe.

In Figure 10 we plot the error in §2 and J2 for the two cases, §2 is the

codeclination of the axis of symmetry of Mars, Finally, in Figure 11 we plot

the error in §1 (right ascension) and J4.

In general, there is no greatly significant difference between results
obtained with and without sightings of Phobos along with the probe; except that

in the first case, an accurate orbit of Phobos is determined.

It is somewhat difficult to evaluate the improvement in accuracy afforded
by sighting of the probe over that obtained by sighting Phobos alone from the
Recall that Table VII (sighting of Phobos alone) was

constructed by utilizing the assumption that the mass of Mars was known; how-

data we have presented,

ever, in Figures 9, 10, and 11 we assumed the mass to be unknown., Even though
this .is the case, the improvement obtained by the probe is about a factor of
three for position, 15 for J2, 30 for J3, 23 for J4, and five for the direction

of the axis of symmetry.

If sightings of the probe and Phobos are utilized, the improvement in
the orbit determination of Phobos (versus Phobos alone) is given in Table IX.

Table IX

Comparison of Accuracy of Position and Velocity at t = 0 of Phobos
With and Without Probe Sightings, Orbit No. 3. Martian Mass Unknown With
Probe, Known Without Probe.

No, of | No. of Measurements z ~ (km) b (km/hr)
Orbits With Without With Without With Without
Probe Probe Probe Probe Probe Probe
10 150 264 8.82 30.0 5.94 22,2
20 300 264 1.46 4,58 0.84 3.46
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Venus

J2 and Direction of Axis of Symmetry Unknown - Known Ejection Speed.-Of all

the planets, Venus is the most nearly spherical. 1Its equatorial and polar radii
are both estimated to be 6100 + 50 kilometers. Thus, it is difficult to deter-
mine the coefficients of the higher order terms in the potential. No estimates

are given in the literature., Here we assume all coefficients are zero except J2.

The orbit chosen for the spacecraft is defined by

a = 6587 kilometers
e = ,0151814
i = 60°

Q=w-= Tp = 0.
These elements imply a periapsis and apoapsis altitude of 387 and 587 kilometers,

respectively.

We assume the spin axis to be coincident with the axis of dynamic symmetry

of Venus., This assumption and data from [6] thus implies

272.75° (right ascension of spin axis)

g1
€2

18.5° (co-declination).

Venus has no known natural satellites, hence the secondary must be an
ejected probe, We assume that the probe is ejected with known speed, but poorly
known direction. It turns out that the total problem is unstable if the ejection
speed is treated as unknown. We will discuss this point later. Also, we will

show the effect of an error in the ejection .speed.

We define the direction of ejection with respect to the coordinate R11(°)

by two angles, @, and ¢,, as pictured in Figure 8,

Let us set
Av = 4 km/hr
o, = 36°

e, = 49°.
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These parameters imply that the maximum distance between the spacecraft and

probe in 10 orbital peribds is 86.39 km, 86.50 km, and 86.51 km for J, = 10-3,

2
10—4, and 10-5, respectively. Assume no errors in the mass of Venus and the
ejection speed. There are 11 unknowns in the problem. These unknowns are given

in Table X, along with results for various values of Jz.

From Table X we note that as J2 becomes smaller, the errors beéome larger.
In fact, for J2 < 10-6 the problem becomes so ill-conditioned that no solution
could be found, The physical reason for this fact is that for small J2, the
direction of the planet's axis of symmetry is poorly defined. It is undefined
for J2 = 0.

For rapidly rotating planets (e.g. Jupiter and Saturn), J, can probably be

estimated closely by assuming the planet to be in hydrostatic iquilibrium. How -
ever, for such a slowly rotating planet (sidereal period = 243.,2 days retrograde),
the effect of centrifugal force is second order. It is difficult for us to esti-
mate J2 for Venus, but it is highly likely that it is smaller than that of the

Earth or moon,

In Table XI we show the effect of adding the mass of Venus as an unknown.
Recall that for the case of Mars, adding mass as an unknown greatly increased
the errors. A significant, but not intolerable, increase in position and ve-
locity errors are shown for the present case, This is because the ejection speed
supplies a length measurement which was missing when only the direction of Phobos

was measured. The accuracy of the mass determination, however, is not impressive.

6

Our present knowledge (Table I) gives §m/m = 1.5 x 10~

Note that (Table XI) deleting the direction of the axis of symmetry from
the unknowns greatly decreases the errors in all remaining unknowns except

(disappointingly) the mass.

In Figure 12 we plot the errors as a function of the number of orbital
periods over which data was gathered. Here J2 = 10-3, and 13 sightings/10 orbital

periods were utilized.
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Table X: Errors in X, (0), Jo, Direction of Axis of Symmetry, and Direction of Ejection: Speed of
Ejection and Mass of Venus Known

Chosen | Position Errors (km) | Velocity Errors (km/hr) 0(6J2) Axis Dir. (min) |Ejection Dir. (min)
3, |oGex) o(ey) oG2) | o(e) o(9)  0(62) |x 10° | o(6E))  0(sE,) |cos T o(sd)  o(sE)
10-3 042 451 1.65 |4.63 170 98.1 3.1 .85 27 15 17
10-4 041 2,12 6.60 | 18.2 1790 1030 3.3 3.6 280 157 183
10'5 041 21,0 62.9 {172 19600 11300 3.6 35 3058 1710 2000

-6

10 -- -- -- -- -- -- -- -- -- -- --
10'7 - - - - - - - -- - -- -

114

10 orbital periods of data - 130 sightings

Table XI: Effect of Adding Mass as an Unknown. Also Effect of Deleting Direction of Axis of Symmetry

Chosen | No. of Position | Speed 0(5J2) Axis Direction ]| Ejection Direction
Error Error (min) (min) o(sm)
J2 Unknowns | Z(km) S(km/hr) | x 106 0(551) o(agz) cos € a(s3) | 0(s€) m
1073 12 30.9 238.9 3.2 .90 28 17 18 | .0l4
107 12 317 2694 3.4 3 294 165 192 | .185
1073 10 29.4 115 g7 | - | - 1 1 | .013
107 10 37.8 148 82 | e | - 1 1| 174

10 orbital periods of data - 130 sightings

= J;z(ax) + 02(6y) + 02(62)
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Figure 12: Effect of Additional Measurements and Orbits on
Errors
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In order to assure that the probe is not too far from the spacecraft, the

- angles of ejection for the case shown in Figure 12 were changed so that

a_ =0

€ = 450, where these angles are defined in Figure 8.

This ejection direction will be used in the rest of the analysis. Setting o, = 0
insures (at least to a first order) that no secular dependence is present in the
distance between the probe and the spacecraft. During a period of 100 orbits

the maximum distance between the probe and spacecraft is 3.91 kilometers,

Note that even though more sightings were used for the case presented in
Table X1 than that presented in Figure 12, after 10 orbits the errors are smaller
in the latter case. This results because 2 more judicious choice of the ejection

direction yields a smaller distance between the spacecraft and probe.

Several other cases were tried in which the planet's mass was unknown, but
errors in the mass determination were always quite large. At this point, we
conclude that our method is somewhat poorly conditioned if the planet's mass is

unknown In the rest of the analysis we assume the planet's mass is given.

Let us look at one more case before leaving this section:

(1) Mass known

(2) a, = 0 .
e =45
(e}
(3) Av = 4 km/hr
(4) five sightings/orbit
5 3, = 107 and 107°.

Conditions (1), (2), (3), and (4) will be used in the rest of our study of Venus.
Results of this case are showm in Figures 13 and 14. Note that all errors are

significantly larger for the smaller value of J, except G(&Jz) itself,

2

gz, CZl’ and 521 Unknown.-In order to overcome the singularity inherent in

the above formulation for J2=0, a different and more conventional formulation will

now be made.
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Assume a body has an axis of symmetry. and a potential which includes
terms with Legendre polynomials up to degree k when the preferred coordinate
system is utilized. Then as was .observed in our discussion of the potential,
a system slightly removed from the preferred system introduces first oxder

Legendre functions if the removed system is utilized to express its potential.

We now assume the potential of Venus to be

2
r
V(r’ é) e) = - Gr—m[l - J2 <_rg> P2(COS ﬁs)

2
T .
. 1 0
+ (C21 cos 8 + 821 sin 0) <::$:> P2 (cos é)J

So, 021 and 821 are now used as unknowns instead of gl and §2. Note that even

if Jz = 0, Cy; 2nd Sp; have physical significance, but §1 and §2 do not.
For the present study we set the direction of ejection so that @, = 0,

€, = 45°, A1l orbital parameters are the same as before. However, five

sightings are spread uniformly over an orbital period. Moreover, it is assumed

the ejection speed is known as is 4 km/hr. The present problem has 11 unknowns.

_ - _ -7
Results for the case J2 = 10 7, C21 = 10 °, f;d 521

Table XII. However, two other cases viz. J2 =10 ", C21 = S21 = 0; and J

= 0 yields almost identical results. This result is in sharp

= 0, are shown in

2

=€ =50
contrast with those obtained for the formulation in which the direction of the

axis of symmetry was unknown instead of 821 and C21.

velocity is much smaller in the present formulation.

Also, the error in initial

Table XII: Errors in Initial Position and Velocity, J2, CZl’ and 8,; as a Func-
tion of Number of Orbits, Mass known

g:éizﬁ % (km) (kmihr) c(&JZ)x106 C(5C21)x108 c(5521)x109
5 1.15 1.37 2.80 28.7 65.0

10 .82 .95 98 5.84 11.3

15 67 .85 54 2.19 4.10
20 .58 67 .35 1.10 2.03
25 52 .60 .25 .63 1.14
30 .48 .55 19 40 72
35 44 51 15 .27 .49
40 .41 .48 .13 .20 .35
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Effect of Ejection Speed Errors
Extremely large errors in all parameters are obtained if the ejection
speed is taken as an additional unknown in the total problem. The reason for

this fact is that

Ry(t) - Ry(t) av 4,(t) &, 6,(0) =0,

where EZ - ﬁl = position of probe with respect to spacecraft,
Av = ejection speed,
62 = 3 x 3 matrix, and
Go = ejection direction.

Thus, the direction to the probe as a function of time is nearly independent of
the ejection speed. Since only this direction is measured, the measurements

weakly determine the ejection speed.

The situation with respect to the direction of ejection is just the oppo-
site. That is, the generic direction is strongly dependent on the ejection
direction and thus the ejection direction is always accurately determined by

the measurements.

In all our previous analyses, we assumed the ejection speed was known
exactly. More precisely, we assumed no systematic errors. The random errors
in the measurement of the probe's direction then gives rise to random errors

in the output parameters with mean zero and the reported standard deviation.

Let us now investigate the effect of a systematic error in the ejection
speed. In general, any systematic error will force upon us errors in the output
parameters with non-zero means, but the standard deviation will be unaffected.
Thus, our previous results may still be interpreted as the standard deviation of

the parameter .
Let us now give the systematic error produced by an error in the ejection

speed for the five principal cases studied previously. (See Table XIII.)

For these cases, we assume the mass of Venus known.

54



Figure 15 is a plot of the systematic error in the spacecraft's initial
position and velocity, while Figure 16 yields the systematic errors in Jz,
C2l’ and 321' These plots are for Cases III, IV, and V (Table XIII) and
5Av = .01 Av (the error in the ejection speed is 1/100 of the true ejection
speed). We define the position and velocity errors plotted in Figure 15
as the square root of the sum of the squares of the component errors. For
the case shown the true magnitudes of the initial position and velocity are

6,487 kilometers and 25,367 km/hr, respectively.
From these figures, three main generalizations may be made as follows:

(1) Smaller perturbations yield smaller systematic errors due to
ejection speed errors.

(2) 1In general (Case V in which the perturbing forces are zero
offers exceptions), the systematic errors in initial position,
velocity, and C21 increase with increasing number of measure-
ments and measurement time interval. This is in contrast with
the effect of random input error which always imply a decrease
in output errors as more measurements and a longer time interval
are used.

(3) 1If the error in ejection speed is on the order of 1% or less,
the resulting output errors are reasonably small.

Table XIII: Cases for Which Systematic Error has Been Studied

- T "I Random Error -
Case No. Parameters Results Comments
I J2 = 10_5 Figures Systematic errors slightly larger
51’ §2 13 and 14 in Case I than in II, but random
errors were significantly larger
I 3. =10"%
2 in IT than in I.
| gl’ gz
II1 J2 = 10-5 Table XII, Systematic errors smaller for
C21 = 10-7, 821 = 0| Cases III, smaller perturbations but random
-7 IV, and V error nearly independent of magni-
v Jp = 10 yield almost | tude of perturbations.
Coy = 893 =0 identical
_ results.
v J2 = 02l
== S S S
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Finally, in Figures 17 and 18 we plot the value of IGAVI/AV which will
produce a systematic error in any one parameter equal to the random error
in that parameter. For example, from Figure 18 we see that for Case III
after 20 orbits of measurements, the magnitude of the systematic error in
the spacecraft's initial velocity is equal to the random error if |6Av|
= ,086 Av. If '5Av| < .086 pAv, then the magnitude of the systematic error
will be less than the random error. For Case IV, only the parameter C2
requires |8Av| < |av], for all other parameters |sAv| > fav] . That is,
the error in the ejection speed is actually greater than this speed, to
yield a systematic error in these other parameters equal to their respective

random error. For Case V, no parameter requires |5AVI < |Av|.

Moon

We assume the moon has a potential of the form

V(r, 6, 8) = -%[1+

RN
Z (f) P;(cos 6)
2 i=0

AN R

p'S (Cji cos i B8 + Sji sin i 9)] (20)

where r, ¢, 8 = spherical coordinates of generic external point,
G = universal gravitation constant,

m = mass of the moon, and

2]
1]

equatorial radius = 1738.09 km.

Also, we assume all forces on the spacecraft and probe are given by -VV,

Three orbits about the moon will be utilized. The initial position

and velocity and initial orbital elements are given in Table XIV. The

maximum distance between the probe and spacecraft is dependent on the choice
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TABLE XIV: 1Initial Position, Velocity, and Orbital
Elements of Orbits 1, 2, and 3

parameter | | OTbit 1 Orbit 2 Orbit 3

s/C Probe s/C Probe s/C Probe
x (em)  |2160  |2160 1935 1935 1797.3 1797.3
y (km) 0 1] 0 0 0] 0]
z (km) 0 0 0 0 0 0
% (km/hr) 0 2.828 0 2.828 0 2.828
§ (km/hr) |2844.16 |2841.71 3004.974 |3002.524 3117.963 | 3115.513
# (km/hr) |4926.23 [4927.65 5204.767 |5206.182 5400.470 | 5401.884
a (km) 2400 2400.00145 | 2150 2150.00116 | 1997 1997.001
e 1 .100002 1 .100002 1 1
i 60° 60.03° 60° 60.03° 60° 60.03°
Q 0 0 0 0 0 0
w 0 -.31° 0 -.29° 0 -.29°
T, () 0 -.002 0 -.002 0 -.001
Period (hr) | 2.930| 2.930 2.484 | 2.484 2.224 2.224
‘;;“(k;; 421,91 | 421.91 196.91 | 196.91 59.21 59.21
h, Ckm) 901.91 | 901.92 626.91 | 626.92 458.61 458.61

of Cji and Sji’
1.32 kilometers for Orbit 1 and 1.12 kilometers for Orbit 2. These distances

but over a time duration of 25 orbital periods, it is roughly

are small because of a judicious choice of the ejection direction. 1In general,
no secular dependence will be present in the distance between the probe and
spacecraft if a zero component of velocity in the direction which is tangent
to the spacecraft's orbital path is given to the probe. Thus, if a zero
tangential component is achieved, the distance between the probe and spacecraft
will be oscillatory and bounded. However, a non-zero component causes this
distance to increase roughly linearly with time, For Orbits 1, 2, and 3 the
probe was ejected so that equal velocity components were given in the radial

and normal directions of the orbit and the ejection speed was 4 km/hr.
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In Table XV, we present the four cases for which we will give results.
The values of Cji and Sji were taken from Reference [4]. 1In all cases we set
C21 = 041 = 042 = C33 - 043 = CAA = 832 - 833 = 844 = 0. Case 2 utilizes the
same orbit as Case 1. Cases 3 and 4 are the same as 2 except that|3 utilizes
a lower altitude orbit, while 4 utilizes the lowest altitude orbit (Table

X1iv).

TABLE XV: Cases for Which Numerical Results will be Given
(Multiply all values by 10-%)

Constant Case 1 Case 2 Case 3 Case 4
C20 -2.07 -2.07 2::: ;s g::: ;s
C30 4461 L4461
C40 .2089 .2089
C31 L4346 L4346
022 .2761 .2761
C32 0 ~.0522
821 -.4106 -.4106
S31 .1701 0
841 -.1018 -.1018
842 -.0834
S43 0 -,0259

Orbit No. 1 1 2 3
Total No. of 16 18 18 18
Unknowns

The unknowns of the problem are the position and velocity of the space-
craft at the time of ejection, the direction of ejection, and the potential

parameters that are not identically zero in Table XV,
For all results presented on the moon problem we chose to utilize 10

sightings of the probe per orbital period of the spacecraft. Each sighting

yields two equations.
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Effect of Random Error in Direction

Let us now investigate the effect of random error in rhe measurement of
the direction of the probe as seen from the spacecraft. These errors will

imply an error in each of the outputs.
" Let us restate our major assumptions as follows:

(1) No systematic error exists, and the only error source is random
errors in each measured direction to the probe.

(2) The expected value of each measured angle is its true value.

(3) The error distributions of ea¢ch measured angle are independent
and identical with a standard deviation of 10 seconds of arc.

(4) The random input errors are so small that each output error 1is a
linear combination of the input errors.

(5) Ten sightings per orbital period are made. Each sighting implies
two equations.

In Figure 19 we plot the initial position and velocity errors of the
spacecraft due to the random input errors as a function of the number of

orbits of the spacecraft. From this figure we note the following trends:

(1) As the number of unknowns increases (Case 1 to Case 2), the
position and velocity errors increase,

(2) As the orbital altitude is lowered (Case 2 to Case 3), the
position errors decrease, but the velocity errors increase.
In order not to crowd the graph, Case 4 (the lowest altitude
orbit) is not shown, but its plot supports this conclusion.

(3) The improvement in accuracy is rather gradual after 15 space-
craft orbital periods.

In Figures 20, 21, and 22 we plot the normalized errors in the parameters
for Cases 1, 2, and 3, respectively. Here we define normalized error as
Eji = ,c(aCji)/Cji], with similar definitions for the S's. Results for
Case 4 are not plotted, but a comparison of Cases 2, 3, and 4 is given in

Table XVI. These three figures and the table yield the following generalization:

(1) The potential parameter errors increase as the number of unknowns
increases (Case 1 te Case 2).
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TABLE XVI: Comparison of Results of Cases 2, 3, and 4.
Data gathered over 25 Orbital Periods.

Parameter Case 2 Case 3 Case &4

Z (km) 142 .131 124

% (km/hr) 121 .131 .137

Cy0 .00270 .00253 .00250

630 .00633 .00640 .00630

Eﬁo 147 .0947 .0727

C31 .117 .0788 .0567

C22 L0491 .0357 .0299

S21 .0423 .0285 .0226

C32 .0664 .0515 .0435

§41 .126 .0725 .0473

842 .0113 .00885 .00680

§43 .0250 .0157 .0118

(2) As the orbital altitude is lowered (Case 2 to Case 3 to Case 4),
the parameter errors decrease, A significant decrease is obtained
in all parameters except C20 and 030 (see Table XVI),

(3) Again the improvement is gradual after 15 orbital periods.

(4) The improvement in accuracy of C is somewhat different from

the other parameters in the interval from 5 to 15 orbital

periods. Our conjecture for the cause of this more gradual
improvement is the spacing of the sightings. Note that a factor

of C,. in (20) is cos ©. Now, the ejection was placed at 6 = 0,

and %&e probe nearly returns to the spacecraft for 6 = 2mn,

n=1, 2, For this reason, no sightings were allowed within
36° of 8 = 2nn, which in turn generally implies a smaller coeffici-
ent of C31 than the other parameters at the time of probe sightings.

In Table XVII, we compare c(sti) and c(ﬁsji) as obtained by our analysis

(Case 3, 25 orbits) with those values reported by Lorell and Sjogren in

Reference [12]. The values of the standard deviations from Reference [ 12]

were estimated from the residuals obtained from actual data furnished by

Lunar Orbiters I-1IV.
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TABLE XVII1: Comparison of Standard Deviations of Parameters
Obtained by Probe Sighting and Lunar Orbiter

Analysis
Standard Dev. x 106
Parameter Probe Sighting Lunar Orbiter Probe/Orbiter

C20 0.52 1.43 .36
C30 0.29 2.62 .11
CAO 1.98 1.90 1.04
C31 3.43 0.25 13.7

C22 0.98 2.49 .40
C32 .27 0.58 46
821 1.17 1.39 .84
841 0.74 0.51 1.45
842 0.07 0.35 .20
843 0.04 0.15 .27

From Table XVII, we see that our method compares fairly well with radar

measurements., However, our error in C is about 14 times larger. Moreover,

31
we have not included the systematic errors which will arise in our method if

an error in ejection speed is present. This point will now be considered.
Effect of Error in Ejection Speed

Thus far, we have assumed the ejection speed is given by Av = 4 km/hr
and was error-free. Let us now assume the ejection speed is in error so that
6Av = .04 km/hr. It seems reasonable that an ejection mechanism can be built

so that |8Av| < .01 Av.
In general, if an error in ejection speed exists, a systematic error in

each output will result. In Figures 23, 24, and 25 we plot the systematic

error in the outputs as a function of time. Also shown are the "one-sigma"
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error bounds about the mean error. Case 3 is studied in these figures,

From Figure 23 we note that the mean error in C increases as more data

20
is utilized, but the variance about the mean due to the random error decreases.
Similar remarks are true for the other parameters. In these figures we

omitted the parameters C and S but their behavior is quite similar

40° S21° 43
to that exhibited in Figure 25.

EARTH ORBITS

Thus far, the only perturbing forces we have considered were those which
arise from a potential. With each harmonic in the potential, there was an

associated unknown.

In studying the application of our method for orbits about the earth,
we will assume the potential is represented by three zonal harmonics such

that the parameters J and J, are known beforehand. Additional perturb-

2’ J3’ 4
ing forces due to drag and radiation pressure will be allowed. These non-

conservative forces will introduce two unknowns.

Two orbits will be used, a low altitude (632 kilometers) and a synchronous
altitude orbit. The orbital parameters of the spacecraft are listed below.

In all cases, five sightings per orbit will be utilized.

Orbit Elements a e i w Q tp
Low Altitude | 7,000 km 0 60° 0° ° 0
High Altitude 41,800 km 0 0° 0° 0°

Let us now briefly discuss the forces produced by drag and radiation

pressure,
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Drag

The acceleration acting on a satellite caused by atmospheric drag may be

approximated by

- _ 2 ~
ag = - (1/2m) pv ADCD v

where p

<><2U‘nd';>

= density of the atmosphere at the satellite,

= cross-sectional area of satellite perpendicular to v,
= drag coefficient,

= air speed,

= unit vector in direction of satellite velocity with respect to atmos-

phere, and

= mass of satellite.

If we assume the atmosphere rotates with the Earth as a rigid body, then

where

Wi > o

The

<>

= angular rotation rate of the Earth about its axis = 7.29215506 x 10

=R - [R| Q cos 6 &,

5

rad/sec,

= declination of satellite,

= unit vector in local East direction,

position vector of satellite.

drag coefficient, C is not constant, but is a function of angle of

D,

attack, temperature, and velocity. A brief, but enlightening, discussion of

this parameter is given in Reference [13].

Here we will assume Cq =P C

D is constant, but unknown, Hence,

ag= - (cq Ay v2/2 m) v,

Radiation Pressure

The acceleration of a satellite due to radiation pressure is given by

a

%

=-1/myv1>Ap§,
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where y = a factor which depends on the reflecting properties of the satellite,

1 + .5, for a diffuse reflector,

2-2)/3, for a specular reflector; here
A is the albedo of the satellite.

v =1, if satellite is sunlit,

0, if not sunlit,

P = solar rad ation pregsure in the vicinity of the Earth (approximately
4,5 x 107 dynes/cm ),
Aé = cross-sectional area of satellite perpendicular to s, and
S8 = unit vector in direction of sun.

Here we will assume P is constant, but unknown. Nominal parameters for drag

and radiation pressure chosen here are listed in Table XVIII.

TABLE XVIII: Drag and Radiation Pressure Parameters

Parameter Spacecraft Probe
m 3000 kg .3 ke
-5 2 -5 2
P 4.5 x 10 © (dynes/cm') 4,5 x 10 © (dynes/cm' )
AD = Ap 8 x 104 cm2 40 cm2
CD 2,2 2.2
Reflector specular specular
A (albedo) 0.5 0.9
-6 2 -6 2
vyP A /m 10 ~ v cm/sec 4,2 x 10 ~ v cm/sec
P -16_, 3 -16 3
p (low alt.) 5.5 x 10 " g/cm 5.5 x 10 g/cm
p (high alt.)| O 0
p ApC - -16, .
———;’; D 10w) 1.613 x 10" /em 1.473 x 10 1%/¢m

The values of mass and area in Table XVIII imply that if the spacecraft and

probe were spherical, then

]

spacecraft radius 1.12 meters,

2,52 cm = 1inch
.498 g/cm3, and
.14 g/cm3.

probe radius

mean spacecraft density

mean probe density

]
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Numerical Results for Earth Orbits

For ouwr first case, let us consider the low altitude (a = 7000 kilometers)
orbit. As with the case of the Moon, let the probe be ejected with no tan-
gential component of velocity. Also, let Av = 4 km/hr and § Av = .04 km/hr,
This error in ejection speed will produce a systematic error in each output
parameter, Moreover, a random error will also exist because of random errors
in the measurement of the probe's direction. As before, these random errors in

direction will be chosen with a standard deviation of 10 seconds of arc.

Our present problem has 10 unknowns: six define the initial position and
velocity of the spacecraft, two define the radiation and drag parameters, and

finally, two are parasitic and define the probe ejection direction.

Five sightings per orbital period of the spacecraft will be used. Each

sighting will yield two equations,

Figure26 is a plot of the mean error in initial position and the mean
error in the initial velocity as a function of the number of orbits over which
the measurements are taken, Also shown are the one sigma error bounds about
the mean. These errors about the mean are produced by random input errors.
Note that the random errors are almost insignificant compared to the systematic
errors, Also, the systematic error in initial velocity increases quite

rapidly as data over a longer interval is utilized.

In Figure 27 we plot the normalized systematic error in the radiation
pressure and drag parameters, The random error in these parameters is about
10“2 times the systematic error and hence too small to be shown in this figure.
Note the error in the radiation pressure parameter, §P, is almost as large as
P. However, for the drag parameter 8¢y £ 10-3 cq S© the measurements will

yield a good estimate of the product p C Note that only the product is

D*
calculable and not the individual factors.

It is not surprising that the 8§P/P >> 6cd/cd, for the acceleration due to

drag is about 20 times greater than that due to radiation pressure., Moreover,

no effect is produced by solar radiation over about 1/3 of each orbit,
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POSITION AND VELOCIT® ERRORS
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Figure 26: Mean Error and One Sigma Bounds for Initial Position
and Velocity Errors. Low Altitude Earth Orbit
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1

Since the effect of a systematic error in ejection speed outweighs the
effect of random measurement errors in the previous case, it is highly de-
sirable to reduce or eliminate the ejection speed error. We propose to ac-
complish this elimination by releasing the probe with zero differential speed,
i.e., AV = AV = 0. qug and radiation pressure then is allowed to separate
the spacecraft and probé. It is argumentative as to whether or not such a

release is possible, but we will assume it is here.

The total problem has now only eight unknowns, for we lose the two un-

knowns associated with the ejection direction.

In Figure 28 we then plot the errors in initial position and velocity due
to the random errors. Two orbital cases are shown: the low altitude case
and the high altitude (synchronous), Note that the errors decrease with more
measurements and are considerably less than those shown in Figure 26. Also
note the plot begins at 10 orbits instead of five orbits., This is because no
measurement was allowed if the distance between the probe and spacecraft was
less than 100 meters. If this restriction were not imposed, parallax may
produce an additional error., After five orbits, the distance between the probe
and spacecraft for the low and high orbits is 420 and 910 meters, respectively,
In Figure 29, we plot the normalized error in radiation and drag parameter for
the low altitude orbit, and the noramlized error in the radiation parameter for

the high altitude orbit, It was assumed cq = 0 for the high altitude orbit.

Note that for the low altitude orbit the normalized drag error is about
-2 . . e .
10 © times the normalized radiation pressure error. But, the nommalized
radiation pressure error for the high altitude orbit is smaller than either

error in the low altitude case,

In conclusion, it appears that probe sightings are quite effective in
calculating the parameters associated with drag and radiation pressure if

systematic error in ejection speed can be avoided.
As a final note of interest, we plot the distance between the probe and

spacecraft as a function of time for the three cases., We offer the following

explanation for the somewhat strange behavior shown in Figure 30.
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POSITION AND VELOCITY ERRORS
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Figure 28: 1Initial Position and Velocity Errors for Low and
High Altitude Earth Orbits. 64v = Av = 0
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ERROR IN DRAG AND RADIATION PARAMETERS
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Normalized Error in Drag and Radiation Parameters
Caused by Random Measurement Errors. 64v = Av =0
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(2)

(3

For the high altitude orbit in which the ejection speed is zero
(Av = 0), the only effect which separates the probe and space-
craft is the differential radiation pressure. But radiation
pressure is approximately in the direction of motion over
one~-half the orbit and opposite the direct over the other
one-half orbit. Hence, the distance may be expected to be
oscillatory.

For the low altitude orbit in which Av, the main effect which
causes separation is drag. Drag always acts to oppose the
motion. Hence, the separation distance monotonically increases.

If no drag or radiation forces exist, Av # 0 but small, and
ejection 1s such that no orbital tangential component of

velocity is given to the particle, then the separation distance
would be oscillatory. If drag and radiation are added, the N
effect shown in Figure 30 for Av = 4 km/hr is reasonable.
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CONCLUDING REMARKS

The major results of computer simulations indicating the manner in which
" instrument measurement errors propagate through the system into errors in the

computed quantities is given below.
Mars Navigation Problem (Natural Satellites)

1. For the assumed conditions navigational accuracies ranging from 0.2 to

1.0 kilometer are obtained when viewing either Phobos or Deimos or both.

2., 1Introducing unknowns associated with the gravitational potential does
not significantly degrade the accuracy of the spacecraft orbit determination;
however, it does degrade the orbit determination of the artificial satellites

(compared with the case in which the perturbing parameters are known).

3. Approximately two or three orbits of observations are needed to get the
navigational error down to the region where the improvement is gradual and
roughly proportional to the reciprocal of the square root of the number of ob-
servations. (Past studies have shown that one orbit is sufficient to arrive at
this condition when using a test probe system. The fact that more orbits are
taken here is a reflection of the fact that the orbital periods of the bodies

being viewed are several times longer than that of the spacecraft orbital period,)

4, As a navigational system, the accuracy when viewing Deimos is poorer
than when viewing Phobos. One of the reasons for this is that Deimos is simply
further away and the angle errors propagate in proportion to the length of the
sight line. Another reason is that Deimos' orbital period is longer and for a

given observation time its motion around the central body is smaller,

Mars Perturbing Parameter Problem (Natural Satellites)
Iy J3, J4*.—When the number of unknowns is expanded to include three terms
in the gravitational potential (making a total of 15), a well conditioned prob-

lem exists: 107/ < o(s3) < 10'4, i=2, 3, and 4,

* Only the unknown parameters are listed.
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J2,

J3, J4’ €15 52.-Adding the unknown direction of the spin axis, g€, and

52, creates a problem in 17 unknowns, This problem is also well conditioned and

the accuracy of the computed direction of the axis of dynamic symmetry varies

from 1.0 to 10 minutes of arc., Some of the properties of this type of system are:

The terms in the gravitational potential only slowly improve in
accuracy as the number of spacecraft orbits over which measurements
are made is increased from 10 to 20;

The spin axis direction determination is improved by a factor of two
to eight by extending the sampling period from 10 to 20 orbits;

An inclination of 60° generally produces a solution which is a factor
of 10 more accurate than that produced by an inclination of 0; and

Changing the spacecraft altitude is not a dominant factor in changing
the accuracy with which the unknowns can be computed.

JZ, J3, J4, gl, 52’ m,-Adding the planetary mass as unknown expands the

problem to a total of 18 unknowns. This produces a system which:

Errors in the computed spacecraft position become very large;
The error in the mass determination is also large;

Interestingly, there is no significant change in the accuracy with which
the other parameters are computed (compared with the case in which mass
was assumed to be known).

The addition of a linear measurement (such as would be supplied by radar)
will rectify the above deficiency of systems in which mass is an un-
known and permit an accurate computation of mass to be made.

Mars Ejected Probe CJZ, J3, Ja, gl, €y m)

Probe and Phobos.-Introducing an ejected probe expands the problem to a total

of 20 unknowns in that two unknowns associated with the ejection direction must be

added.

The ejection speed cannot be used as an unknown without ill-conditioning

the problem. It is assumed this speed is known exactly.

A significant improvement is obtained by use of the probe in all parameters.

Moreover, the orbit of Phobos may be found more accurately by about a factor of

four.

85



Probe Alone.-Deleting sightings of Phobos reduces the probelm to 14 unknowns.
No great change in the accuracy of the parameters is obtained except that the

error in m is about a factor of two larger.

Venus (6AV = 0)

JZ’ 51’ gz.-As J2 becomes smaller, the errors become larger. The problem
is ill-conditioned for J, = 0.

2

JZ’ gl, §2’ m.-Adding the mass of Venus as an unknown does not significantly

degrade the determination of J and 52, but does degrade the initial posi-

2> 812
tion and velocity. The accuracy of the mass determination is poor and becomes
poorer as J2 becomes smaller. Mass should not be inserted into the problem as

an unknown.

J2, Cyy» Syp--In contrast to case 1 (J2, gys gz) in which €1 and g, were un-
known instead of 021 and 821, the errors are almost independent of the magnitude

of J and 5 The singularity is thus removed by this formulation.

2? C21’ 21°

Venus (5Av # 0)

If an error exists in the ejection speed, a systematic error in each output
will result. In general, as the perturbing forces become smaller, the systematic
errors become smaller. However, as the time interval over which the measure-
ments are taken is increased, the systematic errors are increased. But, in any

event, an error in the ejection speed produced a very small error in the outputs.

J2, 51’ gz.—Consider the ratio of the systematic error in a quantity (pro-
duced by an error in ejection speed) to the random error in that quantity
{produced by random errors in measuring the direction to the probe). This ratio

is relatively large for the initial position and gl and small for other outputs.

if ,6Av| < .01 Av, then the systematic error in all outputs is relatively
small if measurements are made over less than 12 orbits and J2 = 10-5. If

J2 = 10_6, then they are relatively small for 32 orbits.
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821.-For this set of unknowns, has the largest relative error,

J2’ C21’ C21
but if 32 g_lO"5 the systematic errors are relatively small.

Moon

1. The random errors in initial position and velocity are less than 0.2 kilo-

meter and 0.2 km/hr, respectively, after 15 orbits of data collection

2. A higher altitude orbit yields larger errors in the harmonics, except
for C20 and C30.
3. The errors in the harmonics due to the random input errors have normalized

values roughly between 0.1 and 1 after five orbits of data collection,
and between 0,01 and 0.1 after 20 orbits.

4. If an error is present in the ejection speed, a systematic error in each
harmonic will result whose properties are as follows:
(a) As a longer data collection time interval is utilized, a larger

systematic error generally occurs,

(b) For some of the harmonics, the systematic error is about 10 to 20

times larger than the random error if §Av = .01 Av.
Earth
1. Depending on the error in ejection speed, the product of atmospheric density

(at the satellite) and the drag coefficient, pCD, can be determined to
between one part .in 1,000 and 10,000 by utilizing a low altitude orbit and
a two inch diameter probe.

2. If there exists an error in ejection speed of §Av = .01 Av, then the error
in the radiation pressure, §P, is nearly as large as P,

3. If the probe is released so that §Av = Av = 0, then the following is true:

(a) For a low altitude orbit, the drag forces are much greater than the
solar radiation forces, and, hence, the normalized error in the
radiation pressure is about 100 times greater than that of the drag
parameter.

(b) For a high altitude orbit, the drag forces are negligible. After 30
orbits of data, the normalized radiation pressure error, §P/P, is
about 2 x 1072,
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APPENDIX A
ACCURACY OF ORBIT DETERMINATION

We have proposed and utilized a method of orbit determination which relies
on computing position and velocity by a linearization with respect to a reference
trajectory. The reference trajectory is chosen to be a set of discontinuous

Kepler arcs.

In order to test the accuracy of our method, the sponsor supplied a computer
program called Lungfish. This program computes the position by a numerical
method of solution to the differential equation. The three second order differ-
ential equations are used to obtain a 12th order Runge-Kutta type expansion for

the solution.

In Figure 31, we plot the difference between the Lungfish solution and our
solution as a function of time. The orbit in question is a low altitude orbit
about Mars (Orbit No. 3, Table VI). Only two components are shown, but the
third component is similar to those shown. We feel that curves shown can be
interpreted as more simply the difference between the two solutions and is the
error in our solution. We conclude this because the Lungfish solution implied
a nearly constant kinetic energy and component of angular momentum which is

parallel to the symmetric axis (within 10—7).

Note the maximum error in our solution is 270 meters after 20 orbits.
It is felt that this error has a negligible effect on the results of our error
analysis. A test of the accuracy of our solution was also made using an orbit
about Venus with J2 = 10_4. In this case, the maximum error was only five
meters. It is not surprising that the error in our solution is considerably
smaller for smaller perturbations; for our solution is exact for zero perturba-

tions.

APPENDIX B
USE OF PROBE FOR AN ORBIT ABOUT SATURN

In our study of orbits about Venus, we found that the measurement of an
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ejected probe's direction as a function of time yielded a poor determination of
mass and a relatively poor determination of the direction of the axis of symmetry.
We reasoned that these facts were caused because of the almost spherical
character of Venus. To test our reasoning, we now study an orbit about Saturn
which is a highly oblate planet.

We now assume J, = .0148, J, = 0, and J, = -3.5 x 10_4, and an orbit whose

2 3 4
semi-major axis has length 20% larger than the planet's equatorial radius, and
eccentricity = .01. The following results are obtained for no error in

ejection speed.

TABLE XIX: Standard Deviation of Parameters for an Orbit About Saturn.
Mass Unknown

No. of Orbits

Parameter 10 20
g(dm)/m 3.9 x 1074 1.9 x 1072
c(agl)(sec of arc) 43 17
O(égz)(sec of arc) 20 i 6 _7
G(6J2) 2.4 x 10_6 7.3 x 10_7
0(6J3) 1.5 x 10_6 8.0 x 10_7
G(GJﬁ) 1.0 x 10 3.3 x 10

Except for errors in JZ’ the errors shown in Table XIX are somewhat less than
those shown in Figure 12. However, the determination of the mass is still not
impressive.
APPENDIX C
CHANGE IN DIRECTION PRODUCED BY HARMONICS IN MOON'S POTENTIAL

It is of interest to plot the change in direction of the probe produced
by the small perturbing forces. We will do so now, utilizing a Moon orbit
given by Orbit 1, Table XIV. To compute this change in direction, initial
conditions and a Kepler field were first chosen. The right ascension of the probe
was then computed as a function of time. The same initial conditions were
rechosen but perturbing forces were added to the Kepler force. A new right

ascension as a function of time was computed. The difference of these right
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ascensions is shown in figure 32 (perturbed-unperturbed). Two cases
are considered: one in which the oblateness term C20 produces the
perturbing force, and a second in which this force is produced by the
harmonics of Case 1, Table XV.

For the cases shown, the nominal orbital period is 2.93 hours.
Also, the ejection direction was chosen so that the probe nearly re-
turns after each orbital period. Because a small change in position
produces a large direction change when the probe is near the space-~
craft, large (~ + 40) direction changes are apparent near multiples
of the orbital period. Also, the deviation in azimuth as pictured
in figure 32 is large enough so that our intuition is not strained by
the fact that 10 arc second errors are small enough to yield results
of useful accuracy.

The deviation in elevation is not shown, but this angle deviation

is similar to that shown in the figure.
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DEVIATION IN AZIMUTH PRODUCED BY HARMONICS
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