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PERIODIC ORBITS IN TRIGONOMETRIC SERIES

by

Lloyd Carpenter

ABSTRACT

A method is given for the study of families of periodic motion using
trigonometric series to represent the individual solutions. The continu-
ous deformations of a periodic orbit along a family are represented by
the variations of the trigonometric coefficients with respect to a parameter.

For the applications the series are truncated, while the coefficients
and their variations are determined numerically. In this form, the con-
tinuation with respect to the parameter is given by a mapping f: R" R"
of the space of coefficients into itself. The values of the coefficients are
then improved by another mapping which is a contraction operator in some
neighborhood of the fixed point representing the solution.

The method is applied to the natural families defined by Wintner and
to the families of the first and second kinds of Poincare in the restricted
problem of three bodies.
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PERIODIC ORBITS IN TRIGONOMETRIC SERIES

INTRODUCTION

Trigonometric series have been used very extensively in the study of periodic
orbits and families of periodic motion in the restricted problem of three bodies.
Many of these studies depend on the presence of small parameters in the problem,
and the results consist of trigonometric terms whose coefficients are power
series in the small parameters. That is to say, the results are obtained in the
form of Poi ;son series. The same techniques can be applied using numerical
values for the parameters, and this is referred to as a semi-analytic development.
However, many families of periodic orbits have not yielded to these methods and
have thus far been explored only by numerical integration.

The purpose of the present study is to obtain semi-analytic results for some
of these more difficult families of periodic orbits and to place the continuation
of these families on a sound basis when trigonometric series with numerical
coefficients are used in a method of successive approximations.

Cases of near and exact resonance are of special interest and are handled
without difficulty using the present technique. The periodic matrix of the varia-
tional equations plays an essential role in the method, and the linear stability
analysis is done in -the usual way.

A. good discussion of the method, as applied to isolated periodic solutions
has been given by Urabe (1965). Numerical examples are given by Urabe and
Reiter (1966). More recent results and references are given by Stokes (1969).
The successive approximations are similar to those of Bennett and Palmore
11968) in that each step yields a periodic function which is an approximate
solution of the original equations of motion. The variations of the series
coefficients with rE sect to a local parameter give a representation of the
functions x l (t) and vl (t) discussed by Deprit and Henrard (1967) (page 160).

The method described in this study has been applied in the computation of
periodic orbits in the restricted problem of four bodies by Kolenkiewicz and
Carpenter (1967 and 1968) and in the restricted problem of three bodies by
Carpenter and Stumpff (1968). Further applications are being made by Deprit
and Carpenter for locating elements of many new families or orbits in the
problem of three bodies.
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THE ITERATION PROCESS FOR FIXED PERIOD

The method is applicable to a wide range of problems, and a general formu-
lation is possible. However, each class of problems has its own interesting
features, and it is usually possible to greatly improve the efficiency by takii.s
advantage of the particular forms of the equations and the solutions.

The formulation will be gl; eil for the restricted problem of three-bodies
considering symmetric orbits which lit, in the plane of motion of the primaries.
Furthermore, the method will be developed as a modification of an iterative
general perturbations technique, so a two-body reference orbit is used as the
starting point. For convenience the reference orbit is circular with respect to
the central primary whose mass is put equal to M (referred to as the Sun).

Let a and n b'o the radius and mean motion respectively of the circular
reference orbit of the infinitesimal particle (referred to as the minor planet),
and let k be the Gaussian constant so that

n 2 a3 = k2M.

.Let the true position of the minor planet be given by

r=(1+a)ro+,Lev

where r o is the position in the reference orbit,

1 drow=^
n dt

is the vector of length a in the direction of the velocity in the reference orbit,
and the quantities a and 8 will represent the periodic deviations from the
circular motion.

Let a' and n' be the radius and mean motion respectively of the circular
motion of Jupiter, whose mass is denoted by m, so that

n' 2 a' 3 = k2 (M + m) or n' 2 a ' 3 = k2 M (1 +m') with m' = m/M

and

a' /a = (1 + m')1/3 v2/3

2
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where

v =n/n'.

For the cases where n > n', the relative reference motions will be periodic
with period

T	 2,7r

n_n'

and the orbit to be determined will have the period

T=277

N

with

N_n - n't

for some positive integer value of t. The integer t is the winding number or
index of the orbit with respect to the Sun in the synodic coordinate system. Thus
the trigonometric argument is

B - Nt.

For symmetric orbits the epoch of time is chosen such that the minor planet
crosses the Sun-Jupiter line at t = 0.

With respect to the mean anomaly, g = n t, the equations of motion for the
minor planet are

d2a_2 d/3 -3a_ 0
d9 	dg	 a.

d2/3+tag_SlQ
dg

3
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In terms of the present coordinates

r l +	 a? f m' ii lilt'iL'ljiY =r!^la^>Y..	 fir'
2 \a/	 r 2	 P i a'`

where

r _	 + a) 2 ^2

a y(1

and

a' ^	 a'	
1 i r2

a= (1 + a) 2 + '82 + — - 2 — [(1 a) cos tU - A3 sin
p	

a	 a	 J

p being the distance from the minor planet to Jupiter. Thus

a^=(1 +a) 1-(^13 -3a
r

3	 2

+ m'	 a	 cos ^f,^ -- (1 + 	 C a^ 
c o s ^t1r^

	

(p)	 a	 a

and

3 	 3	 ^	 2^^ - ^ 1 - (a) . MI_ a	 a sin -to +,3 + a^ sin to
r	 p	 a	 a'I

Later we will also need expressions for the partial derivatives of 0 and 0 with
respect to a , 8, m' and v. These are

a 3	 a5	 1 )	 a3	 a5 /a°\
	 21^a --2-(-1 +3( l + a) 2 C ) +m < — +3 —	 —Icos^B-(l+a)r/	 r	 (p}	 p	 ^al	 J

s
52

,6
=^ a=3(1 +a)8\—ar^ -	

^P) [( a )	 (2
3m' a5 a' costa-(1+a) 	(a' sin to+8

4
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0 = 1 --(a^3 + 3A2 
(a)5 + m' -(p) 3 + 3 a)5 [( -a:) sin+ i, 2.1616

flav 3 a, v, 
3(a 

)5 
(1 + a)cost6 -,8sint 6- 

( a ' ) 
\a/)cos to - (1 +a)

P/

+ 
(

P )
3 

+ 2 a cos t 6

i	 '	 5	 i	 i

/3v	 3 a v 3 	 + a) cos t6 - 8sin t6 -
 (a)] (

	 sin to + 18

3 

+ (P) + 2 
' ) 3

]sin t 6

am' -1 v	 Q +)3 a')costa-(1+a) - acost
2 1 +m' 	\P	 \a	 (a')

1	 v	 - (a-13 a
I 	] sin E 6 +,8 - (a, )2 sin t 6^v^Qm^	 2 1 +m'	 \Pl ( a)	 \a

The dependence, on v and part of the dependence on m' comes from, the relation

a' _ (
1 + M I)1/3 v2/3 .

a

The argument, 6 , is treated as an independent quantity, because these expres-
sions are used for computing the variations of the coefficients in the series
expansions.
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For the symmetric periodic orbits, a and a are even functions of 0 While
fl and Q are odd so that

a= 
L 

akcosk0

k=0

	

18=	 /,k s i n k 0
^
k = 111

++++

CO

	

a=	 ck cos k6
L
k=O

w

SZ^= . sk sinks
k=1

for non-collision orbits. Ali such series are truncated in the actual computations.

Putting
A	

Nk = 

k N

n

and substituting the series expressions into the equations of motion gives



a  = - co/3

r

I
C^k-

ckN k - 1

2rk -

N	 Nk (Nk

2 

--1)

+	 2	 Sk j
Nk (Nk_ 1)	 I

3 + Nk

C  N2 (N2y
I) Sk

(B)

k _ 1, 2, 3,

Since a and Q. depend on a and,8 , the coefficients C k and sk are not known
beforehand. However, in many practical cases the solution may be obtained by
the iterative general perturbations technique. ''his consists of starting with
a = 8 = 0, for example, computing approximate, values for c l_ and s  uy i ar-
monic analysis of the expressions for Qa and C,, 3 , and using these values to solve
for approximate values of ak and ,8k . These approximations for a and 8 are
teen used in a new harmonic analysis of a and Sly to give the next approximations
for ak and Ak etc.

This simple process fails in some very interesting cases such as resonance.
For example, when

n _ p•

n'	 q

for integer values of p and q, and

t = p - q

the formula gives

N -1.
P

In this case the formulas for a,4 wid 9k have zero divisors at k = p, so the
method doesn't work, although the original equations could have a bolution with
c = 2s .
P	 . P

7
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The simple .oration process has been modified to handle cases such a6 the
one just described by taking into account the partial derivatives of C k and s k with
.respect, to a. and P. and then computing corrections to an approximate solution.
This raod fied process yielded, for example, a linearly stable orbit for n /n' =
3/2 (tbe Hilda resonance). This particular orbit will be discussed later.

he par'..al de , ,ivative.; of c  and sk with respect to a, and 8j are obtained
from the coefficients in the expansions of ^aa, Q and 0?^ 13 . These functions
can be represented in the form

M

as - T.
	 C O S k (3

k=0

a,

SZa/3 _	 Yk sin k ,;1n
k=1

QI

SZ^^= J	 zk eosk'
k=0

Numerical values of the coefficients are computed by harmonic aualysis. Then

3C 	 XIk_ j I + Xk +j

aa.	 2

ack 	 ° 77k , j Y I k -j I + 
Yk +j

a,aj 	 2

ask	'7k, j Ylk-j I + Yk+j
"a a.
	 2

8
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as k 	Zlk- 
j I - Zk +j

a/3j 	2

where

1 fork>_j

77k,j

-1 for k < j .

These variations are the quantities needed for improving the iteration formulas
which can now be written as

	

ask	
00	

ask
(3 + Nk ) Bak } 2Nk 8/3k  } T — 8ai	 8 /3i = Ek

	

aa.	 IT, a/3.

	

i=0	 i	 i.1	 i

k=0, 1, 2....	 (C)

	

00	 CO

2Nk B ak + Iv 2 8/3k + ^' ask 8ai +	 ask 8 8, = 8k

	

^ aa.	 T a 8

	

i=0	 '	 i=1	 N1

where

Ek = ^- (3 + Nk ) a,, - 2 Nk Pk - ck

k = (1, 1, 2,

Sk - 2Nk ak - Nk pk - 5k

The quantities Bak and 8,8k to be computed are corrections to the approximate
values ak and ,6k .

In the applications the series appearing in this system of equations can be
truncated at a relatively low order depending on the rate of convergence for the
particular orbit being computed. The remaining equations are then uncoupled
in pairs as before.
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One must also consider the possibility that the symmetric m?trix assodiated
with this system of linear equations may be singular. The places where this has
occurred in the applications is at those points on a natural family of orbits where
the period becomes stationary. These cases occur near a resonance and are
easily treated by holding the eccentricity fixed rather than the period as in the
following discussion.

THE ECCE'`'TRICITY OF THE ORBITS

In many cases, such as resonance, the eccentricity is a convenient parameter
to be used in following a family of orbits. For two-body motion the position
vector may be written as

r = a P(cos E - e) + a/_1_72 Q sin E

where P and Q are the usual unit vectors, a is the semi-major axis, e is the
eccentricity, and E is the eccentric anomaly. The deviations from circular
motion may be expressed in a and /3 by considering

r -- (1 .: r) r 0	 N

where

ro = aP cos g + a Q sin g

-aPsin g+aQcos g

with g as the mean anomaly. Equating the coefficients of P in the two expressions
for r, it follows that

cos E-e=(1 +a) cos g - using.

When cos E is expanded in a cosine series in g, the constant term is -e/2. Now

00

a =T ak cos k 9
k_o

F",

w-

10
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,8 
=ZT. 

8k s i n k 9,

k=1

and, for the motion to be periodic in the rotating system

6 = g/P

for some positive integer p. Therefore

e= (,8p -ap)/3.

This two-body formula may be used to define the mean eccentricity of a perturbed
orbit. For elliptic motion all the coefficients in the expansions of a and 8 can
be computed from e using the Bessel functions, and in many cases this is a good
initial approximation for the perturbed periodic orbit.

The eccentricity may now be prescribed, and this eliminates one equation in
the system by putting

/3P= 3eP +F'

The subscript is placed on e to identify the coefficients with which it is associated.
The equation which has been eliminated is replaced by another for determining
the period or the mass ratio as in the following section.

THE GENERAL PREDICTOR-CORRECTOR FORMULAS

The Equations (A) relating the coefficients can be written in matrix form as

DX = f (X)

where X is the vector of eoefficients ak and 8k , f (X) is the vector of coefficients
-ck and -sk which were seen to depend on X, and D is the matrix of coefficients
multiplying ak and 8k in Equations (A). It is assumed that the sequence of
equations is truncated at some appropriate value of k. Note that the matrix
D depends only on the ratio, v = n /n' , of mean motions for fixed t . However,
f depends on m' as well as v . Allowing first order corrections, the equations
become

11



r,

D - of } 8X + DD X - of 8, - 2f 
8m' = f - DX.

aX J	 ('3V	 av	 am'

The components of a £ /a v and a f dam' are simply the coefficients in the trigonometric
expansions of av , Pv , am, and 0,3m, . With v and m' fixed, the iteration
(or corrector) formulas become

_1

8X	 D - of	 (f - DX).	 (D)
I^X

From an established orbit, the predictor formulas which give the variations of
X with respect to the parameters are

aX = D - of -1	 of - aD 
X	 (F)

av	 dX	 v	 fj^

and

aX _ D	 3f	 of
	

(F)
.)X	 am,

so that the same symmetric matrix is to be inverted in each case.

The eccentricity, e  , is introduced as a parameter using the relation

8,3p = 3 Sep + 8a

wherever 8,^p occurs in the equations. Then, when 8 e  is specified, either 8 v
or 8m' is obtained as part of the solution. This is accomplished by simple
manipulations of the vectors and matrices in the above formulas. After the
solution, the new value of Np is computed from

Pp =3ep + P

12
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THE LINEAR STABILITY ANALYSIS

Putting

y=da/dg

and

8 = d/3/dg

the equations of motion can be written as

d a/dg = y

d/3/dg=8

dy/dg=3a+28+ a

d8/dg=-2'Y+"/3

so that the variational equations are

d(D/dg = A(D

with
0	 0	 1	 0

0	 0	 0	 1
A=

3 + as	 a/3	 0	 2

a/3	
Q/3/3
	

- 2	 0

The functions 
as , as

and 0 are available in series form from the
iteration process, so the variational equations can be integrated directly. For
the present this is being done numerically using power series.

THE APPLICATIONS

Previous applications were mentioned in the introduction. Some additional
orbits and families of orbits are given here as illustrations. These orbits all

• close after one revolution around the sun in the synodic system	 1 in the
definition of the trigonometric argument).



A typical stable orbit of the first kind is shown in the synodic coordinate
system in Figure 1a. Such orbits are nearly circular and very easy to compute.
The deviations from the circular reference motion are shown in the a, 8plot of
Figure 1b, and the series coefficients are given in Table 1. The values are given
to six decimals for purposes of illustration. The orbits were all computed to an
accuracy of about 12 decimals.

As the ratio of mean motions, v = n /n', is decreased toward the resonance
value, v = 2, the deviations from circular motion increase as shown in Figure 2a
for the stable orbit at v = 2.001. The a, ;'3 plot of Figure 2b for this orbit con-
sists of two loops which are nearly identical. The series coefficients, given in
Table 2, are much larger now, but the rate of convergence is still good. This
orbit is best described as a slowly rotating perturbed ellipse with eccentricity
e 2 = 0.388739. The coefficients with odd subscripts would all be zero if the orbit
were a true ellipse.

There are more periodic orbits wbich are nearly circular for 3/2 < .. 2/1.
The deviations from circular motion for one such orbit are shown in Figure 3
where v = 1.6. This orbit is also stable and has the series coefficients shown
in Table 3.

As the ratio of mean motions is reduced toward the 3/2 resonance value, the
eccentricity increases again. There is a stable orbit at the exact resonance
shown in Figure 4a. Now the a, 13 plot, Figure 4b, consists of three nearly
identical loops. The dominant coefficients (with subscripts which are multiples
of 3) are given in Table 4. This orbit is a slightly perturbed ellipse with e 3 =
0.453692 and no secular motion of the perihelion.

Each of the above orbits was computed as a member of a natural family
with m' = 1/1047.35 and using v = n /n' as the parameter. For the orbit of
Figure 4 this would not have been possible without using the partial derivatives
in the iteration because of the zero divisors. For the orbits near the resonances,
v = 2/1 and v = 3/2, the eccentricity, e 2 or e3 , would serve as a better
parameter.

Each of the orbits except the one of Figure 4 has also been computed starting
from circular two-body motion (m' = 0) and then increasing m' to the value for
Jupiter while holding v fixed. This is the technique for orbits of the first kind
(Poincare). The variations of e 2 with m' for three families of this type are
shown in Figure 5.

Each of the orbits has also been computed by starting from elliptic two-body
motion (m' = 0) and then increasing m' to the value for Jupiter while holding the
eccentricity ep fixed as in the method for orbits of the second kind (Poincare).

14
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In this approach p = 2 for the orbits of Figures 1 and 2 while p = 3 for the orbit
of Figure 4. As a numerical experiment the orbit of Figure 3 was computed by
continuation from two different two-body elliptic orbits, one starting from v = 2
and holding e2 fixed, and the other starting from v = 3/2 and holding e 3 fixed.
The variations of v with respect to m' for these two families along with three
others are shown in Figure 6.

In following families of the types illustrated in Figures 5 and 6 there will be
cases where the curves have vertical ta^agents (the mass m' is stationary at a
point on the family). The mass m' is not a suitable parameter in a neighborhood
of such a point, and the matrix involved in the computation becomes singular.
In such cases the ratio of mean motions, v , and the eccentricity, e  , are
specified, while m' is obtained in the solution along with the other coefficients.
This is somewhat akin to prescribing a function and then searching for the
problem which it solves, but in this case the procedure is necessary and justified
for the purpose of continuing a family of orbits.

The relationship between the a, 8 and synodic coordinate systems is indicated
in Figure 7.

15
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Figure la—Nearly circular stable periodic orbit of the fir:«t hand with mean motion slightly greater
than that of Hecuba resonance. m' =1/1047.35, v = n/n' = 2.1, e 2 = 0.011905. (Synodic coor-
dinate system with the sun at the origin and Jupiter at X = 1.)
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a

Figure 16—Deviations from circular motion for the orbit of Figure la. The two loops cross at
the top of the figure, while at the bottom they are nearly tangent but do not cross. Uniform
circular motion. would give a = 8 = 0 throughout the orbit. The sun is at a= -- 1 while
Jupiter moves on the circle (1 + a) 2 +p 2 =(a`/a)2.

Table 1
Coefficients of the trigonometric series
for a and g in the orbit of Figures 1a and
lb

r

k 0, .106 8 °106

0 -122 0
1 595 -2028
2 -12158 23556
3 -491 719
4 -60 202

5 -43 57
6 -18 23

7 -8 10
8 -4 4
9 -2 2

10 -1 1
11 -1 1

17
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x

1

f

Y

Figure 2a—Synodic motion of a stable periodic orbit with mean motion very
near resonance. m I = 1/1047.35, v 2.001, e 2 = 0.388 739.

W

Figure 2b—Deviations from circular motion for the orbit of Figure 2a. The figure consistsof two
nearly identical loops. The shape is typical of elliptic deviations from circular motion.
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Table 2
Coefficients of the trigonometric series

for the orbit of Figures 2a and 2b

k ak •106 8k •106

0 -75926 0
1 -1433 2179
2 -410408 755808
3 +198 334
4 68305 28584
5 +149 128
6 18652 13556
7 +72 65
8 6429 5342
9 35 33

10 2429 2137
11 17 16
12 968 879
13 8 8
14 400 370
15 4 4
16 170 159
17 2 2
18 73 69
19 1 1
20 32 31
22 14 14
24 6 6
26 3 3
28 1 1
30 1 1

19
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0.0: -0.03

-V.VL

Figure 3—Deviations from near circular motion of a stable periodic orbit between the 2/1 and 3/2
resonances. m' = 1/1047.35, V= 1.6, e 2 = — 0.008 292, e 3 = 0.007 791.
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Table 3
Coefficients of the trigonometric series

for the orbit of Figure 3

k ak • 106 8k • 106

0 -235 0
1 1842 -8567
2 7202 -17674
3 -8168 15207
4 -1234 1935
5 -522 585
6 -185 271
7 -100 128
8 -56 66
9 -32 37

10 -19 21
11 -11 13
12 -7 8
13 -4 5
14 -3 3
15 -2 2
16 -1 1
17 -1 1
18 -1 1
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y
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Figure 4a—Synodic motion of a stable periodic orbit at the Hilda
resonance. m' = 1/1047.35, v = 1.5, e 3 = 0.453 692.

Figure 4b—Deviations from circular motion for the orbit of Figure 4a. The figure consists of
three nearly identical loops similar to those of Figure 2b except that the eccentricity is now
larger.
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Tsble 4
Dominant coefficients of the trigonometric
series for the orbit of Figures 4a and 4b

r.

k ak .106 ,8k • 10 6

0 -103710 0

3 -487824 873251

6 89846 32529

9 27907 19671

12 11018 8978

15 4778 4144

18 2187 1963

21 1038 952

24 506 471

27 252 236

30 127 120

33 65 62

36 34 32

39 18 17

42 9 9

45 5 5

48 3 3

51 1 1

54 1 1

i4

S
F
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0.4

0.3

0.2

e 2 0.1

0

-0.1

-0.2

v=2.001

v=2.01

v=1.9835

0	 0.0002	 0.0004 
M/ 

0.0006	 0.0008	 m4

Figure 5—Three families of the first kind. These families start from circular motion at m' = 0
and are continued up to m' = 1/1047.35 holding the ratio of mean motions, v= n/n', at a
fixed value. These curves show the variations of the eccentricity e 2 for three values of v
near 2. The cases v = p/(p— 1) for integral p > 1 are singular for continuations of this type.

I
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3.0

2.8

2.6

2.4
v

2.2

e2 =0.0005

e2=0.001

e 2 =0-0 1

2.0
e2=-0.008292

1.8

1.6
	 e3=+0.007791

1.5

0	 0.0002	 0.0004	 0.0006	 0.0008	 M'4
t'1'1'

Figure 6-Five families of the second kind. These families start from elliptic motion at exact
resonance v = p/(p-1) for m' = 0 and are continued up to m' = 1 X 1047.35 holding the eccen-
tricity a fixed. The ratio of mean motions, v, is computed as part of the solution. Curves are
shown for four families starting at v = 2 and one family starting at v = 3 /2. The families e2=
—0:008 292 and e s = 0.007 791 intersect at. the orbit of Figure 3. The cases e p = 0 are singu-
lar for continuations of this type from v = p/(p-1).
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a ro

ro

SUN	 r'	 JUPITER

Figure 7—Geometry of the coordinate systems.

Iro I = a, Iwl = a, Irl = a [(1 + a) 2 + 132] 1/2, Ir' I = a` ,	 _ (n -n`)t,

( P I = a 
(1 + a) 2 + N2 + ( a )2 - 2 ( a) ^(1 + a) cos ^° 6 - 13 sin t 6] 1/2
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CONTROLS ON THE COMPUTATION

The Jacobi constant plays no role in the computational scheme used in this
study. Its value is monitored as an indicator of numerical inaccuracies or
difficulties.

The iteration process is continued until the residuals in the differential
equations fall below an acceptable tolerance. The number of terms kept in the
series and the order of the matrix used in the iteration are determined for each
case so as to give the required accuracy and convergence. Generally it was
required that the last ten terms computed in the series be less than 0.5.10 -12 .

When the iteration matrix becomes ill-conditioned, a change is made to a
different independent parameter. No cases have been encountered where this
presents way serious difficulty.

Several cases have been checked by comparison with numerical integration,
and the expressions for the variations have been checked by numerical differencing
of the series coefficients.

COMPARISON WITH NUMERICAL INTEGRATION

The author is aware of no numerical integration program which has the
facility for continuing families of orbits in all of the ways discussed here, or
which gives the variations with respect to a parameter of a representation of
the entire orbit such as those given in equations (E) and (F). On the other hand,
the present technique is not suitable when the series convergence becomes too
slow, nor is it useful for computing orbits which are not periodic. The necessary
modifications for regularization have not yet been made.

It should be mentioned that, although the restricted problem of three bodies
is extremely rich in natural families (Wintner) of periodic orbits, elements of
many of these families have been discovered only by accident. Continuation from
two-body motion as suggested by Poincard and applied here provides a basis for
the systematic exploration of many of these families of orbits.

The present method can be used in conjunction with a good numerical inte-
gration program taking full advantage of the special features of each.
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CONCLUSION	 .^ r

The present study demonstrates the strength of a semi-analytic development
in cases where small parameter methods fail.

The method described here has been justified mathematically for isolated
periodic solutions (see Urabe (1965) and Stokes (1969)), but further work is
needed for singular solutions (periodic orbits which are members of a natural
family) as in this study. The indetermi.nancies are removed here by applying
constraints. The value of a suitable parameter is specified, and the epoch of
time is defined to occur at a perpendicular crossing of the axis for symmetric
orbits. For non-symmetric orbits one might require one of the leading coefficients
in the series to be zero to tie down the epoch.

In the restricted problem of four-bodies, once the motions of the three pri-
maries are determined, the periodic solutions for the infinitesimal body are
isolated, so these difficulties are not encountered. Nor would they be present in
the reduced (or elliptic) problem of three-bodies.

There are many possible applications of this method in celestial mechanics
problems, and several are being explored.
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