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ABSTRACT

Three gradient-type procedures for unconstrained minimization are

suggested. These procedures are hybrids between steepest descent and

conjugate gradient algorithms, employing a design parameter to achieve

Z;el adaptive sequence breaking. Essential convergence theory is presented

in a unified fashion, and limited computational results are included to

verify the efficacy of the form of the procedures. The computational

results suggest that a normalized form of the Fletcher-Reeves algorithm

is preferable to the original form.
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I. INTRODUCTION

For the minimization of unconstrained functions, computational evidence

suggests that algorithms which combine features of steepest descent and

conjugate gradient algorithms may be effective. For exampl e!, it is well

known tha€ the Fletcher-Pr ell algorithm [1] often performs much worse

then steepest descent far from a minimum. In common with most conjugate

gradient methods, this behavior is usually countered by incorporating periodic

steepest descent steps (sequence breaking) in the algorithm, leading to a

hybrid algorithm. Many other possibilities for hybrid algorithms exist.

Unfortunately, at the present time the design of good algorithms of this

type is at best ad hoc, often based on heuristic results not amenable to a

clear theoretical statement. We know why steepest descent works; we know

it converges slowly near a minimum. We know how and why conjugate gradient

methods work for quadratic functions; we know why they exhibit rapid final

convergence for general functions. We do not know what overall improvement

in convergence might be possible by an appropriate interleaving, or modi-

fication, of these techniques.

This paper does not purport to rectify the preceding situation. Rather,

in recognition of the wide latitude with which search directions compatible

with convergence may be chosen, several algorithms of comparable complexity

are suggested. These algorithms employ a design parameter to produce adaptive

sequence breaking. Convergence theory applicable to a wide class of algorithms

is developed in conjunction with the algorithms.

Limited computational results are presented, including comparative

results on steepest descent and standard conjugate gradient methods.

These results confirm t'sat non . conjugate gradient techniques can manifest
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quite good behavior for functions which are not quadratic. G-i,-_.ethod

tested, a normalized version of the Fletcher-Reeves conjugate gradient

algorithm [2], but requiring storage of one less number, was found to

converge faster than the standard Fletcher-Reeves method. Although

theoretically impossible, this is apparently due to compatibility of the

normalized version with the Davidon search procedure [3,1] employed to

obtain a minimum (approximately) in a given search direction. The normalized

form would appear to be preferable to the original form of the Fletcher-

Reeves algorithm.

II. ALGORITHMS: DESCRIPTIONS AND THEORY

Let f: Rn -► R he a continuously differentiable function. We are

concerned here with algorithms designed to locate stationary points of f,

i.e., points x* such that g(x*) = 0, where g: Rn -► Rn is the gradient of f.

Under additional assumptions, such as f convex, or (a 2/ax2)f(x*) positive

definite, x* is a global minimum or a local minimum respectively. The

algorithms all take the following standard form.

Basic iterative form Given x 0 arbitrary, compute the sequence xO, xl , ...

by the steps:

(i)If g (xi) = gi # 0, choose a feasible direction p i such that

( gi , ^i) < 0.

(ii)Compute xi+l such that

f (xi+l) f (Xi+l + Xip i) = min f (xi + Xp i)
a>O

It follows that f(xi+l) < f
(xi) and
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(1)	 (P i' gi+l)
 = 0 for i - Ox 1, 2, ...

The various algorithms differ only in the feasible search directions chosen.

Algorithm A l (R) Let 0 E (0,1], let g0 # 0, and for i > 1, let si gi gi-1'

< s ,g _ )
Pi - - gi-1 + II 

II2 
Si . Then, set p0 - - g0 , and for i - Is 2 9 ...

is

Pi if Iip 
ill 

1 2 > s 1Igil12

9, otherwise.

Proposition 1 The algorithm Al (6), when specialized to the quadratic

function, x-+ (x, Qx ), Q symmetric positive-definite, satisfies

(3) (pi+l' QPi ) - 0 for i - 0, 1, 2, ...

Proof: Trivial; (si+l' pi+l ) = 0, and 
si+l x Oil Xi > 0.

Proposition (1) indicates that if Pi+l = r'then Pi+l and Ai are1+19

Q-conjugate. However the relation (pi, Qpj ) 	 0, 1 < j, is not satisfied

even if pk = p'' for k = i+l, ..., J. The method is not a conjugate gradient

,method.

Proposition 2 For all i, the algorithm Al(S) satisfies

(4) - 1181112 < ( Pi,gi) _ - I I Pi112 < 	I I Bi l l'.

Proof: Relation (4) is clearly true if Pi 	 gi.

Suppose pi = pi. Noting that ( Pi,si ) = 0, yields

-3-



r

2
8 ,g

(P i , gi )	 (p	 11g _ - I Ig'1I l2 + ( li i1 
12i ) .

si

(s ,g )2
But, by (1)

9
 IIPi (( 2 = ligi_lli2 	 i i21 	 hence ( P i , gi) _ - IIP iII2,

1 181 ,

f 

I

implying IIP i II 2 < Iigi ll 2 , and (4) follows.

Proposition (2), along with similar relations for the following

algorithms, will later be invoked to establish convergence to stationary

points.

Algorithm A2(0) (Modified Fletcher-Reeves)

Let B E [0,1], let g0 # 0, and for i > 1, let

I Igil 
12

P i 	
gi+ (Ipi-1(12pi_1

Then, set P O = - go, and for i = 1, 2, ..., set

sipi if S I 1 p il l fl lgi l 1, si arbitrary in [0,1]

(5) pi =

gi	 otherwise.

- Proposition 3 The algorithm A 2 (0), when specialized to the quadratic

function, x -► ( g, Qx ) , Q symmetric positive definite, satisfies

(6) (pi+1A Pi )	 0 if p i = - gi.

Proposition (4) indicates that algorithm A 2(a) takes a Q-conjugate

step following a steepest descent step. It is not a conjugate gradient

method.
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Proposition 4 For all it the algorithm A 2 (0) satisfies

p

	

:LOSi)	 - a I Igil 12
(7)

S2IIpil12 < IIgi112

Proof: If pi = - Sit (7) is satisfied. Thus, suppose pi = sipi. Then,

< pi .gi >	 - Oil IS < - s II gi 11 2 by (1)• (5)•

02 11pi I I 2 s S202 1IPi11 2 < 02 11Pi11 2 	 I Igi l I 2 . by (5).

Algorithm A3(a) (Normalized Fletcher-Reeves)

Li.t $ E [0,1], let g0 # 0, and for i > 1, let

IIpi-1112

	

i	 I I Pi-1 11 2 + I I gi I 1 2

Then set p0
 

OR - g0 and for i = 1 9 2 9 ... set

r	 Ilgill2
IS (-8 +	 P ) if R >R

(8) pi :	 i	 i	 I1pi-1112 i-
1 	 i

- gi otherwise.

Proposition 5 The algorithm A3 (0) is equivalent to the Fletcher-Reeves

algorithm defined by p0 = - g0,

2

(9) Pi = ' gi + I I 
gi 

(( -2 pi-1	 for i ? 1
I I gi-1 l I

I

i.
-5-



Proof: Equivalence of (9) and A3 (0) follows if we can establish that

Pi and P are colinear, implying that (9) and (8) will lead to the same

sequence x0, xl ,	 In particular we shall establish that

1 1S 
111 2

(10)	 Pi	
I Ip ' 

112 P i for i " 0, 1, ....

i

Clearly (10) holds for i - 0; suppose then that (10; holds for i = 0, 1, ..., k.

2	 2

P kSk+l (~gk+l + I I g121 pk) - Sk(-gk+l + 

IISk+l21 P'k). by (10),
I pk l1	 IIsklI

r

But, again using (10),

_ 11pk'12
k+l ` 

' ' Pk '  1 2 
+ 11g k+1

 l 12 =

I ISk+1112
4

1 ISk+.1112 + i 1 g` "I 111	
I Ip^112

Ilk

II gk+1 11 2

IIP	
I12 ' hence

k+l

_ II gk+1 I 12

Pkfl _11p'+111 2
 

pk+l .

The algorithm A3 (0) is thus a conjugate gradient method, by equivalence

with the Fletcher -Reeves algorithm. Proof that (9) defines a conjugate

gradient method may be found in. [4].

Proposition 6 For all i, the algorithm A.3(S) satisfies

-6-
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(11)	 - IIgi II 2 < (pi,gi 
=

_ IIp i I I 2 < - s I1g111 2

Proof: Relation (11) is trivial if p i = - gi , thus assume

IISi l I 2	 2
pi	 ^i( - gi + I 

Ip i-l 1 I2 

pi-1)• Then, ( p i , gi) _ - Si I I gi l I

by (1)

	

Its 11 4	 IIp	 11 2 + IIg 11 2
But IIp i l l z - Bi(II gi II 2 + i2) = B^IIgiI(2(	 i-1	 2 1 )

	

Il pi_l ll	 I1 pi_1 11

= Si II gi II 2 . hence (p i ,gi = _ IIp 1 II 2 . and (la,) follows.

Convergence of the algorithms To prove convergence of the preceding

algorithms, in an appropriate sense, we shall state a version of a general

convergence theorem, essentially drawn from [5].

Let f: Rn -► R be continuously differentiable, and let x -► A(x) be

a point-•tsx-set mapping such that if x is not stationary, there exists

d = d(x) > 0, and e = e(x) > 0, satisfying

(12) sup f (y) i f (x') - d
	

for all IIx'-xII I e.

YC-A (x' )

Given any x02 set i = 0, and construct the sequence x0 , xl; ... according

to the algorithm

Step I - If xi stationary, stop.

(13) If xi not stationary, choose xi+1 E A(xi)

Step 2 Set i = i+l, and go to step 1.
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Theorem 1 If the sequence x0 , x11 ... is generated according to the

algorithm (13), then either the oequence is finite and the last point is

stationary, or the sequence is infinite, and any accumulation point is

stationary.

Remark 1 If the sequence is infinite, accumulation points need not exist.

Any assumption which ensures that the computation is carried out in a

bounded set ensures that a stationary point will be found.

The proof of theorem (1) is trivial for the finite case, and a

straightforward consequence of continuity for the infinite case.

We now prove convergence, in the sense of theorem (1), for the algorithms

Al (R), A2 (S), A3(S), with 0 E (0 9 1]. We do this by constructing a set of

search directions, compatible with convergence, and rich enough to include

the directions specified by the preceding algorithms. Towards this end,

for any Y E (0,1], and any M > 0, we define the set

(14)P -*M(x) = {p I I IP I I < MI 1g(x) I I , ( P, g (x)) I - YI Ig(x)1121

and the point-to-set mapping A 	 by
Y.M

(15) YVM(x) _ {YIy - x + X(x,p)P, where

f (y) = min f (x + ap), P E PYOM(x)}
7X>0

Lemma 1 Let x an arbitrary point, not stationary, let Y E (0,1], and

M > 0. Then there exists d = 5(x) > 0, and e - e(x) > 0 such that

(16).	 sup	 f(Y)	 f(x 1 ) - d	 for Iix t - X1  s e
yC-AY'M(x')

I
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Theorem 2 If the sequence x01 xi , ..: is generated according to the

algorithm of the form (13), using the mapping 
Y,M 

(15) 9 than either the

sequence is finite and the last point is stationary, or the sequence is

infinite, and any accumulation point is stationary.

Proof of lemma (1) Let g(x) # 0; then there exists e > 0, a > 0 such

that

a : I Ig(x') I 1 12a
	

ior, ail (Ix' - x11 S 2e

(17)

i Ig(x') - g(x") I I ! 4,- for all 11x' - x11 + 11x" - x1i 1 3e

Let a = EML then for all llx - X1 11 ,1 e, and for all p E PYoM(x'),

I (x' + ap - x  I j 2e. Thus f(x' + ap)	 f(x') + 7 ( p,g(x' + naP))

0 1 n 'i 1, (mean-value theorem)

f(x') + 7 ( P, g (x ')) + a ( p , g (x ' + n1P) - g(x'))

f(x') - y I g(x')11 2 + a11P11 4W by
 (14), (17)

f (X,) - ,,Ct + a (M2a) 4 by (14) , (17)

f(x')	 g	 g 
2 

aYa2.

Hence, for all Ilx' - s11 j e,	 and for all P E PYVM(x'),

f(x' + a(x' ,p)p) ;i f(x' + Zp) c^ f(x') - d, i.e., (16) holds, and the proof

is complete.

Convergence of the algorithms A1(S), A2 (a) and A3(S), with 6 E (0,111

now follows directly from theorem ( 2), and propositions (2), !4), and (6).

For Ai (0), proposition (2) yields pi E Ps l (xi); for A2(S), proposition

I
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(4) yields pi E P 1 (xi); for A3 (0), proposition (6) yields pi E PS 
1 (xi).,

0

Finally, we note that these results include the steepest descent algorithm,

Pi = •. gi , which is equivalent to A1(1), A2(1), or A3(1).

Remark 2 A set P  (x) compatible with convergence in the same sense as

PY9M(x) is

(18)PY (x) _ jpI (p . g (x)) Q - Y IIPII IIg(x)II}

Note that PYVM(x) C PY/M(x); PY/M(x) C PY(x) if M < 1.

The parameter $ E (0,1] serves as a design parameter ^4hich governs

how orthogonal we allow pi and gi to become. If S is allowed to take the
value 0, theorem ( 2) is no longer applicable. To prove convergence of

the algorithm A3 (0), which corresponds to the Fletcher-Reeves algorithm
without sequence breaking, we shall prove a convergence theorem motivated

by some known results for the Fletcher-Reeves method.

Theorem 3* Suppose that the sequence x0 X1pp	 q	 ,	 , :.. corresponds to a sequence

p0' pl, ..: of feasible search directions, and that x0 , x19 ... has a con-
vergent subsequence x0 ', x19 ' ... x*. If f is a twice continuously differ-

entiable function, and if there exists a s equence Y0 , Y1 , ... of positive scalars
such that

(19) ( gi 1 ,pi1) < =Yi I I Bi I I I I i pi l	 i = 0. l., • - •

*The form which this theorem ought to take came to the author's attention
through unpublished results of G. Ribiere of I.B.M., Paris, France, and
G. ZoutendijiL of The University of Leiden, Netherlands, as communicated
to the author by E. Polak, University of California, Berkeley.

P""

s
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(where the prime denotes the subsequence of interest)

m

(20) Y12 - m,
1-0

then g(x*) - 0, i.e., x* is a stationary point.

Proof: Assume that theorem (3) is'false, i.e., g(x*) 0 0. Then there

exists E > 0 9 d > 0 9 Y > 0, such that

(21) 1Ig(x)II > d	 for all IIx - x*II 12F_

2

(22) IIH(x)II j a	 for all IIx - x*II ,1 2E.. (H(x) =	 2 (x))ax

Let h1 P , and consider the expansion
i	 pi	 bi	 i

2
f (xi  + ahi ' )	 f (xi ' ) + a ( gi ' ,hi') + 2 < hi' H(xi ' + tlahi ' )hi ') , 0 4 p < 1

f(xi ') + a ( gi ' ,hi ') + 22 II hi II 2 IIH(xi' + nahi')II

2
f(xi') + a (&i ' ,hi ') + 2 a2 by (19), (20).

S

providing IIx ' - x*II ; e and a < ea (which implies Ilnah 'II = 
na

i	 i	
I I gi ' ( I

Q S a e)

Note ttbe Yi E (0,1] by (19); thus if 0 < A, < 1 is chosen such that
2

1a! e, then ai - !Ca Yi satisfies ai s eS for all i - 0, 1,	 Hence

A 2a

f (xi+l) = f(xis + 1lihi ') I f(xi') - aiYi + i 2 since 0 < I < 19
2Aa

I
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<gi ',hi') = - yi by (19). Setting V ­9! > 0, we find that

f(xi+l) .1 	 - i sYj
2
 for all Ilxi' - x*I) ,1 e, hence (20) implies

f(xi') -► - co , which is a contradiction (f(xi ') -► f(x*)> - m). This

completes the proof.

Remark 3 It is not known whether or not the assumption that f be twice-

continously differentiable can be dispensed with in theorem (3). Those

conjugate gradient methods which have been proven to converge for general

functions (without tvaquence breaking) also require at least as strong an

assumption, as we see in the next theorem. (See also, the Polak-Ribiere

algorithm [6]).

Theorem , 4 Suppose that the sequence x02 xl , ... is constructed according

to the algorithm A3(0), and that f: Rn -► R is twice-continuously differentiable.

If x0 , xl , ... converges to a point x*, then g(x*) = 0.

Proof: Suppose g(x*) # 0; then there exists a > 0 and i* such that

a < ll8(xi) II :1 2a for all i > i*. Without loss of generality, we shall

assame i* = 0. Now, by proposition (5), A3 (0) is equivalent to the

Pletcher-Reeves algorithm (9). Using (9), (1), we obtain

(piI$gi)	 I I gi l I 2	 for all i

1I	
2

I I pi ' I I 2 - I Igi l I 2 +	
g it I_4 

11P 	 112

	

1Igi-1II	
i 1

+ I Igi l 1 2
	

2)

.

Ig 0l l 4 I I g° I l

IIgiII2 4(i+l)	 for all i.

(23)

(24)

IIg II2
Ilgill2

i	
I 
Igil I2 + ......

-12-



Combining (23) and (24), we obtain

(25)	
(pi109 = ' Yi llgi ll Il pill, where Yi2 a 4(i 1)

W

But L Yi2 = ^, and hence by theorem (3), g(x*) = 0 which contradicts
1-0

the assumption that g (x*) # 0. Thus, theorem (4) is true.

Remark 4 If in theorem (4), it is only assumed that the sequence x0,

xl , ... has a subsequence converging to x*, the proof breaks down. A

convergence result for Fletcher-Reeves given in the literature [7], which

is stated for a subsequence, would appear to be in error because the effect

of an assumed normalization was not adequately accounted for.

The following result is intended to show that the conditions (19)

and (20) of theorem (3) cannot be relaxed much. In particular, since (19)

requires 0 < Yi < 1, 1 Yi2 = co implies	 Yi = co. This latter condition
J=O	 =

is sometimes believed to be sufficient for convergence.

Proposition 7	 The conditions - (pi,gi)	 'yi IIpi I) IIgi II, with

do not imply that thet corresponding sequence x,,, xi, 	 . has

accumulation points which are stationary, even if the sequence is bounded,

W
if ;=^ Y  = holds for a convergent subsequence, and if f is twice continuously

differentiable and strictly convex.

Proof: Let f: in -)- R be defined by f(x) = IIxII 2 , let x  # 0, and let

the pi satisfy

r
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(26) - ( Pi .gi) = i IIPi II IIPi II for i - 1 9 2 9 ...

where r2 = S W l2 1 . Hence Yi i for i = 
1, 2 2 ...	 Yi = ^•(J=1 J )

<P
i .8i )

But f (xi+l) - II xi II 2 + 2ai ( pi,gi) + Xi2 IIPi II 2 . and 
Xi = 	 2 yields

IIPiII

	

( P.8 )2	 2

f(xi+l)	 IIxi II2 ' i i 2	 f(xi)	 r2 II8iII2 .

	

IIPi II	 i
ao	 2

Thus, lim f (xi)	 f(x
1
) -	 r2 IIPiII`

Jal J

f(xl) _( ^ j2/ II81 II 2 = 2 f(xl) > 0, since=
m

2

Ilgi+l i12 4 Ilxi+1112 ° 4 IIxi II 2 = IIgi II 2 for all i, and I 2̂ = 8.

Thus, no subsequence of xl , x29 ... can converge to a stationary point.

Finally, we note that, while xi, x2 , ... need not converge, appeal to the

situation for R2 indicates that the p i may be chosen so that xi , x2 , ...

zig-zags to a single accumulation point (In particular, in R 2 , specify

additionally that (pi'pi+l) < 0 for all i. The convergence may be proven

rigorously).

Since the function IIx11 2 has about as many nice properties as one

may ask for, the conditions (19) and (20) cannot be significantly relaxed.

If a is allowed to be zero in A2 (S), the algorithm is not meaningful

without a restriction on the Si . We obtain the following results for this

case.

Theorem 5 Suppose that x03, xl , ... is constructed according to the

algorithm A2 (0), with the additional restriction that inf S i = S > 0.
i

I
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If the sequence x0 , xl , ... converges to a point x*, then g(x*) - 0.

Proof: Suppose that g(x*) # 0; then there exists a > 0 1 1* > 1 9 zz-nh that

)II e a for all i Z i*.IIg(xi 

By (5), (1), we obtain

2

<pi .gi1 - - Bi IIsi II 2
9
	IIpi II 2 =•a12IIgiII2 1 + 

IIgiII 
2I I pi_1 I I

for all i>i*> 1.

Now sup IIpiII2iff iuf IIpiII 2 - 0, (recall that Si 11). But
i>i*	 i>i*

lip 
1112> (0*)2 a2 > 0 for all i > i + 1, hence IIpiII is bounded, say by

a2M. Then

(27) (pisgi) ;,- 0*IIsiII2	 i > i*

(28) IIpiII2 `< (1214 s M IIsi II 2 	 i >

i.e., pi E P
S
*,M (xi) ' 

xi+1 6 AS*914 (xi), for all i > i*.

By theorem (2), xi -► x* yields g(x*) = 0, which is a contradiction.

Theorem (5) thus holds.

Theorem 6 Suppose that x09 xl , ... is constructed according to the

algorithm A (0), with the additional restrictions that 	 S 2 = co and
2	 i-0 i

Siloi-1 bounded. If f is twice-continuously differentiable, and if the

sequence a0 , xl , ... converges to a point x*, then g(x*) - 0.

r
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Proof: Assume g(x*) # 0; then there exists a > 0, i* > 1 such that

a 1 1l g(xi)II 12a for all i = i*. Now II pi II 2 > (6i) 2 a2 for all

2	 s ^ 2
i > i*, hence IIpiII2 

Sit 2 1 + —	 2 2 = 4a2 + 160L s i 	s Ma

 i-1) CL

for some M. i.e., IIpi II 2 is bounded, and hence

(29) (pi,gi) _ - Ri II gi II 2 	i > i*

(30) IIpiII2: M II g
1
II 2 	i 3 i*

s
Thus (pi,gi) < - - II pi II II gi II	 for all i > i*, and by theorem (3),

we conclude that g(x*) = 0; a contradiction. This completes the proof.

Re-mark 5 The assumption that Si/Si-1 
is bounded holds for any nonincreasing

sequence of S i . It avoids such strategies as choosing Si = 1 9 1 odd,

i even, etc.

III. NUMERICAL RESULTS

Versions of the preceding algorithms were experimentally compared

to steepest descent and standard conjugate gradient algorithms. For

uniformity of test procedure, all comparisons were made with each method

reverting to steepest descent after every n + 1 steps. For A2(S), 01

was chosen to be 1 for all i; the algorithm thus becomes

r

I Igi l I2

2 pi-1

(31)	
- gi + IIpi-1II

pi

- gi	otherwise

i # k(n+l) , k = 0, 1, ...

-16-



Note th.t the computational results for the preceding algorithms do not

now depend on 0; these results are only intended to indicate the efficacy

of using search directions of the various forms.

The iterations were stopped when 11g(x)11 was sufficiently small,

1Ig(x)112 = etol being the particul«r criterion. The linear search method

programmed was that originally introduced by Davidon, [3] as detailed in

Fletcher and Powell [1]. Briefly, the search method consists of bracketing

a (local) minimum in an interval, and using (possibly repeated) cubic

interpolation to approximate the minimum.

The functions to which the algorithms were applied are

(32) fl: R10 R defined by x -► ( x - >7*, Q(x - x*))

where Q is a symmetric positive definite matrix 

(33) f2(x) - exp(fl (x)) + (x6 2-1)x1 + 1

(34) f3 (x) - 100(x2 -- x12) 2 + (1 - x1) 2	(Rosenbrock, [8]).

All the algorithms tested were coded -.by the same person -_in

Fortran IV for execution on the CDC 6400 computer of the University of

California Computing Center. Tables l - 3 summarize the results

obtained.

t f1 (x) =0.1(x1-1)2+(x2+0.2)2+(x3-0.3)2+5(x4+0.4)2

0.2(x5 0.5)2+.4(x7+x8)2+.3(x8 x9)2+1.5(x910)2
10

+ (x7+x10) 2+(i xi 1.2) 2+x62+.5(x5+x2-x3)
2
 + 4(2x5-xi+x8)2

I

I
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Remark 6 Algorithm Al tended to display the same characteristics as

steepest descent for functions f l and f 2 , although the convergence was

more rapid. However, for function f 3 , Al converged in fewer steps (and

with higher accuracy) tLan all other methods tested. Although it is not

clear why this occurred, the result for f 3 may be misleading because

in R2 algorithm Al behaves like a conjugate gradient method.

Remark 7 Algorithm A2 performed surprisingly well. Reasonable convergence

obtained for the quadratic function f l . For f 2 and f 3 the algorithm

performed as well or better than the similarly structured Fletcher -Reeves

algorithm. Thus, the fact that A2 is not a conjugate gradient method

appears to be of no particular consequence when dealing with nonquadratic

functions, providing the search directions are of comparable form to those

selected by the Fletcher-Reeves algorithm. Methods to determine the best

way to use the freedom to choose the 
0  

would no doubt lead to better

versions of the algorithm A2.

Remark 8 The algorithm A3 , the nc ` •s^lized Fletcher-Reeves algorithm,

converged faster than the Fletcherr-Reeves algorithm. This is theoretically

impossible by Proposition (5). In practice it is . due to the use of an

approximate procedure to locate the minimum in a given search direction.

Apparently, the normalized version is more compatible with the Davidon

search technique, which utilizes IIpiII in obtaining an initial estimate

of the step length a i. Very likely, the relation IIPi II < jig 11 for the

normalized version (Proposition (6)), as compared to Ii pi 'II > Ilgili.

i # 0, for (9), is responsible for the impravement. For this reason,

and because the parameter Si (8) (which measures the orthogonality of pi

-18-



and gi) should be monitored during any computation; the normalized version

of the Fletcher-Reeves algorithm appears to be preferable to the original

version. Note that the normalized version does not require 11 g 112i-1

for the computation of . pi (8).

CONCLUSIONS

The results of this paper confirm that algorithms which retain some

of the features of conjugate gradient methods, and some of the features

of steepest descent, can be quite effective. The global behavior of these

methods is extremely difficult to predict. In fact, this behavior depends

on a complex interplay between the choice of search directions and the

choice of search procedure used. Perhaps when we can better characterize

this interplay - or learn how to proceed without this convenient de-

composition - the flexibility and power of computers can be more effectively

'utilized.

Even when comparing relatively simple classes of algorithms, there are

questions yet to be answered. How should we best utilize information on

orthogonality between the gradient and the search direction? How many

function-gradient evaluations per iteration should we expect (or tolerate)

for a given choice of search direction-search procedure? The answer to

questions such as these would appear to be essential to the comparison of

algorithms within a framework that includes not only iterative quality,

but the costs of computer implementation.

r
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Algorithm	 Steps Function-gradient Computation
----------

Final

required evaluations time	 (sec.)- value

2.0x.10-6Al 	48 98

I

.448

A2	 38

A3	 11

78

24

----

.108

I	 3.9x10-5

8.5x10-9

Steepest
Descent

>99 >200 >.82

----

2.lx10-3

Fletcher-Reeves 11 24 1.+x10-10

Fletcher-Powell 10 22 ---- 1.4x10-28

Modified
Fletcher-Poweli*

I	 10 23 ---- 1.3x10-27

	

TABLE 1	 Function f i : starting point ^'0 = (.5, .5,	 .5), f 1 (x0 ) = 2601,

stopping criterion 
Etol	

10-5

tThe computation times include the times for two redundant function-,graddent
evaluations per iteration, which are not included in the count of function-

gradient evaluations.

*
The modified Fletcher-Powell method is described in [4]; it uses

T

	

_	 _ Hi s i+l s i+l H i	 _	 _
Hi+l	

Hi	
s. ,H,s.	

where s
i+l	 g i+l	 gi' The results for this

algorithm, as well as for steepest descent, Fletcher--Reeves and Fletcher-Powell
are drawn from a repot by Nuytten [9].
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Algorithm Steps
re aired

Function-gradient
evaluations

Computation
time	 sec.)

Final
value

Al 95 420 1.4 .88

A2 55 216 .74 .88

A3 54 208 .74 .88

Steepest
Desc-nt 309 1672 4.86 .88

Fletcher-Reeves 59 221 .78 .88

Pletcher-Powell 35 109 2.63 .88

Modified
Fletcher-Powell

65 206 3.11 .88

TABLE 2 Function f 2 : starting point x0 = (- .5, - .5, ..., - .5),

f2(x0) = 2.4x1020, stopping criterion Etol = 10 5.

I
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Algorithm Steps Function-gradient Computation Final
required evaluations time (sec.) value

Al 23 53 0.16 1.8x10 12

A2 31 71 0.21 2.4x10 10

A3 26 60 0.18 2.9x10 10

Steepest 134 290 0.81 ---------Descent

Fletcher-Reeves 31 71 0.21 2.1x10 10

Fletcher-Powell 32 72 0.25 1.2x10-10

-FletcherPowell 30 63 0.22 3.1x10 8

,TABLE 3 Function f 3 : starting point x0 (- 1.2 9 1.0) 9 fP'O) 240,

stopping criterion Etol 10-6
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