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ABSTRACT

Three gradient-type procedures for unconsiraiued minimization are
suggested. These procedures are hybrids between steepest descent and
conjugate gradient algorithms, employing a design parameter tc achieve

éﬁadaptive sequence breaking. Essential convergence thevry is presented~
in a upified fashion, and limited computational results are included to
verify the efficacy of the form of the procedures. The computational
results suggest that a normalized form of the Fletcher-Reeves algorithm

is preferable to the original form.




I. INTRODUCTION

For the minimization of unconstrained functions, computational evidence
suggests that algorithms which combine fe;tures‘of steepest descent and
conjugate gradient algorithms may be effective. For example, it is well
known that the Fletcher-Pr ell algorithm [1] often performs much worse |
then steepest descent far from a minimum. In common with most conjugate
gradient methods, this behavior is usually countered by incorporating periodic
steepest descent steps (sequence breaking) in the algorithm, leading to a
hybrid algorithm. Many other possibilities for hybrid algorithms exist.
Unfortunately, at the présent time the design of good algorithms of this
type is at best ad hoc, often based on heuristic results not #menable to a

clear thecretical statement. We know why steepest descent works; we know

[Pt

it converges slowly near a minimum. We know how and why conjugate gradient
methods work for quadratic functions; we know why the& exhibit rapid final
convergence for general functions. We do nof know what overall improvement
in convergence might be possible by an appropriate interleaving, or modi-

fication, of these techniques.

This paper does not purport to rectify the preceding situation. Rather,

in reqognition of the wide latitude‘ﬁith which search directions compatible
with convergence may be chosen, several algorithms of comparable complexity

‘are suggested. These algorithms employ a design parameter to produce adaptive

sequence breaking. Convergence theory applicable to a wide class of algorithms

is developed in conjunction with the algorithms;

Limited computational results are presented, including comparative
results on steepest descent and standard conjugdie gradient methods.

These results confirm t::at non-conjugate gradient techniques can manifest
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quite good behavior for functions which are not quadratic. C=> ethod
tested, a normalized version of the Fletcher-Reeves conjugate gradient
algorithm [2], but requiring storage of one less number, was found to
converge faster than the standard Fletcher-Reeves method. Although
theoretfcally impossible, this is apparently due to compatibility of the
normalized version with the Davidon search procedure [3,1] emplofed to
obtain a minimum (approximately) in a given search direction. The normalized
form would appear to be preferable ﬁo the original form of the Fletcher-

Reeves algorithm.

II. ALGORITHMS: DESCRIPTIONS AND THEORY

Let £: R® + R he a continuouvsly differentiable function. We are
concerned here with algorithms desig&ed to locate stationary poiﬁts of £,
i.e., points x* such that g(x*) = 0, where g: R® + R® is the grédient of £.
_Under additional assumptions, such as f convex, or (3213x2)f(x*) positive
&efinite, x* is 2 global minimum or a local minimum respectively. The

algorithms all take the following stardard form.

Basic iterative form Given X5 arbitrary, compute the sequence Xgs Xy eee

by the steps:

(i) 1f g(xi) =8y # 0, choose a feasible direction such that

(gi, Pj? < 0.

such that

(i1) Comp?tafxi+l

B(xpy) = £Cxyy +2p ) = ;‘:8 Elxg +py)

i+l

It follows that f£(x, ;) < £(x,) and



(1) (pif 81&4? =0 fori=0,1, 2, ... .

The various algorithms differ only in the feasible search directions chosen.

Algorithm A, (B) Let RE€ (0,1], let 8o # 0, and for 1 > 1, let S8, = By"By 1>

ot {s,,8, )

--g - —_——
R I PH I

8+ Then, set Pg ™"~ 30’ and for £ = 1, 2, ...

2 2

- py 2f llyl17 28 llg, |
2 B, -
' - g, otherwise.

LS

Proposition 1 The algorithm A1 (B), when specialized to the quadratic

funetion, x * (x, Qx ), Q symmetric positive-definite, satisfies

3) (p£+1, Qp; ) =0 fori=0,1, 2, ...

] — -a
s#17 Piagp /= O and 8., = 2,005, Ay > 0.

Proposition (1) indicates that if Piy1

Proof: Tfivial; (s

!
pi+1, then P1+1 and Pi are

Q-conjugate. However the relation (pi, Qp, ) =0, 1 < j, is not satisfied

"3
even if B = pé for k = i+l, ..., j. The method is not a conjugate gradient

.method.

Proposition 2 For all i, the algorithm Al(B) satisfies

12 -. 2 2
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Proof: Relation (4) is clearly true if P =~ 8

. Suppose p, = gi. Noting that (P8, )= 0, yields

o =3-



2
(84°84.1)

2
i

2
¢ ’1'51-1>

2
e 12
wmplying [P |12 < 11g ]1%, and ¢4) follows. -

Proposition (2), along with similar relations for the following

But, by (1), |lp,|1% = |1g,_,11% - , hence (p,8) = - |Ip, |1

algorithms, will later be invoked to establish convergence to stationary
points.

Algorithm AZ(B) (Modified Fletcher-Reeves)

Let 8 € {0,1], let g # 0, and for 1 > 1, let

“81”2
2Pi1
I

' B -
Py 8y ¥
'Then, set P, = - g,, and for 1=1, 2, ..., set

.Bipi if B “Pi” 2“81”. Bi arbitrary in [8,1]
(5) Py = |

-8y otherwise.

~Proposition 3 The algorithm AZ(B) , when specialized to the quadratic

function, x + {x, Qx ), Q symmetric positive ‘definite, satisfies
(6) <p1+1’Qp:L) = 0 if Pi == gy

Proposition (4) indicates that algorithm AZ(B)" taies a Q—conjugate

step following a steepest descent step. It is not a conjugate gradient

method.
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Proposition 4' For all i, the aigorithm AZ(B) satisflies

" 2
Cpoed < -8 |lsll

(7) <

L B He, 11 s gy l1?

Proof: 1If p, = - 8, (7) is satisfied. Thus, suppose Py = Bipi. Then,

(po8, ) =~ 8,118,112 < -8 llgll? v @, ©®.

8211o 1% = 8%82(1p}11% < 821103117 < {18,11% by (5.

Algorithm A3(B) (Normalized Fletcher-Reeves)

L¢t 8 € [0,1], let 8o # 0, and for 1 > 1, let

2
- ||Pi..1|| |

1 2 7
Heg o117+ el

Then set Py =~ 8 and for i =1, 2, ... set

2
gi

[B(-g
R I

- 2 Pyp) 1685 28
8) Py ¥ ' |

- 8y otherwise.

Proposition 5 The algorithm A3(0) is equivalent to the Fletcher-Reeves

algorithm defined by Pﬁ = - 8ge

_ 2
e, |

(9 Pl =-g, +—i—0p
: i i 2 "i-1
gy 12 50
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Prooi: Equivalence of (9) and A3(0) follows if we can establish that

Pi and Fl are colinear, implyirg that (9) and (8) will lead to the same

sequence X, X;j csec o In particular we shall establish that

2
. eyl
(10) P, = P! for1i=0,1, ....

2
Yokttt

Clearly (10) holds for i = (; suppose then that (10, holds for 1 = 0, 1, ...

e, 12 g, 12
qﬁ‘l Bk""l( gk'l']. + ll ”2 pk) Bk( gk‘l'l + II ”2 pl:'.)’ by (10).
Py 8y

But, again using (10),

2 2
A (L2 _ gy, 1
8. - - 1
B g 12+ Hegy I s g 1* )
gy 112 + —EL— 15|
gl
2 : 2
_ Ilgkfl‘l hence o ll3k+1'l o
le* 112 N T PCOY
k+l '

The algorithm A3(0) is thus a conjugate gradient method, by equivalence

with the Fletcher-Reeves algorithm. Proof that (%) defines a coﬁjugate
gradient method may be found in [4].

Proposition 6 For all i, the algorithm A,(B) satisfies

-6=
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(1) - g, 1% s (o8 == llol1%2 2 - 8 115,112

Proof: Relation (11) is trivial if p 4 =" 8y thus assume

2
s, 1}
bl 2
P B at Ty gy Then Gped -l
p:l"'l )
by (1)
. e, 114 e, 112 + |1g, 112
sut [P, [1% = 82(| s, ] 1% + —2—) = 82[]g, |{2 —12 —
“91-1” IIPj_-]_II

2 .
= 8, |lgl|% nence ¢p g} = - |lp,|}?, and (13) follous.

Convergence of the algorithms To prove convergence of the preceding

algorithms, in an appropriate sense, we shall state a version of a general

" gonvergence theorem, essentialiy drawn from [5].
Let £: R® + R be continuously differentiable, and let x -+ A(X) be
a point--ti~set mapping such that if x is not stationarj, there exists

§=68(x) >0, and £ = g(x) > 0, satisfying

(12) sup £(y) < £(x') - .6 for all |]x'-x|] < e.
A"

Given any Xq» set 1 = 0, and construct the sequence Xgs Xpo eee according

to the algorithm

[

Step 1- If x stationary, stop.
(13) B R If x; not stationary, choose xi+‘]. € A(xi)

_ Step 2 Set 1 = i+l, and go to step 1.

-7-
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Theorem 1 1f the sequence Xg xl, .+. i8 generated accordirg to the
algorithm (13), then either the sequence is finite and the last point is
stationary, or the sequence is infinite, and any accumulation point is
stationary.

Remark 1 If the sequence is infinite, accumulation points need not exist.
Any assumption which eansures that the computation is carried out in a
bounded set ensures that a stationary point will be found.

The proof of theorem (1) is trivial for the finite case, and a
straightforward consequence of continuity for the infinite case.

We now prove convergence, in the sense of theorem'(l), for the algorithms
Al(B), A, (), A5(B), with B € (0,1]. We do this by constructing a set of
gearch directions, compatible with convergence, and vich enovgh to include
the directions specified by the preceding algorithms. Tcwards this end,

_for any Y € (0,11, and any M > 0, we define the set

a4 p @ = {o] [lell <ulle@ ], ¢prat) < - vlle@ 1%
and the point-to-set mapping A by
Y.M

(15) AT’H(x) = {y|ly = x + A(x,p)r, where

£(y) = min £(x + Ap), P € P_ (x)}

Lemma 1 Let x an arbitrary point, not stationary, let y € (0,1}, and

M > 0. Then there exists § = §(x) > 0, and ¢ = €(x) > 0 such that

(16) sup £(y) < f(x") -8 for |jx' - x|| <€
Ay D) |
-8



Theorem 2 If the sequence Xgs Xy» oo is generated according to the

algorithm of the form (13), using the mapping AY M
2

sequence is finite and the last point is stationary, or the sequence is

(15), then either the

infinite, and any accumulation point is stationary.

Proof of lemma (1) Let g(x) # 0; then there exists ¢ > 0, a > 0 such

that

,
o< {lgx[] £ 22 for ail ||x' - x|[ < 2¢

an

e - g || s fy for all |lx' - x| + ||x" - x|} < 3¢
.

Let X = -ﬁ%- ; then for all ||x - x'|] < e, and for all p € P‘Y,M(x')’

||x* +%Xp - x|] < 26. Thus £(x" + Xp) = £(x") + A {p,g(x' +mAp),

0<ns<i, (mean-value theorem)
= £(x') + X {p,g(x'» + X {p,g(x' + nkp) - g(x")

< £ - Tylige 12 + X fell B by a8, an

— ,q ——
< £(x) - Tya” + X0120) 1% by (18), 17)
' S 2
= f(x') - 8§, &=2Aya".
Hence, for all |]x' - x|| < &, and for all 3 € P‘Y M(x'),
- - »

£(x' + A(x',p)p) < £(x' + Xp) < f(x') - §, 1.e., (16) holds, and the proof

is complete.

Convergence of the slgorithms Al(B), Az(s) and A3(B), with g8 € (0,1],

now follows directly from theorem (2), and propositions (2), (4), and (6).

For Al(B), proposition (2) yields Py € PB 1 (xi); for _.AZ(B), proposition




(4) yields Py €P 1 (xi); for A3(B); proposition (6) yields Py €p
By
B

8,1("1) y

Finally, we note that these results include the steepest descent algorithm,

P = " 8y which is equivalent to Al(l), Az(l), or A3(1).

Remark 2 A set PY (x) compatible with convergence in the same sense as
P x) 1is
Y.M( )

(18) P (x) = {pl Cp.ex» < - v |lp]] |lg@ ||}

Mtht%m&)C%mmnPwMﬂCR#ﬂ1fM§L'

The parameter B8 € (C,1] serves as a design parameter 'hich governs
how orthogonal we allow pi.and gy to become. If B is allowed to take the
value 0, theorem (2) is nc longer applicable. To prove convergence of
. the algorithm A3(0), whiéh corresponds to the Fletche;—Reeves algorithm
without sequence breaking, we shall prove a convergence tﬁeorem motivated

by some known results for the Fletcher-Reeves method.

‘fheorem 3% Supposé that the sequence xo,_xl, i+. corresponds to a sequence'

Pg» Pp» e+ Of feasible search directions, and that Xy ¥

vergent subsequence xo', Xy .o x*k. If f is a twice continuously differ-

3 ®ae haS a con-

entiable function, and if there-existsra sequence Yo, Yqs --- of positive scalars

such that

(19) gt sy ety 2= 00 2 e

*The form which this theorem ought to take came to the author's attention
through unpublished results of G. Ribiere of I.B.M., Paris, France, and
G. Zoutendijk of The University of Leiden, Netherlands, as communicated
to the author by E. Polak, University of California, Berkeley.

k1
Pr




(vhere the prime denotes the subsequence of interest)

- -]
2
(20) Lol
i=0
then g(x*) = 0, i.e., x* is a stationary puint.
Proof: Assume that theorem (3) is false, i.e., g(x*) # 0. Then there

exists € > 0, § > 0, ¥ > 0, such that

(21) g |] > 6 for all ||x - x*|| < 2¢

2
(22) |[lE@) || £ @ for all ||x - x*|| < 2. (H(x) = 3—;: (x))
ox

_ 1
Let h, = T T 1T and consider the expansion
0T T IT THegIT Pae P

2 .
S " = ' ' ' L ' ' , 1yy ¢t ' '
£(x," + Ah") f(xi)+l(gi ,hi) +3 (hi,H(xi +nlhi)hi),0=<in_<i__1

2
S £Gx") + 21 {g, "0, +;— |]h1||2 [{HGx,* + nan, ) |

2
S £Gx") +2{g ' ,n" +-’-;— %—2- by (19), (20);

providing ||xi' - x*|]| < ¢ and A < e§ (which implies ||nxhi'|| = —DA__

ley" 1

T A K

5%36%

Note thai Y4 € (0,1] by (19); thus if 0 < % < 1 is chosen such that

) v 8 _

R.a'g €, then Ai = 2.;- Y4 satisfies 7\1 < €6 for all 1 =0, 1, .... Hence
. _ . " . - kizg _ _

£, ) 2 £x" + 007 < £(x,7) = Ay +2—m—2- since 0 < £< 1,




2
(31"“1') £ - Y4 by (19). Setting L' = -!'%- > 0, we find that

£(x; .) & £(x,") - 2."(12 for all ”"1' - x*|| < €, hence (20) implies

i+1
f(xi') + - ® yhich is a contradiction (f(xi') + f(x*)> = ®), This

completes the prbof .

Remark 3 It is not known whether or not the assumption that f£f be twice-
continously differentiable can be dispensed with in theorem (3). Those
conjugate gradient methods which have been proven to converge for generai
functions (without si2quence breaking) also require at least as strong an
assumption, as we sece in the next theorem. (See also, t:he Polak-Ribiere
algorithm [6]).

Theorem _g Suppose that the sequen;ce Xgs Xps oo is constructed according

to the ;;lgorithm A3(0), and that f: Iin -+ R is twic-é-continuonsly differentia-ﬁle.
1f Xy» Xys +e. CONVeErges to a point x*, then g(x*) = 0. |
Proof: Suppose g(x*) # 0; then there exists ¢ > 0 a;ld i1*# such that

ez ||lsx)l] £ 20 for all 1 > ik, Without loss of genmerality, we shall

asszuﬁe i* = 0. Now, by proposition (5), A3(0) is equivalent to the

Fletcher-Reeves algorithm (9). Using (9), (1), we obtain

(23) (pi 8) = |[gi|| - for all i
(28) Heg'11° = ey l1™ + ——3 ||Pi_1||'
ile 1_1||
1lsyl12 |18 1” 2
=“i|| ——g+ ceeees +- 4”0“
\ll 1|| - HSOH
< Hegl1? aasD) for all i.

12




Combining (23) and (24), we obtain -

2

o |
But Z Yiz = ©  and hence by theorem (3), g(x*) = 0 which contradicts
the :;gumption that g(x*) # 0. Thus, theorem (4) is true.

Remark 4 If in theorem (4), it is only assumed that the sequence Xy
Xyy ooe has a subsequence converéing to x*, the proof breaks down. A
convergence result for Fletcher-Reeves given in the literature {7], which
is stated for a subsequence, would appear to be in error because the effect
of an assumed normalization was not adequately accounted for.

The following result is intended to show that the conditions (19)

and (20) of theorem (3) cannot be relaxed much. In particular, since (19)
requires Q < Yy 2 1, z Yy = implies ;b Yy = ® This latter condition
' ' i=0 . - =

is sometimes believed to be sufficient for convergence.

Proposition 7 The conditions - {p,,g) < v, ”pi” ]Igill, with

Z Y:I. = o, do not imply that the: corresponding sequence Ry Xpa eoe has
i= '

accumulation points which are staticnary, even if the sequence is bounded,

oo
if ;O Yi = @ holds for a convergent subsequence, and if f is twice continuously
= .

differentiable and strictly convex. .
Proof: Let £: R° + R be defined by £(x) = | |x! |2, let x, # 0, and let

the Py satisfy

-13-
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(26) = {ppsg) = 3 llpgll llgyll for1=1, 2, ...

[- -] —1 o
2 1 1 T
8(1'1 12) 11 S S
{p,,g)
2 2 2 s R |
But £(x, ,) = ||x1|| + 2 (pi,gi? + Ay ||p1|| » and A, = s , yields
i
(P ’8) 2
2 » e 2
£xpyy) = lxg Il - === 26 - S5 g l1”
™ i
ii z
Thus, lim £f(x,) = £(x,) - ||8 1
’ g00 i 1 o jz J
= r2 2 1
> f(xl) - Z =3 Hgl“ =3 f(xl) > 0, since
=1 3
2 2 _ 2 2 _ 1
gyl 12 = Hegpg17 5 6 xgI17 = 112 or ant 2, o0 5 2553

Thus, no subsequence of Xy Xy ee. CaN converge to a stationary point.
_Finally, we note that, while Ky Epy soe need not converge, appeal to the
gituation for R2 indicates that the Py ma& be chosen so that Xys Xy eee
zig-2ags to a single accumulation peint (In particular, in Rz, specify
additionally that (pi’piﬁd? < 0 for all i. The convergence may be proven
‘rigorously).

Since the function ]]xllz has about as many nice properties as one

may ask for, the conditions (19) and (20) cannot be significantly relaxed.

I§ B is allowed to be zero in-Az(B), the algorithm is not meaningful

without a restriction on the B,. We obtain the following results for this
case.
Theorem 5 Suppose that Xg» xl, +.. 18 constructed according to the

. . *
algorithm AZ(G), with the additional restriction that inf Bi =8 > 0.

~14-
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If the sequence Xy X35 o converges to a point x*, then g(x*) = 0,

Proof: Suppose that g(x*) # 0; then there exists & > 0, i* > 1, such that

Hex)l] 2 a for a1l 1 2 i*.

By (5), (1), we obtain

2
|s,!1

. 2 2 _ .2 2
Cpo8) = -8, |lg,11% e l1° =8, e l1°(2 +“p 2
1-1

for all 1 > 1* > 1.

Now sup |lp,[|% = @ 16 1nf ||p,{]% = 0, (recall that B, < 1). But
1>i* 1>i*

Ilpillz 2.(3*)2 a? > 0 for all i>1+ 1, hence Ilpi" is bounded, say by

a.zu. Then
(27) (po8) < - B*llegyll® 121#
(28) o 1? cadcmllg 1?13 %,

€ P = : > {*%
i.e., Py PB*,M.(xi)’ X1 AB*,M (xi), for all 1 > i*.
By theorem (2), X, -+ xk yields g(x*) = O,iwhich is a contradiction.

Theorem (5) thus holds.

Theorem 6 Suppose that Xgs Xy vo- is constructed according to tﬁe

algorithm A,(0), with the additional restrictions that ) B 12 = @ and
_ | i=0 |
Bilgr-l bounded. If f is twice-continuously differentiable, and if the

sequence xo,lxl,'... converges to a point x*, then g(x*) = 0.

Bl R e, s PRItlon o i gl e A T e e e TRl T



Proof: Assume g(x*) # 0; then there exists a > 0, i* > 1 such that

a < “8(1‘1)“ L 20 for all i > i*. Now ||pi||:Z > (51)2 az for all

2 8, \2
1 > i*, hence Hpil ,2 < B',‘.2 4o (1 + —La—“ﬁ)i"ﬁz + 160° (B 1]) = Mo
| 8, %

for some M. 1i.e., ||pi||2 is bounded, and hence
2
(29) (p,o8) = -8, |lg,ll 12 1%

(30) ey l12 s Hgyll? 1214

Bi
Thus (pi,gi) < - —.&\_I “pi” HgiH for all 1 > i*, and by theorem (3),
we.conclude that g(x*) = 0; a contradiction. This'complete_s the proof.
Remark 5 The assumption that B i/ Bi—-l is bounded holds for any nonmincreasing
sequence of B i It avoids such strategies as choosing B1 =1, 1 odd,

i
- Bi = {» 1 even, etc.

III. NUMERICAL RESULTS

Versions of the preceding algorithms were experimentally compared
to steepest descent and standard conjugate gradient algorithms. For
uniformity of test procedure, all comparison_s were made with eacil method
reverting to steepest descent after zvery n + 1 steps. For _AZ(B), B i

was chosen to be 1 for all i; the algorithm thus becomes

[ |le11* |
| -g FT——5 P,y i4k(+l), k=0,1, ...
Co llpi_lll '
(31) R -
-8y ctherwise
\

-16-



Note thut the computational results for the preceding algorithms do not
now depend on B; these results are only intended to indicate the efficacy
of using search directions of the ;arious forms.

The iterations were stopped when ||g(x)|| was sufficiently small,
||g(x)||2|§ €., Deing the particular criterion. The linear search method
programmed was that originally introduced by Davidon, [3] as detailed in
Fletcher and Powell [1]. Briefly, the search method consists of bracketing
a (local) minimum in an interval, and using (possibly razpeated) cubic
irterpolation to approximate the minimum.

The functions to which the algorithms were applied are

10

(32) f£,: R & R defined by x + {x - x*, Q(x - x*))

where Q is a symmetric positive definite matrixﬁ

(33) fz(x) = exp(fl(x)) + (x62-1)x1 f 1

2

(34) fs(x) = 100(x2 - xlz)2 + (1 - x (Rosenb;ock, 8.

v
All the algorithms tested were coded - by the same person - in

Fortran IV for execution on the CDC 6400 coﬁputer of the University of

California Computing Center. Tables 1 - 3 summarize the results

obtained.
T ® =“*'0.1(x1-1)2+(x +0.2)2+(x -0.3)2+5(x +0.4)2

* 0.2(x-0.5) ;04(:; )2+.3(x 9 241, 5(x9 10)
+ (x7 » -1-(1§1 x,-1.2) +x 2. 5(xgtx ) + 4(2xx) 8)

17—~




Remark 6 Algorithm Al tended to display the same characteristics as
steepest descent for functions fl and f2’ although the convergence was
more rapid. However, for function f3, Al converged in fewer steps (and
with higher accuracy) than all other methods tested. Althéugh it is not

‘clear why this occurred, the result for f3 may be misleading because

in Rz algorithm Al behaves like a conjugate gradient method.

Remark 7 Algorithm A2 performed surprisingly well. Reasonable convergence
obtained for the quadratic function fl. For f2 and f3 the algorithm
performed as well or better than the similarly structured Fletcher-Reeves
algorithm. Thus, the fact that A2 is not a conjugate gradient method
appears to be of no particular consequence when dealing with nonquadratic
functions, providing the search directions are of comparable form to those
selected by the Fletcher-Reeves algorithm. Methods to determine the best
vay to use the freedom to choose the Bi would no doubt lead to better

_ versions of the algorithm AZ'
Remark 8 The algorithm A3
convérged faster than the Fletcher=zReeves algorithm. This is theoretically

» the nc rlized Fletcher-Reeves algorithm,

impossible by Proposition (5). In practice it is due to the use of an
approximate procedure to locate the minimum in a given search directiom.
Apparently, the normalized vérsion is more compatible with the Davidon
search technique, which utilizes Ilpill'in obtaining an initial estimate

of the step length A,. Very likely, the relation ||pi[| ﬁ,llgill for the

i.
normalized version (Proposition (6)), as compared to ||pi'|| > Ilgill,
1 # 0, for (9), is responsible for the impruvement. For this reasonm,

and because the pérameter Bi (8) (which measures the ortﬁogonality of Py



and 31) should be monitored during any computatibn; the normalized version
of the Fletcher-Reeves algorithm appears to be preferable to the original
version. Note that the normalized version does not require ||gi_1||2

for the computation of p, (8).

CONCLUSIONS

The results of this paper confirm that algorithms which retain some
qf the features of conjugate gradient methods, and some of the features
of steepest descent, can be quite effective. The global behavior of these
methods is extremely difficult to predict. In fact, this behavior depends
on a complex interplay between the choice of search directions and the
choice of search procedure used. Perhaps when we can better characterize
this interplay - or learn how to proceed without this convenient de-
composition - the flexibility and power of computers can be more effectively
- 'utilized.

Even when comparing relatively simpie classes of algorithms, there are
questions yet to be answered. How should we best utilize information on l
orthogonality between the gradieat and thé search direction? How many
function-gradient evaluations per iteration should we expect (or tolerate)
for a given choice of search direction~search procedure? The answer to
questions such as these would appear to be essential to the comparison of
algorithms within a framework that includes not only iterative quality,

but the costs of computer implementation.

-19-



Algorithm Steps Function-gradient Computation. Final
required evaluations time (sec )T value
‘ -6
Al 48 98 448 2.0x10
A, 38 78 sin, 3.9x10 >
Ay 11 24 .108 8.5x10 >
SRS pent >99 >200 >.82 2.1x107>
Descent = = —
: -10
Fletcher-Reeves 11 24 _—— 1.4x10
Fletcher-Powell 10 22 St PARI0
Modified -27
Fletcher-Powell* 10 23 S 1.3x10

TABLE 1 Function flz starting point Xy = (5505 2 ey ) fl(xo) = 260,

: - > 3o
stopping criterion €_ ., = 10

The computation times include the times for two redundant function-graident
evaluations per iteration, which are not included in the count of function-
gradient evaluations.

*
The modified Fletcher-Powell method is described in [4]; it uses

T
S B B B
i+l i (s

, where s, o - = 8;+ The results for this
i+l’Hisi+l i+l i+l i

algorithm, as well as for steepest descent, Fletcher-Reeves and Fletcher-Powell
are drawn from a report by Nuytten [9].



Algorithm Steps Function—gradiént Computation Final
required evaluations time (sec.) value
Al 95 420 1.4 ' .88
E— -
A2 55 216 YL .88
A3 54 208 .74 .88
Steepest 309 1672 4.86 .88
Desc3nt i} . .
Fletcher-Reeves 59 _ 221 , .78 _ .88
Fletcher-Powell | - 35 109 2,63 .88
Modified
Pletcher-Powell |  ©° 206 3.1 -68

TABLE 2 Function f,: starting point xd = (= .5, = <55 seey = +5),
20 . -
fz(xo) = 2.4x107, stopping criterion €01 ™ 10 5.
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Algorithm Steps Function-gradient | Computation Final
required _evaluations time (sec.) value
A 23 53 0.16 1.8x10712
A, 31 71 0.21 2.4x10 10
A, 26 60 0.18 2.9x10™ 10
Stéepest a2z | san 0 |l asgr 0 | e
Descent 134 | 290 0.81
Fletcher-Reeves 31 71 0.21 2.1x10710
Fletcher-Powell 32 72 0.25 1.2x10" 20
Modified 3 , -8
Pletcher-Powell 30 m“§3 0.22 3.1x10

TABLE 3 PFunction f

. : £
stopping criterion ol

3* starting point x

0

= 107

= (- 1.2, 1.0), f3(x0) =_'

240,
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