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FINAL TECHNICAL REPORT
 

DESIGN CRITERIA FOR RADAR TRACKING SYSTEMS 

By Howard C. Salwen and David M., Warren 

ADCOM, A Teledyne Company 
Cambridge, Massachusetts 

SUMMARY 

This report reviews the theoretical aspects of the 
radar tracking problem. Derivations are given to show 
the importance of matched filters, ambiguity diagrams 
and maximum likelihood detectors to radar system design. 

The practical aspects of radar system design are
 
discussed. In particular, the precision obtainable from
 
phase-locked loops, split gate trackers, leading edge
 
trackers and harmonic range tone trackers are derived
 
in terms of their design parameters and performance
 
requirements. 



GENERAL INTRODUCTION 

This document constitutes the Final Technical Report prepared by 

ADCOM, a Teledyne Company, for NASA Electronic Research Center, 

Cambridge, Massachusetts under Purchase Order No. ER-13, 784. 

The object of the study program is to outline several important 

results of radar theory and to relate these results ,to practical tracking 

implementations. In particular, the accuracy limitation of several 

accepted tracking techniques are derived and discussed in terms of their 

application to laser altimetry and range finding. 

The contents of the report are as follows: An extensive review of 

the theoretical aspects of the radar tracking problem is presented. This 

review treats the utility of matched filter detection, the importance of 

ambiguity functions to radar signal design, and shows theoretical accu

racies achievable with maximum likelihood detection. The theoretical 

discussion is followed by a presentation of the performances practically 

achievable with phase-locked loops, split gate and leading edge range 

tracking systems, and harmonic range tone systems. Three appendices 

are included which contain detailed derivations of several theoretical 

results, and detailed derivations of the noise and dynamic performances 

of the four practical techniques mentioned above. 
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SUMMARY OF DESIGN CRITERIA FOR 
RADAR TRACKING SYSTEMS 

Introduction 

This section presents background summary material on the opera

tion of radar tracking systems. There are a variety of such systems and 

a number are available commercially. Each has distinguishing features 

of operation whiah recommend its use for specific situations. An analy

sis of these systems is desirable to serve as a guide in the selection of 

the appropriate system for a given tracking situation. Fortunately, the 

variety of systems can be characterized in terms of a few simple models 

whose operation is governed by the same theoretical considerations. It . 

is, therefore, possible to compare these systems in terms of the same 

theory of operation so that the features of each system are readily dis

cerned.
 

Types of Systems Considered 

Four basic types of tracking systems are considered here. They 

are: 

1) Phase-Locked Loop 

2) Split Gate Range Tracker 

3) Leading Edge Range Tracker 

4) Harmonic Tone Ranging System 

The phase-locked loop is used to track a sinusoidal signal wave

form such as the carrier of a radar signal. In general, it is used with a 

CW signal rather than a pulsed signal so that its primary use is found with 

CW radar and telemetry where the carrier and possibly a number of sub

carriers are always present. In its operation it is able to sense the phase 

of the input signal and provide an output sinusoid whose phase is an accu

rate duplicate of the input phase. When the input signal is composed of a 



number of subcarriers, or is modulated with a set of ranging tones, the 

phase-locked loop is used as a coherent demodulator to extract the 

desired subcarriers or range tones. 

The split gate range tracker is used to track a pulse radar signal. 

It tracks a periodic"pulse signal and is designed to operate with a specific 

signal pulsewidth. It may be used in an altimeter, though it must be 

borne in mind that in a practical situation, such as altimetry, there may 

be a number of echos received almost simultaneously from terrain of 

similar altitudes. In practice, these echo pulses may overlap each other 

resulting in an altitude error since the split gate tracker characteris

tically tracks the center of gravity of the returned pulses. The split gate 

range tracker also functions as a filter to smooth out or reduce the effects 

of noise on the input signal. Thus its output signal is, ideall a smooth 

periodic pulse train, synchronized with the input, yet unperturbed by the 

input noise. 

The leading edge range tracker is similar to the split gate range 

tracker. The basic difference is in the method of sensing the time of 

occurrence of the input pulse. While the split gate range tracker senses 

the center of gravity of the pulse, the leading edge range tracker senses 

a point on the leading edge of the pulse. Otherwise, the two systems are 

the same. The major advantage of the leading edge tracker is found in 

the situation where a number of echo pulses arrive at approximately the 

same time with possible overlapping of the pulses. The leading edge of 

the first pulse of the group of pulses is the range which is measured. 

The remaining pulses have little or no effect on the range measurement. 

This is a distinct improvement over the performance of the split gate 

tracker described above in the altimetry application. 

4 



The harmonic tone ranging system operates with a specially gen

erated signal composed of several ranging tones modulated onto a carrier. 

In radar ranging applications, this signal may be reflected off the target. 

or retransmitted via a transponder. An important advantage of this sys

tem is found in those situations where a transponder is required since the 

sinusoidal type of signal can be reproduced by a transponder to a much 

higher degree of precision than a pulse type signal. Also, this system 

can handle higher data rates in those situations where a pulse system 

would be limited by the pulse repetition frequency. This system also 

enjoys the advantage of a signal design which most closely approximates 

the theoretical limit of precision, that is, a signal whose important spec

tral lines are placed at the outer edges of the allowable signal bandwidth. 

The system measures range by comparing the phases of the received 

ranging tones against a set of reference tones. This form of measure

ment has inherent range ambiguities which can be resolved by arithmetic 

operations on the phase measurements of the various tones. 

In practice the phase-locked loop is frequently included as one of 

the components of a harmonic tone range tracker. A set of these are 

well suited for extracting the ranging tones and, in addition, it is possible 

to utilize the data provided by the carrier tracking loop to derive increased 

precision from the tone tracking loops. In this respect the phase-locked 

loop is not regarded as a competitor of the harmonic tone range tracker 

but as an integral part of that technique. 

The question of which system to use in a given application depends 

on a number of factors which include the available power, the type of 

signal source, i. e., pulse or CW, and the nature of the signal transmis

sion channel. A discussion of all these factors is beyond the scope of 

this report, but it should be mentioned that the latter factor includes such 

considerations as the nature of the terrain which is particularly important 
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in alimetry. Its importance is due to the presence of multiple echos which 

are found particularly in mountainous regions. The performance of each 

of the systems considered is affected by the presence of multiply reflected 

signals, so that this represents an important consideration in the final 

selection of the system. 

Fundamental Theory 

The underlying theory which defines and limits the range measure

ments is common to all of the systems. The reason for this becomes 

apparent when certAin aspects of the measurement procedure are examined. 

In each case a measurement-is made of the signal in the presence 

.of some noise background. Noise is always present whether it is gen

erated in the receiver itself or comes from outer space. Irrespective of 

the type of measurement which is made or of the particular system con

sidered, the theory relating to the measurement of signal in the presence 

of noise is controlling. 

In each case the input to the tracking device is a signal of limited 

bandwidth. The limitation is imposed by either the transmitter or the 

receiver characteristics. In any event, the important point here is that 

filtered signals are being processed so that filter theory applies to each 

system. The same. applies also to the signal processing techniques since 

each system can be characterized by a filter with respect to both the 

dynamic and noise responses. 

The question may be raised as to whether the fact that one system 

utilizes pulses while the other is CW results in a significant difference in 

their measurement capability. The answer is given by the well-known 

sampling theory which shows that the measurement is equally good whether 

the input data is observed continuously or whether it is observed in the 
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form of pulses so long as the pulse repetition frequency is above the 

required output data rate. The only difference between the twvo basic 

techniques is related to the degree of complexity required to achieve the 

theoretically predicted performance in each case. 

The theory is basic to radar ranging techniques in which the time 

of signal propagation over the unknown distance is measured. The results 

of the theory are equally applicable to signals transmitted at the low and 

high frequency portions of the electromagnetic spectrum because the sig

nals are described in terms of their baseband representations. The 

results are directly applicable to laser ranging, devices under conditions 

of gaussian noise. The theoretical aspects of the radar problem are pre

sented in detail in Appendix A. 

The classical radar problem is concerned with the task of obtain

ing the best ranging accuracy for a given signal waveform in the presence 

of gaussian noise. The optimum accuracy is obtained when the receiver 

filtering has the correct relationship to the signal spectrum. More spe

cifically the task is to determine the specific form of the receiver filter 

weighting function h(t) which maximizes the signal-to-noise ratio at the 

output of the filters at a given sampling time t = T. 

The solution to this optimization problem for the case of additive 

white gaussian noise is well known. The optimum linear system, H(s); 

is a matched filter, sometimes called a correlation detector. This solu

tion has wide application since, in-most cases, receiver input noise can 

be reasonably described as white gaussian. Simply stated, the impulse 

response of the optimum linear system is the mirror image of the input 

waveform, shifted by the time duration T of the signal, that is, 

"Note that given enough smoothing, poisson noise takes on a gaussian 

characteristic. 
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h(r - t) = s.(t) where s.(t) is the input signal. The output signal of the 

filter is given by 

So0) f s(t) h(r - t) dt (1) 

for any h(t) and yields the highest SNR when h(T" t) = s.(t). 

The presence or absence of a target-returned signal is determined 

by subsequent operations on the filter output y(t) = s (t) + n (t) which is

the sum of the output signal s (t) and the output noise n (t). If y(t) is 

above a threshold y it is decided that a target is present, below y it 

is decided that there is no target. The exact level of the threshold is 

fixed by trading off the probability of detection of a-target in a noisy 

environment against the probability of false alarm. As the threshold is 

raised it becomes less likely that the noise alone will exceed the thresh

old and cause a false alarm. At the'same time, it becomes less likely 

that the signal and noise will exceed the threshold when a target is pres

ent. Graphs of probability of detection versus probability of false alarm 

show that the probability of detection is high and that of false alarm is 

low with good signal-to-noise ratios. Less favorable results are obtained 

with poor signal-to-noise ratios or with a fluctuating signal amplitude 

such as a Rayleigh distributed signal amplitude. 

Another useful concept in signal analysis is the-ambiguity diagram 

which is a three-dimensional plot of the signal' s ambiguity function. This 

function is the magnitude of correlation of the complex envelope p(t) of 

the input signal, si(t), with the doppler shifted complex envelope. That 

is, 

X to = f t) 4*(t+ v) ejt dt (2) 
-00 

A convenient representation in two dimensions is the 3 dB contour of the 

ambiguity function, 
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This diagram provides a great deal of inforrhation about the utility 

of a specific signal design. For example, in the case of a periodic pulse 

train consisting of several pulses, the two-dimensional diagram takes the 

form of a set of ellipses in both the time and frequency dimensions. 

By way of contrast, if a single signal pulse is transmitted, the diagram 

consists of only one ellipse at the origin of the coordinates. The reason 

for the name is now apparent for, in the case of a periodic pulse signal, 

the spacing of ellipses along the time axis represents the "once around 

again" range ambiguities, while the spacing along the frequency axis 

represents the doppler ambiguities caused by the line spectrum of the 

signal. In practice, doppler ambiguities may be noticed with narrow 

bandwidth carrier tracking filters which might track some other spectral 

line instead of the carrier. 

Other data is also provided. The width of the ellipse along the 

line co = 0 is the time resolution capability of the signal while the width 

along the line T = 0 is the doppler resolution capability. Furthermore, 

the three-dimensional representation indicates the signal energy which 

is shown by the height of the peaks. 

Range and velocity accuracy may be predicted from an analysis 

of the probability of detecting a signal in the presence of noise. Thus 

in the case of white gaussian noise of power N, the probability of observ

ing y which represents the input signals in the presence of the noise, 

given s, is given by 

( y p(y/s) = k e s ) 2 /2N. (3) 

where k is a normalizing constant. This expression may be expanded 

and expressed in terms of functions of both time and frequency which 

lead to an expression involving the ambiguity function in the form of 
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21N0 X(AT, Af) 
p(A T, f) = k e (4) 

where N is the single-side noise power spectral density. Further 
0 

manipulations using power series expansions provides the valuable 

result that the variance of the time measurement is given by 

AT2 1 (5) 

where E is the energy of a signal pulse and P is a mathematical expres

sion analogous to the "moment of inertia" and serves to describe that 

quality of the signal spectrum. The "rms bandwidth" P is given by 

2= f(2,f2) S(f)12 df (6) 

f IS(f) 12 df 

where S(f) is the lowpass equivalent filter function of the signal spec

trum. Similarly the variance in the doppler measurement is given by 

Af2 = 127) 

where t0 the "rms time duration" of the signal, is given by 

2 f (2t)2 fP(t)f2 dt 
f IP(t)j 2 dt 

and 4(t) is defined above. 
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In the case of the rectangular pulse a somewhat different analysis 

is required which gives the results 

1.414 T 
AT(rms) - P (9) 

and 

Af(rms) = 1 (10) 

T1.8 
0 

It will be seen that these theoretical predictions closely approxi

mate the results obtained with practical systems. 

Performance of Practical Systems 

This section presents mathematical models of the four basic 

systems and shows briefly how these models are analyzed to obtain pre

dictions of their performance. 

As a first step a brief description of each system is given. Then 

a linear model applicable to all the systems is presented. The noise 

response of the gating units is then described for the cases of the split 

gate tracker and the leading edge tracker. Finally the effect of the loop 

filtering is given for both the noise and dynamic tracking errors. 

It should be noted that a complete tracking system contains a sig

nal generator, transmitter, timing reference or oscillator, as well as 

the receiver, tracking filter, phasemeters, counters, etc. The discus

sion presented here is limited to the performance of the tracking filter 

and the effect of the IF filtering on this performance. 
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Models of the four systems ".-- Phase-locked loops.. In practice 

the phase-locked loop may be constructed in the simple form of Figure 1 

or"it may be more complex, having IF amplifiers and mixing stages. 

And, in certain high dynamic situations two or more loops may be used 

in combination with one loop providing a rate aiding signal to the second 

loop. For the purposes of this description it suffices to consider the 

simple or standard form of the loop. 

Input Detector Amplifier VCO Output 

R-4787 

Figure 1 Phase-Locked Loop 

The simple loop contains a phase detector, voltage controlled 

oscillator (VCO) and some form of amplification and filtering to develop 

a suitable VCO control signal from the phase detector output. The filter 

and amplifier are usually designed as a single unit, an operational ampli

fier.with an RC feedback network. The filter is designed to optimize 

some characteristic of the loop performance for the situation in which 

the loop is to be used. For example, the filtering is frequently designed 

to rninimiz'e the sum of the dynamic and noise induced errors. 

Split gate range tracker: This unit has the same general configu

ration of the phase-locked loop, but some components have been replaced 

with the corresponding ones for pulse operation. Thus the VCO is replaced 

with a variable speed clock and gate generator and the phase detector is 

replaced by a gating unit. 
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A simple split-gate tracking loop is shown in Figure 2,. 

Gating Filter Speed. 
n"se pu t P Clock Output Pulse -

Train Train 

Split Gate 
• Generator 

R-478'6'.. J 

Figure 2 Simple Split-Gate Tracking Loop 

The loop accepts the input pulse train and produces an output pulse train 

which is locked to the input. The loop acts as a smoothing filter which 

substantially reduces the noise content of the pulse train by reducing the 

noise bandwidth of the system. 

Leading edge range tracker: A simple leading edge tracker is 

,shown in Figure 3. It has the same form as the prec6ding figure but 

the gating unit functions differently. This loop responds in the same 

fashion as that of the split-gate tracker. 
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Gating Filter Speed
Input Ce Output Pulselock 

Train .Train
 

R-4790 

Figure 3 .-Leading Edge Range Tracker 

Harmonic tone ranging system: This system differs from the 

preceding three systems in that typically a few signals are tracked, simul

taneously. Thus a system utilizing four ranging tones modulated on to a 

carrier requires four tracking filters in the receiver. Since each ranging 

tone is a sinusoid, the phase-locked loop is employed as the tracking fil

ter. A simple system is shown in Figure 4. 

with Tones Filtering D od a in. 

wih ToTones 

R- 4791 

L------ i 

Ref. 
Tones 

Figure 4 Harmonic Tone Ranging System 
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In a more complex system, the carrier is also tracked in order to provide 

highly precise rate aiding signals to each of the phase-locked loops. In 

such a system the dynamic and noise induced errors are substantially 

reduced.
 

Generalized models: The operation of the phase-locked loop, split

gate tracker, and leading edge tracker are very much alike. Thus the 

function of the phase detector is to provide an error signal which repre

sents the difference in phase between the input and output signals. And 

similarly the gating unit provides an error signal representing the timing 

difference between the input and output. Both units function as multipliers 

and may be represented in linearized models as summing points. 

The operation of the VCO or variable speed clock is characterized 

as an integrator. Its frequency is set at some nominal value for the case 

of zero error signal. A change in frequency in response to a nonzero 

error signal is proportional to the error signal. The output phase or 

time period is related to the integral of the frequency, or equivalently, 

the integral of the filtered error signal. The effect of the error signal 

is to drive-the loop to null out the input-output error. 

The filter is usually a lead lag filter though it is possible to improve 

the loop performance by including an additional ideal integrator such as 

may be synthsized digitally. The filter alsb serves as the connecting link 

between the split-gate tracker and the phase-locked loop.. It provides for 

the same type operation in both loops even though one loop accepts a pulse 

input signal while the other accepts a continuous wave. The filter can 

effect the similarity in operation when its bandwidth is very much smaller 

than the pulse repetition frequency (PRT). Under this condition the con

tributions of the pulses in the input pulse train are effectively summed 

together to form a continuous output from the filter. The continuous output 
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of the filter in the case of the split-gate tracker is virtually indistinguish

able from that of the phase-locked loop. Note further that poisson noise 

spikes at the input to the filter will result in approximately gaussian noise 

at the output of the filter. 

A single linearized model is applicable to the phase-locked loop, 

and the split-gate and leading edge trackers. Their configurations may 

now be recast to show the Laplace transform representation shown in 

Figure 5 where T.(s) and T (s) refer to the time signals of the split1 0 

gate and leading edge signals while 1(s) and 6 0(s) refer to the phase 

signals of the phase-locked loop. Thus the loops perforn in a similar 

manner within their linear regions. However, it should be noted that 

they differ in their acquisition performance since the split-gate and lead

ing edge tracker require a strobing action to locate the input pulse. 

In Figure 5, the VCO is shown by the usual representation as 

an integrator. The constant k includes all gains that may be present 

such as those of the operational amplifier (not shown) used to drive the 

VCO, the VCO gain itself, and the gain of the split-gate detector or the 

phase detector. 

Tj (s) d(5+ T/S(S) 

R-4789 

Figure 5 Transform Representation of Tracking Loop 
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The open loop transfer function for the case where a lead lag filter 

is employed is given by (k/s) (T s + 1) (T2s + I)-i Increased perfor

mance can be obtained by using a lead filter-followed by an additional inte

grator. Such an integrator can be built by digital techniques. The result

ing open loop transfer function is then given by (k/s2 ) (rs + 1). 

For purposes of analysis the tracking loop is generally treated 

as a filter with input Ti(s) or pi(s) and output T (s) or i0(s). The 
transfer function of this filter is simply the closed loop transfer function 

of the loop. In the case of the lead lag filter and single integration, it is 

given by 

HLS = 22 ls+ I 
(ii)____ 

L n 2 ws+) 2s + 2CnS +co 
n n 

where w2 = k/T 2 and 2C = n(Tl + kl). In the case of the lead filter and 
n 1 2

double integration, it is given by Eq. (11) with o = k and 2C nI 

The exact form of the closed loop response of the trabker determines its 

dynamic performance and is an important factor in determining its noise 

performance. These details are discussed in Appendix B for the case of 

a phase-locked loop-and in Appendix C for the split-gate, leading edge 

and harmonic range tone trackers. 

Method for deriving noise and dynamic performance. -- The noise 

and dynamic performance of the phase-locked loop is calculated from 

Eq. (11) by treating VD.(s) as the noise or as a power series represen

tation of the input phase (or range) perturbation. The dynamic. response 

of the split-gate and leading edge trackers is found in a similar way. 

However, the noise response of the split-gate and leading edge trackers 

requires calculations of the effect of the gate on the noise. This, in turn, 

depends on the IF filtering. Thus the response of the split-gate and lead

ing edge trackers to noise is dependent on the gate, the IF filtering, and 

the loop filtering. 
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As a first step the effect of the gate on the noise induced brror is 

investigated. Then the effect of the loop filtering on the noise induced 

error may be found for all the systems. And finally the dynamic perfor

mance of the systems is found as a function of the loop filtering. 

The error resulting from the noise is a function of both the average 

noise power and average signal power or simply the signal-to-noise ratio 

(SNR). -Both the gate tracking error signal and the noise disturbance on 

this signal are functions of the gate width. It is therefore necessary to 

determine the gate width which minimizes the noise induced error. 

The IF filtering similarly plays a role in the gate tracking error 

and the noise disturbance. The bandpass characteristic of the filter 

affects the pulse shape and thus the required gate width, as well as the 

spectral distribution of the noise power. It is therefore convenient to 

adopt a simple representation for the filtering so that the noise error at 

the gate may be expressed in terms of a filter parameter. 

The instantan~eous values of the voltage appearing in the gate are 

summed together or integrated by the loop filter following the gate so 

that the only meaningful expression of the gate signal is in the form of an 

integral. Thus the expression for the noise signal e n is given by 

0 m(t) g(t) dt (12) 
CO 

where m(t) is the instantaneous value of the noise and g(t) the gate func

tion for the split gate and leading edge gate, respectively, is shown in 

Figures 6 and 8. This expression may be expanded in terms of-the 

autocorrelation function of the noise RIn(T) and the gate R r(T)to give 

0g m 
en. f RC(T) RgCT) dt (13) 

-00 
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Figure 6 Split Gate 
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r-1> 
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Figure 7 R (T) Split Gate Correlation Function 

- Signal 
Pulse 

-rgl2 +-rq/2 

Figure 8 LeAding Edge Gate 

Rg (r) 

-Tg +T9 

R-4792 

Figure 9 R (7') Leading Edge Correlation Functiong 



which is a convenient expression since R (T) is readily expressed in 
m 

terms of the IF bandpass characteristic and R (T) is given by Figures 

7 and 9. For these purposes the IF bandpass characteristic may be 

expressed in terms of the equivalent 'single-sided baseband representation 

which, for demonstration purposes, may be presumed to have a double RC 
2 2

rolloff, a /(s + a) , where a = i/RC. The single-sided bandwidth is 

equal to 0. 65a. Then RI (T) is found by the usual procedure of evaluatm 

ing the inverse transform of the noise power spectral density function 

(the squared magnitude of the filter function) for positive values of s = jW. 

The result is that e can be expressed in terms of the parameters an 

which is the filter corner frequency, IF which is the gate width and N 
g o 

the noise power spectral density. Thus, 

en =en(a, ) (14)
n n g 0 

The next step in the analysis to to calculate the response of the 

filter a2/(a + s)2 to a pulse. For convenience, let the pulse amplitude 

be given by V0 and the width by Tp . The signal pulse, P(t), may be 

expressed as a positive going step plus a negative going step which has 

been delayed by T seconds. Thus,P 

P(t) = V [U_ (t) - U_ (t- )] (15)
0 -l -1 p 

The response of the filter to the pulse is given by 

(t =i V 0 - -t at Cat) u 1 (t}W 

e - a ( t - Tp ) a ( t - Tp ) )-(I - - a(t - e u- (t 7)] 

(126) 
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To facilitate the calculations, the waveform of Eq. (16) is 

approximated by 

f (t) = 0.4V (I+ cos at) (17) 
p o 3.5 

for the case of the split-gate tracker with 7" = 3/a; and byP 

fp(t) = sin2 (rat/8) (18) 
p 

which approximates the leading edge of the pulse for 7 6/a in theP 

case of the leading edge tracker. The value p = 3/a is chosen to p 
provide a fairly symmetrical pulse to the split-gate. The symmetry 

is desirable from the point of view that the ideal filter (the matched 

filter) produces a symmetrical triangular pulse. The value T- = 6/aSp
 

is chosen since the rise time and the form of the leading edge is 

essentially unchanged for longer pulse widths or wider filter bandwidths. 

The gate error signal, in the absence of noise, is zero when the 

gate is correctly positioned in time with re'spect to the signal pulse. 

When the gate is displaced relative to the pulse by a displacement 

At, a nonzero error signal is developed. By analogy with Eq. (12) 

the error signal e is also expressed by an integral expression involv
e 

ing the gate minus the integral of a reference signal. In the case of 

the split-gate, the referenc.e is taken as zero. In the case of the leading 

edge gate, the reference is taken as equal to the gate voltage for At = 0. 

Thus the gate error signal is given by 

At At+Tg/ 2 

e. f f (t) dt -f f (t) dt 
e -t/2+At p At P 

= es(V ,a, ,At) (19) 
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for the split gate with f (t) given by Eq. (17) and by 

P 

T+-Tg/2+At To.+T g/2 
ee- f T ' +tf (t)dt - f T'+g12f (t) dt 

P To-T/ 2 P
To-1/2+At 

= ee2 (V o , a,T 9, At) (20) 

for the leading edge gate with fp(t) given by Eq. (18) and where T o 

represents the time of occurrence of the center of the gate when the 

gate is correctly positioned relative to the signal pulse. 

The final step in evaluating the effect of the gate on the noise 

induced error is to determine how much error signal e is requirede 

to balance out e . Therefore set 
n 

es(V, a, ,At) = ens(a, N 

(21) 
eel(Vo0 a, T'9 At) =en (a,T, N ) 

-where the subscripts s and Y stand for split-gate and leading edge gate. 

The term At may be factored out. Then replacing At with the rms 

timing error t and solving for Crt gives 

U~tmi_ 1.56 (22)
rain aq /-N° 

for the split-gate and 

ar (23) 
tmin aE/N 

O 
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for the leading edge gate. The subscript min indicates that the expres

sions of Eq. (21) have been evaluated for the value of aT which mini
g 

mizes the expression for a t . The minimum value of at is obtained for 

aT F 4. 5 for the split-gate, and aTg s 1 for the leading edge gate. 
g g

The symbol E represents the energy in the signal pulse before the IF 

filter. In the case of the leading edge gate, E represents the energy 

in a pulse of duration 1' = 6/a.
P 

So far, the effect of the gate in the split-gate tracker and the 

leading edge tracker has been considered. Now the effect of the loop 

filtering can be considered for the cases of all four systems. 

The noise response of the phase-locked loop may be evaluated 

directly by treating it as a filter whose transfer function is given by 

Eq. (11). Thus the noise voltage at the filter output is given in trans

form notation by 

ben(s) = H(s) 6i (s) (24)en n 

where n(s) represents the phase noise input. The input phase noise, 

T, may be related to the additive white noise density, c = N0, through 

an analysis of the operation of the input mixer. This analysis is per

formed in Appendix B where it is shown that 

N
2-0 (25) 

where S is the average power of the input sinusoid. In terms of the 

loop noise bandwidth B n the error may be expressed as 

1/ (2)-1/2 

- 4(rms)= (BIB - NB (26) 

n 

where the SNR is measured in the loop bandwidth. 
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A similar result is obtained for each tone of a harmonic tone 

ranger. However, the precision of the measuremdnt based on all the 

tones is increased when the signal spectrum has been designed so that 

the spectral lines fall near the outer edge of the spectrum. For such 

a system the error is decreased by a factor of in where n is the 

number of tones. 

Expression for the noise and dynamic errors. -- For a phase

locked loop the noise error in the range measurement is given by 

-1/2 

CO-- (27)-r 

n 

where c is the speed of light and f is the frequency of the tone or of 

the carrier, whichever is the input -sinusoid. The factor of 4 is present 

with a two-way range measurement. A factor of 2 is present with a 

one-way range measurement. 

For an n-tone harmonic ranging system (the simple form without 

rate aiding signals from the carrier) the range error is given by 

-1/2 
oR C N "B (28)R =41f. 2nS 


n 

In the case of sample data systems, such as the split-gate range 

tracker and the leading edge range tracker, the loop filtering provides 

an improvement in the precision of the measurement by a factor equal 

to the square root of the number of input data pulses for each sample 

of the output. Tie output data sample rate is limited by the loop band

width in accordance with the sampling theory. The optimized range 
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error is given by 

1.56c
al E/a~N Jfr/2Bn° 

o ~ r n 

1.56c . -1/2 (29) 
a \/ 

n 

for the split gate range tracker where the term f r is the pulse repeti

tion frequency and Bn is the single-sided noise bandwidth. Similarly, 

3. c §s"-1/2 

(R = a (30)B 
n 

for the leading edge range tracker. 

The dynamic tracking errors are determined by the loop bahd

pass characteristic since the IF filtering is sufficiently wideband to 

have no more than a-negligible effect. Thus the expressions for the 

dynamic tracking errors are the same for each system. In accordance 

with the representation of Figure 5 , the dynamic tracking error T e (t) 

is given by 

Te(t) = Ti(t) To(t) Ti(s)[I L]- T - (3 

where HL (s) is given by Eq. (i). Let the input be represented by 

a power series 

Ti(t) =Ti(o) + at+ T +(7 (32) 
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For a loop containing a lead lag filter and a single integration, the track

ing error in response to the input power series is given by. 

T (t) +Z transients 
e k Wn k. , J k Co 2 

(33) 

in which a small approximation has been made on the assumption that 

>> T., and k >> 1. The transients die out within a short time inverval 
2 

on the order of the reciprocal of the loop bandwidth. In most applications, 

they can usually be neglected. 

For a tracking loop containing a lead filter and a double integra

tion, the steady state tracking error in response to the input power 

series is given by 

Te(t) [4 (34) 

which shows that a double integration reduces the, powers of t in the 

expression for the dynamic error. 

These dynamic tracking expressions have been written in terms 

of the parameter T.(t) the input time modulation. They may be con

verted to range by multiplication by the factor, c, the speed of light. 
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Appendix A 

FUNDAMENTAL THEORY 

This section presents the theoretical aspects of range measure
ment. The theory is basic to radar ranging techniques in which the 
time of signal propagation over the unknown distance is measured. The 
results of the theory are equally applicable to signals transmitted at the 
low and high frequency portions of the electromagnetic spectrum because 
the derivations are, for the most part, only concerned with baseband 
signal representations. The results are directly applicable to laser 
ranging devices except in some cases where the character of the noise 
of the optical detection process must be considered 

The discussion below treats the classical radar problem of obtain
ing the best ranging accuracy for a given signal waveform in the presence 
of Gaussian noise, The relationship between the signal spectrum, the 
receiver filtering and the ranging accuracy is developed so that both the 
signal waveform and the receiver can be designed for best accuracy. 
The results of the theoretical analysis are compared in Appendix C, 
with the perforiance obtained from -practical range tracking systems 
where it is shown that near optiium performance is obtained with these 
systems. 

The discussion begins with signal reception and detection by 
matched filters. This is followed by a discussion of ambiguity functions, 
and the attainable accuracy of range and velocity measurements. Parti
cular reference is given to the special case of rectangular pulse signal. 

Matched Filters 

A generalized receiver is shown in Figure A-i. 

Radar Receiver 

S (t)++ n1 t) H(S)) s 0(t) + no(t) 
impulse Response h(t) 

Figure A-I A Model of a Radar Receiver 
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For simplicity the mixing operations, input filtering, etc., are not shown. 
In this simplified representation it is assumed that the receiver subjects 
the incoming signal si(t) plus noise ni(t) to a linear filtering process 
represented by H(s) or h(t). The problem is to determine the specific 
form of h(t) which maximizes the SNR at the output of the filter at a 
given sampling time t = T. 

The solution to this optimization problem for the case when ni(t) 
is additive white gaussian noise is well known. The optimum linear 
system, H(s), is a matched filter, sometimes called a correlation detec
tor. Note that this solution has wide application since, in most cases, 
receiver input noise can be reasonably described as additive white gaus
sian noise' The derivation of the optimum filter for this, case is included 
here because of its almost universal applicability. 

With reference to Figure A-i,, it is desired to maximize the ratio 
6f the square of the value of the signal component at t = 7, 

s( ) =[f s (t)h(r - t) dt] 2 

0 
to the expected value of the noise power, E[n (t)]. Let this ratio be 
denoted by R; then 0 

[ f sMt) h(T-t) dtj]2 

R 0o 2(A-i) 

E f n(t)h(r-t) dt] 

0 

It is assumed in Eq. (A-i) that the noise is wide-sense stationary with 
zero mean. Since the noise is white, its autocorrelation is an impulse 

Note that given enough smoothing Poisson noise takes on gaussian
 
characteristics.
 

**E[f(t)] is read as "the expected value of f(t)." 
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function so that
 

E[n2(M)] 	 f f ni(t1)ni(t2) h(T-t ) h(r-t 2) dt, dt2 
0 0 

T T 1I 
S N 	6(tI -t2)h(r-tI h(T-t) dtI dt2
 

0 0
 

(A-2)
2 f h (r -	 f)- dt 
0 

N O is the power spectral density of the input noise. Substituting
 
Eq. (AZ 2) in Eq. (A-i) and dividing both sides by the input signal energy,
 

E = fs,(t) dt, Eq. (A-i) becomes, 

0
 

* R [f i(t) h(T -t)dt]
2 

o 0 	 (A-3) 
2E 	 2'2 

ff .(t)dt fh 2 (r-t) dt 

0 0
 

At this point the Schwartz Inequality is invoked which says that for any 
two functions a(t), b(t), 

(f act) b t) cit) 2 ffa 2 (t) cit fb 2 (t) at 	 (A-4) 

The equality holds when a(t) = kbt)t where k is a constant. With refer
ence to Eq. (A-3), this means that the maximum signal-to-noise at the 
output of the receiver is obtained (at time t = T)when h(T -t)= si(t) to. 
within an unimportant nonzero scale factor, k. Simply stated, the impulse 
response of the optimum linear system is the mirror image of the input 
waveform, shifted to the right by the time duration, 7, of the signal. 

Single-side 	spectra are assumed throughout this report.
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The filter frequency function is, then, the complex conjugate of the signal 

spectrum, with an additional linear phase shift coT. The receiver output 
at t = -T is expressed as 

so0() f sW() si(t) dt (A-5) 

0 

and the output 
is 

of the detector at some. intermediate time, t, 0 t S T, 

s(r) = f si(o) s.(t + a) du (A-6) 

hence the name correlation detection. 

The presence or absence of a target-returned signal is deter
mined by subsequent operations on y(t)o= s (t) + n (t). If y(t) is above 

a threshold y it is decided that a target is present, below y0 it is 
decided that tiere is no target. The exact level of the threshold is fixed 
by trading off the probability of detection of a target in a noisy environ
ment against the probability of false alarm. As the threshold is raised 
it becomes less likely that the noise alone will exceed the threshold and 
cause a false alarm. At the same time, it becomes less likely that the 
signal and noise will exceed the threshold when a target is present. 
Curves of probability of detection versus probability of false alarm with 
signal-to-noise ratio as a parameter are available in the literature 
(Ref. 1, 2). One such set of curves is reproduced in Figure A-2. These 

curves represent an upper bound. Results obtained with a less than 
optimum receiver lie below and to the right of these curves. The 
parameter R in this set of curves is equal to the ratio of the target echo 
signal energy to the effective input noise power/Hz. The solid lines 
represent the results obtained with a target echo of constant amplitude. 
The dotted lines represent the results obtained with a fluctuating target 
amplitude which varies in accordance with a Rayleigh distribution. In 
this case the parameter R is given by A 2 /N where A is the most 

0 0probable amplitude. 0 
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Figure A-2 Receiver Detection Characteristics 

Ambiguity Diagrams 

So far, it has been shown that a receiver that is matched to the 
transmitted signal waveform is optimum because it maximizes the signal
to-noise ratio of its output at t = 7. However, no restrictions were 
placed on waveform design. This points up a very important generalization. 
When'the receiver is matched to the signal input, the detectability of 
that signal is a function only of the signal energy received, E0 , and the 
noise figure of the receiver as expressed by, N O ' the noise power spectral 
density. Signal design is important to the trajectory parameter measure
ment process, namely the measurement of the range and velocity of the 
target. One indicator of the utility of a particular signal design is its 
ambiguity diagram. (Ref. 3) An ambiguity function represents the envelope 
of the response of a correlation receiver to inputs that are mismatched due 
to doppler shifts. The ambiguity function is just the magnitude of correla
tion of the complex envelope (Ref. 4) p(t) of the input signal, s(t), with 
the doppler shifted complex envelope. That is, 

X(7,w) = jf p(t) A*'(t+T) eljWtdt I (A-7) 
-co 
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An ambiguity diagram is the 3 dB contour of the ambiguity function. The 
width of the diagram along the line w = 0 is the time resolution capability 
of the signal. Similarly, the width along the T=0 line is the doppler 
resolvability of the signal. Examples of ambiguity functions and diagrams 
are numerous in the literature (Refs. 1, 3). The ambiguity diagrams for 
a signal consisting of one pulse of RF and a signal consisting of several 
pulses are shown in Figure A-3. 

- I/PRF 

rp4 -o 0 o.S0 0 RF 

I P 

(a) Single Pulse (b) Several Pulses 

Figure A-3 Some Ambiguity Diagrams 

For one pulse of duration Tpsec, the width along o)=0 is 7 and the width 
along 7=0 is 1/1'; Bandwidth. Examination of the diagram for several 
pulses explains lhe source of the term, ambiguity. In this case, the 

ambiguity function which contained a single peak breaks up into many 
peaks. The ambiguity diagram thus displays the "once around again"! 

range ambiguities in the 7 direction, and the doppler ambiguities caused 
by the line "spectrum of the signal in the co direction. . 

In addition to containing the resolvability and ambiguity properties 
of a particular signal, the ambiguity diagram also indirectly contains 
information about the attainable accuracies in range and doppler for a 
given waveform. This is a result of the faci that the optimum accuracies 
are a function of the input signal-to-noise ratio and the signal's resolution 

capabilities which are displayed in the ambiguity diagram. 

Range and Velocity Accuracy 

The estimation of range and velocity of a radar target involves the 
evaluation of the probability of receiving a.particular radar return in a 
noise environment. Let p(s) be the probability density of a particular 
signal and p(y) be the probability of receiving a particular signal, s, in 
the presence of the noise, n. The joint probability density of signal and 
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noise plus signal is expressed in terms of.conditional probabilities. 

p(sy) = p(s) p(yls) = p(y) p(s/y) (A-8) 

where p(yls) is read as "the probability of event y given s". Since y is a 
given event, i. e. , the received data, let p(y) = constant = I/k. Equation 
(A-8) reduces to 

p(sly) = kp(s) p(y/s) (A-9) 

This equation describes the operation of an ideal observer (Refs. 3J 5) 
who determines that a particular signal (with particular time delay and 
doppler shift) was received given the actual signal and noise, y, at the 
receiver output. When n is gaussian noise, the probability of observing 
y given s is 

- -s)2!2N '  
p(yls) = ke (Y (A- 0) 

where c is a normalizing constant and N is the noise power output of the 
receiver. The ideal observer observes y and computes the probabilities 

P(sn/y) = kp(sn)e -(Y-sn)2 /2N (n= 1,2 ....) (A-i) 

where the sn represent the various undisturbed signals, one of which is 
likely to be present in y(t). The ideal observer then simply chooses the 
most likely 'si given y" and decides that y = si+n. When y, n, and s are 
functions of time, Eq. (A-l) becompes 

2 / (Y-s) 2 dt 

p(s/y) = kp(s) e o 

* fy2dt+fs2 dt 2fys dt] 

=kp(s)e N0 (A- 12) 

where No is again the single-sided noise power spectral density. When 
2
the signal is properly acquired by,the receiver, the integrals of y 2 and s

over time are independent of particular time delays and doppler shifts, 
the parameters of interest. It is possible, then, to absorb the contributions 
of these terms into the normalizing constant, k. It is also reasonable to 
assume that the probability of receiving a signal with a particular time 
delay and doppler shift is constant in the range of time delays and doppler 
shifts under consideration here; i. e., the regions over which all time 
delays and doppler shifts are considered equally likely is much wider than 
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the range of time delay and doppler measurement accuracies. Equation 
(A-12) reduces to 

+4_ fs(t) y(t) dt+No 
p(sly) = ke (A- 13) 

Again, Eq. (A-13) shows that the ideal observer performs a correlation 
of the received waveform y(t) with the expected waveform s(t). But, this 
result is stronger. Whereas the previous argument showed that the 
matched filter was the best linear system for the detection of signal in 
white gaussian noise, the argument leading to Eq. (A-13) applies to all 
systems, linear and nonlinear, and shows that the best system is the 
linear one defined by the matched filter. 

Now, s(t) is the expected radar return. Therefore; it is a function 
of some time delay T1 and some doppler shift fl. To include this informa
tion, let s(t) = s(t, T1 , fl). Similarly, y(t) is the actual return with time 

=delay r 2 and doppler shift f2 , with noise added. Therefore, let y(t) 
s(t, 7 2 , f2) + n(t). At this point, it is assumed that the signal-to-noise 
ratio is large and cons6quently n(t) is neglected, y(t) s(t, T2 , f2 ). This 
is a rather confusing point. If the noise term is neglected, why is there 
any error in parameter measurement?. What happens here is this: 
Although the noise term itself is neglected, the presence of noise is- still 
manifested in the form of the operation performed by the ideal observer, 
i. e., Eq. (A-13). As Woodward (Ref. 3) describes it;"We have placed 
ourselves in the position of an ideal observer who expects noise, but, 
without realizing it, fails to get any. " Thus, Eq. (A-13) reduces to 

N4 fs(t, r1 ,lt s(t,T2 f2)dt 

P*4 f 2 ,f 2 ) = ke 40 

' 2-+k (k'f f 2 ) (A-14) 

where (Tl, fl T2, f2) = fs(t, r 1 , fl)s(t, r 2 , f2 ) dt. When s(t) is a narrowband 
function, Eq. (A-14) can be written in terms of At = 'rl-' 2 and Aft= fl-f 2 . 

4 Af) 

p(Aff, Af) = k e (A-15) 

After some manipulation, and an integration over the "fine structure" of 
s(t) (Ref. 6) it is found that +--X (ATr, At)) 

p(Ar. At) - ke 0 (A-16) 

34 



.wherex(AT,nf) is the ambiguity function of the signal s(t), Eq. (A-7). 

Now, X(AT, Aif)= 21 c (iT, Af) I can be expanded using the following 
formula (Ref. 6) 

f (xi) j f(O) + Re £ 	 'f(O) dx. + I Re Z 1 af(o) aft(0)
 
6x.i i I,j f(O) x. 3x.
 

5 f 0 ) dx. dx
+ d +.... 	 (A-17)
ox~x.. 1 313 

After some algebra, 	 it is found that 

2 X(AT Af) N 4c(0,0)- 1 AI(AT)22 A22(, 

0keke 0 

-A 1 2 ATAf+...] (A-18) 

where
 

A,, = f(2yf)2[ S(f)12 df E 2 S(f) = Lowpass equivalent 
2 ffilter function 

and f(2 7f)2 22= 2 f ls(f) 2d f (A-19)S(fl 2df 

f )S(f) 2df 

Similarly 

2 dt=A22 (2rt) 2 I g(t) j'
Et

2 

where p(t) is defried above, and222 

2 f (2rt)2[ P(t)12dt 	 (A-20a)
0 f IPI(t) j12 dt 

and 

A 12 = Re fA(t) p*(t) (27rjt) di. (A-20b) 
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By integrating th& expanded form of p(AT. Af) over At, the variance in 

time measurement is found to be 

N 
Ar 2 N0 A 0 (A-21a)"

2 ( __ 14A111 

0 

Similarly integrating over AT, the doppler error is found to be 

N 
Af2 2E A1 2 = 0 (A-21b)

4A22 t o (E 1 
o N 

0 

The A1 2 term contains information about the dependence of time errors on 
doppler errors. In most cases, the two types of errors are independent, 
A1 2 = 0, and all higher-order terms are negligible. Under these conditions 

2 x(AT, Af) 1 2 1 ( ' f ) 2 

N -- A (AT) A 
p (W, At) = ke = k e 2 PI (AP2f() f) 

(A-22) 

In some importnat instances (such as "chirp" type signals or "linear FM" 
waveforms) A1 2 is large. In such cases, it is true that a time error 
could be mistaken for a frequency error, and the results expressed in 
Eq. (A-21) are incomplete. 

Accuracy Obtained With Rectangular Pulse 

In one important case--that of a rectangular pulse--the results 
derived above do not work even thou'gh the delay and doppler errors are 
independent and A1 2 = 0. If the spectrum of a rectangular pulse is inserted 
in Eq. (A-19), it is found that 132 is infinite, which would mean that the 
variance of range-measurement goes to zero in accordance with Eq. (A-21). 
This fallacy results from the fact that the expansion of X(AT, Af), Eq. (A-17), 

-actually breaks down for a rectangular pulse. Mannassa (Ref..6) has 
resolved this difficulty by using a different expansion of X(AT, Af) which 
is valid for a rectangular pulse s(t). The results he obtains are as before 
for the doppler error, i. e, 
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'af(rms) = t1/ . I (A-23) 

2E 1. 8-1 (A2oN 0O pjN 0 

where Ir is the pulse duration. However, in place of zero for the error 
in time measurement, he obtains 

1.414r 
r(rp2s)- (A-24)

( 2E-) 
N0 
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Appendix B 

THE PHASED-LOCKED LOOP 

Introduction 

The phase-lock loop (PLL) is a tracking filter. It produces a 
constant amplitude output waveform which contains a filtered replica of 
the phase of the input signal. The phased-locked loop finds important 
applications in the situations where the input signal is obscured by noise 
and it is desired to obtain a precise duplicate of the phase information 
carried by the signal Typically, the input noise spectrum is very much 
wider than the loop noise bandwidth so that the loop is able to filter out 
a major portion of the noise. This filtering action provides for a precise 
retrieval of the phase information in the presence of noise. On the other 
hand, too much filtering will cause a loss of precision because the loop 
will smooth out fast fluctuations in the irput phase information. Thus, 
the loop bandwidth is usually selected on the basis of a trade off of noise 
and dynamic error requirements. The relationship between noise and 
dynamic errors and acquisition performance are derived and discussed 
below. 

In practice the phase-locked loop may be constructed in the simple 
form of Figure B-1, or it may be more complex having IF amplifiers and 
mixing stages. And in certain high dynamic situations two or more loops 
may be used in combination with one loop providing a rate aiding signal 
to the second loop. For the purpose of this description it suffices to 
consider the simple or standard form of the loop. 

Input Detector k iyli Amplifier Output[LeodLagl 

)t 
9-4787 

Figure B-I Phase-Locked Loop 
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The simple loop contains a phase detector, voltage controll'ed 
oscillator (VCO) and some form of amplification and filtering to develop 
a suitable VCO control signal from the phase detector output. The filter 
and amplifier are usually designed as a single unit, e. g., an operational ampli
fier with an RC feedback network. The filter is designed to optimize some 
characteristic of the loop performance for the situation in whichthe loop 
is to be used. For example, the filtering is frequently designed to mini
mize the sum of the dynamic and noise induced errors, as noted above. 

The function of the phase detector is to provide an error signal 
- which represents the difference in phase between the input and output 
signals. For purposes of analysis it may be regarded as a multiplier, which 
in a linearized model is represented as a phase surbming point. This 
representation is derived below. 

The VCO functions as a phase integrator. Its frequency is set at
 
some nominal value for the case of zero error signal. A change in its
 
frequency in response to a non-zero error.signal is proportional to the
 
error signal. The output phase is related to the integral of the frequency
 
or equivalently the integral of the filtered error signal.
 

Development of a Phase Transfer Model 

Consider a CW signal and noise as additive, uncorrelated, inputs 
to a phase-locked loop. The noise is assumed to be a sample function of 
a narrow-band zero-mean, Gaussian random process. For convenience, 
the noise*is decomposed into cophasal and quadrature components with 
the signal phase as reference. Thus, the composite input to the loop is 
given by 

eain W Es.sn [W st + As(t)]+xc(t) sin [ st + s (t)]+Xq(t)cos[ Wst+4 s(t)] 

(B-1) 

where xjt) and x (t) are low-pass narrow-band Gaussian processes while
 
the VCO output signal is represented by
 

eosc(t) - cos [Wt -+ (t) (B-2) 

The operation of the phase detector in the loop can be represented
 
as multiplying the input and VCO signals. High frequency components
 
will not be considered since they are filtered within the loop. The phase
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detector outpitt is then 

ed(t) = EC[1 
xe(t) 
-E ] sin [Fs(t)-4 Cot)] 

x 
-# 

(t) 
cos [bs(t)-4ot)1} 

s s 
(B-a) 

and under small locking error conditions this equation may be linearized 
to 

Xe(t) 	 xtE
ed(t) Es{[1q± ] [{s(t) - odt)1]+--- } 	 (S-A) 

s 	 s 

so that the phase transfer behavior for the phase detector may be char
acterized by Figure B-2, provided that [ s(t) - {0 (t)] is sufficiently 
small. Furthermore, if the S/I ratio is assumed large enough then the 
cophasal component of the noise xc(t) will have a secondary effect and 
may be neglected. Thus, under high S/N and small phase-error conditions 
the phase detector output may be wtitten as 

x_t) 
ed(t) ' Es{4s (t) - o(t) + } (B-5) 

S 

and the incremental phase-transfer behavior of the loop can be charac
terized by the linear model of Figure B-3. Note that the incremental 
6utput phase of the VCO is obtained by integrating (and scaling) its input 
excitation. The following notation is used in Figure B-3, referring to 
the frequency domain: 

in(s) -%-(s) + -n(s) represents the composite phase input to 
the loop, where '(s) corresponds to the signal term s(t) and 
41 (s) to the noise term x (t) 

_q_ 
E 

s 

T'(s) r4resents the VCO phase output, 
0 

T (s) Ts (s) - '0 (s) 	 represents the signal locking error in the 
loop, which must be kept small for the 

model to be valid, 
F(s) represents the low-pass loop filter, and 

K 	 represents the open-loop gain in the model, and is propor

tional to the signal level E and the gains of the phase detector, 
loop operational amplifier and VCO. 
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Figure B-2 	 Phase-Detector Charncterization (Small Error 
Conditions) 
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Figure B-3 	 Linear Phase Transfer Model.of a 
PLL (Small Error, High SNR 
Conditions) 
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Phase-Error Analysis 

The derivation of the linear model of Figure B-3 required a small 
signal locking error. If H(s) represents the closed-loop transfer func
tion in the model; i. e., 

H(S) o(S) B)H(s) = inCs) (B-6)('s) 
- in 

then the expression for this error is given by 

Oe (s) = [1-H(s)] /s(s) - H(s) n(s) (B-7) 

The first term represent the loop locking error in attempting to repro
duce the signal phase dynamics in the absence of noise, and is referred 
to as dynamic tracking error. The second term represent the additional 
signal locking error contributed by the additive baseband noise. 

The closed loop transfer function H(s) is readily expressed in 
terms of the loop parameters. Thus if the filter is of the lead lag form 

-
(71s + 1) (T2s + 1) l the open loop transfer function is simply (K/s) x 
-(Tls+ 1) (r2s + i) where Krepresents the product of the gains of each 

component of the loop. The closed loop transfer function H(s) is then 
given by 

7 s+1 
H(s) 

22 
1 

1 
(B-8) 

- s +( + -)s+1 
K 1 K 

The damping factor of the poles of H(s) is given by 

1 (1 +K r1 ) 

g 2 J72K 

The dynamic tracking error is obtained by evaluating the inverse 
transform of the first term in Eq. (B-7). Let the input j(t) f- in(S) 
be given by a power 

(t) = (0)+ at + (t 2 /2) + y(t3/6) (B-10) 
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then 

e s) K Wo K=-1I(s)] s ==(t)[ O-L2 - 7(K 2, + + W 2 t 

n n n 

(K) (tl) + transients (B-11) 

where cn 2 =K/T 2 and a small approximation has been made on the 
-assumption that 1 2 >>7 1 and thatK >>I. The transients die out within 
a short time interval on the order of the reciprocal of the loop bandwidth. 
In most applications the transients may usually be neglected. 

The noise induced error is obtained by operating with the second 
term in Eq. (B-7). The rms value is given by 

$ (rns)={f xq-- •H(jo)j 2 dwj 1/2radians B--1 2) 

which for the case of a flat spectrum for the noise process.having 
density, 4 is simplified to 

1/2 -1/2 

= [rms)n) radians (BrI 3) 

where S = Es2 /2 is-the signal power, the N = cB n is the noise power 
within the loop bandwidth and Bn; defined below, is the noise bandwidth 
of the loop. 

In the literature Bn is defined alternatively by either the single or 
double sided noise bandwidth. Thus in formulations involving the noise 
bandwidth, a factor of two is present when the single sided noise band
width is used. The single sided noise bandwidth Bn is given by 

=1r 
o 

IH(j )I22Bn 

K.- ( 1+K71 2 Hz-) 21 
2 1 +K I 
S( 1 + K F) Hz for Kl'!>> (B-14) 
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The remainder of Appendix B is devoted to general considerations 
relevant to the design of phase-locked loops. Some of the topics considered 
here are optimization, signal-to-noise level, oscillator instability, and 
the damping factor. 

General Considerations 

In the steady state condition the phase-locked loop is in essence 
a tracking filter, i. e., a narrowband filter with a tunable center frequency. 
For small phase perturbations the system behaves quite linearly, and the 
analysis of such a system is relatively straightforward. However, the 
reponse of the system to large transients and severe dynamics in the 
input frequency and phase is not at all straightforward, and may, indeed, 
be nonlinear. 

A complete set of solutions to the problem involves the generation 
of a set of output curves corresponding to a large set of dynamic input 
conditions; this is complicated by the fact that the PLL contains a filter 
whose parameters determine the acquisition and tracking performance. 
The problem of designing a PLL is then to specify a set of allowable 
input conditions, for which some sort of "optimum" filter can be deter
mined. "Optimum" means that some property of the error,' such as the 
error "power", is minimized. The "optimum" filter may or may not be 
physically realizable. As a compromise, an approximnate filter is built 
and the response of the system with this filter is determined for the 
given set of input conditions. 

In general, a single integration filter (resulting in a second-order 
loop) allows the loop to lock on to a frequency step with zero ultimate 
phase error, whereas a double integration filter (resulting in a third
order loop), allows tracking of a frequency ramp with zero phase error. 
Since perfect integrators do not exist in practice, except for those which 
can be constructed digitally, other filter which are good approximations 
are utilized. For example, one such filter that has received wide atten
tion is the filter of Mallinckrodt, first reported in (Ref.7). The 
Mallinckrodt filter is an approximation to the optimum Wiener filter. It 
appears that the optimum Wiener filter has complex poles and is only 
conditionally stable. The Mallinckrodt filter, having only real poles, is 
a more highly damped system and consequently a more stable one. The 
damped loop allows a possible gain variation of 13: 1 while still remaining 
stable. Nevertheless an AGC is required to keep the loop gain within 
the allowable limits for stability. Since the loop gain is proportional to 
the input signal amplitude, Es. 
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The problem of acquisition is one of correctly identifying a 
changing frequency in the presence of noise as quickly as possible and 
within certain small allowable error limits. The purpose of an acquisi
tion-aiding scheme is to aid the PLL in acquiring the signal faster than 
it could acquire it by itself. For this reason the allowable error of the 
acquisition scheme depends upon the maximum pull-in range of the PLL. 

Using the conventional filter (I+Tls)/( +r 2 s), the acquisition 
time for a frequency offset can be found (Ref.8). This acquisition time 
is considered to have two parts, the phase acquisition time t and the 
frequency acquisition time tf. The time t is of the same order of 
magnitude of the response time of a single pole filter of bandwidth Bn, 

whi6h has an equivalent time constant of 2/Bn. Thus, considering 5 time 
constants to be sufficient, 

t. 1o (13. 1q, 
21B 

The frequency acquisition time is then the time it takes for the frequency 
error to reduce from the initial frequency step Af to Bn/r; this has been 
found to be 

tf -33,5( sec (B. 16) 
(2B) 

for a loop damping of 0. 707. As the damping increases tf increases. For 
a damping of 2. 8 the constant in the above expression nearly doubles. 
,The above approximation is true only if Af is well within the pull-in 
range of the loop. The pull-in range for a second-order PLL has been 
found to be 

7T 272 1/2 

AW 
P 

=-
2 

K( -2 
1 

) (B. 17) 

In Figure B-4 we--have plotted the frequency acquisition time of a 
second-order PLL versus initial frequency offset. The expression of 
Eq. (B. 16) holds for all values of Af if the loop filter has an ideal integra
tion, because then the pull-in range of the PLL is infinite. 

The value of the acquisition time (tf + t4 ) is in general too large 
for most applications, and thus various acquisition aiding schemes are 
used, Such schemes generally provide ameans by which the VCO is brought 
to the vicinity of the input frequency. Then when the loop is locked or nearly 
locked, the acquisition circuitry is disabled. 
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Gain Stabilization Considerations 

It will be recalled that the open loop gain K is directly proportional 
to the input signal level. Therefore, if the input signal varies over a 
wide range, then Bn and C also vary drastically, This variation can be 
reduced by the use of automatic gain control (AGC) loop. However, this 
results in large noise error in the loop at low signal-to-noise ratios 
(SNR). If variation in signal and noise levels were small, AGC would 
be satisfactory. 

In a second-order PLL the use of an ideal limiter preceding the 
phase detector results in an optimum loop over a wide range of input 
signal and noise levels. The reason for this- is that the limiter com
presses the variation of the signal level into the loop. Thus at the lowest 
SNR the limiter suppresses the signal, and the loop noise bandwidth and 
damping are minimum (Ref. 9). As the signal power increases Bn and C 
increase to a constant value at strong signal levels. This saturation of 
Bn and C at strong levels occurs because the signal power at the output 
of the limiter saturates with increasing SNR into the limiter. Hence 
the loop design holds for a larger range of signal and noise levels. 
Obviously one disadvantage is limiter suppression of the signal at low 
SNR' s. 

Design Approach 

The design of the loop for tracking proceeds by noting that the 
minimum damping C of a second-order factor should not be less than 
one half, and the "optimum" value of C from several considerations (Ref. 
10) should be in the vicinity of 0. 707. Since C increases with SNR, the 
minimum C is at minimum specified SNR. Normally the loop characteris
tics Cand Bn are determined at this minimum SNR. The linearized 
assumption of the phase transfer model breaks down for low SNR's, and 
experimental results show that for SNR' s below 3. 2 dB (corresponding 
to an rrns noise error in the linearized loop of about 280) the probability 
of the loop staying locked is small. Thus, specifying C and Bn at a 
0 dB SNR in the loop has been found quite meaningful. These are called 
the threshold values it and B. Since the critical region of operation 
is at threshold, the "optimum" damping Ct = 1/.\f is selected rather 
than the value of 1/2. Some designs may, however, use a damping of 
1/2 at threshold. 

47 



The noise error of Eq. (B. 13) did not include the effect of VCO 
noise. The VCO noise hint(t) is significant only when the loop bandwidth 
is narrowest. If this interval jitter can be modeled as shown in Figure 
B-5 when the VCO is operating in the closed loop, then the amount of 
phase instability produced at the VCO output is 

00(s) = {1-H(s)) int(s) 

Thus the PLL acts as a high-pass filter for the VCO phase instabilities. 
Hence the narrower the bandwidth of H(s) the more contribution is made 
by VCO noise. The magnitude of {I -H(jo)) is sketched iftigure B-6 
to show its high-pass behavior. The power in Oint(S) can be kept small 
by keeping the dc gain of the loop high. Little information is available on 
the exact spectrum of int(S). However, it is well established that it 
represents no more than a small disturbance and is a function of the 
required VCO deviation such that the larger the deviation, the larger is 
int(s). 

The above relations have shown that the noise and dynamic errors 
are worst at threshold. Therefore, the design approach is to satisfy the 
loop specifications on these errors at threshold, their satisfaction at 
the higher SNR's being automatically guaranteed. To determine the 
performance of the loop at the higher SNR's the relationship of Bn and 
versus input SNR is obtained using the limiter curve of Davenport (Ref. 9 ). 
Assuming that the threshold damping is Ct = 0. 707, the filter time 
constants T, and T2 can be expressed in terms of the specified threshold 
noise- bandwidth Bnt and the open loop gain at threshold (Kt) as 

33- (B-1I 8)r= 4 Bnt 

9 Kt 

T2 - 16 2 ( .-I9) 
Bnt 

With these values of T1 and T2 , the noise bandwidth may be written as 

B = Bnt (2-K +1) (13-20)
n 3 K i 
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where K is determined from Davenport's curve. Similarly the variation 
in damping is 

t_K K since t = I (B.-21) 

K t Kt 

In the usual case where the threshold corresponds to the weak 
signal limit of Davenport's limiter curve, the strong signal noise band
width has been found from Eq. (B. 20) to be 

Bnt (2 - +1) (B-22)
ns = Bnt 

Thus the loop noise bandwidth varies with.input SNR from Bnt to B8ns 
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Appendix C 

DESIGN AND PERFORMANCE OF PRACTICAL SYSTEMS 

The discussion of Appendix A has given the derivation and mean
ing of many of the results used in classical radar design. This section 
presents analyses of commonly used ranging tracker techniques. The 
noise and dynamic performance obtainable from these practical techniques 
are determined and compared to those obt&inable from optimum imple
mentations. 

Split Gate Tracker 

The split gate tracker is well known for its use in range tracking 
equipment. It obtains near optimum ranging accuracy from the input 
pulse train signal. It is readily analyzed in terms of a linear model 
which is similar to that of the phase-locked loop. The linearized model 
is developed below and performance analyses based on this model are 
given. 

System configuration and linearized model. -- A simple split
gate tracking loop is shown in Figure C-I. 

_]_ -k-k _ Gating Filter Speed1J1J LVariable 
Input Pulse Clock Output Pulse 

Train Train 

Generator 
.*4799 

Figure Cr1 Simple Split Gate Tracking Loop 

The .loop accepts the input pulse train and produces an output pulse train 
which is locked to the input. The loop acts as a smoothing filter which 
substantially reduces the noise content of the pulse train by reducing the 
noise bandwidth of the system. 
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The output pulse train is locked to the ihput in the following way. 
Each output pulse triggers the generator to produce a split gate. The 
split gate combines with the input pulse in the gating unit to produce an 
error signal which indicates whether the output is leading or lagging 
the input. The error signal is also in the form of a pulse train. It is 
smoothed in the filter and then used to control the clock speed to bring 
the output into coincidence with the input. 

The error signal is obtained as follows. The split gate contains 
both a positive and a negative region. These are sometimes called the 
"early" and "late" gates. The gating unit functions as a multiplierwhich 
multiplies the positive input pulse by the split gate waveform. Thus the 
output of the gaiing unit is a pulse waveform containing both positive and 
negative regions which are equal only -when the loop output is in coinci
dence with the loop input. The difference between the positive and 
negative regions is the value of the error signal. 

The filter acts as an integrator which combines the positive and 
negative regions of the error waveform to give a voltage level which is 
equal to the difference between the positive and negative areas. This 
voltage level serves as the control signal for the variable speed clock. 

A simple range tracker employing a split gate tracking loop is 
shown in Figure C-2. The figure represents one of a number of possible 
configurations for a tra6king filter. The variable speed clock is shown 
in greater detail; it consists of a voltage controlled oscillator (VCO), a 
cycle counter and a comparator. Each time the counter reaches a 
preset number, N, the comparator generates a pulse to trigger the split 
gate generator. A similar arrangement is employed to generate the 
"Main Bang" trigger which initiates the transmission of the signal to the 
target. The difference betweenlthe contents of the counters results from the 
delay in propagation of the signal to the target and back to the receiver. 
Thus, the difference, with a suitable scale factor, represents the range. 

The linearized model is developed with aid of Figure C-3. Here 
the split gate tracker has been redrawn so that the VCO appears separately 
from the counter and split gate generator which have been combined in a 
single unit. Also the gating unit is shown as a multiplier. The input 
and output (split gate) waveforms are shown respectively by f(t + ti) and 

)
g(t + to. The argument of the input time function is t + ti rather than 
simply t in order to point out later the similarity between the split 
gate tracker and the phase-locked loop. The term ti may be thought of 
as a time delay modulation in the signal propagation time such as would 
be experienced by an altimeter when the altitude is not constant 
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* Similarly to may be regarded as the time delay modulation at the loop 
output.
 

The output of the filter in Figure C-3 is shown as k1 h(t) (ti - to), 
where kI is a constant defined below and h(t) is the impulse response of 
the filter. The output is related to the input as follows. The input to the 
filter is of short duration compared to h(t) and may therefore be regarded 
as an impulse whose value is equal to the area of the positive portion 
minus the area of the negative portionwithout affecting the validity of 
the expression for the filter output. The value of the impulse is a func
tion of (ti - to) as is shown in Figure C-4. For small values of (ti-to) 
the value of the impulse varies linearly with the slope of the curve 
given by kI Thus the filter output is given by 

h(t) [k 1 (t i - to) U (t)] kIh(t) (ti - to) 

The filter also serves as the connecting link between the split 
gate tracker and the phase-locked loop. It provides for the same type of 
operation in both loops even-though one loop accepts a continuous wave. 
The filter can effect the similarity in operation when its bandwidth is 
very much smaller than the pulse repetition frequency (PRF). Under 
this condition the contributions of the pulses in the input pulse train are 
effectively summed together to form a continuous output from the filter. 
The continuous output of the filter in the case of the split gate tracker is 
virtually indistinguishable from that of the phase-locked loop. Note 
further, that poisson noise spikes at the input to the filter will result in 
approximately Gaussian noise at the output of the filter. 

Value of 
Impulse 

Slope k 

Product . 

of Gate (ti-t.) 
and Pulse. 

Signol'Pulse:, 

Spilt Gate. t 

2-4801 
Figure C-4 Impulse Representation of Filter Input 
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A further sihnplification can now be made in the flotation. Since 
the loop response is a function only of (ti- to), the term t may be dropped 
from the expressions for the input and output waveforms. This is 
equivalent to viewing these signals in a moving coordinate systefm, t 
merely defines an arbitrary reference phase for the system. 

The configuration of Figure C-3 may now be recast to show the 
Laplace transform representation shown in Figure C-5. The purpose 
of this representation is to predict the time lag between the loop input 
and output. The time lag may be related to the phase of the PRF, thus, 
this representation is often referred to as a phase model. The functions 
f and g may therefore be dropped and the input and output signals are 
represented as the Laplace transforms of the input and output time 
modulations. The counter and split gate generator have been deleted 
since they are of much wider bandwidth than the loop bandwidth and may 
therefore be regarded as frequency independent. The VCO is shown 
by the usual representation as an integrator since its output phase is the, 
'itegral of its frequency which is, in tutn, proportional to the control 
voltage provided by the filter. This representation of the VCO is valid 
for the split gate tracking loop since the phase of the VCO output is 
linearly-related to the time lag between the loop input and loop output. 
The constant K includes k1 as well as all other gains that may be present 
such as those of the operational amplifier (not shown) used to drive the 
VCO, the VCO gain itself, and the attenuation (phase division) of the 
counter.
 

The representation of.-Figure C-5 is identical to that of a phase
locked loop. All analyses applicable to phase-locked loops are thus 
applicable to the split gate tracking loop within the linear regions of both 
loops. The two loops differ in their acquisition performance since the 
split gate tracker requires a strobing action to located the input pulse. 
In addition, the noise transfer characteristic through the split gate requires 
a more complicated analysis than that used for the PLL input mixer. 

Ti (S) ~ )KsT(s) % 

S-4802 

Figure C-5 Transform Representation of Split Gate Loop 
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The open loop transfer function for the case where a lead lag 
-filter is employed is given by (K/s) (71S + 1) (T2s + i) . Increased 

performance can beobtained by using a lead filter followed by an additional 
integrator. Such an integrator can be built by digital techniques. The 
resulting open loop transfer function is then given by (K/s 2 )(fls + 1). 

For purposes of analysis the split gate tracking loop is generally 
treated as a filter with input Ti(s) and output To(s). - The transfer function 
of this filter is simply the closed loop transfer function of the split gate 
loop.f In the case of the lead lag filter and single integration it is given 
by Eq. (B-8) which is recase for convenience as 

2 TI s+I 
HL(S) = 2 12 2 (C-I) 

S2+ 2Co s-+ W 
n n 

where wn2 = K/T amd 2C = wn(ri +K-'). In the case of the lead filtern2 2 K a dand double integration it is given by Eq. (C-1) with con = K and 22 = n l 
The exact form of the closed loop response of the tracker determines its 
dynamic performance and is an important factor in determining its 
noise performance. These details are discussed below. 

One further comment is in order, namely, the reason for select
ing a split gate rather than some other form of gate. The optimum form 
of gate is give by the derivative of the signal waveform (Ref.11). In a 
.practical range tracker, the tracking loop is preceded by an IF amplifier 
and filter which distorts a square pulse so that it acquires a trapezoidal 
or triangular envelope. Near optimum IF filtering is fairlr narrow to 
exclude as much noise as possible without seriously affecting the pulse. 
The output pulse envelope for such filtering resenbles the matched filter 
output, i. e. , a triangle. The derivative of a triangle is the split gate 
waveform. By way of comparison with the phase-locked loop the same 
relationship exists, e. g. , the gatingwaveform, a cosinusoid, is the derivative 
of the input signal waveform, a sinusoid. In the following section the 
optimum relationship between IF filter bandwidth and gate width is developed 
for a specific pulse width, 

Noise error. -- This section treats a practical system containing 
the split gate tracking loop prec6ded by an IF amplifier and a detection 
circuit which demodulates the IF carrier to give the pulse envelope 
waveform. The input signal to the IF amplifier is accompanied by noise, 
some of which passes thrdugh the amplifier to induce a noise error at 
the output of the split gate tracking loop. The noise error manifests 
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itself in the form of a jitter on the output pulse train. In this section the 
magnitude of the noise error is investigated and the noise transfer charac
teristic of the split gate is derived. 

The following parameters play a key role in the evaluation of the 
.noise error, namely, the bandpass characteristic of the IF amplifier, 
the average power and duty factor of the input pulse train, the width of 
the split gate, and the noise bandwidth of the split gate loop where the 
loop is treated as a filter. It is shown below that for a given pulse width, 
there is a relationship between the IF filtering and the width of the split 
gate which maximizes the effective SNR presented to the split gate 
tracker. The amount of noise passed by the split gate is further 
reduced by the noise bandwidth of the loop. And finally, the noise is 
also reduced by the gating action itself since the split gate gates out all 
noise except that which is present at the instant when a pulse is received. 

The analysis proceeds as follows. First the noise voltage and 
the signal pulse waveform outputs of the IF filter are calculated for a 
simple filter shape. Then the error voltage generated by multiplying 
the resulting pulse waveform with the split gate waveform is obtained as 
a function of timing error. This is equated with the noise voltage to 
determine the split gate timing error associated with a given signal and 
noise level. The timing error is then minimized by determining the best 
relationship between the IF filter parameter and the width of the split 
gate for a given pulse width. 

At this point all parameters of the system have been specified 
except for the gain and bandpass characteristics of the split gate tracking 
filter. A typical tracking filter is assumed for the remaining calculations 
which give the noise error at the output of the split gate tracker. 

To begin the calculations, an IF filter is selected whose bandpass 
characteristic is equivalent to a double RC rolloff at baseban . For the 
purposes of this analysis it suffices to consider only the baseband 
representation. The lowpass filter transfer function is given by 

H= a (C-2) 

where 1/a = RC, the time constant. This filter and the split gate are 
shown in Figure C-S. 

The noise admitted by the split gate is found as follows. The
 
input and output noise voltage waveforms of the lowpass filter are repre
sented by n(t) and m(t) respectively. The split gate voltage waveform is
 
represented by g(t). T is the gate width and the two sections of the
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gate have equal durations of Tg/ 2. g(t) is given by 
.0; t <-7g/20 t z +Tg2 

g(t) +1; -F*2 g t< 0 (C-3) 

-1; 0: t< g/2
gI 2 

In a practical system g(t) occurs periodically but for the purposes of this 
part of the analysis it is assumed that g(t) occurs only once. The inte
gral of the noise voltage passed by the split gate is given by 

00 

en f m(t) g(t) dt (C-4) 

The mean square value is given by 

0o 00 

e = f_ f m ) m (t ) g(td ) g (t 1 dt 2 (C-5)n a fo 1 C2) g~ 1 )g t2 

where the bar indicates an average value. 

The mean square value is readily expressed in terms of the auto
correlation functions of the noise and gate waveforms, namely, Rm(T) 
and Rg(T). Since the noise is wide sense stationary, 

R n(t -t 2 ) = m(t I ) m(t 2) (C-6) 
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2  

Substituting Eq. (C-6) into Eq. (C-5) gives 

c0 00 

e - f f R (t -t 2 ) g(t 1 ) g 2 ) dtI dt 2 ' (C-7) 

With a change of variables,, tI - t2 = T, this becomes 

00 00 

e R('r) g(T + t 2 ) g(t 2 ) dt 2 dT (C-8) 

Integration with respect to t 2 gives 

eGf RmC7) Rg( )id=- (0-9)
CO 

which is the desired expression for the mean square value of the noise 
voltage in terms of, the autocorrelation functions, Rm(r) and Rg(T). 

Rg(7) is readily found by inspection; it is shown in Figure C--?. 

+1 r / 2 r"
2
 

E=t +t2 

rg
 

R-4SO4 

Figure C--7 Split Gate Correlation Function 

Rm(7) is found by taking the inverse transform of the power 
spectral density function of the noise, Sm(O), by evaluating residues for 
poles in the left half plane only, and then applying th6 fact that Rm(t)" 
is symmetric inT. Sm(o) is given by 

2 

=No( )S(w) = NoIHLP( 2CO) 2a2 (C-,0) 
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where No is the noise power spectral density. The inverse transform is 
given by n 

RS(7)=- f ds( S-s" )m (s)e s ' 
in, rj c-jOOf-Ms -d (rn-i) r-i mj=1 dds=s. 

S 

(C-l1) 
2 

where m is the order of a pole sj. Factoring Sm(w) gives Noa4 (jc+a)

(jo-a)- 2 . To take the inverse transform of Sm(co), substitute s for jm. 
Then Eq. (C-i) may be solved for residues in the left half plane giving 

I d (s +a)2Noa sT N a -aT
iIn()Ir>o -1 ds (s+a)2s es-] =-- (l ) 

(C-12) 
The value of the noise voltage given by Eq. (C-9) may now be 

expressed directly in terms of the system parameters for Rg(F) as given 
by Figure C-7 and Rm() as given by Eq. (C-12). Thus 

_2 NaT F 12 - T 
(1en a [f --- ) (1+a')e- aTdr-f g - - )(I +aT)e -aTd-

o g/2 g (C-13) 

Evaluating the integrals gives 

e n 2 2 + 2 e- e g --- -e ---- e g (C-14)2N0' +- a7 212+2 -aT /2 9 -at 3 -a-r 

-(N 

e1 g g 
7 / 2) f (a?' 

where the function f1 (aTg) has been introduced to simplify the notation. 
Figure C-8 shows a plot of f1 (aT g) as a function of arg. 

2 
In summary en is the mean square response of the lowpass filter 

plus the gate to white noise of density No. 
0 

The next step in the analysis is to calculate the response of the 
lowpass filter HLP(s) = a2/(a+s) 2 to a pulse. For convenience, let 
the pulse amplitude be given by Vo and the width, Tp, by 3/ a. The pulse 
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P(t), may be expressed as a positive going step plus a negative going 

step which has been delayed by Tp - 3/ a seconds. Thus 

P(t)= V fu1 (u 1- (t - pC-15) 

The response of the lowpass filter to the pulse is given by 

at_ - at -a(t-P)-fplt) = Vo0(i-ea-ate )U- 1 (t)-1-((I e P 

_t' e-a(t-T p)) u~(tTp)](c-16) 

The pulse response for Tp= 3/a is plotted in Figure C-9.. In order to 
facilitate calculations, the actual pulse is approximated by a raised 
cosine fp(t) which is also plotted in Figure C-9 for purposes of compari
son. It is assumed, for convenience of analysis that 

f p (t) s' 0.4 V (I + cos -- t) (C-17)
o 3.5 

At this point the response of the gate to the filtered pulse, fp(t), 
is found for the case when the gate is slightly -offset from the center 
of the pulse. This situation is illustrated in Figure C-10. The response 
is obtained by multiplying the pulse waveform by the gate and integrating 
the product over the width of the gate. This gives the error voltage ee , 

e~ ~ ? f -' t t at+7" 2 

e +Co4VotQ(1acost- t) dt (C- 8) 

Evaluating the integrals gives 

e = 0.4 V [ 7 sin aAt . 2 sinr2 ar ] (C-19) 

e o0 -a 3.5 14 

For small error in time, At, this can be approximated.by 

e 0.4 V 7 7ra At • 2 sin - -g 1. 6 VoAtf 2 (aT) (C-20) 
e a 3.5 140 

-

26 
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and Pulse Positions for Calculation
Figure C-1O 	 Gate 

of Error Response 
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where the notation has been simplified by the introduction of f 2 (aTg). 
Fbr convenience f2(aTg) is plotted Wvith fl(arg) in Figure C-8. 

In the derivation above it w.s assuied that the gate wag displaced 
causing an output error voltage ee. However, the reverse can also happen. 
That is, a perturbing voltage en = ee will cause the gate to be displaced by 
an amount At. Thus, the relationship between rms noise and rms time 

error is established by equating the expression for ee Eq. (C-20) with 
en, Eq. (C-14). Also At is replaced by the rms timing error at giving 

4- 1.6 Vof 2(ag) (c-21) 

2 
Substituting for en , from Eq. (C-14), gives 

1 / (aT)
T /12f 

t (1. 414)(1. 6)(V 0 IN C 

The rms timing error, at, can be expressed in terms of the funda
mental quantities Eo, the puls6 energy and No. The rf pulse energy is 
given by 

E0 = (V2/2)7p (V 22) (3/a) (C-23) 

Recasting gives 
.2%a
 

v 0 (C-24) 
o 3 

Finally, at can be expressed in terms of 1R the ratio of signal energy to 
noise power per cps by substituting Eq. (C. 24) into Eq.(C. 22) giving 

t1 

(c-25)=(I.31)a1R f (a,7 1) 

(a 9f1 (arg)) 

where R is the signal energy-to-noise power per Hz, 2E/No. 
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Figure C-I shows a graph of the ratio f2 (at)/aTgf1 (a1 )) vs 
aTg. The optimum value occurs at aTg - 4. 5. The minimum tracking 
error obtained with this system is 

.4a (C-26)
ain 0.64 aR
 

The above result can be compared with the optimum range detecti
ility of Woodward (Ref. 3) which is 

at (C- 27) 

The rms bandwidth, 9, of a rectangular pulse is infinite. However, under 
the condition that (receiver bandwidth) x (pulse duration) is greater than 
unity, the rms bandwidth is approximated by (Ref.12) 

W(BW) )(C-28)( 
Pp
 

The lowpass filter considered here has single-sided bandwidth = 0. 65a. 
The rms bandwidth is 

1.S 0.658a (C-29) 

The range accuracy of the optimum receiver is then, 

1 
I (C- 30)

Tot 0. 658afP7-

The best range accuracy obtainable from the receiver under consideration 
is less than optimum by a factor of(0. 65810.64)>s. 02 or about 2%. This 
result agrees with the obtained by Barton (Ref.13) for the split gate tracker, 
which is 

t - 2 p (c-31) 

opt 
or, for 7 = 3/a ; - 1 (C-32) 

Topt 0. 67a Vr-R 
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Effect of the split gate loop..-- So far, the analysis of the noise 
error has considered only the equivalent lowpass filter representation of 
the IF filter and the split gate. At this point the complete split gate 
tracking loop is considered. Since it 'acts as a filter, it can further reduce 
the noise error if the loop noise bandwidth is less than the bandwidth of 
the noise at the split gate, or equivalentlyif the loop noise bandwidth is 
less than that of the lowpass filter. This condition is fulfilled in practical 
systems, so that there is a substantial reduction in the noise induced 
error. 

The effect of the split gate loop may be analyzed by comparing the 
IF spectrum with the baseband spectrum following the procedure of 
Barton (Ref.13) . The input signal at IF is a periodic pulse signal with 
a line spectrum. The spectral line separation equals fr, the pulse 
repetition frequency. The total noise N passed by the IF bandwidth, Bif 
is N = No'Bi f where N 0 is the average value of the noise spectral density 
at IF. At baseband this spectrum is folded over and filtered by the 
split gate loop. The action of this filtering on the noise is readily seen 
by superimposing the loop noise bandwidth, Dn (single sided) on the IF 
spectrum. The only noise contributing to the noise error is that contaire d 
within regions of 2 Bn centered at each spectral line. Since there are
(Biffr) spectral lines, the total noise is given by Nb (2Bn)(Eif/fr) 

N(2Bn/fr). Thus the effect of the loop filtering is to reduce the average 
noise power by a factor of (2Bn/fr). 

This result may be applied to the noise induced error at given 
by Eq. (C-26). First it is noted that R = 2E/N o is proportional to the 
SNRJ the ratio of the average signal power within the split gate to the 
average noise power within the gate. Therefore the improvement factor, 
(2Bn/fr), may be applied directly giving 

__ _ _ _ _ _1 

t 0. 64a R)(f2-B S (C-33)
r n ave0.64 N

o n
 

where Save = E • fr is the average signal power. In this expression 
Bn is given by 

= 1 IEcso 
2B 2 ff (s)l d's (C-34) 

where HL(S), the split gate loop transfer function, is. given by Eq. (C-i). 
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The improvement in the precision as shown by Eq. (C-33) is to
 
be expected. The loop acting as a filter, sums the results from a large
 
number of pulses to produce each output data sample. The output data
 
rate is given approximately by 2 Bn as is indicated by the sampling
 
theorem, 2TW = 1, where T is the sample time and W is the filter band
width. Since fr >> 2 Bn it is clear that each output sample is the average
 
of a large number of input data pulses.
 

* Dynamic error . -- The dynamic tracking error is a function of 
both the IF filtering and the split gate tracking loop bandpass characteristic. 
In a typical system the IF bandwidth is very much wider than the tracking 
loop bandwidth and therefore has a negligibly small effect on the system 
dynamic performance. Under this condition the-dynamic performance 
is determined by the tracking loop bandpass characteristics. 

The dynamic response is based on the representation of Figure 
C-5 in order to permit the well known formulations of the*phase-locked 
loop to be applied directly to the split gate tracker loop. The dynamic 

tracking error Te(t) is given by 

T (t) = T, ()T.(s) -t) J [LI' 5 'J(s (C-35) 

where EL(S) is given by Eq. (C-1). Let the input be represented by a
 
power series of the same form as that given in Eq. (B-10).
 

2 3 
*T.(t) =T.() +at +P(j+ r(- (C-36) 

For a split gate loop containing a lead lag filter and a single integration,
 
the tracking error in response to the input power series is the same as
 
that given in Appendix B; it is repeated for convenience.
 

Tet) =_ P 2 J_ T+4) + j 2 ]t +(_)()+transients 

n n n (C-37) 

in which a small approximation has been made on the assumption that
 
'2 >>TI, and K>>. The transients die out within a short time interval
 
on the order of the reciprocal of the loop bandwidth. In most applications
 
they can usually be neglected.
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For a split gate tracking loop containing a lead filter and a double 
integration, the steady state tracking error in response to the input 
power series is given by 

Tt) '3 + Lt (C- 38) 

e [KKjK 

which shows that a double integration reduces the powers of t in the 
expression for the dynamic error. 

These results might indicated that a system employing a third 
ideal integrator would provide improved performance. -Each integration 
simply removes the effect of-one more term in the power series repre
sentation of the input signal. But the terms with the higher powers of t 
are usually less significant and the point of diminishing returns is reached 
with the second integration. 

Furthermore, third order systems are typically less stable. The 
significance of each term in both acquisition and dynamic tracking capa
bilities is readily appreciated by considering the analogous situation with 
the phase-locked loop. Thus Ti(o) corresponds to an initial phase offset 
which is readily acquired. oft corresponds to a phase rate of change or 
frequency offset. A small frequency offset is readily acquired, but for 
large offsets the acquisition time grows exponentially until a point is 
reached where acquisition is no longer possible. The-term (t2 /2) 
represents a rate of change of frequency. This term by itself presents 
no acquisition problem, but if the term at is also present, then this 
term aids or hinders acquisition depending on whether it acts to decrease 
or increase the frequency offset. (Ref.14) The term y(t 3 /6) is frequently 
an impulse in practical situations where it drops to zero before there 
has been any significant phase change on the input signal. P and y result 
in significant dynamic tracking errors only after they have been non zero 
for a substantial period of time. As a practical matter this situation is, 
in general, fairly easy to cope with, especially with Y. In those situations 
where 4(t 2 /2) becomes excessive, a double integration is required. It 
should also be noted that the acquisition procedure with a split gate 
tracker is more complex than that of the phase-locked loop because of 
the necessity to search for the incoming pulse. In this respect aand 13 
represent even stronger constraints on the acquisition capability. 
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Comparison With Other Systems 

In this section the split gate tracker is compared.with two other 
range measurement systems, the leading edge tracker, and the harmonic 
ranger. 

Leading error detection -- The leading edge tracker differs from 
the split gate tracker in that its gate is designed to detect and follow 
the leading edge of the signal pulse rather than the center of gravity. 
Since this type of system .utilizes a relatively small portion of the signal 
energy, ahigher signal-to-noise ratio is required. The advantage of the 
leading edge tracker is its specialized range resolution capability. Thus, in 
a situation with many closely spaced echos, it is able to track the earliest 
echo even if there is a substantial overlapping among the echos. 

The analysis of the leading edge tracker follows that of the split 
gate tracker. Both systems function as tracking filters and have the 
same type of dynamic response. The IF amplifier preceding the leading 
edge tracking loop is much wider than that considered earlier for the 
split gate loop in order to retain the fast rise time of the signal pulse. 
However the' same baseband representation of the IF amplifier, a double 
RC rolloffmay be employed. 

A picture of the gate and its relationship to the leading edge is 
shown in Figure C-12. The filtering preceding the loop is the same as 
that of Figure C-6 with the understanding that the corner frequency a 
has been increased. The transform representation is the same as that 
shown in Figure C-5. The amplitude of the signal pulse applied to the 
lowpass signal is given, as before, by Vo .The filtered pulse of Figure 
C-12 reaches this value after the transient has died out. 

The first step in the analysis is to compute the mean square value 
of the noise voltage in terms of the autocorrelation functions as is indi
cated by Eq. (C-9). Rm(T) is given, as before, by Eq. (C-12). Rg(T) 
may be found by inspection with the aid of Figure C-13 in which the gate 
has unity amplitude and a width Tg. The value of the noise voltage given 
.by Eq. (C-9) may now be expressed directly in terms of the system 
parameters for r,(T) and Rg(r). Thus, 

2 ( T I a 

e (2) N ) g (I+a)e (-T+Tg) dr (C-39) 
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Figure C-12 Leading Edge Gate 

Evaluating the integral gives 

e2 N +3I -ag Tg e-aT f3(a) (C-40) 

e--1 - +-e g+T 

n 2 g a 2 3 9 

where the function f3(a1 Tg) plotted in Figure C-14, has been introduced 
to simplify the notation. 

The next step is to compute the error voltage produced by the 

gate as a function of its position relative to the leading edge of the pulse. 

This requires a description of the leading edge in terms of the pulse 

parameters and the filtering which shape the leading edge. 

It is clear that the shape of the pulse depends on its duration and 

on the bandpass characteristic of the filter. Thus if the input to the filter 

is a rectangular pulse of long duration, the output of the filter is a pulse 

of the same amplitude Vo and has leading and trailing edges described 

.by the expression of Eq. (C-16). If the input pulse is of short duration, 

the output pulse fails to reach the amplitude Vo as was seen in the 

earlier example depicted in Figure C-9. A more general description of 

the leading edge is presented in Figure C-15 which contains a plot of 

Eq. (C-16) for several values of the parameter aTp. 
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The peak value of the pulse varies rapidly for small values of 
arp 6.nd asymptotically reaches the maximum value as arpbecomes 
-large. The-major concern here is the form of the leading edge and its 
dependence on aT . In a typical leading edge tracking system the IF 
bandwidth is large enough to preserve a fast rise time. This is equivalent 
to a large value of aTp. It is apparent from the figure that aT p 6 is a 
sufficiently large value such that further increases in the pulse duration 
do not have more than a negligible effect on the leading edge. 

The value aT 6 may be determined more precisely by plotting 
the pulse rise time for each of the pulses shown in Figure C-15 . The 
rise time Tr is defined as the time required for the pulse amplitude to 
rise from 10% to 90% of its peak value. A plot of (Tr/at) versus a7p 
is shown in Figure C-16. The breakpoint at aT7p 6 is indicated by the 
intersection of the asymptotes to the curve. 

The error voltage produced by the gate depends on the gate width 
and the location of the center of the gate relative to the leading edge. In 
view of the lack of symmetry in the leading edge it is clear that the 
optimum value of the gate width 'Tg depends on the location of the center 
of the gate. To simplify the situation, the leading edge curve for a 'p>6 
is approximated by sin2 (rat/ 8). This approximation provides symmetry 
about the midpoint -of the leading edge and is independent of Tp for all 
aT p>6. 

-The error voltage ee is given by the area under the curve of the 
leading edge falling within the gate, minus a reference voltage. Thus 

°S= +Tg/ 2+at T°-Tg/2 2 

e = V sin2 rat/8)dt -f sin ( at/8)dt (C-41) 
a g• t o g oTo0-77g/2 + To0-7g/2 

where the second integral is the reference voltage and To + At is the 
location of the center of the gate. The term At is the timing error in the 
gate position. 

Evaluating the integrals gives 

e I' V0At sin (aT /8) sin (TaT /4) (C-42)e o g o 

where the small angle approximation sin (aIt/4) raa\tI4 has been
 
made.
 

75 



The gate width which results in a minimum value of ",t due to 
noise perturbations is found by equating ee given by Eq. (C-42) with e n 
giVen by Eq. (C-40). The equation is then solved for nxt giving an 
expression which has a minimum value for the appropriate selection of 
the parameter a g. Equating ee with en gives 

V t sin(rag /8) sin(iraT /4) (N0 /2) Tgf 3 (aTg) (C-43) 

At this point T may be set for the midpoint of the leading edge, that is 
for (Ta To/8) = 7r4 radians, so that aT0 = 2. The timing error A-t is 
replaced by at to indicate the rms value. Then solving for at gives 

-aT 112 

t (a sin(raT/8) (C-44)) 
The function of aT'genclosed by the brackets has a minimum value of 
1.79 at aTg 1 as Shown by the graph of this function in Figure C-17. 
The value of aT g is not critical as may be seen from the relatively flat 
curve in the vicinity of the minimum. Substituting the minimum value 
gives 

(it = 1.26 2 (C-45) 

0 

The rms timing error at can be expressed in terms of the pulse 
energy E o = (Vo 2 / 2 ) T'p by substituting for Vol Thus 

NTPt = 1.26 op (C-46)
rainmm 1 aE 0/0 

The derivation of at has assumed any value of Tp for aTp >-6. As a 
practical matter it is desireable to conserve signalenergy by avoiding 
the use of a pulse width of unnecessarily long duration. Hence, set 
Tp = 6/a. Substituting this value for 7p into Eq. (C-46) gives 

t 3.1 (C-47)
rain a 

where R = 2E IN 
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It is interesting to compare the minimum values of at for the 
split gate and leading edge trackers as given by equations (C-26) and 
(C-47). On an energy basis, the split gate tracker is superior. 

The effect of the tracking filter following the gate is identical to 
that of the split gate tracking loop so that Ut for the complete system is 
given by 

3.1 (C-48)
,Itmin ar 'Save 

a N 13 
o n 

Harmonic tone ranging systems. . -- Tone ranging systems extract 
range data from the phase differences between a continuing form of the 
transmitted pure tone and the received tone that has been delayed by the 
two-way transmission over the channel between the target and the 
gr6und station. 

A series of tones of ascending frequency are generally employed 
to resolve the ambiguity inherent in the modulo 2, phase of a pure sinu
soid. This gives rise to the name "harmonic tone ranging systems., 
although the relationship of the tone frequencies is not required to be 
precisely harmonic. 

The 27r ambiguity of the highest, or finest, tone is resolved by 
the phase shift measured on the next lowest tone, whose ambiguity is 
in turn resolved-by the phase of the next lowest tone and-so on. The 
effect of this is to establish a non-modulo 2r phase detection system, i. e, 
a detector that responds linearly to phase shifts exceeding 2T radians 
with no discontinuities or bounds in its characteristic. Usually the 
lower tones are synthesized coherently from the directly generated 
highest range tone so that the errors in the extraction of phase informa
tion from the highest tone set the limitations on the fundamental accuracy. 
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Ambiguity resolution. -- Ambiguity resolution can be accomplished 
when a number of tones are transmitted, one of which is used for ranging 
and the rest for ambiguity resolution. In principle, once the target is 
acquired, there is no further need to transmit the ambiguity resolving 
tones. Thus, the accuracy can be increased by diverting signal power 
to the retained tone. Of course, such accuracy improvement is obtained 
by trading off all of the system's ambiguity resolving capability. 

As an example, consider a system in which the power in the 
ambiguity resolving side tones is reduced relative to the power in the 
ranging tone. The ranging accuracy is enhanced while ambiguity perfor
mance is reduced somewhat, but not below the point where the ambiguity 
resolving system is effective. If the system under consideration has 
four ranging tones with frequencies related in a 16:1 ratio, the accuracy, 
in phase, required in each of the ambiguity resolving tones is roughly 
360/32 = 11. 1 degrees for marginal ambiguity resolution performance. 
On the other hand, the accuracy, in phase, required for the highest 
ranging tone is usually a fraction of d degree (consider, for example, 
the case where the highest ranging tone is Imc and the range accuracy 
required is I ft). With the help of Eq. (B-13) it can be seen that the 
power in each of the ambiguity resolving tones can be reduced considera
bly relative to the power in the highest ranging tone. The Goddard Range 
and Range Rate system is a harmonic ranging system design which is 
based on this technique. 

Another practical technique that yields similar results (namely, 
increased accuracy at the expense of reduced ambiguity resolution per
formance) is designed into the WSMR DME system. In this system, the 
four tones VF (very fine), F (fine), C (coarse) and VC (very coarse) 
are combined to form a new set of tones closely spaced about the highest 
ranging tone, VF. The new frequencies are VF-F, VF- (C+VC), VF, 
and VF t C.' Each of these tones is treated as if it were the highest 
ranging tone. The range measurements derived from the four tones 
are averaged, hence the over-all rms accuracy is doubled. However, 
since recovery of the phases of the original ambiguity resolving tones 
involves linear combining of alt least two of the new tones, the errors 
in each of the reconstituted ambiguity resolving tones is increased by- at 
least a factor of 12-. Note that in the arrangement indicated above 
recovery of two of the ambiguity resolving tones is possible bLY operations 
on two tones at a time. Thus, the increase in error is just /2. In any 
case, the error in a rederived ambiguity resolving tone is proportional 
to the square root of the number of received tones used to derive it and 
since the accuracy requirement on fine range tones is high, reliable 
ambiguity resolution is assured. 
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In summary, there are several techniques that can be used to 
improve the accuracy obtainable with the range tone system. The 

techniques involve careful modification of the ambiguity resolving tones 
and result in improved, accuracy with some allowable degradation in 
ambiguity resolution performance. 

Fundamental detection systems. There are two basic approaches 

to the extraction of range information in tone ranging systems, which 
differ in the manner of realization of the non-modulo 2ir detector. These 

are phase detection and time measurement detection. 

The ideal channel (including the target) over which the range 
tones are transmitted can be characterized as a pure delay by 

C(s) =. e -7s 
(C-49) 

where T is the two-way transit time. The effect of this channel upon a 
pure sinusoid is to introdude a phase delay -linearly related to 7. Two 
detection schemes are thus indicated; in one the actual phase difference 
between transmitted and received highest range tone is measured and then 
converted to range, in the other the actual time delay T is measured and 
then converted to range. 

- Phase measurement. -- A basic model of a phase measuring 

system is shown in Figure C-18. Let 

Vr(t) = a (tcos e (t) (C-50) 
r r 

Then 
Vr(t - 7) = a (t -7) cos Or(t-) (C--T) 

r ~r 

IIII 
I .OV', "(OChannel I t0 

0 (iat RangeRage 

Detector R 

Figure C- 18 Phase Measuring System 

80 



The phase detector forms 

6(r). 6r(t) - 0 (t-') (C-52) 

Equation (C-52) can be written as 
t 
f 0r(A) d (C-53) 
t-7" 

-Fora perfectly stable and undisturbed ranging tone 

0 (t) = 2rf t, (C-54)r r

where fr is the frequency of the tone in Hz.. Substitution in-Eq. (C-52) 
yields 

O(6) = 27f 7 (C-55)r 

Now the range of the target, defined as r(7), is related to T by 

rr)  (C-56)

2 

where c is the propagation velocity in"the intermediate channel. Thus 

r(r) - * 6(). (C'57)

47rf
 

- r 

Time measurement. -- A basic model of a time measuring system 
is shown in Figure C-19. 

Sv, (t-r) 
Channel +Zero 

" - " Crossing 

Rag 
• r 

+ooZero 
I Detector 

42' 

,,,, , _ Low er Range Tone' o ff En} l 

Figure C-19 Time Measurement System 
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Figure C-20 shows the operation of the system in detail. The counter 
is gated on at time to by a positive-going zero crossing of Vrt), as 

sensed by zero crossing detector No. 1. Detector No. 2 sends gate-off 
pulses at every positive-going zero-crossing.of Vr(t-T). The phase or 
time information obtained from the lower range-tones determines how 
many of these off pulses should be blocked to remove the cycle ambiguity 
in vr(t-r). Thus the proper pulse is passed; terminating the master 
oscillator signal input to the counter accumulating register. The counter 
reads N(T) where N is the total number of periods of the master oscillator 
signal that haveoccurred during the time T. Let the master oscillator 
signal be 

v (t)= a cos 0 It) (C-58) 

For a perfect oscillator of frequency fm Hz, 

Sm(t) = 27rf t (C-59) 

The value of fm is chosen very large with respect to fr so that errors in 
counting fm amounting to less than one whole cycle would be negligible. 
Thus, for computation of range, N(7) is related to V by 

N(T) = £ V" (C-60) 

so that 

rc_) c N(T) (C-61)
2f 

Target dynamic accuracy -limitations. -- Let us consider how 
doppler shift and doppler rate influence the range error as a function of 
fm ahd fr' Differentiating Eq. (C-57) and Eq. (C-61)twice with respect 
to time, we obtain 

c 0(r) (C-62)
47rf 

r 

i(r) = c '(V" (C-64)
472f r 

= fc. N('r) ( 

m 

Yr) = KT- (C-65) 
in 
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Equations (C-62) through (C-65) are linear relationships. Thus for a 
given post-detection filtering characteristic in both systems, the error 
in the detected quantity, either 6(7) or N(T), varies linearly with fn or fr' 
for a given range rate and acceleration. However, the conversion of the 
detected quantity to range information inverts the linear relationships, 
so that the range error caused by post- detection filtering in the presence 
of target dynamics is independent of fm and fr. 

The same argument may be offered for predetection filtering with 
the exception that such filters may be required to track doppler-shifted 
signals, and thus have limited phase (or frequency) error dynamic ranges, 
before unlocking or else excessive attenuation results. Hence the actual 
phase error must be considered at some point to ensure that IF filters 
and/or phase-locked loops will be operated within their appropriate offset 
limits. The amount of 6(7) or "U(T) corresponding to a given (r) or (7) 
is, of course, directly proportional to f. as shown by Eqs. (C-57), (C-62), and 
(C-63). Thus there may be some upper limit on fr set bytracking limita
tions of PLL or bandwidth limitations of IF filters. 

When a PLL is utilized as the tracking filter the dynamic tracking 
errors are the same as those given for the PLL of Appendix B. In more 
complex systems where a carrier derived rate aiding signal is provided 
the dynamic error may be substantially reduced without any increase in 
the PLL bandwidth. However in such a system the PLL bandwidth would 
be reduced somewhat to provide an improvement in both the dynamic and 
the noise errors. 

Noise limitations. -- Consider the phase detecting system in which 
the detector is followed by a filter whose noise bandwidth is B n Hz, where 
Bn is defined by Eq. (B-14) above. Now 

e 2= 1 (C-66)
n 2(S/N) B 

n 

where On is the mean square detected and filtered output caused by addi
tive noise in the received signal, and (S/N)Bn is the ratio of signal power 
to noise power passed by the filter. By Eq. (C-57)), 

Ar(rms) = 
c 1 

I 
(-? 
(C-67) 

r /2(S/N) 
3 

where 4Ar(rms) is an rms range error 
n

caused by noise. 
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In the case of the time measurement system, the error in timer
 
is related to the phase error by Eq. (C-55). Consequently,


1 

A'(rms) - I (C-68) 
r Bnn 

.where we have assumed that the output N(T) is operated upon by a filter 
with noise bandwidth 13n . The resulting rms error in range measurement 
is 

Ar(rms) e I9 
r J2(S/N)B 

n 

which is seen to be identical to Eq. (C-67). 

If the ranging measurement is based on two range tones which are 
combined in the signal- spectrum so that both lines fall near the edge of 
the signal bandwidth, then the range error given by Eq. (C-69) is reduced 
by a factor of J2. Similarly, if three such tones are utilized the range 
error is reduced by 1/3. 

The preceding formulations are based on the power of the ranging 
tone. These formulations may.also be expressed in terms of the total 
transmitted signal power ST. Thus, for example, if the transmitted signal 
e(t) is in the form of a PM/PM waveform, namely 

k 
e(t) = A cos [ct + 5Osin(st + L16ssjs inc ss' (C-70)see= t)] 


Where the subscript sc designates a subcarrier and the subscript ss 
designates a sub-sub-carrier. The summation indicates that there may 
be a number of sub-sub-carriers, i. e., k sub-sub-carriers. The ampli
tudes of the various carriers are proportional to the modulation indexes, 
and their powers are proportional to the squares of the modulation. indexes 
for 6<<I. The expression for the phase error of Eq. (C-66) may be expres
sed in terms of the total signal power ST by 

1/2 
Lis(rm s) Rs I 1T 3C-71) 

n
 

for a measurement of the subcarrier and by 1/2 

S rms) 1 (ST) 
ssj rm s) sc6ssj 2NIBn 
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for a measurement of jth sub-sub-carrier. Note that the factors of 2 
appearing in these expressions arise because the average power in a 
sinusoid of amplitude 6 is equal to 62/2. 'The result is easily derived 
when it is recognized that demodulation of the PM suboarrier (or sub
sub-carriers) results in coherent addition of its upper and lower sideband 
while the noise components in the vicinity of the sidebands are added 
incoherently. 
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