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ABSTRACT 

An a n a l y t i c  s o l u t i o n  t o  t h e  problem of r a d i a t i o n  from an open-ended 

pa ra l l e l -p l a t e  waveguide i n t o  a d i e l e c t r i c  a plasma slap is obtained. 

The electromagnetic f i e l d s  are formulated i n  terms of a d i s c r e t e  mode 

spectrum i n s i d e  t h e  waveguide and continuous mode spec t r a  i n  t h e  open 

regions. Mode matching at t h e  waveguide ape r tu re  plane leads  t o  a sin- 

gu la r  i n t e g r a l  equation. 

mination of the  f i e l d s  throughout t h e  whole of space. HGwever, t h i s  

A so lu t ion  of t h i s  equation allows t h e  deter- 

equation is  not solved d i r e c t l y ,  bu t : ins tead ,  an  a u x i l i a r y  i n t e g r a l  equa- 

t i o n  is  formed from the  o r i g i n a l  equation by employing t h e  known exact 

so lu t ion  of t h e  canonical problem, v i z , ,  r a d i a t i o n  from an apen-ended 

waveguide i n t o  free-space. 

t h a t  i t  may be solved exactly i n  an asymptofic sense. 

s o l u t i o n  demonstrates t h a t  the  co r rec t  edge condition is s a t i s f i e d .  

Standard numerical techniques are employed, and r e s u l t s  giving the f i e l d s  

and d i s t r i b u t i o n  of s ca t t e r ed  power f o r  a TEM i nc iden t  mode are presented. 

The a u x i l i a r y  equation has the  advantage 

This asymptotic 

Solutions f o r  o the r  problems are a l s o  formulated, v i z e ,  t h e  flanged 

waveguide and a guide r ad ia t ing  i n t o  a r e f l e c t i n g  screen. 

lems may a l s o  be solved when the  geometry j,s c i r c u l a r .  

These prob- 

Furthermore, 

t h e  edge condition is a l s o  shown t o  be s a t i s f i e d  i n  c i r c u l a r  geometry. 
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1 INTRODUCTION 

Exact solutions can be found for certain open-region boundary value 

problems in which the geometry can be separated into several distinct 

semi-infinite regions. For example, an open-ended parallel-plate waveguide 

radiating into a homogeneous space has been solved by Noble (1958) using the 

Weiner-Hopf technique and by Mittra and Bates (1965) employing an extension 

of the function-theoretic technique to open-regions. 

in which one of the regions is modified have also been found solvable. 

Bates and Kittra (1967), using the Weiner-Hopf technique, have found an 

analytic solution for the problem where a dielectric or plasma slab is 

excited by a semi-infinite waveguide (cf, Figure 1). An important 

characteristic of this problem is that the medium filling the open-region 

is non-uniform in the transverse direction, while the complete geometry is 

longitudinally uniform. 

direction, a class of boundary value problems results for which the Weiner- 

Hopf technique is no longer directly applicable. 

longitudinally non-uniform problem, i.e., a semi-infinite parallel-plate 

waveguide radiating through a dielectric or plasma slab. The purpose of 

this work is to present a method based on the function-theoretic technique 

which is useful in attacking problems which have longitudinal non- 

uniformities. 

Recently, problems 

When the geometry is non-uniform in the longitudinal 

Figure 2 shows a 

Formulation of a problem by the function-theoretic technique is 

typically accomplished by employing the characteristic or normal modes 

in each region,, Such a modal representation can be used to advantage 

when there is a longitudinal inhomogeneity within an individual region. 

This applies to stratified media as well. Such regional non-uniformities 

can be taken into account by the application of conventional mode-matching 

r; 

1 
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PERFECT CONDUCTORS TI 

DIELECTRIC OR * 

PLASMA SLAB 

Figure 1. A longi tudina l ly  uniform open-region problem. 



procedures at the 

An application of 

3 

interfaces between the various layers or subregions, 

the continuity conditions at the aperture-plane of the 

waveguide, leads to an integral equation, which is an extended form of the 

corresponding equation for the unmodified geometry. 

this equation for the canonical problem, i.e., for the unmodified geometry, 

is available (Mittra and Bates, 1965) and is used in the construction 

of the solution of the problem shown in Figure 2 .  

An exact solution of 

A function F(w)’ of a complex variable w is constructed having a 

certain pole-zero structure and specified branch singularities. Certain 

manipulations with this function in the complex plane yield an integral 

equation which is then compared to the one obtained by mode-matching. By 

choosing a particular form for F(w), togefher with the above comparison, 

an auxiliary integral equation is formed. This auxiliary equation may be 

solved instead of the original integral equation. 

There are two definite advantages gained by employing the auxiliary 

integral equation, These advantages are: (1) The auxiliary equation is 

in a more efficient form for numerical solution than is the original 

integral equation, ( 2 )  An exact solution in the asymptotic sense of the 

auxiliary equation is possible. It is this asymptotic behavior which 

demonstrates that the correct edge condition is indeed satisfied 

(Meixner, 1954). 

satisfaction of this condition when alternative methods are employed in 

constructing a solution, 

It is often difficult if not impossible to prove the 
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2. RADIATION FROM AN OPEN-ENDED PARALLEL-PLATE WAVEGUIDE INTO AN 

INHOMOGENEOUSLY FILLED SPACE 

2,1 Formulation of the Problem 

Consider an open-ended parallel-plate waveguide radiating into an 

open-region which is partitioned by a dielectric slab. 

this structure is shown in Figure 2. 

left by a single TEM or TM mode (p = 1929....) of unit amplitude in 

region B. The space surrounding the guide is divided into four regions: 

A, C, D, and E, A right-hand Cartesian coordinate system is placed at 

The geometry of 

The waveguide is excited from the 

PO 

the guide aperture with the pertinent dimensions given by b, the guide 

half-width; 2 ,  the guide-aperture separation; and t, the slab half-wtbdth. 

The relative permittivity of region A is given by K while that of the 

remaining space is taken as unity. 

A solution of the source-free Maxwell's equations for this geometry 

leads to a discrete eigenmode expansion of the electromagnetic fields in 

region B and transform representations in terms of the continuous mode 

spectra in the remaining open-regions. 

at each of the regional interfaces, and the resulting equations are 

manipulated in order to yield expressions for the mode and spectral 

weight coefficients. 

by an appropriate modification of the function-theoretic technique. 

technique, in its original form, was first applied to closed waveguide 

problems by Hurd and Gruenberg (1954) and to open periodic structures 

by Berz (1951) and Whitehead (1951). These early works yielded infinite 

matrix equations, the elements of which were functions of the longitudinal 

wave numbers and mode coefficients for the various regions. Mittra and 

Bates (1965) extended the function-theoretic technique to an open-region 

The transverse fields are matched 

These coefficients are then explicitly solved for 

This 
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problem by employing a l i m i t  process t o  t h e  assoc ia ted  closed-region 

problem, Due t o  the  continuous na ture  of t h e  eigenspectrum i n  t h e  open- 

regions,  an  i n t e g r a l  equation r e s u l t s  corresponding t o  t h e  infinite matrix 

equation f o r  t h e  assoc ia ted  closed-region problem. For t h e  modified 

problem of Figure 2, an extended vers ion  of t h i s  i n t e g r a l  equation is 

obtained, which can be transformed i n t o  a matrix equation by t h e  usual 

numerical techniques. 

The geometry of Figure 2 ,  being y-independent and x-synanetric, 

scatters only TEM and TM type waves withsleespect t o  the  z-coordinate. 

The t o t a l  magnetic i n t e n s i t y  @ = H 

follows : 

i n  each region is  represented as 
Y 

00 

oB = cos (  E ) exp(-B z )  -+ G [ B ~  c o s ( y )  e x p ( ~ ~ e ) l ,  
s=o P 

x - 9 b, z 2 0 ,  (2.3a) 

(2.3b) 
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O ~ Z ( k ,  

and 

(2 .4 )  

QE = I E(a) exp[-E(z-R-2t)] em(-jax) da, 

0 

R + 2 t  - < 2. (2.5) 

The mode c o e f f i c i e n t s  are given by B 

t h e  s p e c t r a l  weight functions by A1(a), A2(a), C(y), D (a), D-(a) and 

E(a) i n  t h e i r  respec t ive  open-regions. The f i e l d s  have a t r ave l ing  wave 

representa t ion  i n  each region except A ,  where the  representa t ion  is 

i n  terms of even and odd modes with respec t  t o  the  z-coordinate. 

is  a convenient representa t ion  f o r  region A when the re  are su r face  modes 

present wi th in  t h e  s lab .  

t he  pa th  Q shown i n  Figure 3 .  

require’s t h a t  t h e  following func t ion  branches be employed i n  order t o  

y i e l d  outgoing waves: 

(s = 0,1 ,2  ...), i n  region B ,  and 

+ 
S’ 

This 

The va r i ab le s  of i n t e g r a t i o n  a and y l i e  on 

U s e  of t he  exp(jwt) t h e  convention 

j&T 2 2  
0 5 =  

n =  y ko jLp 
‘ c =  m=jm 

0 0 

(2.6a) 

(2.6b) 

(2 .7)  

and 

6s - - = jm , (s = 0,1,2,  *...). (2,8) 
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a o r y  PLANE 

Figure 3. The path B and the branch c u t s  f o r  (a) C ( a )  and n ( y ) ,  and 
(b) ? ( a )  i n  t h e  complex o r  cx o r  y-plane, 
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The free-space propagation constant i s  given by ko = w c ,  where w 

is  t h e  angular frequency and 1-1, and E 

and p e r m i t t i v i t y  of free-space. 

0 0  

are respec t ive ly  t h e  permeability 

The branch c u t s  f o r  (2.5) through (2.8) 

0 

are shown i n  Figure 3 f o r  K-real and g r e a t e r  than uni ty .  

components of the electric f i e l d  are obtained from t h e  following 

r e l a t ionsh ips :  

The remaining 

and 

-1 = - Q U E  E ) ax 9 o r  (2.10) 

where cr = K i n  region A and uni ty  throughout t h e  remaining space. 

2.2 Representation i n  the  Spec t ra l  Domain 

The f i r s t  s t e p  toward obtaining the  so lu t ion  of (2.1) through (2.5) 

is  t o  express the  unknown mode and weight c o e f f i c i e n t s  i n  terms of 

E ( a ) ,  t h e  weight c o e f f i c i e n t  for the  forward open-region. The procedure 

is t o  enforce t h e  con t inu i ty  bonditions of t he  t ransverse  f i e l d  components 

a t  the  th ree  reg iona l  i n t e r f aces .  Continuity a t  z=O gives 

(2.11) 

(2.12) 
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and 

Similar ly ,  a t  z = R w e  ob ta in  

(2.14) 

(2.15) 

(2.16) 

while  a t  z = R 9 2 t  w e  have 

QA(X8R92t) = QE(X, R82t) (2.17) 

and 
a oA(x ~ 9 2 t )  a (x, a92t) 

az az - - (2.18) -1 
K 

Combining (2.17) and (2,18) y i e lds  the  expressions f o r  t h e  even and 

odd s p e c t r a l  weight funct ions i n  region A 

A1(a) = E(a) [cosh(Tt) 9 5 sinh(.rt)]  (2.19) 

and 

A2(a)  = E(a) [sinh(.rt)  + c o s h ( ~ t ) ] .  (2.20) 
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Similarly,  a combination of (2.15), (2.16), (2.19), and (2.20) gives 

t h e  forward and backward t r ave l ing  wave s p e c t r a l  weight functions i n  

region D 

(2.21) + D (a) = E(a) R q ( a )  

and 

where R ' ( a )  = R ( a )  exp(SR) and Q v  (a) = Q(a) exp(-ER), with 

R ( a )  = ~ o s h ( 2 ~ t )  + [ 5 +-$I s i n h ( 2 ~ t )  (2.23) 

and 

The above procedure, used t o  ob ta in  expressions f o r  t he  s p e c t r a l  

weight functions i n  t h e  regions ly ing  between t h e  guide ape r tu re  and the  

forward open-region, is not l imi ted  only t o  problems having two 

intermediate regions. One can express the  weight functions i n  each 

region of an  n-layered medium i n  terms of the  corresponding func t ion  i n  

the  far-forward region, This procedure is similar t o  t h a t  of determining 

t h e  vol tage  along eaah segment of a cascade of transmission lines, each 

por t ion  having a d i f f e r e n t  c h a r a c t e r i s t i c  impedance, i n  terms of the  

vol tage  a t  t h e  l i n e ' s  termination. 

Fourier analyzing (2.11) and (2,12), i.e., multiplying each s i d e  

of these  r e l a t ionsh ips  by cos(mvx/b), (m=O, l , ,  ...), and in t eg ra t ing  with 

respec t  t o  x from -b t o  b, together with the  r e l a t ionsh ips  (2.21) and 

(2 22), y i e l d s  
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(-1)' b (l+S0) 6: + (-l)m b B m (1+6:) = 
P 

I E ' ( a )  (2,251, 

5 

and 
I- 7 

(2 .26 )  

where E v ( a )  = a sin(ab) E(a )  and 6: is the Kronecker delta defined by 

(2 .27)  

The integrands of (2 .25 )  and (2 .26 )  have poles at 5 = L Bm or 

equivalently when a =Lmn/b. These poles are cancelled by the 

corresponding zeros of sin(ab), which is a factor of E'(or). Due to this 

pole-zero cancelation, the integrals of (2 .25)  and (2 .26)  need not be 

considered in the Cauchy principal value sense. 

Multiplying (2 .25)  by 8, and first adding and then subtracting it 

from (2 .26)  yields 

and 

-Q'o da (2 .29 )  1 - (-l)m b 8 B (1+6:) m m  
5' 
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Note that the path CT employed infall integrations previous to (2.28) 

has been reduced to Q '  in (2.28) and (2.29). This new path is identical 

to that portion of ET which extends from zero to infinity and lies entirely 

in the upper-half a-plane (cf. Figure 3). Such a reduction is carried 

out by requiring E(a )  to be a symmetric function of a, the remaining 

part of the integrand being obviously symmetric. 

Multiplying (2.13) by exp [ j y  (x-b) 1 and integrating with respect to 

x from b to 00, and repeating the same process with a multiplier 

exp[jy(x+b)] and integrating from -=~--to-b yields 

r 1 

and 

r 1 

Due to the continuous nature of n r  a cancelling of the poles at 

5 = 4 n is not found except when n = 2 f3,. Therefore, the integrals 

in (2.30) and (2.31) are written as the Cauchy principal value type. 

Combining (2.30) and (2,31), as was done in obtaining (2.28) and 

(2.29), gives 

IT n E(y)R'(y)  cos(yb) = P.V. E ' ( a ) [ e  - e da (2.32) 
(3' 1 



1 4  

and 

Equations (2.29) and (2 .33)  express the two remaining unknowns, viz., 

Bs and C(y), in terms of E(a) ,  

when q = 

number of points 

Comparing (2 .28)  with ( 2 . 3 2 ) ,  i.e., 

we obtain the values of E(a) at a countable-infinite 
BIn9 

( b (l+Si) [TR'(ps/b)] T' s = p ) 
(2 .34 )  

Equation (2 .32)  together with (2 .34 )  represents a homogeneous integral 

equation for E(a) with prescribed function values at particular values 

of a .  In the following section a method is presented to solve this 

integral equation based on an extension of the functfon-theoretic technique 

for open-regions. 

2.3 Modification of the Function-Theoretic.Technique 

A s  stated in the introduction, a closed-form solution to the 

problem associated with the geometry of Ifigure 2 ,  but with the dielectric 

or plasma slab removed (hereafter called the canonical problem), has been 

obtained, 

suitably modified version of the function-theoretic technique, an analytic 

solution is still possible. 

When the slab is inserted, one finds that by employing a 

However, the solution is no longer in a 
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closed-form, but is most easily obtained from the solution of an auxiliary 

integral equation, 

2.3,1 Solution in the Spectral Domain 

Consider a function F(w) of a complex variable w, which is 

factored as follows: 

F(w) = F1(w) T(w) . 
The factor F1(w) is that function which one employs in the solution of 

the canonical problem (Mittra and Bates, 1965) by the function-theoretic 

(2.35) 

technique, and is given by 

(2 36) 

The constant K is a normalization factor which depends upon the 

amplitude of the incident waveguide mode. 

is an absolutely convergent infinite product expansion, and 

(2.37) 

(2.38) 

is obtained from the limit function of the ratio of two infinite product 

expansions associated with regions C and D in the canonical closed-region 
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problem as t h e  outer  guide is made i n f i n i t e l y  wide (cf. Section 2.3.2 ). 

The constant C i n  (2.38) is equal t o  Euler 's  constant.  e 

For l a r g e  values of w, t he  canonical func t ion  F (w) decays 1 

exponentially i n  the  upper ha l f  w-plane and decreases a lgeb ra i ca l ly  as 

I U I - ' ' ~  i n  t h e  lower half-plane. Furthermore, F1(w) has  a branch poin t  

a t  w = Bo and a branch s i n g u l a r i t y ,  shown i n  Figure 4 ,  due t o  N(w) .  

As w i l l  become apparent i n  t h e  sequel,  t he  composite func t ion  F(w) must 

, t he  propagation constant f o r  t h e  inc iden t  have a simple pole  at w = 

guide mode, and a branch poiq t  at  w = - 
T(w) t o  possess these  added s i n g u l a r i t i e s  with a branch cu t  along t h e  

r e f l e c t i o n  of t h e  cu t  f o r  F (w) ( c f ,  Figure 4 . ) .  The edge condition 

(Meixner, 1954) r equ i r e s  t h a t  F(w) +()(a 

- - -  IT, and therefore ,  i t  is  s t i p u l a t e d  t h a t  T(o) +O(w-'), where 

BP 
Therefore, w e  r equ i r e  

BO 

1 
as 1.1 =+ a, arg(w) - 1 f 2  - 

The branch of a r c s i n  is chosen as follows: 

(2.39) 

(2.40) 

The i n t e g r a l  equation (2.32) f o r  t h e  weight func t ion  E(a) can now 

be solved. In t eg ra t ion  of t he  func t ion  F(w)/(w-n) along t h e  pa th  C 

( c f ,  Figure 4) ,  with 0 placed d i r e c t l y  on t h e  branch s i n g u l a r i t y ,  y i e l d s  

(2.41) 
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I Branch Cut 
for T(W 

W- PLANE 

Figure 4 .  The contour C i n  t he  complex w-plane. 
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The i n t e g r a l s  along t h e  contours o+ and o- are zero I n  (2.41) due t o  

t h e  exponential decay and a lgebra ic  decrease r e spec t ive ly  of t h e  integrands 

along these pa ths  as I w I  -+ 0 0 ,  

are in t e rp re t ed  as being of the  Cauchy p r i n c i p a l  value type. 

The i n t e g r a l s  along t h e  pa ths  o1 and o2 

Employing 

t h e  r e l a t i o n s h i p  

) = N(w1 ) exp(- 2jb F w +ko), (2.42) 
1 o 2 o 

which expresses t h e  d i scon t inu i ty  i n  N ( w )  across t h e  branch cu t ,  and 

by transforming the  i n t e g r a l  along o3 and o4 i n t o  a s i n g l e  i n t e g r a l  

along o via t h e  transformation of va r i ab le  w -+ -a, (2.41) is reduced t o  

t h e  following form: 

1 

F b l o  ) l'I-exp(-29b STT w +kO)l 
1 

2.rrj (0-n) F(rtlo ) exp(-jyb) cos(yb) = P.V. 
1 

(2.42) 

The i n t e g r a l  i n  (2.42) is next transformed i n t o  an i n t e g r a l  along 

the  path o a ,  which w a s  employed i n  (2.32), v i a  t he  transformation of 

va r i ab le  w = 5 and do = a daft. The r e s u l t  is  given by 

a F(5lo ) s in(ab)  exp(-jab) 
1 

E .rr (E-n) F(nIo ) exp(-jyb) cos(yb) = P.V. 
1 

(2.43) 
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A direct comparison of the integrands of ( 2 . 4 3 )  and 

and 

( 2  045)  

A comparison of the non-integrated terms yields 

Equations ( 2 . 4 4 )  and ( 2 . 4 6 )  are identical when rl = 5 and y = a. This 

identity shows the self-consistency of the solution for E ( d )  as 

determined by ( 2 . 4 4 )  or ( 2 . 4 6 ) .  Furthermore, E(a), as obtained from 

( 2 , 4 4 ) ,  is seen to satisfy the conditiops at a = (sn/b), given by ( 2 . 3 4 ) .  

It is from the value ofrE(a) at a = (pn/b) that the normalization 

constant K employed in ( 2 . 3 6 )  is determined. With the aid of ( 2 . 3 4 )  

and ( 2 . 3 8 ) ,  K is then obtained from the relationship 
\ 

) = b $ (-1)' (1+6;). 
P 

1 

( 2 . 4 7 )  

In order that ( 2 . 4 4 )  and ( 2 . 4 5 )  be consistent expressions for E(a) 

first equated to one ther, then the fac 

ituted, and finally the results are rearranged in order'to 

T(-sI, - T(-sI, = 2 n j  xts> T ( E L  ( 2 . 4 8 )  
3 4 
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where X ( E )  is given by 

Equation (2.48) represents an expression of the discontinuity in T(-E) 

across the branch cut, as shown in Figure 4 ,  in terms of the function 

value T(E) at the reflection point 5 .  In Section 2 .4 ,  (2.48) is 

transformed into the integral equation which was previously referred to 

as the auxiliary integral equation. 

At this point, the problem is solved contingent upon the construction 

of T(w). However, simpler expressions exist for the mode coefficients 

B m 

(2.29) and (2 .33 ) .  

q in (2 .41 ) ,  together with the subsequent transformation of variable 

and weight functiqn C(y), than the integral representations given by 

Integrating along the contour C with -8, replacing 

and a direct comparison of the result with (2 .29) ,  yields 

The same process with q replaced by -?-I yields 

r 1 

(2 .50)  

(2 .51)  

Before Continuing on to the solution of T(w), we digress so that 

we may comnpare the solution just derived with that for the corresponding 

closed-region problem. This is done to gain some insight into the form 

of the auxiliary integral equation. 
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2.3.2 Caparison with the Closed-Region Problem 

The closed-region geometry associated with the problem just solved, 

The outer guide now has a finite half-width given is shown in Figure 5. 

by a, 

expansions due to the discrete nature of the eigenvalue spectrum for 

In all of the regions, the fields are now represented by eigenmode 

closed-regions. 

Section 2.1, with the exception that all of the integrals are replaced 

by infinite summations, and the continuous propagation constants take 

on discrete values 

The formulation of the problem follows closely that of 

and 

6s - - dv 0 

S 

/-z 
?9= IC) - k o  ’ 

(2.52) 

(2 53) 

(2.54) 

where c = a - b e  

Mode matching in the plane of the small guide’s aperture and 

subsequent manipulations of the resulting equations, yields a doubly- 

infinite set of matrix equations for the mode coefficients E e This set 

of equations is given by 
S 

and 

m 

(2.55b) 0 O = 2~ no Eo Ro 6m - C E; 
s=l Ss-nm Ss+nm 
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- PERFECT CONDUCTORS 

____) 
INCIDENT 

MODE 

Figure  5. The c losed  region problem. 
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where 

R' S = RP( . sw ) d9 Q:, = Q'( a ' 9  and E; = (y )  sin(+) Es, 

In the infinite summation of (2.55b), it is assumed that 5, # qm for all 

values of s and m. 

the outer and inner guide half-widths, viz.,a/b 

number. 

the summation in (2.55b) the q-th term when 5, = TI 

outside the summation the limit of the s = q-th term as s -+ q. 

appropriate limit is given by 

This is equivalent to requiring that the ratio of 

, is not a rational 

However, when this ratio is a rational number, we exclude from 

and add to the term 
4' 

The 

E R '  rl b 2 c cos(yqb), (2.56) 
4 4 4  

where we have written y = (qnlc). When the outer guide becomes 

infinitely large, i.e., c/a -f 1, a - c = b, (2.56) becomes the term 

outside the integral in (2.32) €or the corresponding open region-problem, 

viz. , -mB(y)&(y) cos (yb) . 

4 

Due to the continuous nature of the eigen- 

spectrum in the open region case, this non-integrated term is always 

present, since we are forced to let 5 = rl and a = y. 

A solution of the doubly-infinite set of matrix equations is carried 

out by a modified version of the function-theoretic techdque. 

unmodified technique was employed by Hurd and Gruenberg (1954) for the 

solution of matrix equations associated with the bifurcated waveguide 

problem. 

it can be employed to solve the bifurcated waveguide problem, with one 

of the interior regions modified was first presented by Mittra, Lee, 

and Vanblaricum (1968). In this form, the infinite product expansion 

The 

A form for modifying the function-theoretic technique so that 
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associated with the modified region was written as a new infinite product 

expansion containing a countable-infinite number of shifts in the zeros 

of the original expansion, i.e., shifts from the zeros associated with the 

unmodified problem, This zero-shift method is useful for closed region 

problems, but becomes awkward in the open-region case. The difficulty 

with the zero-shift formulation is that one cannot easily determine the 

limit function generated by the shifted infinite product expansions as the 

outer guide width becomes infinitely large. 

modifying the infinite product expansion is to employ an equivalent 

partial fraction expansion 

An alternative form for 

Equation (2 .57)  shows the expansion containing the unknown shifts As on 

the left, while an equivalent form is shown on the right, 

form is written in terms of the unmodified expansion I I ( w , n )  and the 

This equivalent 

partial fraction expansion coefficients 

considered, i.e., (a,c) -it 00 and a - c = 

fraction expansion has an integral form 

l r  

When the limit process is gS 
b, it is found that the partial 

for a limit function 

1 

(2 .58 )  

The ratios of the infinite product expansion associated with regions 

C and D of Figure 5 are found to have the following limit function: 

(2 .59 )  

L -1 
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The function 'is(") is closely related to that given by (2.38). 

relationship w i l l  be shown in Section 4 .  

originally obtained by the limiting process by Bates and Mittra (1965). 

This 

This function z ( w )  was 

The solution of (2.55a) and (2,55b) for Es by the function-theoretic 

technique, is accomplished by the construction of a meromorphic function 

H(w). This function in a factored form is written 

where H (w) is that function employed in the solution of the canonical 

problem (Hurd & Gruenberg, 1954). Manipulations in the complex plane 

similar to those for the open-region problem (there is no branch 

singularity to circumvent in the contour integration) yield solutions 

for the various mode coefficients. 

1 

b Q; o H(-Bo) 
= - - 6  - 

Bo a R a  p 2b Bo 
0 

(2.61) 

(2.62) 

(2.63) 

(2.64) 

and 
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residue H(w = C-) 
ti E =  (F) sin(+) 

residue H(w=-Cs) 

(F) sin(+) 
E = -  

, (s = l,2ye..), (2.66) 1 - 
R: 

, (s = 1,2,. , .) . (2.67) 1 - QA 
Elimination of E from (2.66) and (2.67) yields an infinite auxiliary 

matrix equation for the expansion coefficients 
S 

gs = 

a L  
(s = 1,2,0..), (2.68) 1 .  

where 

Q; residue H1(u=C ) 
S = - -  

S R’ H1f-Ss) S 
(2.69) 

The normalization condition, which depends on the amplitude o f  the 

incident guide mode, is given by 

A s  the outer guide becomes infinitely wide, we expect (2.68) to become 

the auxiliary integral equation associated with the open-region problem. 

This is indeed the case, and the discussion in the following section will 

confirm this result, 

2.4 Solution of the Auxiliary Integral Equation 

In the preceeding section, we stated that in the limit as the outer 

guide half-width became infinite, that (2.68) would become an integral 
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for the unknown expans 

rewrite the partial  frac 

(2 71)  

and the auxiliary matrix equation 

A s  the outer guide recedes to i n f i n i t e ,  

CO 

(2 68) 

w e  would expect 

&!& w+z d~ (2.72) 

and 

A combination of (2,72) and (2.73) yields 

and 

G(w) = [' - w-B. + I W+Z d]. 

0 1  

(2.74~1) 

(2.74b) 

J. 

Equation (2 74 

Ol" 

equation referred to i n  Section 2.3.2. 
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The expression f o r  G(w), given by (2.74b), has a branch S ingu la r i ty  

along the  r e f l e c t i o n  of t he  path of i n t eg ra t ion .  We evalua te  G(w) on 

each s i d e  of t h i s  branch cu t  and ob ta in  

+ j.rr G ( w ] ~  1 + -1 
w+B 

G(-wj, ) = - 
P 1 3 

1 (I 

and 

Subtracting (2.75b) from (2.75a), g ives  an expression f o r  t he  d iscont inui ty  

i n  G(w) ac ross  t h e  branch s i n g u l a r i t y  

(2.76a) 

This process f o r  obtaining the  branch d i scon t inu i ty  f o r  a s ingu la r  

i n t e g r a l  i s  based on t h e  use of the  Plemelj formula (Muskheliskvili, 

1964). A comparison of (2,76a) with (2.48) shows t h a t  i f  G(w) is  

i d e n t i f i e d  with T(w), t h a t  (2.74b) is the  required a u x i l i a r y  i n t e g r a l  

equation 

"1 

(2.76b) 

I n  t h e  following sec t ion ,  (2.76b) w i l l  be transformed i n t o  a s u i t a b l e  

form f o r  numerical methods of so lu t ion .  
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2 A . 1  Conversioxi t o  a ,Smooth Kernel 

Close inspec t ion  of t h e  p a r t i a l  kerne l  X(z) i n  equation (2,76b), 

reveals t h a t  t h e  pa th  o passes d i y e c t l y  over t h e  poles 

w i l l  be shown i n  gection 2.5 t h a t  t h e r e  i s  a t  least one 

ly ing  i n  t h e  open i n t e r u a l  (k K1'2k ), when K > 1 and 

1 

0' 0 

of R-l(z). It 

zero of R(z)  

real. These 

zeros of R(z)  correspond t o  TM-type su r face  modes wi th in  the  d i e l e c t r i c  

s lab .  

i n t e g r a l  of the  Cauchy p r i n c i p a l  va lue  type, which is  i n  general ,  

An attempt t o  so lve  f o r  T(w) on the  path o1 w i 3 1  r e s u l t  i n  an  

unsui tab le  f o r  numerical metbods of so lu t ion .  

Equation (2.764), as i t  present ly  s tands ,  has a s ingu la r  kernel.  

This equation is  converted t o  one which has a "smooth" kerne l  by 

changing the  path of i n t e g r a t i o n  to  one on which t h e , k e r n e l  is  ana ly t i c .  

Such a path is  shown i n  Figure 6 and i s  labeled by 0' Equation (2.76b) 

then becomes 

1' 

dz T(w) = - w-B + 1 w+z 
P - 1  

(2.77) 

"1 

I n  continuously deforming the  path from o1 t o  o' 

t h e  integrand of (2.76b)are encountered, s ince  the  integrand is  a n a l y t i c  

no s i n g u l a r i t i e s  of 1' 

i n  region S(cf,  Figure 63. Using the  Cauchy theorem, the  i n t e g r a l s  i n  

(2.76b) and (2.77) g ive  i d e n t i c a l  r e s u l t s  f o r  w on t h e  path ole 

Equation (2i77) is no longer appl icable  when w i s  i n  region V of 

Figure 6 .  The 

a i  is t o  s h i f t  

d i r e c t l y  above 

e f f e c t  of changing t h e  pa th  

t h e  c u t  i n  t h e  Rieman shee t  

t h e  pa th  o3 t o  one d i r e c t l y  

of i n t e g r a t i o n  from o1 t o  

f o r  T(w) from a pos i t fon  

above o; (c f ,  Figure 6 ) ,  

However, we may a n a l y t i c a l l y  continue the  s o l u t i o n  f o r  T(w) as given by 

(2.77) i n t o  region V by employing the  r e l a t ionsb ip  which descr ibes  t h e  

branch d i scon t inu i ty ,  v i z , ,  equation (2.48). The co r rec t  r e s u l t  f o r  
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In 

Brunch Cut 
for T b  1 

\ 

REGION V 

Shifted B r a n c h  
Cut f o r  T(w) 

a;' 

REGION S 

w o r Z  PLANE 

Figure 6 .  The i n t e g r a t i o n  paths f o r  T(w) and the  region V of a n a l y t i c  
cont inuat ion i n  t h e  complex w o r  z-plane. 
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T(w), when w is i n  region V, is  given by 

P 

J. 

r 1 

(2 78) 

Equations (2.77) and (2.78) are i n  a convenient form f o r  numerical 

computation. We first so lve  (2.77) f o r  T(w) on the  path a i ,  and then 

s u b s t i t u t e  t he  proper values of w on a and a i n t o  (2.77) and (2.78) 1 3 

respec t ive ly ,  t o  obta in  T(w 1, ) and Tf-o l a  ) . 

5 

1 3 

2 . 4 , 2  S d i s f a c t i o n  of t he  Edge Condition 

I n  order t h a t  t he  so lu t ion  obtained i n  Section 2 . 3  be acceptable,  

i t  must be demonstrated t h a t  t he  co r rec t  edge condition (Meixner, 1954) 

is s a t i s f i e d  a t  the  guide edges, v i z . ,  (x = + b ,  z=O). Due t o  t h e  manner 

i n  which F(w) w a s  fac tored  i n  (2 .35) ,  i t  must be shown t h a t  T(w) -f 

0 [w-'] as i w l  -f 03, where v is given by (2,351). For l a r g e  I w I  , (2.76) can 

be w r i t t e n  i n  the  following asymptotic f-om: 

(2.79) 

where A(z) is t h e  asymptotic value of X ( z ) ,  and is  given by 
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The l imi t ing  behavior of t h e  i n f i n i t e  product expansions II( 5 a,@) i n  

(2,39) is deduced from an i n f i n i t e  product expansion of the  gamma function 

(Whitehead, 1951). To check whether T(w) has t h e  co r rec t  asymptotic 

behavior, Z-',is s u b s t i t u t e d  f o r  T(z) i n  (2.79). The result is given 

OD \ 
-V 

j 
0 

w+z cos(2zb'- dz)  + 0[3 , R = C 

(2.81) 

For 0 < Re(v) < 1, these  Aihtegrals can be e v a h a t e d  by comparison wi th  

the  appropr ia te  S t l e l t j e s '  transforms (Bateman, 1954), and the  r e s u l t s  

are given by 

00 

-V -V 
R W  J % d z =  sin(vR) 0 

and 

(2.82) 

Subs t i tu t ing  these  r e s u l t s  i n t o  (2.81), together with the  assumed 

asymptotic expression f o r  T(w), y i e lds  
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C-aaing c o e f f i c i e n t s  of w-' i n  ( 2 . 8 4 )  gives the  co r rec t  r e s u l t  ( 2 . 3 9 1 ,  

which is  repeated here  f o r  c l a r i t y .  

Thus, t h e  co r rec t  edge condition is s a t i s f i e d  by the  so lu t ion  given i n  

Section 2 . 3 .  

2.5 Surface Waves i n  t h e  Dielectric ,Slab 

The ex is tence  of su r face  modes i n  the  d i e l e c t r i c  s l a b  w a s  previously 

mentioned as being a t t r i b u t e d  t o  the  poles of R-'(ci). 

t h e  behavior of R(cr), w e  f a c t o r  i t  i n t o  an  equivalent form 

I n  order t o  show 

R ( a )  = - r ( m ) * ( C E ) l  y 
KST 

where 

(CE) = 'I: sinh(Tt) + KE cosh(-rt) 

and 

(CO) = T cosh(Tt)+ KS sinh(Tt) . 

( 2 . 8 5 )  

( 2 . 8 6 )  

( 2 . 8 7 )  
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Equations (2.86) and (2.87) are respectively the determinantal or 

characteristic equations for the longitudinal propagation constants 

a for even and odd TM-type surface modes within the dielectric slab 

(Collin, 1960). 

We now write equation (2.1), which gives the magnetic intensity 

inside the slab, in terms of the even and odd characteristic equations 

The integrand in (2,88) has simple poles 

and (2.87) are zero and branch points at 

exp(-jax)da . (2.88) 

at ehose values of c1 where (2.86) 

a = ko, The corresponding 

branch cuts of < ( a )  are shown in Figure 7. 

surface modes can be evaluated by closing the contour of  integration in 

(2.88) in the lower half a-plane for x > 0 and in the upper half a-plane 

for x < 0. Such closed contours are shown in Figure 7. 

that in both cases; i.e., x > 0 and x 0, the appropriate contour 

The magnetic intensity of the 

It can be seen 

encloses all of the poles of the function R-'(a). 

the Cauchy theorem to the closed contour integrations yields the 

following results: 

An application of 

(1) The radiation field can be identified with the 

contour integration along the branch singularity of c ( a ) .  (2) The 

surface modes are identified with the residues of the integrand of (2.88) 

evaluated at the singularities of R -1 (a). 

Before writing explicit expressions for the surface mQdes, some 

nomenclature for identifying each mode is presented. When K > 1 and real, 



3s 

a-PLANE 

Figure 7. The paths of integration f o r  determining the fields 
in the dielectric s l a b .  
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equations (2,861 and (2.87) have a number of real zeros which l i e  i n  the 

i n t e r v a l  (ko, K 

equation (2.86) even 

ob ta in  (ao < a2 < 

given by (a1 Moreover, t h e  zeros of t h e  even and odd 

c h a r a c t e r i s t i c  equations are in te r leaved  (Collin 1960), and a0 is always 

t h e  smallest of t he  set of values. W e  i d e e t i f y  each su r face  mode with 

t h e  corresponding value of c1 i.e., t h e  j - t h  mode i s  of the  Tt4 -type 

wi th  respec t  t o  t he  x-directicm. If j is even o r  odd, w e  mean respec t ive ly ,  

even o r  odd sur face  waves. F ina l ly ,  t he  TM sur face  mode has no cut-off 

frequency, so t h a t  when K > 1, w e  always have a t  least one su r face  mode 

launched wi th in  t h e  slab, 

112 ko>. We ass ign  t o  t h e  zeros of t h e  even c h a r a c t e r i s t i c  

egers ,  so t h a t  i f  tkere are Mtl such zeros,  we 

For the  odd equation (2.87), t he  zeros are < aM). 

a.3 < * a .  < 0 1 ~ ) .  

j-) j o  

0 

W e  are now i n  a pos i t i on  t o  w r i t e  t he  expressions f o r  t h e  magnetic 

i n t e n s i t y  of the su r face  modes, When (m = O,l,. .., M) w e  express the even 

modes as 

a = a  1 -  m 

,p = < [  j K F(S)  cosh[.r(z-R-t)] exp[-ja(ixl-b)L 
a 

exp (SR) z ( C E )  Y 

For (n = 1s3s0e0 ,N)  the ,odd  mQdes are given by 

(2.89) 

.. 

W e  see t h a t  b s th  types of modes represent waves which travel away from 

t h e  waveguide ape r tu re  i n  t h e  x-direction and without a t tenuat ion .  

Furthermore, as t h e  d i g l e c t r i c  s l a b  is moved away from the,waveguide 

aper ture ,  t h e  launching of surface waves becomes increas ingly  d i f f i c u l t ,  
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This difficulty is due to the factor.exp(<R) in the denomiwtor of (2.89) 

and (2,90), and represents an expopential damping of the surface mode 

excitation with increasing R. 

2.6 Radiation F9cld in the Open-Region 

The radiation fieads in the open-regions C and E of Figure 2 may 

be evaluated from the integrations indicated by the corresponding 

Fourier transforms, viz., equations (2.3) and (2.5). However, the 

saddle-point method of integration (Collin, 1460) may be employed instead, 

and the radiation fields are obtained directly from the spectral weight 

coefficients C(y> and g(a). 

in the visible range, i,e. 0 - (a 

desirable from the standpoint of numerical computation. 

These weight coefficients need only be known 

y ) ~  ko. This limited knowledge is 

Before presenting the results of the saddle-point method of 

integration, we digress for the moment to investigate the effect that a 

dielectric or plasma slab has on a uniform plane wave. 

this investigation will prove most useful in interpreting the equations 

for the radiated fields, 

The result of 

2.6.1 Effect of the Slab on Plane Waves 

Before considering tho expressions for the radiation fields, we first 

determine the influence that a dielectric of plasma slab has on a uniform 

plane wave. Figure 8 shows the incident field denoted by (Ei, Hi>. The 

direction of propagation with respect to the normal of the slab is given 

by 0 ,  The reflected and transmitted waves are (E Hr) and (Et, Ht) r’ 

respectively, and the associated coefficients of reflectign and - 
transmission are given by d and !I! respectively. 

are the forward and backward traveling waves (E 

the slab, and the angle of refraction JI. 

Also shown iq Figure 8 

Hf) and Eb, %) inside fY 
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c 

- 2 t  - 
d 

Et 

Figure 8. Uniform plane wave inc ident  onto a d i e l e c t r i c  o r  plasma 
s l a b  having a thickness 2 t  and a r e l a t i v e  d i e l e c t r i c  
constant IC. 
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A lengthy but straightforward solution for the coeffi 

reflection and transmission yields 

2.M L 

= R(a)  

and 

(2.91) 

(2.92) 

where a = k sin(e). 

to those employed in the preceding analysis and are given by (2.23) 

and (2,24) respectively. 

The functions, R ( a )  and ()(a), are identical 
0 

An inspection' of the function Q(u) fndieates 

that there are several angles of ind2dence 0 for which there is no 

reflection from the slab. Expanding (2.24) in terms of its zeros yields 

(2.93) 

The angles for zero reflection occur when K = 1 (slab removed), at the 

Brewster angles OB (Jordan, 1950) 

and at certain other angles determined from the relation 

sin [ 2t ko ~1 K-sin (8)  = 0 . 

(2.94) 

(2.95) 
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The critical angles given by (2.95) are dependent not only on the 

relative dielectric constant of the slab, but also depend on the thickness. 

An investigation of these angles shows that they correspond to a 

matched condition of the directional wave impedances as observed on 

each side of the left-hand air-slab interface (cf. Figure 8 ) ,  A simple 

example occurs when the angle of incident 8 is zero, add the slab 

thickness 2t is equal to an integral number of half-wavqlength as 

determined inside the slab. 
I 

When the s lab is a plasma, i.e., K < 1, we find no angles 0 where 

zero reflection occurs. Rather, the coefficient of reflection approaches 

unity as K + - =) indicating transmission through the slab is cut-off 

for all anglks of incidence. 

coefficient is given by 

kn asymptotic expression for the reflection 

(2.96a) 

On the other hand, the transneiesion factor introduces A severe 

attenuation of the transmitted wave when the slab thickgess i s  large 

or the relatzve dielectrfc constant is made negative.. An asymptotic 

expansion for the Coefficient of transmission is given by 

(2.96b) 
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We now have eypressions f o r  t h e  c o e f f i c i e n t s  of r e f l e c t i o n  and 

transmission f o r  a uniform plane wave inc ident  onto the  slab. 

information w i l l  be employed f o r  a geometric i n t e r p r e t a t i o n  of t he  

so lu t ion  of t h e  problem a t  hand i n  t h e  next s ec t ion .  

This 

2,6.2 P a t t e r n  i n  the Forward Direc t ion  

The r a d i a t i o n  f i e l d  i n  region E of Figure 2 is obtained by applying 

a transformation of v a r i a b l e  t o  t h e  Fourier transform expression f o r  t he  

magnetic i n t e n s i t y .  This transformation is given by 

(2.97) 
5 = j ko cos(+) 

a = ko s i n ( + )  

x = r s in (0 )  

(z - R - 2 t )  = r coS(e2 

Employing ,(2,97) i n  (2,5) y i e l d s  

Applying t h e  method of saddle-point in tegra tzon  t o  (2.98) y ie ld6  an 

asymptotic expression f o r  t h e  rad ia ted  f i e l d  

The r a d i a t i o n  p a t t e r n  i n  t h e  forward directicgi is obtained by 

s u b s t i t u t h g  t h e  s o l u t i o n  f o r  E given by (2.44) i n t o  (2,991 
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where F is t h e  func t ion  CQnstructed by t h e  modified function-theoretic 

technique, v iz .  equation (2,35) and is t r a b m i s s i o n  coe f f i c i en t  

of t he  s l a b  given by (2.92). The t o t a l  power rad ia ted  i n  the  forward 

d i r e c t i o n  is o h a i n e d  from t h e  expression 

d0 , (2.101) I 2  F[jko cos(0)l ilz I R[ko si'n(0)l 
1 

(l+So) b T ko 
- - 

'rad 
P 

where i n t e g r a t i o n  is  only over p o s i t i v e  angles of 0 due t o  the  symmetry 

of the  f i e l d s .  The observation angle 0 and polar  coordinates (r,0> f o r  

region E are shown i n  Figure 9. 

An examination of t h e  p a t t e r n  func t ion  (2.100) reveals t h a t  t he re  

are n u l l s  i n  the  forward p a t t e r n  f o r  those d i r e c t i o n s  where P jk c o s ( 8 i  = 0. 

The angles 8 corresponding t o  these  n u l l s  can be i d e n t i f i e d  with the  

d i r ec t ions  of  propagation i n  composite plane-wave representa t ion  of t he  

[ o  

waveguide modes (c f ,  Figure 106). Rowever, there  is a maz imum in the 

p a t t e r n  a t  the  angle corresponding ta the inc ident  mode exc i t i ng  the  guide. 

The s a l i e n t  f e a t u r e s  of t h e  forward p a t t e r n  can be summarized as follows: 

PATTERN MAX: [ e  = arcsin(?) 1 , (2.103) 

where only propagating modes are considered, i.e., N ~b ko/n. 
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Figure 9. The observation angle 0 in the forward direction. 

Figure 10. The direction of max or null in the forward region. 
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2.6.3 P a t t e r n  i n  t h e  Backward Direc t ion  

The r a d i a t i o n  p a t t e r n  i n  the  backward d i r e c t i o n ,  regicjn C, is 

obtained i n  exac t ly  the  same manner as was  presented i n  Section 2.6.2 

f o r  t he  forward region. The r e s u l t s  are given by 

l i i n  (I.3 Y C  ) = cos(0) C[ko s in(e) ]  6 

r- 

exp[-j(kor - kob +  IT/^)] (2.104) 

PATTERN(8) = I F [-jko c o s ( 8 ) l  + 

sin(e)] Ffjko I (2.105) 

v/2 and 

1 = 
(l+So) b IT ko 

P 

(2.106) 
2 

F c jko  cos(01 I d@ . Q' [ko s i n ( 0 ) l  
R' [ko s in(8) I  

The angle of observation 8 f o r  t he  backward d i r e c t i o n  is shown i n  Figure 

11. 

i n t e r p r e t a t i o n ,  

The p a t t e r n  function, as given by (2,3,05), has a geometrical 

W e  no te  t h a t  t h e  r a d i a t i o n  f i e l d  i s  composed of two 

pa r t s .  

t h e  d i r c c t . f i e l d  r ad ia t ed  from t h e  guide aper ture ,  

due t o  F[jko cos(0>],  which is  t h e  f i e l d  rad ia ted  i n t o  t h e  forward 

The f i r s t  is t h a t  due t o  F[-jko c o s ( e ) ] ,  which w e  i d e n t i f y  with 

The second p a r t  is  
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C 

Y 

Figure 11. The observation angle 8 in the backward direction. 

Figure 12. The composite field in the backward direction showing the path 
difference between the direct and indirect fields. u + v  = 
2R cos(0). 
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direction. This forward field is modified by the function z, the 
reflectfon coefficient from the slab, and a phase difference 

exp[-2jkop, cos(0)], which is the path difference between the direct and 

reflected fields. 

common point, viz., the center of the waveguide aperture, and the, 

path difference between the direct and indirect fields, i.e., u + v = 2% 

Figure 12 shows both fields being emitted from a 

cos(0) (cf. Figure 12 ). 
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3.  SOLUTIONS FOR RELATED PROBLEMS 

In order t o  show t h e  v e r s a t i l i t y  of t h e  modified function-theoretic 

technique, w e  pxesent t h e  so lu t ions  f o r  two other  open-region problems. 

These problems again represent a modification t o  t h e  canonical problem, 

and t h e i r  geometry is constructed by introducing a longi tudina l  

inhomogeneity i n  one of t h e  open-regions. 

The f i r s t  of t he  modified problems is shown i n  Figure 13, and repre- 

s e n t s  an open-ended waveguide r a d i a t i n g  i n t o  a r e f l e c t i n g  plane. 

geometry is c lose ly  r e l a t e d  t o  l a rge  aper ture  r e f l e c t o r  antennas. The 

so lu t ion  f o r  t h i s  problem i s  constructed from t h e  function 

Such a 

H(w) F1(W) s(w) 9 (3.1) 

where F (w) is again the  canonical function given by (2.36). 

of H(w) which represents  the  departure from t h e  canonical function is 

represented by S(w) . 
and a branch c u t  along t h e  pa th  a3 ( c f ,  Figure 4 ) .  

are i d e n t i c a l  t o  those f o r  T(w), the modifying func t ion  f o r  t h e  problem 

The po t t ion  1 

@P 
We requi re  S(o)  t o  have a s imple 'po le  at  w = 

These re 

i n  s e c t i o n  2. I n  f a c t ,  whenever t h e r e  i s  a long i tud ina l  inhomogeneity 

fac ing  o r  opposite the  waveguide aper ture ,  t h e  modifying function w i l l  

have these  requizements 

A s o l u t i o n  for t h e  mode and weight coe f f i c i en t s  i n  regions B and C 

are given by 
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E - 2 b B t  
I 

t 1-1 
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INCIDENT 

FIELD 

C 

Figure 13. Waveguide radiating into a reflecting w a l l .  

WREFLECTION 

-v --R 

Figure 14. The composite field for a waveguide radiating into a reflecting 
wall. u + v = 2~ c o s @ ) .  
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and 

The normalization condition Is obtained from t h e  r e l a t ionsh ip  

( 3  3a) 

( 3 . 3 b )  

The r ad ia t ion  p a t t e r n  is given by 

. ( 3 . 4 )  I PATTERN(8) = I H [-jko cos(8)l 4- H [jkocos(0)] e -23 ko R COS (e) 

The r e s u l t i n g  expressions f o r  t h e  branch d iscont inui ty  and the aux i l i a ry  

i n t e g r a l  equation are, respec t ive ly ,  

and 

The p a r t i a l  kerne l  ~ ( 5 )  f o r  t h i s  problem is  given by 

As for t h e  problem i n  sec t ion  2, we see that t h e  r ad ia t ed  f i e l d  i n  

region c is  composed of two f i e l d s  (cf Figure 14 ) .  Referring t o  equation 

( 3 . 4 ) ,  w e  see t h a t  t h e  d i r e c t  f i e l d  i s  given by HC-u). The i n d i r e c t  f i e l d  

is obtained by r e f l e c t i n g  H(w) fmonl t h e  r e f l e c t i n g  w a l l  with i t s  phase 

re ta rded  by the  path length 1-1 + v = 2 ~ c o s ( 8 ) .  

The geometry of t h e  second problem w e  wish t o  discuss is  shown i n  

Figure 15. This problem represents  r ad ia t ion  from a flanged waveguide. 

Since t h e  long i tud ina l  inhomogeneity i s  placed i n  back of t h e  waveguide 

aperture-plane, w e  would not expect t h e  modifying func t ion  t o  have a 
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B YLZ E lNCl D EN T 
FIELD 
- 

I 1  

Figure 15. Flanged pa ra l l e l -p l a t e  waveguide. 

Figure 16. The composite f i e l d  f o r  t he  flanged waveguide. 
u + v = 2R cos(@).  



branch s i n g u l a r i t y  along t h e  pa th  5 (cf Figure 4 ) ,  and this is  indeed 3 

the casea 

W e  again w r i t e  t h e  constructed function i n  t h e  following form: 

G(w) = F1(w) U(w) i (3 .8)  

W e  f i n d  t h a t  an ana lys i s  of t h e  problem requi res  t h e  modifying function 

U(o) again have a simple pole at w = Bp; however, f o r  t h i s  geometry, 

t h e  branch Singular i ty  is along t h e  path 5 

f o r  t h i s  problem i s  given. as follows: 

i n s t ead  of (5 1 3"  The so lu t ion  

and 

The normalization condition is determined from t h e  r e l a t ionsh ip  

= b B (-1) P (1+6;) e 

P 

The r ad ia t ion  p a t t e r n  is  given by 

PATTERN(@) = jko cos(@) + 1 
As i n  t h e  previous examples, t h e  

terms of t h e  d i r e c t  and i n d i r e c t  

po in t  (c f .  Figuze 16).  

the aux i l i a ry  i n t e g r a l  

(3 .  loa) 

(3  e lob) 

cos(0)] 

r a d i a t i o n  f i e l d  can be i n t e r p r e t e d  i n  

f i e l d s  which o r i g i n a t e  from a common 

exp [-2jk 0 d cos(84 I . (3.11) 

The expressions f o r  t h e  branch d iscont inui ty  and 

equation are as follows: 

(3.12) 
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(3 ., 13) 

3 
The p a r t i a l  ke rne l  x(t;) is given by 

(3  e 14) 

Another i n t e r e s t i n g  problem I s  t h a t  of a flanged waveguide combined 

with a d i e l e c t r i c  o r  plasma s l a b  covering t h e  guide aper ture .  Such is 

t h e  case f a r  r ad ia t ion  from an antehna f l u s h  mounted on the  su r face  of a 

rocket with a plasma sheath covering t h e  aperture-plane. 

f o r  t h i s  problem can be obtained by t h e  modified func t ion- theore t ic  

technique, However, s ince  t h e  canonical problem is modified on both, 

s i d e s  of t h e  aperture-plane, w e  ob ta in  two aux i l i a ry  equations,  The 

The so lu t ion  

form of t h e  constructed function is given by 

The modifying functions,  L(u) and M(u), have branch s i n g u l a r i t i e s  along 

al  and u respec t ive ly  ( c f .  Figure 4).  The simultaneous so lu t ion  of 3 

the  two auxiLiary i n t e g r a l  equations is not a s i m p l e  one, since the re  

is  a coupling between L(w) and M(u) i n  t he  two equations. Rue t o  t h e  

complexity of t h i s  problem, w e  give no r e s u l t s ,  bu t  only i n d i c a t e  t h a t  

a s o l u t i o n  is  poss ib le .  

A f i n a l  no te  r e l a t i n g  to the modified problems j u s t  discyssed is 

t h a t  i n  each. cage Che c o r r e c t  edge condition may be shown t o  be 

s a t i s f i e d ,  

aux i l i a ry  in tegra l - .equat ion  wi th  the  appropr ia te  Stieltjes transform 

( c f .  Section 2.4.2) 

This is accomplished by comparing t h e  asymptatic form of t h e  
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4. EXTENSION TO CIRCULAR GEOMETRY 

The r e s u l t s  t h a t  have been given thus f a r  are concerned with the  

e x c i t a t i o n  of inhomogeneously f i l l e d  open-regions by pa ra l l e l -p l a t e  

waveguides, Such problems are phys ica l ly  not  r ea l i zab le ,  bu t  t h e i r  

so lu t ions  give a tremendous i n s i g h t  i n t o  t h e  form of t h e  so lu t ion  f o r  

phys ica l ly  obta5nable problems. Each of t h e  problems discussed i n  t h e  

on3 can be  solved by t h e  modified func t ion- theore t ic  

technique.when the  geometry is c i r c u l a r ,  and the electromagnetic f i e l d s  

have r o t a t i o n a l  symmetry. 

employed i n  the construction of t h e  canonical func t ion  F1(w), no longer 

has a closed form expression. 

formulation f o r  N(w) given by Mittra and Bates (1965) 

The only d i f f i c u l t y  is t h a t  the  f a c t o r  N(w) 

W e  may, however, employ an in tegra l  

where 
l i m  

N1(w) = a- a,c* c=b [w] = 

I n  Figure 1 7 ,  w e  show t h e  r a d i i  of t h e  small and l a rge  waveguides, 

v iz . ,  b and a, f o r  t h e  assoc ia ted  closed-region problem., as the  outer 

guide rad ius  becomes i n f i n i t e l y  l a rge ,  ( 4 . 3 )  is  determined as t h e  limit 

of the  quot ien t  of t h e  i n f i n i t e  product expansions f o r  regions C and E, 

The functions Jo and N 

Bessel functions the  f i r s t  and second kind. 

employed i n  ( 4 , 3 )  are respec t ive ly  zero order 
0 

The function N1(w) is seen 
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a I 2 

C 

C 
I 

E 

Figure 17. The canonical closed-region problem i n  c i r c u l a r  
geometry . 
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t o  have a branch po in t  at  w = jkoo The branch cu t  f o r  N1(w) is chosen 

along t h e  path (5 (cf Figure 18) .  1 

Although ( 4 . 3 )  can no t  be w r i t t e n  i n  a closed-form, w e  may 

approximate it by a numerically truncated i n t e g r a l .  

l a r g e  values of z t h e  integrand of (4.3) is nearly equal t o  the 

corresponding in te rgrand  i n  t h e  pa ra l l e l -p l a t e  case, which does hawe a 

W e  note t h a t  f o r  

2 2 closed-form elrpression. That i s  t o  say, [2/(nbz)][No(zb) + J0(zb)]-l  -t 1 

f o r  even moderately l a r g e  values of z ,  e.g., t h i s  f u n c t i m  equals 0.95 

when zb = 1, We, therefore ,  w r i t e  ( 4 . 3 )  i n  t h e  following approximate 

f om: 
, 

[ [-3 [Jz(zb) + N2(zb)] 0 - 13 dz} ( 4 . 4 )  

The function (w) is  t h e  pa ra l l e l -p l a t e  canonical function given by 

(2.38). The t runca t ion  po in t  L is determined from a given numerical 

1 

accuracy c r i t e r i o n .  

Aside Eltom t h e  i n t e g r a l  expression (4.3) f o r  N1(w), w e  are ab le  t o  

obtain two o the r  u se fu l  r e l a t iohsh ips  which a i d  i n  t h e  numerical computation 

of t h i s  function. 

i s  t o  f i n d  t h e  l i m i t i n g  bkhavior of the  product [nl(w)nl(-w)] as t h e  

outer waveiuide- rad ius  becomes i n f i n i t e .  Here w e  have wr i t t en  n as 

t h e  closed-region form of N1 

The method employed i n  obtaining these  r e l a t ionsh ips  

1 
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In 

Branch Cut 

Figure 18. The branch cut  f o r  N1(u), the  canonical form i n  c i r cu la r  
geometry. 
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(4 .5 )  

"he values of y 

c h a r a c t e r i s t i c  equations f o r  regions C and E respec t ive ly  (c f .  Figure 17) 

and as employed i n  ( 4 . 5 )  are given by t h e  zeros of t he  
S 

Before taking t h e  above ind ica t ed  l i m i t ,  w e  give two standard 

r e f l e c t i o n  formulas 

and 

where a = F w +k0 . Subs t i t u t ing  ( 4 . 8 ) ,  and (4.9) i n t o  t h e  product 

[ n l W  n,(-w)l = No(koa) 

[ n l ( 4  n 1 ( 4  1 y i e l d s  

N 0 ( 4  
Jo(ab)[ J0(d ] - No(ab) 

Jo(kob) [ Jo(koa)] No(kob) 

(4.10.) 
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I n  t h e  r e f l e c t i o n  r e l a t ionsh ips  (4.8) and (4.9) w e  have employed t h e  

standard i n f i n i t e  product expansions f o r  t h e  appropr ia te  Bessel functions 

(Abramowitz and Stegen, 1964). Our a i m  is t o  f ind  t h e  r e l a t ionsh ip  

corresponding t o  (4.10) f o r  t h e  open-region case. 

a -+ ~0 i n  (4.10) and obta in  

To t h i s  end, w e  l e t  

N(l) (ab) 

N ( 2 )  (kob) 

0 N1(w) N1(-w) = - Y 

0 

(4.11) 

where N(l) and N i 2 )  are Hankel functions of order zero, 
0 

Equation (4.11) is q u i t e  usefu l  i n  numerical ca lcu la t ions .  The 

function N must be known both on paths cr and i ts  r e f l e c t i o n  cr shown 

i n  Figure 18. With the  a i d  of t h i s  r e f l e c t i o n  formula (4.11), w e  need 

1 1 3y 

only numerically ca l cu la t e  N ( w l c r  ) from t h e  i n t e g r a l  (4.41, and obta in  

N(wl0 ) d i r e c t l y  from (4011)e  This process y i e lds  a f i f ty-percent  

savings i n  i n t e g r a t i o n  t i m e .  Also, i t  i s  t o  our advantage t o  r e f r a i n  

from evalua t ing  N(,l ) d i r e c t l y  from the i n t e g r a l  (4 .4) ,  due t o  t h e  

logarithmic s i n g u l a r i t y  of t h e  integrand when 

3 

1 

O1 

1' is on t h e  path cr 

A second r e l a t ionsh ip  involving t h e  function 8 (a) relates the  

function values on each s i d e  of t h e  branch s i n g u l a r i t y .  

1 

Such a 

r e l a t ionsh ip  must be known when employing t h e  function-theoretic 

technique. Evaluating (4.11) f o r  w on each s i d e  of t h e  branch s i n g u l a r i t y ,  

and by e l imina t ing  t h e  common f a c t o r  N(-wl ) y  w e  obta in  
O 3  

(4.12) 

where the  paths al and o2 are shown i n  Figure 18. For l a rge  values of 
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w,  (4.12) has t h e  asymptotic represent a t i o n  

- j ( 2  b + ~ / 2 )  
e (4.13) 

The corresponding r e l a t ionsh ip  f o r  pa ra l l e l -p l a t e  geometry i s  given by 

Equations (4.13) and (4.14) show t h e  c lose  correspondence between t h e  

canonical function N1 f o r  c i r c u l a r  geometry and E f o r  para l le l -p lane  1 

(4.14) 

geometry i n  t h e  asymptotic sense. 
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5 .  NUMERICAL RESULTS FOR P U L E L - P L A T E  GUIDE WITH SLAB 

Early attempts t o  so lve  t h e  aux i l i a ry  i n t e g r a l  equation (2.77) f o r  

T(wlG,) were ca r r i ed  out by employing an iterative technique. The t e r m  

(zl w a s  s u b s t i t u t e d  as a f i r s t  approximation t o  T(z) i n  (2.77). 

The r e s u l t i n g  numerical i n t e g r a t i o n  y ie lded  a second order approximation. 

Subsequently, an n-th approximation w a s  obtained by i t e r a t i o n  of t he  

(n-1)-th approximation. I n  general ,  i t  w a s  found t h a t  f o r  values of b 

-1 1 
-Bp) ai 

and t which were of t he  same order of magnitude as t h e  free-space wavelength 

Ao, t he  iterative method yielded a rap id ly  converging sequence of functions,  

ice., only th ree  o r  four  i t e r a t i o n s  were requi red  t o  give a so lu t ion  which 

d i f f e r e d  by less than one percent from t h e  preceeding i t e r a t e d  r e s u l t .  

However, when b and t were l a rge  compared t o  A rapid divergence of the 

i t e r a t e d  r e s u l t  w a s  encountered. I n  both t h e  convergent and divergent 

cases, a p l o t  of t he  logarithm of t h e  magnitude of t h e  i t e r a t e d  function 

f o r  any f ixed  poin t  on the  path G; agains t  t h e  number of t h e  i t e r a t i o n ,  

y ie lded  a s t r a i g h t  l i n e ,  Even the logarithm of t h e  function values f o r  

t h e  f i r s t  and second i t e r a t i o n s  l ay  on t h a t  l i n e ,  i nd ica t ing  t h a t  t h e  

spectrum of elgenvrplues of t h e  truncated aux i l i a ry  i n t e g r a l  equation w a s  

of a s p e c i a l  character.  

0’ 

The character is that there e x i s t s  one eigenvalue, 

dominant i n  modulus over a l l  the  o thers  i n  the  spectrum, The dominant 

charac te r  of t h i s  eigenvalue may be used t o  advantage i n  t h e  construction 

of a so lu t ion  f o r  the divergent caseo 

convergent cases, matrix invers ion  w a s  employed ins tead .  It was found 

t h a t  the  computation t i m e  required t o  i n v e r t  a 50 x 50 complex matrix w a s  

comparable t o  ten i t e r a t i o n s .  

However, f o r  divergent and slowly 
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Some numerical so lu t ions  to  the problem shown i n  Figure 1 were 

obtained using a high speed d i g i t a l  computer, viz, ,  the  IBM 360/75, I n  

order t o  illustrate the  e f f e c t  of varying each of t he  phys ica l  parameters, 

t h e  r e s u l t s  are divided i n t o  the  following categories: 

b ,  t h e  waveguide half-width, (2) v a r i a t i o n  i n  1, t h e  s lab-aper ture  

separa t ion ,  .(3) v a r i a t i o n  i n  2 t ,  t h e  slab thickness,  and ( 4 )  v a r i a t i o n  

(1) v a r i a t i o n  i n  

i n  K ,  the . r e l a t i v e  p e r m i t t i v i t y  of t he  s l a b .  

It was  -indicated i n  Section 2.6.2 t h a t  t h e  number of n u l l s  i n  the  

forward p a t t e r n  is  dependent on the waveguide half-width o r  i n  other 

words, equiva len t ly  dependent on t h e  number of propagating guide-modes. 

Figures 19a through 19d show the r ad ia t ion  pa t t e rns  f o r  four  d i f f e r e n t  

values of half-width. The values of b were chosen so t h a t  ari a d d i t i o a a l  

mode propagates i n  subsequent f igu re ( s )  , beginning wi th  orie i n  19a and four  

i n  19d. I n  each case, t h e  inc iden t  mode w a s  TEM, and t h i s  i s  t h e  case f o r  

a l l  r e s u l t s  i n  t h i s  paper. Each p a t t e r n  is  normalized t o  uni ty  i n  the  

broadside d i r ec t ion ,  Table 1 i l l u s t r a t e s  t he  d i s t r i b u t i o n  of power 

s c a t t e r e d  i n t o  the  various regions with the  inc iden t  guide mode having. 

u n i t  power. The various values of s c a t t e r e d  power have been renormalized 

a f t e r  computation i n  order t h a t  t h e i r  sum i s  un i ty ,  

s c a t t e r e d  power before  renormalization w a s  found t o  be  wi th in  four  percent 

of un i ty  i n  near ly  a l l  cases and occasionally not more than twelve percent,  

By increas ing  t h e  number of sample po in t s  o r  t he  po in t  of t runca t ion  i n  

However, t h e  t o t a l  

t h e  numerical i n t e g r a t i o n  of t h e  aux i l i a ry  i n t e g r a l  equation, accuracy may 

be increased at t h e  expense of computation t i m e ,  However, i t  w a s  found 

t h a t  such an increase  i n  accuracy had very l i t t l e  e f f e c t  on t h e  "shape" 

of t h e  r ad ia t ion  pa t t e rn ,  and only a f f ec t ed  the  d i s t r i b u t i o n  of Sca t te red  

power Typical machine-time f o r  a s i n g l e  so lu t ion  w a s  about half-a-minute. 
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As ind ica ted  i n  Figure 19 and 

narrows as t h e  guide half-width is 

64 

Tab'le 1, t h e  m a i  

increased with 1 

forward r ad ia t ed  power P 

the  d i e l e c t r i c  s l a b .  An inc rease  i n  b has a de t r imenta l  e f f e c t  on the 

e f f i c i ency  of su r face  mode exc i t a t ion .  Table 1 ind ica t e s  t h a t  as the  

guide aper ture  i s  widened, the t o t a l  power P A i n  the  su r face  modes i s  

decreased. 

This r e s u l t  would a l s o  occur i n  t h e  absence of E" 

The e f f e e t  of changing t h e  d is tance  between the  guide aper ture  and 

s l a b  is  next oonsidered. 

p a t t e r n s  when the d is tance  .e is var ied  from zerO t o  Aoe As ind ica ted  i n  

Section 2,6.2, the forward p a t t e r n  is near ly  independent of 1, while i ts  

shape ,depends on t h e  transmission f a c t o r  r. This independence of L is 

i l l u s t r a t e d  by t h e  c lose  s im5la r i ty  of t h e  forward p a t t e r n s  of  Figures 

20a through 20f. 

near ly  independent of L. 

Figures 20a through 20f show t h e  r ad ia t ion  

I 

The forward rad ia ted  power PE, shown i n  Table 2, is a l s o  

The dependence of t h e  p a t t e r n  i n  t h e  backward d i r e c t i o n  on L is 

not  s o  simpae, due t o  the  phase r e l a t ionsh ip  between t h e  d i r e c t  and re- 

f l e c t e d  f i e l d s  i n  the  composite f i e l d  representa t ion  discussed i n  Section 

2.6.2. 

values of R and shows t h a t  the e x c i t a t i o n  of sur face  modes becopies 

increas ingly  d i f f i c u l t  as the  s l a b  I s  moved away from t h e  waveguide 

aper ture  a 

Table 2 compares t h e  q i s t r i b u t i m  of scattered pme$ fcx  various 

t h e  s l a b  thickness 2 t ,  t he  p a t t e r n  and s c a t t e r e d  power 

r r n r i . 0 ~ ~  f r ac t ions  of no, e f ree-bpice' wavelength, 

g th  wi th in  the sl;ab, 

t h e  r ad ia t ion  pa t t e rns  when the  slab thickness 
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Table 2. The scattered power for various values of .e, the 
aperture-slab separation k 
and 2t  = A, f 4 .  The free-space wavelength i s  Ao. 

= 1, K = 2, b = A 0 / 4 ,  
0 
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The scattered. power €or various values' of at ,  the slab xdidth, 
given as fractions of h o ,  the free-space wavelength. 
k 

3 Table 3. 

= 1, .tc = 2, b = AJ4, R = Ao/4. a 

'Bo 1 'E 
watts watts 

TEM 

4,3193-2 8,5478-1 

1,5453-2 7,80L23-1 

5,3223-2 7,5283-1 

---I-- 
2.2313-2 8 - 1823-1 

3,2133-2 8.5233-1 I I 
4,706E-32 8,47fE-l 

watts I watts 

1.075E-1 9.7143-2 

7.0993-2 1.2283-1 

1.5893-1 7.4053-9 

~ 9.4783-2 1,9143-2 

I 
9.4213-2 1.0343-2 

P 
A1 

watts 

4,6593-3 

1,6603-3 

6 e 800E-4 

watts 

TOTAL 

9.7143-2 

1 2283-1 

4.6593-3 

2 e 0843-2 

1 e 1023-2 
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An i n t e r e s t i n g  behavior of the t o t a l  su r f ace  mode power PA is observed. As 

t h e  s l a b  thickness is increased, t h e  amount of power ca r r i ed  by t h e  sur face  

modes increases .  However, when the s l a b  is s u f f i c i e n t l y  th ick ,  allowing 

another mode t o  propagate, t h e  t o t a l  power PA decreases. 

i n  s l a b  thickness again increases  the su r face  mode power u n t i l  another 

A f u r t h e r  increase 

mode begins t o  propagate. 

Numerical r e s u l t s  f o r  various values of s l a b  permOttivity are shown 

i n  Figures 22a through 2Le. r ad ia t ion  pa t t e rns  are shown only f o r  p o s i t i v e  

values of K, s i n c e  l i t t l e  power is rad ia ted  when the  s l a b  is a plasma 

and when the  aperture-slab separa t ion  L is zero. 

i n  K is t o  broaden t h e  forward lobe of t h e  pa t t e rn .  This e f f e c t  is 

The e f f e c t  of an increase  

accompanied by a decrease i n  t h e  forward rad ia ted  power PE, ind ica ted  i n  

Table 4 .  Also shown i n  Table 4 are seve ra l  cases f o r  plasma s l abs .  When 

K < 0) a l a rge  f r a c t i o n  of t h e  power is  r e f l e c t e d  back i n t o  t h e  waveguide, 

as ind ica ted  i n  the  column headed P i .  

both t h e  forward and backward rad ia ted  power is reduced; however, t he re  is  

a g r e a t e r  f r a c t i o n  of power leak ing  around the  guide edge i n t o  region C 

than i s  rad ia ted  through t h e  s lab  i n t o  region E. This i s  t h e  case when 

Fox l a r g e  negateve values of K, 

, 

1 = 0. When the  plasma s l a b  is not d i r e c t l y  aga ins t  t h e  guide aper ture ,  

an appreciable amount of power w i l l  be r ad ia t ed  i n t o  tpe backward region. 
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Table 4. The scattered power for various values of K, the relative 
dielectric constant of the slab. 
A , , l 4 ,  R = 0. The free-space wavelength is A o .  

ko = 1, b = A0/4> Bt = 

watts watts 

~ 5.3673-1 4,1483-1 

7.6083-2 8.5463-1 

5.2843-2 7.0503-1 

4,3203-2 8.5473-1 

9.6883-2 7,1533-1 

987093-1 1,3673-2 

----t-- 
7,7343-1 1.8263-1 

9.0013-1 4.7393-2 

watts 1 watts I watts 
I I 

2.8133-2 5,5663-10 4.8933-2 1 I 
1.8563-2 2.2473-1 - I I 

l -  1.0213-1 - 

1.8753-1 - - 

1,5413-2 - __I_ 

5,2593-2 - - 
I 1 

P 4 
watts 
TOTAL 

2.670E-2 

4.893E-2 

2.247E-1 
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6 ., CONCLUSIONS 

The present  so lu t ion  f o r  r ad ia t ion  from an open-ended p a r a l l e l -  

p l a t e  waveguide through a d i e l e c t r i c  o r  plasma s l a b  lends i t s e l f  t o  a 

numerically accurate and r ap id  so lu t ion ,  Typically,  t h e  function-theoretic 

technique and its subsequent extensions and modifications (he rea f t e r  c a l l e d  

MFT) have several d i s t i n c t  advantages over o ther  methods, compared with 

some v a r i a t i o n a l  techniques f o r  t h e  same problem, t h e  MFT y i e l d s  a t  least 

t h e  most u se fu l  information, v i z , ,  waveguide r e f l e c t i o n  coe f f i c i en t s .  

However, with l i t t l e  add i t iona l  bu t  s t ra ight forward  computations, a l l  of 

the  s c a t t e r e d  f i e l d s  can be determined. Formulation i n  terms of the  

c h a r a c t e r i s t i c  modes f o r  each region i n  the MFT leads t o  a s i m p l e  mode 

matching procedure, The process of continuing the  inc iden t  waveguide 

f i e l d  i n t o  t h e  open-region, as is the  case when t h e  Weiner-Hopf technique 

is employed, i s  not i n  l i n e  with a phys ica l  understanding of the  problem, 

F ina l ly ,  t h e  co r rec t  edge condition i s  automatically s a t i s f i e d ,  s ince  

a p r i o r i  information of t h e  asymptotic behavior of t h e  f i e l d s  i n  the  

neighborhood of t h e  waveguide edge is incorporated i n  t h e  MFT. 

cont ras t ,  t h e  s a t i s f a c t i o n  of t h i s  important condition is  d i f f i c u l t  - i f  

no t  impossible - t o  show when o ther  methods are employed. 

I n  

For example, 

Mittra (1963) demonstrated t h a t  s a t i s f a c t i o n  of t h e  edge condition i n  

t h e  so lu t ion  of a doubly-infinite set of matrix equations r e l q t i n g  t o  t h e  

closed-region waveguide b i fu rca t ion  problem, w a s  s t rong ly  dependent upon 

the  way i n  which the  number of equations w a s  determined i n  t h e  t runca t ion  

procedure e 

Application of the  MFT t o  waveguide problems o the r  than $he b a s i c  

pa ra l l e l -p l a t e  geometry, requi res  only a s t ra ight forward  extension of 
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t he  method employed f o r  t h e  simpler geometryo The so lu t ions  f o r  

c i r c u l a r  guides with r o t a t i o n a l l y  independent f i e l d s  are e a s i l y  obtained, 

and they possess a l l  of t he  des i r ab le  c h a r a c t e r i s t i c s  of pa ra l l e l -p l a t e  

geometry. Also t h e  MFT i s  e a s i l y  extended t o  geometries containing layered 

media i n  the  open-regions, Such layered problems are encountered i n  

diagnostics of laboratory plasmas, where a bulk plasma i s  surrounded by 

an ion  sheath and g l a s s  envelope, 

Other problems which are e a s i l y  attacked by the MFT include: (1) 

The flanged waveguide; (2) r.adiation from an open-ended waveguide onto 

a r e f l e c t i n g  screen; and ( 3 )  a flanged guide r a d i a t i n g  through a plasma o r  

d i e l e c t r i c  s l a b ,  I n  f a c t ,  most open-ended waveguide problems i n  which 

the geometry is uniform i n  the t ransverse  d i r e c t i o n  bu t  longi tudina l ly  

non-uniform can be formulated and solved by t h e  MFT. 
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APPENDIX 

ESTIMATION O F  TJ3.E TRUNCATION ERROR FOR INFINITE PRODUCT EXPANSIONS 

I n  the  numerical so lu t ion  of problems via t h e  function-theoretic 

technique and i t s  subsequent modifications,  one is required t o  eva lua te  

i n f i n i t e  product expansions of t h e  f o l b w i n g  form: 

= 1)’ - k2 , k and b are constants described 6, 0 0 
where 

elsewhere, and w is t h e  function va r i ab le ,  

i n  a t runca ted  form, toge the r  with an estimate of t h e  t runca t ion  e r r o r ,  

w e  w r i t e  

To an end of eva lua t tng  (Al) 

The expression f o r  t h e  t runca t ion  e r r o r  E is  given by K 

1 

Expanding the  logrithmic p a r t  of (A3) i n  a power series 

(K + 1) 711(2bko) >I w/kol > 1, w e  obta in  

E =  K 

when 

(34) 

Interchanging t h e  ind ices  of summation, i.e., summing on t f i r s t ,  together 

with the r e l a t ionsh ip  



7 6  

W 

K+1 I [&I ds = [r(;+l)] ~~] ' 
k b  2 

which i s  v a l i d  f o r  (K91) $[(e) + l] , w e  obta in  bounds f o r  the 

t runca t ion  e r r o r  f o r  w-real 

The 

- (K-1) i 00 

c 
t = 2  

I 

J 

summations i n  (A6) can be evaluated exac t ly  ( Jo l ly ,  1961) 

Subs t i t u t ing  (A7) i n t o  (A6) and tak ing  only t h e  f i r s t  term i n  the  power 

series expansion of ln( l -x) ,  w e  f i n d  t h a t  c K  has the following asymptotic 

rep resent  a t  ion: 

Equation (A8) i s  found numerically t o  y i e l d  exce l l en t  r e s u l t s  f o r  

I w I  < 10ko and K = 100. 

E 

computed from (A21 by use of t h e  following r e f l e c t i o n  fornlula i n  which 

To a f i i s t  order approximation, t h e  value of 

is the same f o r  both - + w, One may check the  accuracy of (Al) as K 
I .  

t h e  t runca t ion  e r r o r  is  cutnulative: 
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2 2  where 01 = & e We further note that i n  the solution of the 

auxiliary integral equation ( c f .  section 2 .4 ) ,  factors of the form 

II(u,k3)/Lf(-u,f3) are encountered. 

error (A8),  w e  see that i n  the above quotient of in f in i t e  product 

expansions, the truncation error is self-cancelirig. 

0 

Due to the even symmetry of the truncation 
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