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ABSTRACT

An analytic solution to the problem of radiatiom from an open-ended
parallel-plate waveguide into a dielectric eor plasma slap-is obtained,
The electromagnetic fields are formulated in terms of a discrete mode
spectrum inside the waveguide and continuous mode spectra in the open
regions, Mode matching at the waveguide aperture plane leads te a sin-
gular integral equation. A éelution of this equation allows the deter-
mination of the fields throughout the whole of space. However, this
equation is not solved directly, but.instead, an auxiliary integral equa-
tion is formed from the original equation by employing the known exact
solution of the canonical problem, viz,, radiation from an open-ended
waveguide inteo free~space. Thé‘auxiliary equapion has the advantage
that itimgy be sélved exactly in. an asymptotic sense. This asymptotic
solution demonstrates that the correct edge condition is satisfied, |
Standard numerical techniqueé are employed, and results giving the fields
and distribution of scattered power for a.TEM incident mode are presented.

Solutions for other proﬁlems are also formulated, viz., the flanged
waveguide and a guide radiating into a réflecting screen, These prob-
lems may also be solved when the geometry is circular. Furthermore,

the edge condition is also shown to be satisfied in circular geemetry.
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1. INTRODUCTION

Exact solutions can be found for certain opeh—regibn boundary value
problems in which the geometry can be separated into several distinct
semi-infinite regions. For example, an open-ended parallel—plate waveguide
radiating into a homogeneous space has been solved by Noble (1958) using the
Weiner-Hopf technique and by Mit;ra and Bates (1965) employing an extension
of the function—theoretic‘tgchniéue to open-regions. Recently, problems
in which one of the'regioﬁs,is modified have ;lso beén found solvable.

Bates and Mittra (1967), using the Weiner-Hopf.technique, have found an
analytic solution for the problem where a dielectric or plasma slab is
excited by a semi-infinite waveguide (cf. Figure 1). An important
characteristié‘of this problem is that the medium filling the open-region

is non~uniform in the transverse direction, while the complete geometry is
longitudinally uniform. When the geometry is non-uniform in the longitudinal
direction, a class of boundary value problems results for which the Weiner-
Hopf technique is no longer directly applicable. Figure 2 shows a
longitudinally non-uniform problem, i.e., a semi~-infinite parallel-plate
waveguide radiating through a dielectric or plasma slab. The purpose of
this work is to present a method based on the function-theoretic technique
which is useful in attacking problems which have longitudinal non-
uniformities.

Formulation of a problem by the function-theoretic technique is
typically accomplished by employing the characteristic or normal modes
in each region. Such a modal representation can be used to advantage
when tﬂere is a longitudinal inhomogeneity within an individual region.
This épplies to stratified media as well, Such regional non-uniformities
can be taken into account by the application of conventional mode-matching

1
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A longitudinally uniform open-region problem.



3
procedures at. the interfaces between the various layers or subregions,
An application of the continuity conditions .at the aperture-plane of the
waveguide, leads to an integral equation, which is an extended form of the
corresponding equation for the ummodified géometfy. An exact solution of
this eqﬁatibn for the canonical'problem, i.e., for the ummodified geometry,
is available (Mittra and Bates, 1965) and is‘ﬁsed in the construction
of the solution of the problem shown in Figﬁre 2.

A function F(w)iof a complex variable w is constructed haVing‘a
certain pole-zero structure and specified branch singulafities. Certain
manipulations with this function in the complex plane yield an.integral
equation which is then compared to the one obtainea by mode-matching. By
choosing a particular form for F(w), together with the above;comparison,
an auxiliary integral equation is formed. This auxiliary equation may be
solved instead of the origimal integral equation.

Tﬁere are two definite advantages gained by employing the auxiliary
integral equation., These advantages are: (1) The auxiliary equation is
in a more efficient form forynumerical solution than is the original
integral equation. (2) An’exact solution in the asymptotic sense of the
auxiliary équation is possible. It is this as&mptotic behaviof which
demonétratés that the correct edge condition‘is.indeed satisfied
(Meixner, 1954). It is often difficult if not impossible to prove the
satisfaction of this condition when alternative methods are employed in

constructing a solution.



2. RADIATION FROM AN OPEN-ENDED PARALLEL~PLATE WAVEGUIDE INTQ AN

INHOMOGENEOUSLY FILLED SPACE

2.1 Formulation of the Prpblem

Cogsider an open-ended parallel-plate waveguide radiating into an
open-region which is partitioned by a dielectric slab. The geometry of
this structure is shown in Figure 2. The waveguide is excited from the
left by a single TEM or TMpo mode (p = 1,2,....) of unit amplitude in
region B. The space surrounding the guide is divided into four4regi§ns:
A, C, D, and E. A right-hand Cartesian coordinate system is placed at
the guide aperture with the pertinent dimeﬁsions given by b, the guide
half-width; %, the guide-apérture separation; and t, the slab half-width,
The relative permittivity of region A is given by « while that of the
remaining space is taken as unity.

A solution of the source-free Maxwell's equations for this geometry
leads to a disqrete;eigenmode expansion of the electromagnetic fields in
region B and transform representations in terms of the continuous mode
spectra in the remaining open-~regions. The transverse fields are matched
at each of the regional interfaces, and the resulting equations are
manipulated in order to yield expressions for the mode and spectral
weight coefficients. These coefficients are then explicitly solwved for
b& an appropriate modification of the function-~theoretic technique. This
technique, in its original form, was first applied to closed waveguide
problems by Hurd and Gruemberg (1954) and to open periodic structures
by Berz (1951) and Whitehead (1951). These early works yielded infinite
matrix equations, the elements of which were functions of the longitudinal
wave numbers and mode coefficients for the various regions. Mittra and

Bates (1965) extended the function-theoretic technique to an.open-region
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problem by employing a limit process to the associated closed-region
problem, Due to the continuous nature of the eigenspectrum in the open-
regions, an integral equation results corresponding to the infinite matrix
equation for the associated closed-region problem. For the modified
problem of Figure 2, an extended version of this integral equation is
obtained, which can be transformed into a matrix equation by the usual
numerical techniques,

The geometry of Figufe 2, being y-independent and x-symmetric,
scatters only TEM and TM type waves with-respect to the z~coordinate.
The total magnetic intensity ¢ = Hy in each region is represented as

follows:

N ='% I [Al(a) cosﬁ[1(z~2mt)] + Az(d) éinh[r(zézut)]] exp(=jox) :do,
o

8 <z <8+ 2t, (2.1)

Lo

@B = cos(B%E) exp(espz) + SEO [BS cos(g%ﬁ) exp(Bsz)],

x| < b, z <0, (2.2)

o
i
N

f C(y) exp(nz) exp[-jy(x~b)] dy,
(o)
x>b, z <0, (2.3a)
2% = %j C(y) exp(nz) exp[-jy(x+b)] dy,
g

x <-b, z < 0, (2.3b)



QD = %-I [D+(a) exp(-£z) + D (a) exp(gzi] exp(~jox) da,
o

0<z<4, (2.4)

and

N i

. =

- j E(a) exp[-£(z-2-2t)] exp(-jox) do,
o

L+ 2t < z. . (2.5)

The mode coefficients are given by B, (0= 0,1,2...),in rggion B, and
the spectral weight functions by Al(u), Az(a), cy), D+(a), D (a) and
E(a) in their respective open-regions. The fields have a traveling wave
representation in each region except A, where the representation is

in terms of even and odd modes with respect to the z-coordinate. This
is a convenient representation for region A when there are surface modes
present within the slab. 'Thefvariébles of integration o and ¥y lie on
the path ¢ shown in Figure 3. Use of the exp(jwt) time convention
requires that the following function branches be employed in order to

yield outgoing waves:

e I (2.6a)

=
#
<
[
=
1}

/2 (2.6b)

S 2 3k K2-a? (2.7)
© (o]
B, = /-(‘ﬂ)z_ki = j/kg—(%ﬁ)z , (s =0,1,2,....). (2.8)

b

~
(]

and



(b) (a)
S~ ‘/ .
/
l/2ko -—{og JJ ~ gto_ —
s = J\’ J\V2 —~Re(a, )
Ko K"k,
()] [ -(b) a ory PLANE

Figure 3. The path ¢ and the branch cuts for (a) £(a) and n(y), and
(b) 7(a) in the complex or o or y-plane.



The free~space propagation constant is given by ko = w/ﬂ;E;; where w

is the angular frequency and Mo and €, are respectively the permeability
and permittivity of free-space. The>brahch cuts for (2.5) through (2.8)
are shown in Figure 3 for k-real and greater than unity. The remaining

components of the electric field are obtained from the following

relationships:
. -1 30 :
Ex‘— (Jweoer) s 2.9)
and
. -1 39
E, == (Jweoer) ox ° (2.10)

where e, =K in region A and unity throughout the remaining space.

2,2 Representatipn in the Spectral Domain

The first step toward obtaining the solution of (2.1) through (2.5)
is to express the unknown mode and’weight coefficients in terms of
E(a), the weight coefficient for the forward open-region. The procedure
is to enforce the continuiti/COnditions of the transverse field components

at the three regional interfaces. Continuity at z=0 gives

‘QB(x,o) = @D(x,o) (2.11)

>|x| <b

3@B(X,0) BQD(XfQ)

2z = %z -

(2.12)
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and

96, (x,0) = @ (x,0) (2.13)

S ERS

Béc(x,o) _ BQD(x,o)

9z T3z 7 * (2}}4)
Similarly, at z = & we obtain
QD(X,Q) =‘¢A(X’2) (2.15)
B@D(x,z) -1 BQA(X,z)
3 - K5 (2.16)
while at z = £ + 2t we have
(I>A(x,2+2t) = <I>E(x,52,+2t) (2.17)
and _ ;
K?-l,wA(x’Hzt) _ 8¢E(x,2+2t) 2.18)

3z Y °

Combining (2.17) and (2.18) yields the expressions for the even and
odd spectral weight functions in region A
A (@) = E(a) [cosh(tt) +£= sinh(re)] (2.19)

and

A,(@) = E(a) [sinh(rt) + ﬁf cosh(tt) ] (2.20)
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Similarly, a combination of (2.15), (2.16), (2.19), and (2.20) gives
the forward and backward traveling wave spectral weight functions in

region D

i

() = E(a) R'(a) (2.21)
and

D (a)

E(@) Q' (a) , (2.22)

where R'(a) = R(a) exp(&f) and Q'(&) = Q(a) exp(-£%), with

R(a) = cosh(2rt) + %—[% + .:_g] sinh(27t) (2.23)
and
Q) = % l:ﬁf- - -é—] sinh(21t) . (2.24)

The above procedure, used to obtain expressions for tﬁe spectral.
weight functions in thevregiéns lying between the guide aperture and the
forward openfregion, is not limited onl; to problems having two
intermediate regioﬁs. One can express the weight functions in each-
region of an n~layered medium in terms 6f the carresﬁonding fﬁnction in
the far-forward region. This procedure is similar to th;t of determining
the voltage along each segment of a cascade of transmission lines, each
por;ion»having a different characteristic impedance, in terms of -the
voltaée at the line's termin#tion.

Fourier analyzing (2.11) and (2.12), i.e., multiplying each side
of these relationships by cos(mmx/b), (m=0,1,....), and integrating witﬁ
respect to x from -b to b, together with the relationships (2.21) and

(2.22), yields
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P 120y 2P m , oy _-
-1)" b (l+6p) Gm +. (-1)" b Bm (l+6m) =

J E' (o) R'(“)2+ 3'(“) do (2.25)
£2-8 :
10} . m

and

2 2
&t

(2.26)

-1P b BP(1+5§) sg - eafﬁaamBm (1+a;) = J e B (o) | RE(@ = Q' () a,

(0]

where E'(a) = o sin(ab) E(u) and 61 is the Kronecker delta defined by

0, if i # j

3.
3 . (2.27)

1, if i = j

The integrands of (2.25) and (2.26) have poles at & = i;Bm or .
equivalently when o = + mn/b. These poles are cancelled by the
correspondiﬁg zéros of sin(ab), Whicﬁ is a factor of E'(a). Due to this
pole—zero cancelation, the integrals of (2.25) andi(2.26) need not be
considered in the Cauchy principal value sense, |

Multiplying (2.25) by B and first adding and then subtfacting it

from (2.26) yields

P L0 - . R'(a)  Q'(a) |
-DP b g (1457 sﬁ = j E'(a) | $5 - ¥ do.  (2.28)

. m
0"

and

m oy _ [ s R'(a)  Q'(a) :
- (=1)"b BmBm(l+6m) = J E'(a) - % do. f (2.29)

' m i
g
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Note that the path ¢ employed in.all integrations previous to (2.28)
has been reduced to ¢' in (2.28) and (2.29). This new path is identical
to that portion of ¢ which extends from zero to infinity and lies entirely.
in the upper-half a~plane (cf. Figure 3). Such a reduction is carried
out by requiring E(a) to be a symmetric function of o, the remaining
part of the integrand being obviously symmetrie,
Multiplying (2.13) by exp[jy(x-b)] and integrating with respect to
x from b to », and repeating the same process with a multiplier

exp[jy(xtb)] and integrating from - to-b- yields

m C(y) = EC(y) [R'"(Y) + Q" (y)] cos(yb)

- P.V.~J E'(a) R'(a)2+ g'(a) do. (2.30)
5 g -n

and

TnC) = -1 n E() [R'CGy) = Q' (v)] cos(yb)

+ P.V. J E'(0)E R'(O‘)Z‘ g'(“) da . (2.31)
5 £7=n

Due to the continuous nature of n, a,canceiliﬁg of the poles at

£ = +n is ﬁot found except when n =.t_8m. Therefore, the‘integrals

in (2.30) aﬁd (2.31) are written as fhe‘Cauchy’principal value type.

V Combining (2.30) and (2,31), as was done in obtaining (2;28) and

(2.29), gives

| 1
™ n E(R'(y) cos(yb) = B.V. f B | B8 - L) 4 2.32)
O'
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and -

mn C(y) —m n E(y) Q' (y) cos(yb) =

e R'(a) Q' (a)
P.V.J E' (o) | St - 5225 | da (2.33)
0.'

Equations (2.29) and (2.33) express the two remaining unknowns, viz.,
Bs and C(y), in terms of E(a). Comparing (2.28) with (2.32), i.e., -
when n = Bm’ we obtain the values of E(a) at a countable-infinite

number of points

o =1
b (1+6p) ﬂR'(pﬂ/bi] ;3 8 =7p
E(sm/b) = . (2.34)

; sS#0p

Equation (2.32) together with (2.34) represents a homogeneous integral
equation for E(u) with prescribed function values at particular values

of a. In the following seétion a method is presented to solve this
integral equation based on an extension of the function-theoretie technique

for open-regions.

2.3 Modificatiop of‘the Function-Theoretic Technique

As stated in the introduction, a closed-form solution to the
problém associated with the,geometfy of Figure 2, but with the dielectric
or plasma slab removed (hereafter called the cénonical problem), has been
obtained. When the slab is inserfed, one finds that by employing a
suitably modified version of the function-theoretic technique, an analytic

solution is still possible. However, the solution is no longer in a
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closed-form, but is most easily'obtained from thé\solution of an auxiliary

integfal equation.

2.3.1 Solution in the Spectral Domain
Consider a function F(w) of a complex variable w, whichvis

factored as_follows:
F(w) = Fl(w) T(w) . (2.35)

The factor Fl(m) is that function which one employs in the solution of
the canonical problem (Mittra and Bates, 1965) by the function-theoretic

technique, and is given by
Fi(w) = K M(w,B) N{w) (w-B ) (2.36)

The constant K is a normalization factor which depeﬁds upon the .

amplitude of the incident waveguide mode.

I(w,B) = I (l ~-§—) exp(w/@é) (2.37)
s=1 s ' ’ '

is an absolutely convergent infinite product expansion, and

N(w) = exp %:’-J- [1—Ce + 1n-12-cﬁ—b- 1 - jy%ﬂ-+
o
2,.2
w=Yw +k
/o%® tn| —=2 (2.38)
m e] =] k0

is obtained from the limit function of the ratio of two infinite product

expansions assocjiated with regions C and D in the canonical closed-region
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problem as the outer guide is made inf%nitely wide (cf. Section 2.3.2 ).~
fhe constant Ce in (Z.Sé)yis equal ;o\ﬁule¥'s constant.

For large values of w, the canonical function Fl(w) decays
exponentially in the upper half w-plane and decreases algebraiéélly as
‘wl_llz in the lower half-plane. Furthermore,'Fl(w) has a branch point
at w = B, and a branch singularity, shown in Figure 4, due to N(w).

As will become apparent in the sequel, the cpmposite function F(w) must
haYe a simple pole at w = Bp, the propagation constant for the incident
guide mode, and a branch point ét w = - Bo. Theréfore, we require

T(w) to possess these added singularities with a branch cut along the
reflection of the cut fo; Fl(w) (cf, Figure 4.). The edge condition
(Meixner, 1954) requires that F(w)-+()(m— 1/2 - V) as fu] + =, arg(w)

= - 7, and therefore, it is stipulated that T(w) +()(wﬂv), where

1 . Ko . . _
l-max m arc31n[K+J] s O s =0
v = . (2,39)
1 3 2> 0
The branch of arcsin is chosen as follows:
T v T
-3 < arcsin(8) < 5 3 -l <6 <1. (2.40)

The integral equation (2.32) for the weight function E(a) can now
be solved. Integration of the function F(w)/(w-n) along the path I

(cf, Figure 4), with n placed directly on the branch singularity, yields

F(n‘ ) =0 . (2.41)
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Figure 4. The contour I in the complex w~-plane.
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The integrals along the contours ¢_, and o__ are zero in (2.41) due to

o

the exponential decay and algebraic decrease respectively of the integrands

along these paths as |w| ~ o, The integrals along the paths 9y and o

2

are interpreted as being of the Cauchy principal value type. Employing

the relationship

Nw| ) = N(@|_ ) exp(- 23b vo?+k?), (2.42)

g g o
2 1

which expresses the discontinuity in N(w) across the branch cut, and

by transforming the integral along Oq and Sy into a single integral

along o, via the transformation of variable w - -w, (2.41) is reduced to

1

the following form:

F(w,c ) [l-exp(~23jb /wz+k§)]
1

F(n 01) exp(=jyb) cos(yb) = P.V, 213 (w=-n)
g
1
Fl-u], ) - Bl )
3 4
T TTT20 (i) do (2.42)

The integral in (2.42) is next transformed into an integral along
the path ¢', which was employed in (2.32), via the transformation of
variable w = £ and dw = o da/E. The result is given by

o F(E]G ) sin(ab) exp(-job)

F(nlgl) exp(-jyb) cos(yb) = P.V, L AR

g!

a [F(=g|_ )»-F(-g|_ )l
o F

+ do . (2.43)

£ 2rj (&+n)
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A direct comparison of the integrands of (2.43) and (2.32) yields

F(g|_ ) exp(-jub)
E(a) = X

O (2.44)

and

[F(-g]_ ) - F(—elék)]
E(a) = - 3 : 4

Q" (a) 2mj sin(ab) £ (2.45)

A comparison of the non-intégratedAterms yiélds'

F(nlol) cos(yb) exp(-jby) = m n E(y) R'(y) cos(yb) . (2.46)
Equations (2.44) and (2.46) are identical when n = £ and y = o. This
identity shows the self-consistency of the solution for E(u) as

determined by (2.44) or (2.46). Fﬁrthermore, E(a), as obtained from
(2.44), is seen to satisfy .the conditions at o.= (sm/b), given by (2.34).
It is from the value of E(a) at o = (pr/b) that the normalization
constant K employed in (2.36) is determined. With the aid of (2.34)

and (2.38), K is then obtained from the relationship

\

FGB_| ) =b 8 (-1)P @+s°). (2.47)
Pl P P
- 71
In order that (2.44) and (2.45) be consistent expressions for E(a)
they:are~first equated to one andther, then the factored form of F(w)
is substituted, and finally the results are rearranged in order.to

obtain

T(-Elc ) - T(—£104) = 2rj x(8) T(&), (2.48)
3
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where A(£) is given by

Q' (a) Fl(s]0 ) sin(ab) exp(~job)
1l

A(E) = - (2.49)

T R'(a) Fi(—alo3)’

Equation (2.48) represents an expression of the discontinuity in T(-£)
across,the branch cut, as shown in Figure 4, in terms of  -the function
value T(£) at the reflection point £. - In Section 2.4, (2.48) is
transformed into the integral equation which was previously referreq to
as the auxiliary integral equation.

At this point, the problem is solved contingent upon the construction
of T(w). However, simpler expressions‘éxist for the mode coefficients
Bm and weight function C(y), than the integral representations given by
(2.29) and (2.33). Integrating along the contour I with —Bm replacing
n in (2}41), together with the subsequent transformation of variable

and a direct comparison of the result with (2.29), yields

m
(-1 F(—smlds)
Bm = - ’““g“ (2.50)
b (145 )
The same process with n replaced by -n yields
=L - Q (y)
Cly) === | ¥ n]03) 2oy F(n]cl) . (2.51)

Before continuing on to the solution of T(w), we digress so that
we may compare the solution just derived with that for the corresponding
closed-region problem. This is done to gain some insight into the form

of the aguxiliary integral equation,
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2.3.2 Cotiparison with the Closed-Region Problem

The closed-region geometry associated with fhe problem just solved,
is shown in Figure 5. The outer guide now has a finite half-width given
by a. 1In all of the regions, the fields are now represented by eigenmode
expansions due to the discrete nature of the eigenvalue spectrum for
closed-regions. The formulétion of the problem follows closely that of.
Section 2.1, with the exception that all of the integrals are replaced
. by infinite summations, and the continuous propagation constants take

on discrete values.

e, - /=) o2 (2.52)

.- /(_s_ﬂ.) 2_ VK :ki (2.53)

and

N = (ﬂ)z_ 2 (2.54)

where ¢ = a - b,

' Mode matching in the plane of the small guide's aperture and
subsequent,manipulations of the resulting equations, yields a doubly-
infinite set of matrix equations for the mode coefficients ESO This set

of equations is given by

8 0 Rl 1
-1Pb B (4% P =268 E R' 62+ 1 E' | B - FE—1] (2.550)
P p’ m oo o m ;s | E-B &R
and
© R!’ Q9
0=2n E R 862~ 1 E'[|2 (2.55b)
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where

In the infinite summation of (2.55b), it is assumed that gs # o for all
values of s and m. This is equivalent to requiring that the ratio of
the outer and inmer guide half—widths, viz,,a/b , is not a rational
number. However, when this ratio is a rational number, we exclude from
the summaﬁion in (2.555) the g-th term when gs = nq, and add to the term
outside the summation the limit of the s = gq-th term as s » q. The

appropriate limit is given by

1im

=~ E R'nm b-§ cos(y _b), (2.56)
s+ 4q s q 4

where we have written Yq = (qn/c). When the outer guide becomes
infinitely large, i.e., c/a > 1, a - ¢ = b, (2.56) becomes the term
outside the integral in (2.32) for the corresponding open region~problem,
viz., -mnE({ﬁ&y) cos(yb). Due to the continuous nature of the eigen-
spectrum in the open region case, this non-integrated term is always
present, since we are forced to let £ = n and o = v.

A solution of the doubly-infinite set of matrix equations is carried
out by a modified version of the function-theoretic techﬁique. The
unmodified technique was employed by Hurd and Gruemberg (1954) for the .
solution of matrix equations associated with the bifurcated waveguideA
problem., A form for modifying the function-theoretic technique so that
it can be employed to solve the bifurcated waveguide problem, with one
of the interior regions modified was first presented by Mittra, Lee,

and Vanblaricum (1968). 1In this form, the infinite product expansion
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associated with the modified region was written as a new infinite product
expansion containing a countable-infinite number of shifts in the zeros

of the original expansion, i.e., shifts from the zeros associated with the
unmodified problem, This zero-shift method is useful for closed region
problems, but becomes awkward in the open-region case. The difficulty
with the zero-shift formulation is that one cannot easily determine~the
limit function generated by the shifted infinite product expansions as the
outer guide width becomes infinitely large. An alternative form for
modifying the infinite product expansion is to employ an equivalent

partial fraction expansion

W S

+
nS AS

=T(w,n)|1+w =

- . (2.57)
s=1 ns

I (1- n )exp
1 ns+As

Equation (2.57) shows the expansion containing the unknown shifts AS on
‘the left, while an equivalent form is shown on the right. This equivalent
form is written in terms of the unmodified aexpansion II(w,n) and the
partial fraction expansion coefficients 8go When the limit process is
considered, i.e., (a,c) > = and a - ¢ = b, it is found that the partial

fraction expansion has an integral form for a limit function

© g
1+ p —2 +1+wJE———(z)dz ) (2.58)
CLow=n w=-n(z)
s=1 s
%1

The ratios of the infinite product expansion associated with regions

C and D of F{gure 5 are found to have the following limit function:

lim T(w.n) -
a,c > o ﬁ?—*%y > N(w) . {2.59)
a-c=b ws
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The-function‘ﬁkw) is closely related to that givenkby (2.38). This
relationship will be shown in Section 4. This fﬁnction‘ﬁ(w) was
originally obtained by the limiting process by Bates and Mittra (1965).
The solution of (2.55a) and (2.55b) for Es by the function~theoretic
technique, is accomplished by the construction of a meromorphic function

H(w). ' This function in a factored form is written

H@) = B (@) | —L-+ 3 —= (2.60)
‘ 1 w-B T, wtE ? e
p s=1 s

where Hl(w) is that function employed in the solution of the canonical
problem (Hurd & Gruenberg, 1954). Manipulations in the complex plane
similar to those for the open-region problem (there is no branch
singularity to circumvent in the_contour integration) yield solutions

for the wvarious mode coefficients.

Q' H(-B )
b 0 .0 o)
B == =58 =g (2.61)
o a R0 P 2b Bo
(-1)° H(-8 )
BS = - 5 BS , (8 =1,2,.04), (2.62)
Q! H(-n_) _
C -2 i—%6°+2—c——o—- (2.63)
o a &, P U
H(-n_)
CS == > (s =1,2,...), (2.64)
s
and
' b 1 o
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residue H(w = gs) 1
E, = (S“) .(Sﬂb) = (8=1,2,..0), (2.66)
— 1 gin |———

a a

N =

_ residue H(w=-£s) 1
s ' (sn) R (snb) Q'
ST\ oy (E12 s
a a

» (8=1,2,...) . (2.67)
Elimination of Es from (2.66) and (2.67) yields an infinite auxiliary

matrix equation for the expansion coefficients

1 o B
H
Tt

(s =1,2,...), (2.68)

where

) 2 . p—
. .Si residue Hl(w—gs) 2.69)
= e Y . N . .
s RS Hl(-ﬁs)

The normalization condition, which depends on the amplitude of the
incident guide mode, is given by

2¢c

a b Bo » P=0

H(BP) = . (2.70)
1P b e, pfo
P
As the outer guide becomes infinitely wide, we expect (2.68) to become

the auxiliary integral equation associated with the open-region problem.
This is indeed the case, and the discussion in the following section will

confirm this result,

2,4 Solution of the Auxiliary Integral Equation

In the preceeding section, we stated that in the limit as the outer

guide half-width became infinite, that (2.68) would become an integral



equation for the unknown expansion coefficient et To this

rewrite the partial- fraction expansion = .

|1 m
G(w) =|—=—+ &
N_Bp m=1 w+€m
and the auxiliary matrix equation
1 > __Bm
Bs = Ag £ -B + I °

s 'p m=l»gs+gm

As the outer guide recedes to infinite, we would expect

w=-B wtz

G(w) ~ 1 + J g&gl’dz
dl ]

and

gw) = 2w Z&fé""‘f ﬁ%—l dz
. p

%1

A combination of (2.72) and (2.73)/yields
g(w) = A(w) G(w)

and

w=8. wtz

G(w) = L "+’j A(z) G(z) dz|.
P

%1
Equation (2.74b) is an integral equation for C(w) when @ is

9]

equation referred to in Section 2,3.2.
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-end, we

(2.71)

(2.68)

(2.72)

(2.73)

(2.74a)

(2.74b)

on theApath

1° It can be shown that this expressioh is the auxiliary integral



28

The expression for G(w), given by (2.74b), has a branch singularity
along the reflection of the path of integration.. We evaluate G(w) on

each side of this branch cut and obtain

]

Glew] ) = =2 4 g7 A() 6] ) +p.v. | M2LEE 4, (5 754)
03 w+6p ,01 Z=

o

1

and

-1 . .
G(—wl°4) w+6p - jr A (w) G(wlcl) + P.V. j Aﬁ&%:%ﬁﬁl . (2.75b)

%1

Subtracting (2.75b) from (2.75a), gives an expression for the discontinuity

in G(w) across the branch singularity

Gl=w| ) =G(~w]_ ) = 2rj 2 (w) G| ) . (2.76a)
o} o} o
3 4 1
This process for obtaining the branch discontinuity for a singular
integral is based on the use of the Plemelj formula (Muskheliskvili,
1964). A comparison of (2.76a) with (2.48) shows that if G(w) is
identified with T(w), that (2.74b) is the required auxiliary integral

equation

o3 A(z) T(z
T(w) = =L+ J M) 2z (2.76b)
P oy

In the following section, (2.76b) will be transformed into a suitable

form for numerical methods of solution.
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2.4.1 Conversion to a_Smooth Kernel

Close inspection of the partial kermel A(z) in equation (2.76b),

reveals that the path o. passes directly over the poles of R—l(z). It

1
will be shown in Section 2.5 that there is at least one zero of R(z)

lying in the open interwal (ko, Kl/2

ko), when « > 1 and real. These
zeros of R(z) correspond to TM-type surface modes within the dielectric
slab. An attempt to solve for T(w) on the path 9y will result in an
integral of the Cauchy principal value type, which is in general,
unsuitable for numerical methods of solution.

Equation (2.76h), as it presently stands, has a singular kernel,
This equation is converted to one which has a "smooth" kernel by
changing the path of integration to one on whiéh the kernel is analytic.

Such a path is shown in Figure 6 and is labeled by o Equation (2.76b)

1
l-

then becomes

T(w) = — +I Alz) ICz) 4, (2.77)

w=8 w+z
P

1

%1

In continuously deforming the path from o to Ui, no singularities of
the integrand of (2.76b) are encountered, since the integrand is analytic
in region S(cf. Figure 6). Using the Cauchy theorem, the integrals in

(2.76b) and (2.77) give identical results for w on the path Oy

Equation (2:77) is no longer applicable when w is in region V of

Figure 6. The effect of changing the path of integration from 9 to

Gi is to shift the cut in the Rieman sheet for T(w) from & position

directly above the path o, to one directly above cé (cf. Figure 6),

3
However, we may analytically continue the solution for T(w) as given by
(2.77) into region V by employing the relationship which describes the

branch discontinuity, viz., equation (2.48). The correct result for
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Figure 6. The integration paths for T(w) and the'region V of analytic
continuation in the complex w or z-plane.
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T(w), when w is in region V, is given by .

| P

°1

1, f A(z) T(z) dz. .. (2.78)
w-8 wtz . :
P 5! .
1
Eduations (2.77) and (2.78) are in a convenient form for numerical
computation. We first solve (2;77).for T(w) on the path ci, and then
substitute the proper values of w on o, and 03'into (2.77) and (2.78)

respectively, to obtain T(w|_ ) and T(-w|_ ).
: oy Uy

2.4.2 Satisfaction of the Edge Condition
In order that the solution obtained in Section 2.3 be acceptable,
it must be demonstrated that the correct edge condition (Meixner, 1954)
is satisfied at the guide edges, viz., (x = + b, z=0). Due.to the manner
in which F(w) was factored in (2.35), it must be shown that T(w) -
()[w_v] as lwl + o, where v is given by (2,39). For large |w‘, (2.76) can

be written in the following asymptotic form:

A(z) T(z 1T
T() + J —————5—)-w+z_» dz + O[w] , (2.79)
0

where A(z) is the asymptotic value of A(z), and is given by

2 (k=1 2 . _
= Kfl] sin“(zb) : & =

A{iz)é ﬁi‘[x(z)] - . (2.80)

()[exp(—zz)] ;3 2> 0’
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The limiting behavior of the infinite product expansions I( + w,B) in
(2.39) is deduced from an infinite product expansion of the gamma function
(Whiteﬁead, 1951). To check whether T(w) has the correct asymptotic

behavior, Z_vqis substituted for T(z) in (2.79). The result is given

by
_ ~
1 k=1 Z
ﬂ [K+l J w+z dz +
lim T v :
|w | >e0 [T(w}] =< J z 322KZZEl'dz + C)[%] , 2=0 o
=n<arg(w)<m 0

(2.81)
For 0 < Re(v) < 1, these ifitegrals can be evaluated by comparison with
the appropriate Stieltjes' transforms (Bateman, 1954), and the results

are given by

=) =)
E__ gz =1 Y (2.82)

wtz sin(vm)

and

wtz w (2.83)

-r<arg (w)<m

1lim T —v
| | ) J z_cos(2zb) .\ _ C){;]
0

\ 7

Substituting these results into (2.81), together with the assumed

asymptotic expression for T(w), yields
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(. [k=1 w_v 1 . R
' [K+l sin(v) + O[‘J}] s =0
w ¥ > < ' L U (2.84)
1 | )
\ O{w] > 1> 0

/

Campaning coefficients of w ° in (2.84) gives the correct result (2.39),

which is repeated here for clarity.

wo

o
It

o

l-max { 0., %-arcsin[fi%

V= > . (2.39)

Thus, the correct edge condition is satisfied by the solution given in-

Section 2.3,

2.5 Surface Waves in the_Dielectric S8lab

The existence of surface modes in the dielectric slab was previously
mentioned as being attributed to the poles of R_l(a). Inlordeg to show

the behavior of R(a), we factor it into an equivalent form

. .
RG) = = [(€0)-(CB)] (2.85)
where
(CE) = 1 sinh(tt) + k& cosh(rt) (2.86)
and
(CO) = 1 cosh(tt)+ & sinh(rt) . (2.87)



34

Equations (2.86) and (2.87) are respectively the determinantal or
characteristic equations for the longitudinal propagation constants
o for even and odd TM-type surface modes within the dielectric slab
(Collin, 1960).

We now,wfite equation (2.1), which gives the magnetic intensity

inside the slab, in terms of the even and odd characteristic equations

K F(£|0 ) exp(=jab)
1

™ exp(ER)

1
(H},)A =3 |

o

cosh[t(z=-4-t)]
(CE)

sinh[t (z=2-t)]
(Co)

+ exp(-jox)da . (2.88)
The integrand in (2.88) has simple poles at those values of o where (2.86)
and (2.87) are zero and branch points at a = i_ko. The corresponding
branch cuts of £(a) are shown in Figure 7. The magnetic intensity of the
surface modes can be evaluated by closing the contour of integration in
(2.88) in the lower half o-plane for x > 0 and in the upper half a-plane
for x <‘0{ Such closed contours afe shown iﬁ Figure 7. It can be seen
that in both cases; i.e., x> 0 and x < 0; the appropriate contour
encloses all of the poles of the function R_l(a). An application of
the Cauchy theorem to the closed contour.integfations‘yields the
following results: (1) The radiation field can be identified with the
contour integration along the bfanch,singularity of £(n). (2) The
surface modes are identified with the residues of the integrand of (2.88)
evaluated at the singularities of R_l(a).

Before writing explicit expressions for the surface modes, some

nomenclature for identifying each mode is presented. When k > 1 and real,
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Figure 7. The paths of integration for determining the fields
R in the dielectric slab.
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equations (2.86) and (2.87) have a number of real zeros which lie in the
. y .

interval (ko, K 2 ko)‘ We assign to the zeros of the even characteristic
equation (2.86) even,iggegers,_so'that if there are M+lnsﬁchuzeroé, we .

obtain (ao < @, < ossv < ay). For the odd equation (2.87), the zeros are

2

given by (al < q

3 < aee < oy). Moreover, the zeros of the even and odd

- characteristic equatiens are interleaved (Collin 1960), and aoyis always
the smallest of the set of values. We identify each surface mode with

the corresponding value ofiaj, i.e., the j~th mode is of the TMﬁo-type

with respect to the x-directionm. va j is even or odd, we mean respectively,
even or odd surface waves. Finally, the TMO surface mode has no cut-off,

. frequency, se that when « > 1, we always have at legst one surface mode
launched within the ‘slab.

‘We are now in-a position to write the expressions for the magnetic

intensity of the surface modes, When (m = 0,1,..., M) we express the even

modes as
oo | d1x FC) gpsh[g(zfgft)] exp[~ja(lx|-b)] . (2.89)
y exp(gr) +—(CE)
o =a
m
For (n = 1,3,...,N) the.odd modes are given by
W - 1k F(E) s}inhLT_(z'—;L—t)‘]vexp_[-’ia(|X|-b)] . @0
expi(&L) 3;(00)
a = @n

We see that beth types of modes represent waves which travel away from
the waveguide aperture in the x-direction and without attenuation.
Furthermore, as the dielectric slab is moved away from the waveguide

aperture, the launching of surface waves becomes increasingly difficult,
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This difficulty is due to the factor expf£f) in the denominator of (2.89)
and (2.90), and represents an exponential damping of the surface mode

excitation with increasing £.

2,6 Radiation Field in the Open-Region

The radiation fieids in tﬁe open~regions C and E of Figure 2 may
be evaluated from the integrations indicated by the corresponding
Fourier transforms, viz., equations (2.3) and;(Z.S). However, the
saddle-point method of integfa;ibn,(Collin, 1960) may be employed instead,
and the radiation fields are obtained directly from the spectral weight
coefficients C(y) and E(a). These weight coefficients need only be known
in the visible range; i.e., O 5(& s y)f_ko. This limited knowledge is
desirable from the standpoint of numerical computation.

Before presenting the results of the saddle-point method of
integration, we digress for the moment to investigate the effect that a
dielectric or plasma slab has on a uniform plane wave. The result of
this investigétion will prove most useful in interpreting the equations

for the radiated fields,

2,6,1 Effectkof ;he Sléb»on Plane’Wéves

Before considering the expressions for the radiation fields, we first
determine the influence that a dielectric of plasma slab has on a uniform
plane W'.;avea Figure 8 shows‘the incident field denoted by (Ei, Hi). The‘
direction of propagatien with respect to the nprmal of the slab is given
by 6. The reflected and transmitted waves are‘(Er, Hr) and (Et’ Ht)
regpectively, and the associated coefficients of .reflection and
transmiésion are givéh by Eﬁand‘f'resﬁécti#eiy. Also shoWn in Figure 8
are the forward and backward traveling waves (Ef, Hf) and'Eg, Hb)vinside

the slab, and the angle of refraction ¥.
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Figure 8. Uniform plane wave incident onto a dielectric or plasma
slab having a thickness 2t and a relative dielectric
constant «.
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A lengthy but straightforward solution for the coefficients of.

reflection and transmission yields

= )
RGO = 35) (2.91)
and
T(@) = R, (2.92)

where o = k0 sin(8). The functiens, R(a) and Q(a), are idehticql-
to those employed in the preceding analysis and are given by (2.23)
and (2.24) respectively. An inspection of the function Q(a) indicates
that there are severai angles of indidence 6 for which there is no

reflection from the slab. Expanding (2.24) in terms of its zeros yields

(k=1) (k+1) sin [21; ko/K—-sinz(e)]

23 K3/2

Q[k  sin(8)] =
cqs(e) cos(y)

| :[:s_in(e) +f{—-fi-] [s}in(e) - j;—%] i @.93)

The angles for zero reflection occur when k = 1 (slab removed), at the

Brewster angles 0y (Jordanm, 1950)

GB + arcsin /k+l . (2.94) |

and at certain other angles determined from the relation

gin [ét ko JK-sinz(e)} =0 . 12.95)



40

The critical angles giveh by (2.95) are dependent not only on the

relative dielectric constant of the slab, but also depend on the thickness.
An investigation of these angles shows that they correspond to a

matched cendition of the directional wave impedances as observed on-

each side of the left-hand air-slab interface (cf. Figure 8), A simple
example(oécurs when the angle of incident 6 is zeto, and the slab

thickness 2t is equal to an integral number of half-wavelength as
determined inside the sléb.

When t%e slab is a plasma, i.e., ¥ < 1; we find ne angles 6 where
zero reflection occurs. Rather, the coefficient of reflection approaches
unity as k + — «, indicating transmission thrdugh;the»slab is cut-off.
for alllangIES of incidence. AnAasymptbtic expression for the reflection

coefficient is given by

lim rli‘ = "Kl/zl‘ cos(6)
‘ -
l[zj + lKl/Z'cos(e)]l

1 (2.96a)

K—>me00

On the ether hand, the transmission factor T introduces & severe
attenuation of the transmitted wave when the slab thickness is large
or the relative dielectric constant is made negative. An asymptotic

expansion for the coefficient of transmission is given by

2 exp(-2t kolgl/zl)

lim rf|
K=

121 + 1] cos (021

()[eXP(-t |$1/2| )] (2.96b)
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We now have expressions for the coefficients of reflectien and
transmission for a uniform plane wave incident onto thekslab. -This
information will be employed for a geometric interpretation of the

solution of the problem at hand in the next section.

2,6.2 Pattern in the Forward Direction
The radiation field in region E of Figure 2 is obtained by applying
a transformation of variable to the Fourier transform expression for the

magnetic intensity. This transformation is given by

fat
]

i k_ cos(s). x =1 s5in(0)
° [ . 2.97)

Q.
]

ko sin(¢) (z - 2 - 2¢t) = v cos(0)

Employing (2,.97) in (2.5) yields

(Hy)E = j E[?o sin(é)] exp[-j kor cos(6~¢)] ko cos($) do. (2.98)

(4

Applying the method of saddle-point integration to (2.98) yieldd an

asymptotic expression for the radiated field

kw

o
ii: (Hy)E =/ 5= cos(9) E[%o sin(ei]
exp[—j(kor—ﬂ/A)] . (2.99)

The radiation pattern in the forward direction is obtained by

substituting the solution for E given by (2.44) into (2.99)
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PATTERN(B) = 'F Eko cos(e)] TEko sin-(e)] | . (2.100)

where F is the function constructed by the modified function-theoretic
technique, viz., equation (2.35), and T is ‘the trangmission coefficient
of the slab given by (2.92). The total power radiated in the forward

direction is obtained from the expression

- 1
o
(l+5p) br ko

1/2 lF[jk0 cos(8)]

2
R[ko sin(6)] ' ds , (2.101)

rad
0

where integration is only over positive angles of 6 due to the symmetry
of the fields. The observation angle 9§ and polar coordinates (r,8) for
region E are shown in Figure 9.

An examination of the pattern function (2.100) reveals that there
are nulls in the forward pattern for those directions where F[?ko cos(ei] = 0,
The angles 6 corresponding to these nulls can be. identified with the
directions of propagation in composite plane—wave fepresentation of the
waveguide modes (cf. Figure 10s). However, there is a maximum in the
pattern at the angle corresponding to the incident mode exciting the guide.

The salient features of the forward pattern can be summarized as follows:

PATTERN NULLS: [6 =vi;arcsin€%§) ; s#p, s <N] (2.102)
PATTERN MAX: [6 =+ arcsin(%r-) 1, (2.103)

where only propagating modes are considered, i.e., N < b kO/n.
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Figure 10. The direction of max or null in the forward region.
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2.6.3 Pattern in the Backward Direction
The radiation pattern in the backward direction, region G, is
obtained in exactly the same manner as was presented in Section 2.6.2

for the forward region. The results are given by

e w
iﬂ (ny)c = -2—‘-’-; cos(8) Cl[k, sin(8)]
exp[-j(kor_— kob + w/4)] (2.104)

PATTERN(6) = I F [—jko cos-(e)] +

-R-Eco Si"'nﬂ(e)] F[jke cos(e):] exp [—2j kOSI, cos(e):H (2.105)

and s |
- 1 J |
P = F |~-jk_ cos(8)| +
rad  (146%) bow k_ [ ° ]
P’ o O
Q'Ik, sin(8)] 2
RTE ST )] [ 3%, cos (0) | e . (2.106)

The angle of observation § for the backward direction is shown.in Figure
11. The pattern function, as given by (2.105), has a geemetrical
interpretation. We note that the radiation field is composed of two
parts, The first is that due,to,F[’—jko cos(8)], which we identify with
the direct.field radiated from the gulde aperture. The second paft is

.due to F[jk0 cos(8)], which is the field radiated into the forward
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REGION C

\

Figure 11. The observation angle 8 in the backward direction.

-REFLECTION
R

Figure 12, The composite field in the backward direction showing the path
difference between the direct and indirect fields. u +v =
29 cos(®).
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direction., This forward field is modified by the function'ﬁ; éhe
reflection coefficient from the slab, and a phase difference
exp[—ijbz cos(6)], which is the path difference between the direct and
reflected fields. Figure 12 shows both fields being emitted from a
commeon point, viz., the center of the waveguide aperture, and‘the‘
path difference between the direct and indirect fieids, i.e., u+v = 2@*

cos(®) (cf. Figure 12 ).
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3. SOLUTIONS FOR RELATED PROBLEMS

In order to show the versatility of the modified function-theoretic
technique, We-preéent‘the solutions for two other open-region problems.
These problems.again represent a medification to the canonical problem,
and their geometry is constructed by introducing a longitudinal
inhomogeneity in.one of the open-regions.

The first of the modified problems is shown in Figure 13, and repre-
sents an open-ended waveguide radiating'ihto a reflecting plane. Such a
geometry is closely related to large aperture reflector antennas. The
solution for this problem is\construcfed from the function

H(w) = Fl(w) S(w) , (3.1
where Fl(w) is again the canonical function given by (2.36). The portion
of H(w) which represents the departure from the canonical function is
represented by S(w). We requi%e S(w) to have‘a simple?pole.at w = Bp
and a branch cut along the patﬁ Oy (cf. Figure 4). These reQuireménts
are identical to.those for T(w), the modifyiﬁg function for the problem
in section 2. TIn fact, whenever there ié a longitudinal inhomogeneity
facing or opposite the waﬁeguide aperture, the modiffiﬁg function will
have these requirements.

A solutien .for the mode and weight coefficients in regions B and C
are given by

IR
(-1) H(‘Bm|03)

‘ (3.2)
b B, (l+6:)
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Figure 14, The composite field for a waveguide radiating into a reflecting
wall. u + v = 2% cos(9).
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and

-2nL

cm = = C-nl, ) + Gl e (3.32)

The normalization condition is obtained from the relationship

N 2 o .
H(Bplcl) =b 8 -1) <1+ap). (3.3b)

The radiation pattern is given by
PATTERN(8) = I H E—jko cos(e)] + H'[jko_cos(e)] e k Reos(®) | (3 4y
The resulting expressions for the branch discontinuity and the auxiliary

integral equation are, respectively,

SC-w| ) - 8C-w] ) = 27 ulw) Slw|_) (3.5)
lc3 ]04 91
and
_1 (z) S(z)
S(w) = R + I L—UT'I-T—— dz . (3.6)
b él .

The partial kernel 1i(£) for this problem is given by
- F (| )
e 2eL sin(ab) exp(-job) 1 "9
T Fl(—glog)

u(g) = - (3.7

As for the problem in section 2, we see that the ra&iated\field in
region c is composed of two fields (cf. Figure 14). Reférring to equation
(3.4), we see that the direct field is given by H(—m). The indirect field
is obtained by reflecting H(w) from the reflecting wall with its phase
retarded by the path length p + v = 2 gcos(6).

The geometry of the second problem we wish to discuss is shown in
Figure 15. This problem represents radiation from a flanged waveguide.
Since the longitudinal inhomogeneity is placed in back bf the waveguide

aperture-plane, we would not expect the modifying function to have a
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Figure 16. The composite field for the flanged waveguide.
u+v= 2% cos(h).
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branch singularity along the path,c3 (cf, Figure 4), and this is indeed

the case,
We again write the constructed function in the following form:

G(w) = Fy(w) U(w) © (3.8)

We find that an analysis of the problem requires the modifying function
U(w) again have a simple pole at w = Bp; however, for this geometry,

the branch singularity is along the path 9 instead of Og0 The solution

for this problem is given as follows:

S
- (-1 G‘"BSIOB)
B, = S (3.9
b Bg (1+65)

and

~job ]
E(E) = 2 [ GCE|_ ) + 6(-E|_ e zgd] (3.108)
1 3

™
The normalization condition is determined from the relationship

Y = 13 F O,
G(Bp]cl) b B, (-1) (1+5p) . (3.10b)

The radiation pattern is given by
PATTERN(6) = | G[jkojcos(e)] +

G I:—jk0 cos(e)] exp [—ijod cos(eﬂ I . (3,11)

As in the previous examples, the radiation field can be interpreted in
terms of the direct and indirect fields which originate from a common
point (cf. Figure 16). The expressions for the branch discontinuity and
the‘aukiliary integral equation are as follows:

U(wfc;) - U(wicé)‘ = 21] A(-w) U(-w‘ios) (3.12)
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and
=1 Alz) U(z)
U(w) _. w—B + f Z+w dz ° (3013)
‘ 3
The partial kernel )(g) is given by
~ Fo(-g]_)
C Job 1 g
_¢) = & sin(ob) exp(-2£d) 3
A(-8) — FLGE]) (3.14)
%1

Another interesting problem is that of a flanged wavegﬁide.combined
with a dieleé¢tric or plasma slab covering the guide dperture. Such is
the case for radiation from an antehna flush mounted on the surface of a
rocket with a plasma sheath covering the aperture-plane. The solution
for this éroblem can be obtained by the modified function-theoretic
technique. However, since the canonical problem is modified on both
sides of the aperture-plane, we obtain two auxiliary equationms. Ihe»
form of the constructed function is given by

J(w) = Fiw) [L(w) + Mw)] . (3.15)
The modifying functions, L(w) and M(w), have branch singularities along
oy and Oy respectively (cf. Figure 4). The simultaneous selution of
the two auxiliary integral equations is not a simple one, since thefe
is a coupling between L(w) and M(w) in the two equations. Due to the
complexity of this problem, we give no results, but only indicate that
a solution is possible,

A final note .relating to the modified problems just’discussed is
that iﬁ each: case .the correct edge condition may be shpwﬁ to be
satisfied° This is accomplished by comparing the asymptotic form of the‘
auxiliary integralnequation~witﬁ the appropriate Stieltjes transform

(cf. Section 2.4.2).
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. 4. EXTENSION TO CIRCULAR GEOMETRY

The results that have been given thus far are concerned with the
excitéﬁién‘bf iﬁheﬁogeneously filled open-regions by parallel-plate
waveguides, . Such problems are physically not realizable, but their
solutiens. give a tremendous insight into the form of the solution for
physically obtainable problems. Each of the problems discussed in the
previous.sections can be solved by the modified function-theoretic
technique.when the geometry is circular, and the electromagnetic fields
have rotétional‘symmetry° The only difficulty is that the factor N(w)
emplbyéd in-the construction of the canonical function Fl(w), no longer
has a closed form expression. We may, however, employ an integral

formulation for N(w) given by Mittra and Bates (1965)

+ jP-"zi:l M@, (4D

N(w) = exp [1—’;{‘-"- ( 1-¢_ +1n (%)
e A

where

lim
N @) = ares [M] ;

a"'c=b H(w’ E)

3]0

| Cw ~ W 2 2 2, -1

exp [ In | 1 - ——=|+ ] { [N“(zb) + J7(zb)] ] dz > .
{ [ ( Vz"-k” ;z -k mzDb ° °
0 o o
. (4.3)
In Figure 17, we show the radii of the small and large waveguides,

viz., b and a, for the associated closed-region problem, as the outer
guide radius becomes infinitely large, (4.3) is determined as the limit
of the quotient of the infinite product expansions for regions C and E.

The functions-Jo and No employed in (4.3) are respectively zero order

Bessel functions the first and second kind. The function Nl(w) is seen
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Figure 17. The canonical closed-region problem in circular
geometry.
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to have a branch point at w = jko° The branch cut for Nl(w) is chosen
along the.path 9y (cf. Figure 18).

Although. (4.3) can not be written in a closed-form, we may
approximate:it by a humerically truncated integral. We note fhat for
large values of z the integrand of,(4.3) is nearly equéi to the
corresponding. intergrand in the parallel—plate case, which does have a
closed~-form. expression. That is-to say, [2/(wbz)][N§(zb) + Ji(zb)]—l - 1
for even moderately large values of z; e.g., this function equalé 0.95

when zb = 1. We, therefore, write (4.3) in the following approximate

form:
L
Nl(w) Eﬁl(w) exp -'2—'2 [m ( 1 - w > + ___w____j]
o " e ';;2,—ko vz -ko
L 7 _ 0 . ‘
l: [ : ] [Jz(zb)v + Nz(zb)]v N - 1] dz | (4.4)
T™b 2z s} [0} e B

The functionﬁﬁi(w) is the parallel-plate canonical function given by
(2.38), The truncation point L is determined from a given numerical
accuracy criterion.

Aside from the integral expfession (4.3) for Nl(w), we are able to
obtain twe ether useful relatiohships which aid in the numerical computation.
of this function. The method employed in obtaining these relationships
is to find the limiting behavior of the product [n1(w)nlc—w)] as the
outer wavééuide“radius becomes infinite. Here we have written n, as

the closed-region form of Nl
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Figure 18. The branch cut for Nl(w), the canonical form in circular
geometry.
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o mw,n) _°

- H(wsg) T . ® w
nJ1l - ~ | exp 55
s=1 ;a -k ;x -ko

8 O s -

0y (w) (4.5)

The values of y_ and a_ employed in (4.5) are glven by the zeros of . the
characteristic equations for regions C and E respectively (cf. Figure 17)

Jo(ysb) =0 (4.6)
Jo(asb) Nb(asa) - NO(aSb} Jo(asa) =0 , 4.7
Before taking the above indicated limit, we give two standard
[ 2
1 -] —
1 s

Jo(db) N (aa) - N_(ab) J_(aa)
T, 0e,D) Nk a) = N (kD) I (k a)

L O A RS (4.9)
k ) 2] " J (k_a)
Zo 0o
8',

[l-
1 [+

where o =,¢w2+k§ . Substituting (4.8), and (4.9) into the product

reflection formulas

= 8

w
[

M(w,n) M(-w,n) =

= 8]

()]

(4.8)

and

M(w,£) M(-w,£) = 2

= 8l = 8

0]

[nl(w) nl(—w)] yields

No(aa)
Jo(ab)li-j-;—(a';)—] - No(ab)
No(koa) _
Jo(kob) I:w] - No(kob)

[n;(w) n,(-0)] = (4.10)
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In the reflection relationshipé'(4.8) and (4.9), we have employed the
standard infinite product expansions for the appropriate Bessel functions
(Abramowitz and Stegen, 1964). Our aim is to find the relationship
corresponding to (4.10) for the open-region case. To this end, we let

a »» in (4.10) and .obtain

Nél)(ab)
N. (w) N, (=) = = ——mme , (4.11)
1 1 N(Z)(k,b)
o o
where Ngl> and Néz) are Hankel functions of order zero.

Equation (4.11) is quite useful in numerical calculations. The

function N, must be known both on paths o, and its reflection s shown

1 1
in Figure 18, With the aid of this reflection formula (4.11), we need

only numerically calculate N(w|0 ). from the integral (4.4), and obtain
3
N(w]0 ) directly from (4.11). This process yields a fifty-percent.
1 .
savings in integration time. Also, it is to our advantage to refrain

from evaluating N(w|01) directly from the integral (4.4), due to the

logarithmic singularity of the integrand when (; is on the path Ope
A second relationship involving the function Ni(w) relates the

function values‘on each side of the branch singularity. Such a

relationship must be known when employing the function-theoretic

technique, Evaluating (4.11) for w on each side of the branch singularity,

and by eliminating the common factor N(_wld ), we -obtain

Ngz)(ab)

Nl<w|02> = N (ol ) , (4.12)

1 ) Ngl}(ab).

where the paths ¢

1 and o, are shown in Figure 18, For large values of
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w, (4,12) has'the’asymptofic representation

lim-| Nl(w}oz)- ~3(2 wz+ki b+ /2)
W W =‘ e B (4.13)
1

The cdrreSponding‘relationship for parallel-plate geomefry is given by

Nl(wloz) ~12 Jo2® b
[o]

NGl ™ ¢ . (4.14)

1

Equations (4.13) and (4.14)AShcw the close correspondence between the

canonical function Nl for circular geometry and Nl for parallel-plane

geoﬁétry in the asymptotic sense.
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5. NUMERICAL RESULTS FOR PARALLEL-PLATE GUIDE WITH SLAB

Early attempts to solve the auxiliary integral equation (2.77) feor
T(w]g,) were carried out by employing an iterative technique. The term

1
(z| ' —Bp)—l was substituted as a first approximation to T(z) in (2.77).

o
The iesulting-numerical integration yielded a second order approximation.
Subsequently, an n-~th approximation was obtained by iteration of the
(n-1)~th approximation. In general, it was found that for values of b
and t which were of the same order of magnitude as the free-space wavelength
AO’ the iterative method yielded a rapidl& convepging sequence of functions,
i,e., only three or four iterations were required to give a solution which
differed by less than one percent from the preceeding iterated result.

However, when b and t were large compared to A, rapid divergence of the

O’
iterated result was encountered. In both the convergent and divergent
cases, a plot of the logarithm of the magnitude of the iterated function
for any fixed point on the path oi against the number of the iterationm,
yielded a straight line. Even the logarithm of the function values for
the first and second iterations lay on that line, indicating that the
spectrum of eigenvalues of the truncated auxiliary integral equation was

of a special character. The character is that there exists one eigenvalué,
dominant .in modulus over all tﬁe others in the spectrum. The dominant
character of this eigenvalue may be used to advantage in the construction
of a solution‘ for the divergent case, However, for divergent and slowly
convergent cases, matrix inversion was employed instead. It was found
that the computation time required te invert a 50 x 50 complex matrix was

comparable to ten iterations.
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Some numerical .solutions to the problem shown in Figure 1 were
obtained using a high speed digital computer, viz;, the IBM 360/75. 1In
order to illustrate the effect of varying each of the physical parameters,
the results are divided into the following categories: (1) variation in
b, the waveguide halfdwidth, (2) variation in £, the slab-aperture
separation, .(3) variation in 2t, the slab thickness, and (4) variation
in «, the-relative permittivity of the slab.

-It was .indicated in Sectien 2.6.2 that the number of nulls in the
forward pattern is dependent on the waveguide half-width or in other
words, equivalently dependent on the number of propagating guide-modes.
Figures 19a through 19d show the radiation patterns for four different
values of half-width, The values of b were chosen so that an additional
mode propagates in subsequent figure(s), beginning with otie in 19a and four
in 19d. 1In each case, the incident mode was TEM, and this is the case for
all results in this paper. Each pattern is normalized to unity in the
broadside direction, Table 1 illustrates the distribution of power
scattered into the various regions with the incident guide mode having
unit power. The various values of scattered power have been renormalized
after computation in order that their sum is unity. However, the total
scattered power beforesrenormalization wés found to be within four percent
éf unity in-nearly all cases and occasionally not more than tweive percent, -
By increasing tﬂe'nuﬁber of sample points or,the poiﬁt of truncation in.
the numerical integration of the auxiliary integral equation, accuracy may
be increased at the expense of computation time, Hewever, it was found
that such an increase in accuracy had very little effect on the ''shape"
of the radiation pattern, and only affected the distribution of scattered

power. Typical machine-time for a single solution was about half-a-minute.
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As indicated in Figure 19 and Table 1, the main lobe of the pattern,
narrows as the guide half-width is increased with 1itt1e?a£fect on the

forward radiated power P This result would also occur in the asbsence of

E.
the dielectric slab. An increase in b has a detrimental effect on the -
efficiency. of surface mode excitatioen. Table 1 indicates that as the

guide aperture-is widened, the total power P in’the'surface modes is

A
decreased.

The effeet of changing the distance between the guide aperture and
slab is next.considered, Figures 20a through 20f shew the radiatiem
patterns whgn the-distance £ is varied from zero to~Ao, As indicated in
Section 2.6.2, the forward pattern is nearly indépendent of £, while its
shape .depends on the transmissien factor T. This independence pf L is
illustrated by the close similarity of)fhe forward patterns of Figures
20a throuéh.ZOf. . The forward radiated power PE’ shown in Table 2, is also
nearly independent of £. ’

The dependence of the pattern in the backward directien on £ is
not so simple, due to the phase relationship between the direct and re-
flected fields in the composite field representation discussed in Section
2.,6.2, Table 2 compares the Qistributien of scattered Pcwet for various
vélues of £ and-shows that the excitation of surfaceimﬂdeé becomes
increasingly difficult as the_sléﬁ is moved away from the waveguide
aperture,

In varying the slab thickness ét, the pattern and sca;tered power
have Been,obtained fpr‘eriods fra@tiéns of Ao,lthe;freé—gpéce’anelength,
insteaé[ef the Waveléngth within ;ﬁe slab. TFigures 2la through 21f show

the radiation patterns when the slab thickness varies from zefo to Loy
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Table 2. The scattered power for various values of £, the
aperture~slab separation k = 1,k =2, b = A, /4,

and 2t.= Ay /4. fhe free-sgace wavelength is A,.

ya PB PE PC PA
(o] []
WATTS WATTS WATTS WATTS
TEM ™
0
0 5.284E-2 7.040E-1 1.856E-2 2.247E-1
e 2,0176-3 |  7.254k-1 8.257E-2 1.898E-1
-%& 5.322E-2 7.528E-1 7.100E-2 1.228E-1
§° 5.737E=2 7.7648-1 1.3358-1 3.280E-2
3L,
o 3.931E-2 7.7358-1 1.777E-1 9.562E-3
Ao 5.211E-2 7.851E-1 1.601E-1 2 .709E-3
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The scattered power for vd%icus values of 2t, the slab width,

Table 3.
given as fractions of A , the free-space wavelength.
k =1, « =2, b=A/b4, 2 =A_[4. = :
;O i ° o
2t P P P P P P
B0 E c A0 Al A
watts watts watts watts watts ] watts
TEM TMO IMl TOTAL -
0 44319E-2| 8,547E~1| 1.,021E-1 —— o e
Ay
??— 1,545E-2| 7,802E-1| 1.075E~1| 9.714E-2 e 9.714E-2
A° '
T 5.,322E-2| 7,528E~1| 7,099E-2 | 1.228E-1 — 1.228E-1
A, :
5 2,231E-2| 8,192E-1 | 1.589E-1| 7.405E-9 | 4.659E=3 | 4.659E~3
3A, . .
- 3,213E-2 | 8.523E-1 | 9.478E~2 | 1.918E-2 | 1,660E~3 | 2,084E~2
B 1 4,706E-2| 8.477E-1 | 9.421E-2 | 1.034E-2 | 6.800E~4 | 1.102E-2
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An interesting behavior of the total surface mode power By is observed. As
the slab thickness is increased, the amount of power carried by the surface
modes increases. However, when the slab is sufficiently thick, allowing

another mode to propagate, the total power P, decreases. A further increase

A
~in slab thickness again increases the surface mode power until aneother.
mode begins. to propagate. |

' Numeriecal results for various values of slab permittivity are shown
in Figures 22a through 2le. radiation patterns are shown only for positive
values of «, since little power is radiated when the slab is a plasma
and when the aperture-slab separation £ is zero. The effect of an increase
in ¢ is to broaden the forward lobe of the pattern. This effect is
accompanied by a decrease in the forward radiated.power¢PE, indicated in
Table 4. Also shown in Table 4;areiseveral'cases for plasma slabs. When
k < 0y a large fraction of the power is reflected back into the waveguide,
as indicated in the column headed P%. For large negative values of «,
both the forward and backward radiated power is reduced} hoWever, there is
a greafér fraction of power leaking around the guide edge into region C.
than is radiated throuéh the sla% into region E. This is the case when
£:= 0. When the plasma slab is not directly against the guide aperture,

an appreciable amount of power will be radiated into the Backward region.
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Table 4. The scattered power for various values of k, the relative
dielectric conmstant of the slab. k_ =1, b = A, /4, 2t =
Ao/b, 8 = 0, The free-space wavelength is A,.
K P P P P P P
B E C A, Ay A
watts watts watts watts watts watts
TEM ™, ™, TOTAL
10 5.367E-1 | 4,148E-1| 2.166E-2 | 1.243E-3 |2.546E-2 | 2,670E-2
5 7.608E-2 | 8,546E~1 | 2,813E-2 | 5,566E-10|4.893E-2 | 4.893E-2
2 5.284E~2 | 7.050E-1 | 1,856E~2 | 2,.247E-1 e 2.247E-1
1 4,320E-2 | 8.547E~1 | 1,021E~1 _— — —
0.5 9.688E-2 | 7,153E-1 | 1.875E-1 _— —_— —_—
0 9,709E-1 | 1.367E~2 | 1.541E-2 _— — —_—
0.5 || 7.734E-1|1.826E-1| 4.395E-2 | — — —_—
-2 9.001E-1 | 4.739E-2 | 5,259E-2 | = —— —
-5 9.624E-1 | 2,379E-3 | 3,517E-2 — — —_—
. =10 9,711E-1 | 8,320E-5 | 2,878E-2 —_ — —
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6. CONCLUSIONS

The present solution for radiation from an open-ended parallel-
plate Waveguide through a dielectric or plasma slab lends itself to a
numerically accurate and rapid solution. Typically, the function-theoretic
techniquekand its subsequent extensions and modifications (hereafter called
MFT) have several distinct advantages over other methods. compared with
some variational techniques for the same problem, the MFT yields at leasf
the most useful information, viz,, waveguide reflection coefficients,
Howevér, with little additional but straightforward cemputations, all of
the scattered fields can be determined. Formulation in terms of the
characteristic modes for each region in the MFT leéds to a simple mode
matching procedure, The process of continuing the incident waveguide
field inteo the open-region, as is the case when the Weiner-Hopf technique
is employed, is not in line with a physical understanding of the problem.
Finally, the correct edge condition is automatically satisfied, since
a priori information of the asymptotic behaviof of the fieldé in the
neighborhood of the waveguide edge is incorporated in the MFT. 1In
contrast, the satisfaction of this important condition is difficult - if
not impossible - to show when other méthods are employed. For example,
Mittra (1963) demonstrated that satisfaction of the edge condition in
the solution of a doubly-infinite set of matrix equations relgting to the
closed-region Waveguide bifurcation problem, was strongly dependent upon
the way’in which the number of equations was determined in the truncation
procedure,

Application of the MFT Fokwaveguide p:oblems cher‘than the‘basic

parallel-plate geometry, requires only a straightforward extension of
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the method employed for the simpler geometry. The solutions for
circula,r‘_ guic;le;_ with rotationally independent fields are easily obtained,
and they bossess all of.the desirable characteristics of parallel-plate
geometry.; Also the MFT is easily extended to geometries’confaining layered
media in the epen~regions, Such layered problems are encountered in
diagnostics_ofylaboratory plasmas, where a bulk plasma is surrounded by
an ion sheath and glass envelope,

Other problems which are easily attacked by the MFT includes (1)
The flanged waveguide; (2) radiation from an open-ended waveguide onto
a reflecting screen; and (3) a flanged guide radiating through a plasma or
&ielectric slab. In fact, most open-ended waveguide problems in which
the geometry is uniform in the transverse direction but longitudinally

non-uniform can be formulated and solved by the MFT,
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APPENDIX
ESTIMATION OF THE TRUNCATION ERROR FOR INFINITE PRODUCT EXPANSIONS

In the numerical solution of problems via the function-theoretic
technique and its subsequent modifications, one is required to evaluate

infinite product expansions of the following form:

T(w,B) = 1 [ —ié?—] exP'('w/Bs) . (A1)
: s=1

where 5é = ¢6ﬂ92 - ki ’ ko and b are constants described

b

elsewhere, and w is the function variable, To an end of evaluating (Al)
in a truncated form, together with an estimate of the truncation error,

we write

K
Tw,B) = | T (1 - w/B) exp(w/B) | & (A2)
s=1
The expression for the truncation error €x is given by
€g = exp pX [In(l - w/BS) + w/BS] (A3)

s=f4+1
Expanding the logrithmic part of (A3) in a power series when
(k + 1) w/(2bk) >| w/k | > 1, we obtain
o t] -
ee=ex) s | E (& . (a4)
\s=K+1 | - s
e=2

Interchanging the indices of summatjon, i.e., summing on t first, together

with the relationship-
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o] [et] - | [eoe) "o B[R]
— = -7 - B | =t
w(K-1) t (=) | s=k+1 | s ‘

Kéhl
Rl : t - -1t
) b K+1 '
f li-é?r-jl ds = | 7(x+D) t-l] ’ (A5)
K+1 B i :

k b
o

2
1 — + ¥]- , we obtain bounds for the

which is valid for (K+1) > 5

truncation error for w-real

- (K l) ; ._._b...L‘u___ ¢ __._.L < £ <
oxp L, | T&D tE-Dff = K=
1

0. . t
: bw
e - D E [“‘”—n (K+l):] ['E(‘c-"l)‘] 2

The summations in (A6) can be evaluated exactly (Jolly, 1961)
o xt -
z [EZE:IT = x + (1-x) In(1l-x%) R A7)
t=2

Substituting (A7) into (A6) and taking only the first term in the power

series expansion of 1ln(l-x), we find that gK'has the following asymptotic

2
b
(-‘},—) ] . (A8)

Equation (A8) is found numerically to yield excellent results for

representation:

when K >>'lglg

ki

|w| < 10k0 and K = 100. To a first order approximation, the value of
eg is the same for both + w, One may check the accuracy of (Al) as
computed from (A2) by use of the follcwiﬁg‘réfiectioﬁ formula in which

the truncation error is cumulative:
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ko sin(ab)
T(w,B) TM(-w,B) ='E_§EHZE;S) 5 (49)
where o = §+w2' . We further note that in the solution of the

auxiliary integral equation (cf. section 2.4), factors of the form
T(w,B) /M(-w,B) are encountered., Due te the even symmetry of the truncation
error (A8), we see that in the above quotient of infinite product

expansions, the truncation error is self-cancelirg.
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