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Abstract

The stability of the nonconservative double pendulum model of

Ziegler is studied with emphasis placed on the effect of changes in the model

parameters and on the presence of retardation c f the angular position of the

follower load. Both the cases of external and internal damping are considered.

As in previous studies, the damping; is assumed to be small.



loadings.
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Introduction

The stability of nonconservative elastic systems has been the sub-

ject of much recent interest. To demonstrate some of the properties of such

systems several auth,:rs have investigated the behavior of a simple two-di-

mensional model consisting of an inverted double pendulum subjected to a fol-

lower type of load (Figure 1) Ziegler [1] 2 discovered that the presence of

linear viscous internal damping may tend to destabilize the system by lower-

ing the value of the critical follower load. Herrmann and Jong [2,3] studied

the behavior of this model in the case of small internal damping for a fol-

lower load and a partial follower. load.

The results of these studies indicate that damping and the type of

loading may have significant effects on the stability of the system and that

considerable care must be exercised in the modeling of the damping mechanism;

Herrmann and Jong have recommended further study of other damping models and

A type of loading which might occur in some systems and which is

probably present in most experimentalstudies is that of a retarded load

that is 	 a load that acts in a prescribed manner in relation to the systems

e but which is delayed by the inherent time lag of the mechanism which produces

it.	 Kiusalaas and Davis [4] investigated the stability of the double pendulum

model subjected to -a retarded follower force with a constant time lag for the

case of no damping.
x

The purpose of this study is to examine the stability of the stand-
ard double pendulum model when subjected to a retarded follower load with small
2Numbers in brackets designate references at the end of the paper.
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time lag but with the inclusion of slight damping, both internal and external.

It is found that the presence of damping greatly alters the critical load of

the system, an expected result. The effect of the time delay on the follower

load is shown to be significant and, in most cases, destabilizing. Yet, for

a few cases the time delay raises the critical load above that for the stand-

and follower load, an unexpected result which is significant for the inter-

pretation of experimental data.

A second aspect of this study is the determination of the effects

of changes in the model parameters. Previous works have rather consistently

studied the Ioub'Le pendulum with mass ratio m l/m2 = 2, length ratio

ph 2 1 and spring constant ratio 
cl c2 = 1 (Figure 1). It is of in-

Werest, for design and analysis purposes, to have a knowledge of the effects

of these ratios on the stability of the system.

The Equations of Motion

Consider the double pendulum of Figure 1, consisting of two rigid,

' weightless bars of lengths	 1	 and	 1 2	 which carryl concentrated masses	 m1

and	 m2, respectively.	 The generalized coordinates 101(t)	 and m2(t), with V

, t	 the. time, specify the angles between the .vertical and the two bars, and are '
K

assumed to remain sufficiently small.	 The linear elastic restoring moments
1

C 	 c2 ( 402- 0l)	 and the linear viscous internal damping moments bl40
and	 b2($2-$l)	 are assumed to act at the two hinges, respectively, with 	 b1

5

and	 b2	small but not both zero.
{

The load	 P	 is applied at the free	 end at an angle	 e(t) with

respect to the vertical, and it is assumed that

L
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O(t) = 02(t-T),
	 (1)

With T ? 0, a constant time lag; hence, the load acts at time t in such a

manner as to be tangential to the position of the upper bar of the pendulum

at time t-T. The special case T 0 reduces P to the standard follower

load. It is assumed that T is small.

Consideration of Lagrange's equations in the form

d ( 6T_) + aD _ aT + a' VV w Q i = 2	
(2)dt 601	 ami om i 640	

i

with the kinetic energy, dissipation function, potential energy and generalized

forces given by

T =2ml l+
2 m2( ^

1401+ ,^2^2)2'

D 2 b1 ;2  + 2 b2( ' m2- 1) 2,



(5)

(6)

f	 ^ i

(m1+m2)1 J'O1 + (b 1+b2 )ml + (c1+no-W 1)'l + m2 ,21,22 402 +

-b202 " c202 + pi le 0.

m,Z	 m --	 1b	 -c^ +m 12
	 +b 

2
m +2 1 2 1	 2 l	 2	 2 2 2	 ^ 

+ (c2-PI2) 02 + PY 0.

Given the linearity of the equations ., assume a solution of the form

O i(t)	 Ai eo't.9 i	 102

and recall that,, from Equation (1),,

9 ( t ) = Ate-mTewt.

Since the time delay T is assumed to be smalls let

fjA

e(t^	 A2(1-WT)eft .	 (7)	 .r

Substitution of Equations (5) and (7) into (4) immediately yields the condi-

tion for existence of a nontrivial solution as

2	
2+ B +B fl+e+l F	

2
µ ( 8+1),Q ( 1 2)	 µ	 µSt _B	 D)

0$	 g)

wn _B2St-1	 n2 +B2
a

4

(4)
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where the parametArs of the system have been appropriately nondimensionalized

and are defined by

F 
P9
 s^ =	 m2 1 /2w; a = 1 ( C2) 1/2T;c2 	2

( c 2	 72 m2

(9)
1	 l

	

m	 c

Bi -	 i 1 2
	 2^ ^ µ - 1	 5 = n-- 	 c •

Q2(ced	 2	 2	 2

Expansion of the determinant (8) yields the frequency equation in the form

Po"4 + PIP  + P2s'2 
+ P3" + P4 0,
	

(10)

from which, through the familiar Routh-Hurwitz criteria Y the conditions for

asymptotic stability are obtained as

P . > 0, 1 = o, ... , 4
.	 (11)

X (P1P2 POP3) P3 ._ P4Pi 0 ,
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PO = 2

P1=B1+6B2- 2aF

P2 = 7 - 2F + B1B2 - CeB1F - 2o:B2F	 (13)

P3 = Bl + B2 + Ctrl F(F-3 )

P4 = 1

Under the assumption of slight damping, the case of physical interest, and of l

small time delays the three last terms inP2 	are neglected since they are
,Y.

higher order quantities. 	 By assuming that	 B2 ¢ 0	 and def'ininG the ratio.3

:

,t

B1	 b1	 a	
Tc2

= B -b-,	 Y O B - b ,	 (14)
2	 2	 2	 2

X

the stability criteria (11) yield ., for this -standard model, the following four

" inequalities on the load parameter 	 Fs
I

^'ra dr p }	 i
# F < 

2Y	
t r:

F < 2

,1..
(l	 .

♦
2 T2F	 - Y(12+2 +14 }r) F3 + Y(78+13P+20 Y) F2

n
'..

-12P2 +14P+12+104-r+lgyp]F + 40	 33P+4 > 0.
1

z

x

`.^ These inequalities determine the critical load:	 the vertical position of the

double pendulum is an asymptotically stable equilibrium state for loads below h

the critical load and an unstable equilibrium state for higher loads.
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The values of these critical loads were obtained with the use of a

digital computer and are plotted in Figures 2a and 2b. 	 In Figure 2a the criti-

cal load is plotted versus the ratio of damping coefficients 	 P	 for various

fixed values of 	 Y^ the measure of the time delay. 	 The case	 r = 0	 corres-

ponds to the result obtained in (2). 	 It is clear that for high values of 	 r

an increase in	 p	 always leads to an increase in the critical load; for low

values of	 r, however, the critical load increases up to a certain value of

ry and then decreases slightly thereafter: 	 the optimum choice of	 depends on

A° the magnitude of 	 r	 (for	 r = 0, the maximum critical load	 F = 2.086	 occurs

,'FA	 P = 11.071 [ 23).	 It is also noted that for some values of 	 r	 a sudden up-

ward Jump in the critical load takes place as	 is increased beyond a cer-

tain value.	 Mathematically, this occurs when two of the real roots of the

quartic (15) become complex conjugates.

The c-e4ftical. load is plotted versus the time delay parameter 	 r
in Figure2b for various fixed values of the damping ratio' P. 	 The presence

A!^

of at me delay usually produces a destabilizing effect on the system, with a a
a

larger time delay producing a lower critical load. 	 Since physically the im-$	 Y .P	 g	 ^ y	 ly

portant problem ia that with small damping, it is clear that the delays will
All

have to be small for any degree of stability; hence the reason for the assump-

tion on the .smallness of	 T.	 Note, however, the surprising result that in the 1

case	 = 5,	 a small time delay stabilizes the system; at 	 r = 2, for example, r

the critical load is 4 per cent higher than for the standard follower load

A
.r

x

fi
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Effect of External Pam ng,

Consider now 'he standard model of Figure 1 but with the internal

damping of the previous sec Lion replaced by viscous external damping which

acts on the masses ml and m2 (but not on the bars) with coefficients b 1

and b2, respectively. The dissipation function in (3) becomes

D a 1
3

b $ 21 '9
+ 1 b2( $2+;1 ) 2   2	 .

Following the same procedure as in the previous section, the fre-

quency equation (10) is obtained with coefficients

P
0 

= 20

= B
1 

+ 2B	 2aFv
 2

P2 = 7 - 2F + B 1B2 - C6'lF -9 	 01

P
3 
= B + 5B

2 
2B

2
 F + aF(F-3).,1 

P4 
= 4

(17)

from which the stabilit y criteria
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are obtained. The critical loads determined from these equations are depicted

in Figure 3a, as plotted against P^ and in Figu?	 b^ as plotted versus Y.

It is to be noted that in the case of external damping the presence

-f a time delay is always destabilizing: all increase in Y causes a decrease

in the critical load (for fixed	 The behavior of the pendulum under

changes in the parameter P again depends on Y. For T > 1/2 the critical

load increases with increasing a, but for r < 1/2 the critical load first

increases and for values beyond a certain value of P then decreases.

For a standard follower load (T = 0), the maximum critical load

occurs for 0 = 2, where it attains the value F = 2.086 (the same maximum

value as for the case of internal damping). This value happens to be the

value Fe [2] of the critical load of the model for zero damping. Hence,

external . damping on the double pendulum exhibits a "destabilizing effect"

similar to that caused by internal damping: the Rddition of slight linear

viscous external damping lowers the critical load below the value Fe (ex-
3

cept for	 = 2, when the critical load equals Fe).

Effect of Parameter Changes

Thus far, only the "standard" model with o 2, e _ 1 and g = 1

has been considered. It is desirable to investigate the effect of the mass

ratio 5 the spring constant ^: ,atio e and the length ratio - g on the sta-

bility of the model with internal damping.
.r:.	 a

The procedure used for this purpose is identical to that used in
x.	 4

the previous- sections. The results of this analysis are shown in Figures	 u-N
- 6. Figures 4a,b depict the critical load for various values of	 with A

"'A must be noted that this "destabilizing effect" of external damping does not
s occur fora continuous cantilevered column subjected to a follower  load   [5J'.
7
gy.  	 Y

+-x	1
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C = l and µ = ly the results are shown as a function of P in Figure 4a

with a constant time delay parameter r = 1, and as a function of r in Figure

4b for a fixed damping ratio	 = 1. It is noted that the critical load in-

creases with increasing mass ratio b.

The effect of various spring constant ratios E is shown in

Figures 5a,b. It is observed that for P > 1 the critical load decreases

with increasing E. but that the opposite effect occurs for small values of

P. Figures 6a,b depict the effect on the critical load of the length ratio

p for fix.ed values b = 2 and E = 1.

From these graphs it is noted that this model is extremely sensitive

to parameter variations, and that therefore considerable care should be exer-

cised in inferring conclusions about continuous elastic systems .tom results

obtained from a simple two-degree-of-freedom model.

F

Cor_cluding Remarks

It has been shown that the presence of load retardation, a phen-

omenon almost inevitable in experimental studies, has a significant effect
RRfi

on the stability of the Ziegler model, the effect being in general desta- 	 r
,<

bilizing. The importance of the nature of the damping mechanism, already

noted by other authors, and the high sensitivity to parameter variations	 f.	
YES

' 	 Jt

of the model have been studied and general quantitative results have•been

obtained.

Acknowled gment
4

The authors wish to thank Dr. C. M. Strauss for carrying out the
RA

computer analysis.

z.€



f	 f

11

References

1.
	

[1) H. ZIEGLER, Die Stabilitatskriterien der Elastomechanik, Ingenieur-

Archiv., Vol. 20, 1952, pp. 49-56.

[2) G. HERRMANN and I. C. JONG, On the Destabilizing Effect of Damping in

Nonconservative Elastic Systems, Journal of Applied Mechanics, Vol. 3219

Trans. ASME, Vol. 87, Series E. 1965, pp. 592-597•

[3] G. HERRMANN and I. C. JONG, On Nonconservative Stability Problems of

Elastic Systems with Slight Damping, Journal of Applied Mechanics, Vol.

33, Trans. ASME, Vol. 88, Series E, 1966, pp. 125-133,

[ ] J. KIUSAIASS and H. E. DAVIS, On the Stability of Elastic Systems under

Retarded Follower Forces, to appear in Int. J. of Solids and Structures.

{5] R-H.PIAUT and E. F. INFANTE, The Effect of External Damping on the Sta-

bility of Beck's Column, to appear in Int. J. of Solids and Structures.

x

t. 4

h

v .-x̂

y`

y

^k

s

a ^	
1

C

V



Captions for Figures

Fig. 1	 Double pendulum model
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Fig. 2a,b	 Standard model, internal damping

Fig. 3a,b	 Standard model, external damping

Fig. 4a, b	 Effect of changes in mass ratio

Fig. 5a., b	 Effect of changes in spring constant ratio

Fig. 6a,b
	

Effect of changes in length ratio
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