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The stability of the nonconservative double pendulum model of
Ziegler is studied with emphasis placed on the effect of changes in the model
parameters and on the presence of retardation c¢f the angular position of the
follower load. Both the cases of external and internal damping are considered.

As in previous studies, the damping is assumed to be small.
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Introduction

The stability of nonconservative elastic systems has been the sﬁb-
Jject of much recent interest. To demonstrate some of the properties of such
systems several authLors have investigated the behavior of a simple two-di-
mensional model consisting of an inverted double bendulum subjected to a fol-
lower type of load (Figure 1) Ziegler [1]2 discovered that the presence of
linear viscous internal damping may tend to destabilize the system by lower-
ing the value of the criticar follower load. Herrmann and Jong [2,3] studied
the behavior of this médel in the case of small internal damping for a fol-
lower load and a partial follower load.

The results of these studies indicate that damping and the type of
loading may have significant effects on the stability of the system and that
cpnsiderable caré must be exercised in the modeling of the damping mechanism;
Herrmann and Jong have recommended further study of other damping:models and
loadings. | ; ”

A type of loading which might oceur in some systems and which is
probably present in most experimental studies is that of a retarded load,
that is, a load that acts in a prescribed manner in relation to the system,
but ﬁhich is delayed by the inherent fime lag of the mechanism which produces
it. Kiusalaas and Davis [4] investigated the stability of the doublevpendulum
model subjectgd to a retarded follower force with a constant time lag for the

case of no damping.

The purpose of this study is to examine the stability of the stand-

ard double pendulum model. when subjected to‘a'retarded'follower load with small

g

2Numbers in brackets designate referenCes'at the end of the paper.
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time lag but with the inclusion of slight damping, both internal and external,

It is foﬁnd that the presence of damping greatly alters the critical load of
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the system, an expected result. The effect of the time delay on the follower
load is shown to be significant and, in most cases, destabilizing, Yet, for
a few cases the time delay raises the critical load above that for the stand-
ard follower load, an unexpected result which is significant for the inter-
pretation of experimental data.

A second aspect of this study is the determination of the effects
of changes in the model parameters., Previous works have father consistently
studied the -ouble pendulum with mass ratis ml/ma = 2, length ratio

ELZ£2 = 1 and spring constant ratio cl/c2 =1 (Figure 1). It is of in-

AR

terest, for design and anal y51s purposes, to have a knowledge of the effects

of these ratios on the shability of the system.

- The Equations of Motion s

Consider the double pendulum of Figure 1, consisting of two rigid,
weightless bars of lengths zl and f, which carry concentrated masses m,y
and m,, respectively. The generalized coordinates ¢l(t) and ¢2(t), with

t the time, specify the sngles between the vertical and the two bars, and are

cl¢l and c2(¢2-¢1) and the linear v1scous 1nternal damplng moments bl¢l

and b2(52-$l) are assumed to act at the two hlnges,;respectlvely, with b

ﬁ; assumed to remain sufficiently small. The linear elastic restoring moments
1
and b, small but not both ZEro.
|
The load P is applied at the free end at an angle e(t) w1th |
|
|

respect to the vertlcal and it is assumed that
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o(t) = o (t-1), | (1)

with 1 2 0, a constant time lag, hence, the load acté at time  t in such a
manner as to be tangential to the position of the upper bar of the pendulum
at time t-1. The special case 7 =0 reduces P to the standard follower
load, It is assumed that T is small,

Consideration of Lagrange's equations in the form

%—E(é-?— + a‘? - ?T + ov = Qi’ i=2,2 (2)
a¢i a¢i o0, oo,

with the kinetic energy, dissipation function, potential energy and generalized

forces given by

V] Fo

2 1
191 *+ 5 %(%-0)) (3)

immediately yields the two linearized equations of motion
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(my#mo)l 1) + (by*0y) 0y + (eq4ny=Ply)0) 4 mylf 50, +

“bod, - )0, + PLO = 0,

(4)

'Y 2.. o
myl18p0) = byby = ep0y +mylo0, + b, 4

2

Given the linearity of the equations, assume a solution of the form

wt
0,(t) = Aje, i=1,2 (5)
and recall that, from Equation (1), ?
o(t) = Aee'aﬁeam. - (6) f
’ r
Since the time delay T is assumed to be small, let :
o(t) & A (1-wr) L, (7

Substitution of Equations (5) and (7) into (4) immediately yields the condi-

tion for existence of a nontrivial solution as

2. o ' SRR o - | |
u (8+1)0 +(Bl+32)9+e+l-uF u02-329f1+ﬂF(1’09)
‘ , : : = O, (8)
uQT-B0-1 o o 92+Bgﬂ+1-m




where the paramcters of the system have been appropriately nondimensionalized

and are defined by

Ps m ¢
2 2,1/2 1 ,2,1/2
\.2 202 32
b , (9)
m c
i . 1. 1 1
B, = s 1=12, ,u=g=, b=, =2
i Ze(camz)l/z 2 i 2

Expansion of the determinant (8) yields the frequency equation in the form

L 3 . .2 ,
PR+ P, + PO + p59 +p), =0, (10)

from which, through the familiar Routh-Hurwitz criteria, the conditions for

aéymptotic stability are obtained as é

p; >0, i=0,...,k
‘ (11)
X = (p,P, - ByPs)Ps = B PG >0 :
= \P¥p = FoF3/Fs = Ay < e
The Standard Model ‘
Consider now the case for which , §
| ?
H=1l 8=2, e=1 e ‘ (12)

which is the "standard" model discussed in Reférencés‘[l-h]. For this particu- |

lar case the coefficients of the frequency eQuation take the form
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By + 632 - 2aF
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T - 2F + ByB, - aB;F - 20B,F (1%)

Ke)
]

B. + B, + oF(F-3)

1 2
pu'-"l

Under the assumption of slight damping, the case of physical interest, and of
small time delays the three last terms in Pb are neglected sirice they are

higher order quantities. By assuming that 32 # 0 and defining the ratios

U:'l HU:’
I~

- TCy
.2 (14)
2 P’

1
ol o
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sy Y=
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the stability criteria (11) yield, for this standard model, the following four

inequalities on the load parameter F: | .’

P(-F) < B2 . (15)
oo, B - 2 ‘
2VPF' - Y(12428+147)F° + 1(TB+13p+207)F° +

[ 2241484124104 1+1918]F + bpZ433844 > 0.

fThese 1nequa11t1es determlne the crltlcal load' the vertlcal positlon of the
double pendulum 1s an asymptotlcally stable equlllbrlum state for loads below

 thekcr1t1cal,load and an unstable equ;llbrlum state for higher loads.

RPN
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The values of these eritical loads were obtained with the use of a
digital computer and are¢ plotted in Figures 2a and 2b., In Figure 2a the criti-
cal load is plotted versus the ratio of damping coefficients B for various
fixed values of v, the measure of the time delayr The case ¥y =0 corres-
ponds to the result obtained in [2]), It is clear that for high values of 7t
an increase in B always leads to an increase in the critical load; for low
values of Y, however, the eritical load increases up to a certain value of B
and then decreases slightly thereafter: the optimum choice of B depends on
the magnitude of y (for vy = 0, the maximum critical load F = 2,086 occurs
st B = 11.071 [2]). It is also noted that for some values of y a sudden up-
ward jump in the critical load takes place as P 1is increased beyond a cer- 3
tain value. Mathematically, this oc;urs when £wo of the real roots of the

quartic (15) become complex conjugates.

R BRI A R S

The c¢ritical load is plotted versus the time delay parameter 1y
in Figure 2b for -various fixed values of the damping ratio “B. The presence

of a time delay usually proéduces a destabilizing effect on the system, with a

larger time delay producing a lower critical load. Sinc¢e physically the im-

portant problem is that with small damping, it is clear that the delays will '
have to be small for any degree of stability; hence the reason for the assump- K
tion on the smallness of T. Note, however, the Surprising result that in the

case B =5 a small time delay stabilizes the system; at y = 2, for example,

the critical load is 4 per cent higher than for the standard follower load

(v =0).
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Effect of External Damping

Consider now the standard model of Figure 1 but with the internal
damping of the previous section replaced by viscous external damping which
acts on the masses m, end m, (but not on the bars) with coefficients b

1
and b2, respectively. The dissipation function in (3) becomes

(16)

Following the same procedure as in the previous section, the fre-

quency equation (10) is obtained with coefficients

B, =2,
P, =7 - 2F + BB, - OR,F, , - (17)

p5 = By + 5B, - 2B,F + oF(F-3),

Pl|'=1’

from which the stability criteria

B+2
F<H%s
F<%’ ‘ ‘ "",

F(2437-1F) < B+5, | o (18)
28R - o 4e284147)F + (3074131842077 +4B)F° +

(2842084844414 101B)F + 4% + 258 + 16 >0,
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are obtained. The critical loads devermined from these equations are depicted
in Figure %a, as plotted ageinst B, and in Figu = %b, as plotted wversus v.

It iz to be noted that in the case of external damping the presence
“f a time delay is always destabilizing: &u increase in y causes a decrease
in the critical load (for fixed PB). The behavior of the pendulum under

changes in the parameter £ again depends on 7. For v > 1/2 the critical

3

load increases with increasing B, but for y < 1/2 {tne critical load first
increases and for values beyond a certain value of B then decreases,

For a standard follower load (y = 0), the maximum eritical load
occurs for B = 2, where it attains the value F = 2,086 (the same maximum
value as for the case of internal damping). This value happens to be the
value Fe [2] of the critical load of the model for zero damping. Hence,
external damping on the double pendulum exhibits a "destabilizing effect"
similar to that caused Ly internal damping: the 24dition quslight linear

viscous external damping lowers the critical load below the value Fe (ex-

' )
cept for B =2, when the critical load equals F_).

Effect'gg Parameter Changgi

Thus far, only the "standard" model with 8 =2, e =1 and =1
has been considered. It is desirable'to investigate the effect of the mass
ratio &, the spring constant ratio ¢ and the length ratio p on the sta-

bility of the model with internal damping.

The procedure used forAthis purpose is identical to that used in

3
s g
PERaBRTaT

the previous sections, The results of this analysis are shown in Figures

L - 6. Figures ha,b depict the critical load for various values of & with

3 ' ‘ R .
it must be noted that this "destabilizing effect" of external damping does not

occur for a continuous cantilevered column subjected to a fcllower load [5]f>~
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€ =1 and W = 1; the results are shown as a function of B in Figure la

with a constant time delay parameter y = 1, and as a function of ¥y in Figure

S 2 S

4o for a fixed damping ratio P = 1., It is noﬁed tha£ the eritical load in-
creases with increasing mass ratio d.
The effect of various spring coﬁgtant ratios € 1is shown in

Figures S5a,b. It is observed that for B > 1 the critical load decreases
é . 'with increasing e, but that the opposite effect occurs for small values of
-B. Figures 6a,b depict the effect on the critical load of the length ratio
p for fixed values & =2 and € = 1.

From these graphs it is noted that this model is extremely sensitive

to parameter variations, and that therefore considerable care should be exer-
cised in inferring conclusions about.continuous elastic systems ..om results

obtained from a simple two-degree-of-freedom model.

Concluding Remarks

K4
4

It has been shoyn that the presence of load retardation, a phen-
omenon almost inevitable in éxperimental studies, has a significant effect
on the stability of the Ziegler model, the effect being in general desta-
bilizing. The imrortance of the nature of the damping mechanism, already
noted by other authors, and the high sensitivity to parameter variations
of the modei have been studied and general quantitative resulfs have been

obtained.
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g Captions for Figures
k Fig. 1 Double pendulum model f
y
Fig. 2a,b Standard model, internal damping i
Fig. %a,b Standard model, external damping 3
| Fig. La,b Effect of changes in mass ratio

1 Fig. 5a,b Effect of changes in spring constant ratio
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Fig. 6a,b Effect of changes in length ratio
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