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ABSTRACT

Part II considers input-output properties of nonlinear time-varying
discrete systems. Slightly generalized forms of the Small Gain and the
Passivity vieorem are derived. Some results of Part I and these theorems
are used to derive stability criteria. The memoryless nonlinearities and

the multipliers are not required to be noninteracting.
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I. Introduction

In Part I of this paper we have derived the best known results con-
cerning the determinateness and the input-output properties of linear
discrete feedback systema. In this Part 11 we are concerned mostly with
nonlinear discrete systems. Two fundamental results in stability theory
of feedbac' systems are the Small Gain theorem and the Passivity theorem.
They are the two basic principles behind most of the stability criterfg.
These two theorems are not new and they have been used either explicitly
or implicitly in many papers. Here we present them in a new, slightly
more general form. The corresponding Section IV is essentially tutorial
in nature. We hope that these two basic theorems will provide a more
unified approach to the stability problem. As applications and illustra-
tions of the power of these two theorems, we present in Section V several
stability criteria for certain classes of nonlinear discrete systens.
Some features of this paper are as follows: 1) We take the advantage of
the simpler analytic properties of the discrete case to obtain simple
derivations. 2) We define the stability of feedback systems in terms of
their inpﬁt-output properties. 3) In contrast to most previous results
in the multiple-input, multiple-output case we don't require the nonlin-
earities to be of noninteracting type. 4) By the use of the results of
Part I, we are able to include a much broader class of linear subsystems.
5) Using the passivity criterion we obtain a simple derivaticn 6f the
Tsypkin criterion under less restrictive conditions. 6) The paper is

essentially self-contained.
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1I. Notations

We use the same notations as in Part I. Some new terms are defined
below.

The symbol t® and ™" denote the spaces of all sequences in RrR"

and R™" respectively; more precisely, " 4 {3‘:' $ J+ > IR“} and ™® 3
'{g : J+ >R}, Ifn=1, we simply write L.

. Q n
Let x {51}0 € ¢ and let N€ J . The sequence x truncated at N

is denoted by AN and is defined as

Y e

h“ = ('%19 '%29 sy '%N-l’ Enrs 2’ 23 °'°)

Let [l denote any norm on " subject to the condition that for all

p = }:n and ali N J
n +

IzNII < ﬂ;\fll .

, All 23 norms defined in Part I satisfy this condition. The space of all

sequences in t® that have finite norm is denoted by @, i.e.

-

@3

.
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: n
(=3 < @
{fs | }
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2 A o
Let (z‘t',x € R'n' The scalar product of two real .sequences 3\5 = {f\," 1}0

and y ) {21};, denoted by (ﬁ,x) is the map of :® x ® into ]R+ defined
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(Xy) = E!
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where éi denotes the transpose of 51' Consequently

2 2

Considering truncations at N, we note that

where we define (x,y)N by 25' n

If z is a complex number, then Z denotes its complex conjugate. If

e is an n-tuple of complex numbers, then s* denotes its conjugate trans-

pose.

III. System Description

We consider the system model shown in Fig. 1. The sequences Y5
n n n
By3 815 853 Xl and XZ are in I . gl’ gz : I =+ I are operators which
can be linear or/and aonlinear, time-invariant or/and time-varying. As-

sume that the system ,NJ is determinate. From Fig. 1 the system :"t‘/is

described by the following system equatioms.

1 R R £ (1)
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g2 " S tn (2)
" ha (3
T2 = B8 ()

Comment:

For simplicity, we consider 21 and 22 as operators. In fact El and

gz can also be allowed to be relations [1].

Definition 1

n n { i n
Let H: I" ~ I and let §-§ be any norm on I". The operator H is

said to have finite gain y. if there exists a nonnegative number Y1 and

a constant Bl (both independent of 5) such that
n
1@E) s v lixd + 8, Vier, VNeJ, (5)
where (Hx), denotes the sequence Hx truncated at N.
an’ N W

Definition 2

n n
Let g ¢t L -+ I . The operator § is said to be passive if there is

n

a nonnegative function V : I" x J_-+MR _and a constant a such that

(xBx)y 2 V(x,N) +a Vx € :®, YN e 3, (6)
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In particular, if there is a positive number é§ such that

2 n
V(‘z\:,,N) 2 tSlg.le V;\c‘e r, YNEJ,
thus

2 n
(EHx) 2 6|§N2+a vﬁez . VNEJ+ (7)

then E is said to be strictly passive.

Comments:

1. The definition of gain defined in (5) is more appropriate and more
general than that defined by Zames [1] and used by Sandberg [3]. In fact
(5) does not require that '}\I/(‘)"= '(\)‘; this is useful. for example, if E re-
presents a relay or a hysteresis. As a special case when 81 = 0 and

I?\‘,Nﬂ # 0, Y, can be taken to be

| (iix)
4 sup e N

NeJ, | xyl

x €

Y1

we are then brought back to the definition ofiginally given by Zames [1].

2. The definition of passivity is slightly more general than those used
by Zames [1] and Sandberg [3]. Ours is inspired from circuit theory.

(See Kuh-Rohrer [2].)
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1IV. Main Results

In the stability studies of feedback systems in terms of input-
output properties, there are two major results, namely, the Small Gain
theorem and the Passivity theorem. The Small Gain theorem is appli-
cable to any nori on Zn. but with the more restricting condition of ce-
quiring that the product of gains of two subsystems be less than 1;
while the Passivity theorem is applicable on'y to nﬁ—norm. It hac the
advantage that, for the linear time-invariant case, the passivity condi-
tion has a frequency domain interpretation. These results have been
developed mostly for the continuous systems and are available explicitly
or implicitly elsewhere [1, 3, 5, 14, 16]. Here we are concerned only with
discrete systems and these two results are generclized ond stated in

their most general forms.

Theorem 1 (Small Gain Theorem)

Consider the systemlﬂéf(Fig. 1) described by (1)-(4), where El'
EZ : 2% > % Let ﬂ°l be any norm on t™ and let there be some nonnega-

tive numbers ul, My and some constants Vl’ vz such that

A\
mlzgd + vy XEL

A

1 (B2,
. and

I(gz:’\f)nﬂ < uzﬂﬁ," + Vﬁe £, VNG N 9)

<
N

Under these conditicns, if




ey A

¥ & MMy < 1 (10)
then, for all N € J+,
1
€
leoggl = T3 ['k',zul gyl + v + u1"2] (11)

Furthermore, if ) € @, then €10 &5 Xl and X.Z are in (B

Theorem 2 (Passivity Theorem)

Consider the system»’bj (Fig. 1) described by (1)-(4), where El’

22 : " > . Let ,l\l‘l satisfy the following conditioms:

(1) For some nonnegative number Yy and some constant 61
n
tand, s vixld,+8,  vxer, Vnel, (12)

(11) For some constants 61 and oy

2 n
‘ﬁ’.‘hﬁ’-u 2 615'\1&1”2 +a, V?\‘ce L, VNEJ+ (13)

Let H, be such that for some constants ¢, and a
a2 2 2

2 n
(5.52;5) N 2 ezl (523\‘.)1\1“2 +a, V§ €L, VNeJ, (14)

Under these conditions, if

>

(61+ ez) > 0 | (15)
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2 2
then A € nn implies that xz € zn and consequently iig z21 = 0.

The same results also hold for 210 & and xl.

Comments:

1. In contrast to the continuous case the two preceding theorems need
no special assumption concerning the possibility of finite escape time.
The assumption of determinateness implies that, for the nonanticipative
case, the equations for the successive components of 21 and 32 have a
unique solution. In the linear case explicit conditions can be given

for this to be the case (see Theorem 1, Part I).

2. Many forms of these theorems have appeared in the literature. The
best recent ones are due to Zames [1]) and to Sandberg [3]. It is inter-
esting to note that our more inclusive definitions do not alter the es-

sential conclusion.

3. With respect to the Passivity theorem, (a) we do not require H) to

be passive and gz to be strictly passive, we need only have 61 + €y > 0.
This fact has already been observed by Stern [15] and Cho-Narendra {14].
() If ﬁ,e zﬁ, then X € 1: and X, 2 as 1 + =, Therefore the conclusion
of the theorem implies that e 99 Xl and XZ € 2: and -~ 2 as 1 + =,

(c) If y = 2, the assumption (12) is not required in proving xz, & € zi.
In other words, if 4y = g and if we are only interested in showing XZ’

& € lﬁ, then we don't need the assumption (12), namely, that gi has fi-
nite gain. However, if we want to have same results for zl and €ys then

the assumption (12) is essential.

4. The Passivity theorem and its applicotions (given in the next section)
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can be extended in that, instead of considering only inputs with finite

energy, viz.
© 2 > 2
v o= lyly vith Iyl = F Ivyl® <o
1=0

one may also consider inputs with finite average power, i.e.

© lf 2
{y}g with li§*2up v L |xi|

o4

Uader the conditions stated, such finite average power inputs produce
finite average power outputs.

The usefulness of Theorem 2 can be greatly enhanced by modifying
the system;4€Fusing the multiplier technique. Let % be a linear map
from ® onto " and suppose that its inverse, %.1, maps t® into ™. The
modified system is denoted by-1{; and is shown in Fig. 2. It i{s easy to
verify that Yis Moy €15 5 Zl’ xz satisfy the system equations of *!
(i.e. (1) to (4)) if and only if Yys Bys €14 s Zl and XZ satisfy the
system equations of‘1€;. Furthermore,1g’is determinate if and only if
aéfn is determinate.

N
Theorem 2M below is obtained by transcribing Theorem 2 to the sys-

t:em,{M and using gy = )"dgz and 4, = %\1‘2.

Theorem 2M (Passivity Theorem for the System with Multiplier)

[ A . n n
Considur the system ,{ M shown in Fig. 2, where §1, ?.2’ ;-3 st +1

Let EEI satisfy the following conditionms:

-10-
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(1) for some nonnegative constant Yi and some constant Bi

' | ' . e
lag, o, < wixld, +8; vzeri, vneg,

(11) for some constants Gi and ai
(x, ME.x),, = 8Jx]®+a! Vxe:i® VNedJ
A oAl TN  LEw LD 1 n ’ +

Let H,, M be such that for some constants ¢! and a!
n2? o, 2 2

' 2 1 n
(ge, Boxdyg 2 el @yxyly +ay  Vrxer, vNed,

Under these conditions, if

A (Gi +¢€!) > 0

2

then for all u,, 1, with u, € 22 and Mu, € 22, we have
a1’ A2 nl n 2 n
- o 2
(a) S5 895 Xl and xz in zn.

(b) If, in addition, either (i) El has a finite gain

or (ii) g’l : 2:21 > g2

r 3

then Y1 is also in &_.
A

=]

(¢c) In (b), if (ii) holds, then e, is also in Zi.

Comment:

!“12')

(13'")

(14")

15")

It is important to note that in Theorem 2M, we don't require the
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multiplier % to be a map of li into zﬁ (a2 similar comment applies to

the continuous case).

v. Applications

We use the theorems above to obtain several stability criteria for
some classes of nonlinear discrete time-varying systems. Theorem 1A (be-
low) applies to system,4€((Fig. 1): El is linear time~-invariant and spe-
cified by its z-transfer function %(z); it is assumed (ineq. (18)) that
/ﬁ( is stable under constant linear feedback with gain §. Suppose now
that the feedback becomes nonlinear and time-varying; then we use the
Small Gain theorem (see (13) below) to ascertain how far it can deviate
from the iinear gain 5 (see (17)). This is essentially a perturbational
result. A little thought will show that if (17) is violated only for a

finite number of values of m, the boundedness conclusions still hold.

Theorem 1A (Application of Small Gain Theorem)

Consider the system‘ﬁ{ (Fig. 1) with ¥ = g being a linear, time-
invariant, nonanticipative subsystem and gz = gt being a time-varying
memoryless nonlinearity. Let the input-output relation of the linear
subsystem g be defined in terms of its impulse response g by the convol-

ution
yl = G % e (16)

Let the open-loop z-transier function of g be of the form

-12-
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1

A e 1® o 2-1Y
where R is an nxn constant matrix and G (6,1}, é (G, ()} € 2. .

N g b |
Let the time-varying memoryless nonlinearity gt be described by a non~-
linear function *t : 1P x J+ -+ z“, which satisfies the coadition that for

some constant matrix %, some nonnegative number Hy and some constant Vo
n
|$t(g,m) ;\(gl < uzlgl + v, Vger, Vo e J, (17)
Under these conditions, if

(a) inf |det(I + E(Z)Kj[ > 0 (18)
z]>1 A VA Y

and if either R = 0 or RK is nonsingular,
n Ny

n

(b) ﬂgﬂluz < 1 (19)

were 18 135 - 77 + Cop i@}

o] t p ]
then for any fixgd p € [1,=] ) in zn implies that g &y y1 and XZ

are also in zﬁ.

Corollary 1A

Consider the single~input, single-output system /6{(Fig.Al) with

Hl = G being a linear time-invariant, nonanticipative subsystem and H2‘= ]

t

-13-
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being a time-varying memoryless nonlinearity. Let the input-output re-
lation of the linear subsystem G be defined in terms of its impulse res-

ponse g by the convolution
y; = 8*e (16")

Let the open-loop z~-transfer function of G be of the form

*yl S gt A r@-zdfl+g¢n (16a')

where r is a constznt and g, 4 {gi}; }-l{gz(z)} € 9.1. Let the time-
varying, memoryless nonlinearity be described by a nonlinear function
wt : I ox J+ + I, which satisfies the condition that for some constants k,

vé and some nonnegative number “é
|\pt(o,m) - ka| s uyle] + v) Vo €I, VmeJ, a7')
Under these conditions, if
(a) inf |1+ kgz)] > O (18")
|z]21
and if r = 0 or rk # O,

®) Inluy < 1 oam

-14-
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where h 2 {hi}; - %'l{g(z)/l + hg(z)}, then for any fixed p € [1,=], u,

u, € 2P implies that e;r € ¥y and y, are also in 2P,

Theorem 1B

Consider the system /'é/ (Fig. 1) with 1'31 = g being a linear, time-
invariant, nonanticipative subsystem which ic described by (16) and (16a)
and }‘1‘2 = ,l\" being a linear, time-varying gain Ié which is specified by a

: @
sequence of nxn matrices {K },, where IEiI <o Vi€J. Let the system

,{be determinate, i.e. by Theorem 1, Part I,
det [5 + (ﬁo + 5)511 # 0 vieJ,

Under these conditions, if there is a constant matrix Z(: such that 'l\(.i + K

4

as 1 » » and furthermore

-
|:Tf.1 Idet: ['{ + ,\G‘(z)'l\(']l > 0 (18a)

then for any fixed p € [1,«], Yy, Uy in zz implies that 815 s xl and
T2 are also in 23.

Roughly speaking Theorem 1B asserts that if a given linear discrete
system with time-varying gain tends towards a stable (see (18a)) linear
time-invariant system, then the given system is also stable. This result

is sharper than that of C. T. Chen [19] in that we do not require that

-15-
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Theorem 2A below is an application of the Passivity thecorem. It
uses a combination of techniques: some results of Part I of this paper,
the multiplier idea and some inequalities of Willems-Brockett [7]. It
is worth noting that Theorem 2A applies to the multiple-input multiple-

output case and memoryless nonlinearity need not be uncoupled, as was

the case, for example, in Refs. [6], and [11].

Theorem 2A (Application of Passivity Theorem)

Consider the same system /'é/ as in Theorem 1A, where the linear
time-invariant nonanticipative subsystem g is described by (16) and (16a);
the memoryless, time-varying nonlinearity 21: is described by a nonlinear

function *t : £ x J + £ which has the following properties:

Nl. for some constant nxn matrix 5

@ - 22 [teerom) - geleem] 2 (g - 00) 'Kl - 2o)

"
Vgl, ) e ", Vaoe J, (20)
N2. *t(-g,m) = -:{:‘t(g,m) V’c\x‘ e ", Voe I, (21)

Let 'b‘li be é multiplier whose z-trancfer function is of the form

N _ -1 .
HONEEDIS T (22)
and satisfies the following conditions: -

- -16-
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T 1
M. té . %1}0 - ? {%(z)} € Loxn

M2. inf |det M(z)| > 0 (23)
|z]21 ~

M3. for all 1 € J+, all elements of %1 are such that

n n
Béa ay'B

Under these conditions, 1if

(1) for the constant matrix 5 defined in (20)

inf |det [I + G(2)K]| > 0O (25)
n N N

z2i21

and if R = 0 or RK is nonsingular,
n N 44"

(11) for some number § > O,

'\" '\' -1V At 1"," - '\"v
:Tl U@L+ §ERITE@ + § @I+ @I @} 2 6 > 0 (26

SEUHRIT I m et R e

where X{H} denotes the least eigenvalue of the matrix H,.then for all gl,

2 2
22 in En, sl, %2, zl and XZ are in zn.

Corollary 2A -

Consider the same system ,a(as in Corollary 1A, where the linear,

time-invariant, nonanticipative subsystem G is described by (16') and

v

-17-
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(16a') and the memoryless, time-varying nonlinearity °t is described by

a nonlinear function wt ¢ L x J+ + I which has the following properties:

Nl. for some constant k
2
[o,(opm) = 4, (opm)] (o - 0;) 2 x(o; - 0)% Vo 0, €1, Vaca, (20
N2. wt(-o,m) = -wt(o,m) Vo€ 7, VYmE€ J+ - (21')

Let M be a multiplier whose z-transfer function is of the form

: [}
" -1
(z) = P mz (22")
i=0
and satisfies the following conditions:
A ® -1 1
ML. m= {m},= ? {m(z)} € 2™,
M2. inf |m(z)| > O (23')
lszl
: v '
M3. o, 2 0 ie J+ (24')

Under these conditions, if

(1) for the constant k defined in (20')

inf |1 + kg(z)| > 0O (25')
Izlzl '

-18-
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and if r=OQorrk # 0

(11) for some number §' > 0

Yy 2 . .
inf Re { m(z) 2 §' > 0 (26')
|z]|=1 1+KE (2)

2 2
then U U, € 2 implies that €10 €5 Y10 ¥y € L.

Theorem 2A is simply an application of usualPassivity theorem [1,3],
a special case of Theorem 2, in which one subsystem is passive and the
other subsystem is strictly passive and has finite gain. In order to il-
lustrate the application of generalized passivity theorem given in The-

orem 2, we present the following theoremn.

Theorem 2B

Consider the single-input, single-output system Adﬂ(Fig. 1) with

Hl = G being a linear tim -:1variant, nonanticipative subsystem and

HZ = ¢ being a time-invariart memoryless nonlinearity. Let the open-loop
,i- impulse response sequencs of G, g Q'{gi}; be in 21 and let the the input-

output relation of the lirear subsystem G be defined in terms of g by

Y, = g*e (27)
or equivalently
: m
S (R 2, Eaitl @8
: i=0 .
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Let ¢ be characterized by a nonlinear function y : I + I which satisfies

the following assumptions:
Nl. for some constants kl and kz.
ICHERTCH)

< kl £ 01 =3, s kz

Val, 9, €I, % #' o, (29)
Y(0) = 0 4if and only if 0 = O

N2. ¢Y(=0) = =p(0) Vo€ L

Let M : L + I be a multiplier whose z-transfer function is of the

form

n(z) = Z |n:lz"i
i=0

where m & {mi}; - ?-l{g(z)} € 2+, The input-output relation of the mul-

tiplier M is defined by the convolution Mx = m * x.

Under these conditions, if

A N, ) 1
A = {ipf JRe[m(z)g(z)lp+ — - = of, > O (30)
g (i} e 22 - L1y

2 2
then Ups Uy € 2~ implies that €15 €5y ¥y» ¥, arE in 27,

Comments:

1. Assumption N1 implies the following facts:

i e B et
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a. 0 < klaz < oy(u) € kzoz Vo€, o#0 (29a)
b. 0 - kl v2) < ovlo) < -kl--oz(o) WoE€Z, of0 (29b)
2 1

2. The assumptions N1 and N2 above specify an odd monotonically increas-

ing nonlinearity in the sector [kl,kzl.

3. If, in addition to N1 and N2 defined above; we have additional assump-
tion on the slope of the nonlinearity, e.g. Iéw(a)/do] < k3, then a Jury-
Lee [10] type of criterion which is in the form of (30) can be obtained
easily as an application of Theorem 2.

To illustrate further the power of Theorem 2, we present below a
stability criierion which is similar to that of Tsypkin [9]. Our result
is more general in that we allow for inputs in 22 and the conditions on

the nonlinearity are sliglicly less restrictive.

Theorem 2C

Consider the same system'df’as in Theorem 2B, where the linear,
time-invariant, nonanticipative subsystem G is described by (27) and (28)
and the memoryless, time-invariant nonlinearity ¢ is described by a non-
linear function ¢ : I + I which satisfies the condition thag for some
constant k

“’(51) = ‘p(oz)

< o - 5, S k 0ys Oy €, oy # g, (31)

Let M be the multiplier whose z-transform is g(z) = 1+ Q(l - z-l) with
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q 2 0. Under these conditions, if

I: 51 Re{[l +q1 - z"l)] g(z)} + -}; > 0

2 2
then for all Uy, u, in 27, e1r € Ny and y, are also in 2.

(32)
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VI. Aggendix

Proof of Theorem 1

From thé system equations (1), (2), (3) and the assumptions (8)

and (9), we obtain (using the subscript N to indicate truncation at N),

a

f
legyl buged + el +v;  WNET, (33)

and

A

le)yl Bl + uplegyl +v,  WNE T, - (3%)

Now substituting (34) into (33), we obtain after some manipulations

(1 - wu,)le,d < [ﬂgZNll +u g + v, + “1"2] (35)

Since 1 - 1My 4 (L - u) > 0 by (10), inequality (35) yields

1
€ am—
o ¢ T [“%zn" gl + vy ¢+ “1"2] (36)

< P <
Now u,, u, € (B, hence for all N € J+{ ﬂgluﬂ < ﬂglﬂ < @ and “92Nﬂ < ﬂgzﬂ
< » and as a consequence pf (36), ﬂgzﬂ <o, i.e. 2, € (3. From the sys-
tem equations (1)-(4) and the assumptions (8) and (9), we can easily see
that e Zl and ZZ are also in (.
Before we prove Theorem 2, wz present first a fundamental lemma

which is analogous to Tellegen's Theorem in circuit theory. This lemma



'*‘1 ~° :

is an immediate consequence of the system equations (1)-(4) and the lin-

earity of the scalar product.

Lemma A

Let the system 4and '{M (Fig. 1 and Fig. 2) described by (1)-(4)
be determinate. Then for all N € J+, we have for-ff
(e1’ H )

Higgdn 7 (gps Hagody = (3 B2y d g + €8y, Hogod y (37

and similarly for/d(
nM

(ey» Miie )y + (Mey, Hoeod o = (uy, Mije,) o+ (Mu,, Hie))p  (38)
Proof of Theorem 2
By Lemma A, we have for any N € J+
(g1r B8y y ¥ (82 Mooy = (Bps Hiegd o+ (1 B2y (39)

Using the assumptions (12)-(14) and Schwarz's inequality, we obtain from (39)

2 2
Sjleinls + oy + el (aedyly + oy s el by, + "(m2m2 w08,
(40)
thus

Recalling from the system equation; that ZZ = HZ%Z and 51 = EI-NZ’

we have for any N € J+,

-24~
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and

feanl, 2 Bund, - byal, ey S o, + Byanl,

Using these relations and (12) we obtain from (40)

2 : , )
61( Snly - “X,zn“z) +ay +epfyoyl, * oy

s [ra(isad, * ad,) + 8] benad, * B lind, @D

A 2,
Let A = 61 + €, and use the assumptions ;s 4, € zn, we obtain, after

some manipulations, from (41)

o

2
Moy = [0t 280l + Ez“z] byl

+ E(Yl + Iﬁll)ﬂ,‘&lﬂ; + 61“51"2 -a; - a2] (42)
or |
| AHXZN“i S kgl vk, YNEJ, Yy e (43)
where
ky ¢ [(Yl + 251)“%1“2 + “%2“2]
and

2
2 (vq + 18.D0uy05 + 810l = 0g = oy

>

are constants independent of XZN-and N. Since A > 0 (by assumption), ‘(43)




pad S

2 2 2
implies that XZ € zn. Since e =y ZZ and 94, § zn, we have & € zn.

2 2
It follows from (12) that Xl € ln. Finally e, € zn because g, =Y + zl.

Proof of Theorem lA

We shall prove the theorem by applying Theorem 1.

By a standard system transformation, we obtain from the system 4{’
(Fig. 1) the new transformed system 1é7(Fig. 3), where the linear sub-
system g in the forward path and the nonlinearity z; in the feedback

path become respectively

. —_—
H (,{ + g}&) ¢ (44)
and
8y = 2 - KI (45)

The variables Y10 & and u, are preserved in the system AJ’and the new
al’ "2 N2 LY

variables 4s g and ZZ are related to the old variables 21’ sl and xz by

R R v v (46)
SR B 41 (47)
T2 = 127X (48)

Since K is a constant matrix, it is clear from the above relations that

P . . -
and xz are in ln if and only if that R 22, ﬁl’ 52, Zl

Ry2 820 210 S22 1




. ¥
~

2}

[)

and ik are in Eﬁ. Therefore the original aystem‘1{‘and the transformed
gystem »NJ are equivalent as far as stability is concerned.
‘Now by assumptions (16) and (18), it follows from (44) and Theorem
2 of Part I that
. © -1 v -1% } 1
B2 owy - ST sepT @) e n,
consequently H has a finite norm denoted by ﬂgﬂl. Therefore for any

fixed p € [1,~]

s ﬂgﬂﬂ@mﬂp VE ez, NEJ, (49)

This shows that condition (8) of Theorem 1 (Small Gain Theorem) is satis-

fied with My 4 ﬂgﬂl and v, = 0. Relation (45) and assumptions (17) and

(19) show that conditions (9) and (10) of Theorem 1 are met. Thus it
. P - e
follows from Theorem 1 that 4, 4, € nn implies that €15 99 xl and ZZ
P -(L P
are in 2n and by (46)-(48), s XZ are also in zn.

Proof of Thebrem 1B

Perform the system transformation as in the proof of Theorem 1A;

we obtain the system ’,ﬁi with

E = ({ + g%) g (44a)
and

(45a)

oR>
0

o
!

2|

-27=
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From the proof of Theorem 4 in Part I and the fact that the system ,’af is
determinate, we see that the system zg; is also determinate. Furthermore
becavse of (18a), Hgl]l < », Now, by assumption, I'I\(‘il <o Vie J+ and
'I\(‘i > f,\(: as 1 + »; thus for any ¢ € (0,1) there exists an N(e) € J+ such
that for all 1 2 N(e), I]’I;‘l 11151 - gl € 1 - €. Therefore the claimed re-
sult of the theorem follows immediately from Theorem 1 applied to the
system {for i 2 N(e).

Note that we have actually proved that if l,lsil < o Vi, and if for
some N, 1 > N implies that |§i - ;K:I . ||’l;1’||1 < 1 - g, then the conclusion
of Theorem 1B still holds. In other words, it is not necessary for the
51 to tend to E but only that they eventually get sufficiently close to

g and remain there.

~root of Theorem 2A

We shall prove the theorem by applying Theorem 2.

First we perform the system transformation as in the proof of The-
orem 1A to obtain the system /g-(Fig. 3). We have noted that system ’,é/
is stable if and only if system Jis stable. Next we introduce the mul-
tiplier M into the system g— to obtain the system {; (;JM can be obtained
from Fig. 2 by replacj.ng 95 %1,. X2 ’E\I;l and 'I;l‘2 with 21, '\3,1’ 22’ g and 7(\)::
fespectively.) Now by assumptions (16) and (18) and the relation (44), it
follows from the same reasoning as in the proof of Theorem 1A that E has

finite gain (H|

Hl, as is defined in (49), i.e., VYN € J+

() 1, = 1ELIE, (50

. =-28-
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By assumption Ml and (50), we obtain

; — - n
Oz )yl, < bulbEl e 0, Ve et yned, (1)

This shows that condition (12') of Theorem 2M is satisfied with yi 4

IMI.IHl, and B! = 0. Now by assumption (26) and Parseval's theorem, we
Ll RVl § 1

have
- VIS 1 f ﬁ* m '\, -1& _'\_o -ld
(g)» Mie )y = 3 Sm(z)[%(")(i + 6(2)K) «,G(z)] gn(2) z "dz
|z|=1
L f Boffioq oy o]
- %P me{lieifopTie
|z|=1
'S'* ' ook - q‘ ]}2 -1
r [Foarge) o] e e
- 2 - n
2 Glgm[lz > 0 Vsle ', UYNe J+ (52)
Thus the condition (43') of Theorem 2 is satisfied with §! 4 § > 0 and

1
ai = 0. It remains to check the conditions of (14') and (15') cf Theorem

2. The assumption N1 and the relation (45) give us

() - 92" [Teloy® - Telgpm] 2 0 vg et vae s,

This coupled with assumption N2 implies that Et is an odd, monotonically
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nondecreasing nonlinearity. Since the assumption M3 implies that the

matrices %1'3 are doubly dominant [7] for all 1 € J+, it follows that

['l.’heo::em 4 of Willems and Brockett]

R Y -
(€0 S M ey = (Mey), 2e))y

N
=0 Mgy Telepy) )

i=0

N
= ;Z_%ﬂ(ﬁzi)i’u-ﬁu 2 0 (54)

where we have used the assumptions M1 and M2 to guarantee the existence

of ¥-1 in the above equation. (In fact M1l and M2 imply that H.l < zixn;

see proof of Theorem 2, Part I). (54) shows that condition (14') of

Theorem 2 is satisfied with eé = aé = 0. Clearly condition (18') of The-

orem 2 is indeed satisfied because A' 4 (Gi + sé] = § > 0, Therefore w2

have demonstrated that all conditions of Theoi=m 2 are satisfied. Now

2 . - - 2 - A
8y 4, € zn implies that 8, and u, are in Qn because u, = 4, 522. 4,
1

*Mu,, where K is an nxn constant matrix and M € 2 . Therefore we con-
'V\,Z ", n, nxn

_ — A - - 2
clude from Theorem 2 that £, 52’.51 and_g2 are in 2n. From Fig. 4, we

2 -1 : 1
can easily see that Xl and g, are in Zn because % and % are in nnxn
which map zﬁ into 2§ respectively. From the system equations (47) and

| 2
(48) we obtain easily that e and XZ are in ﬁn.

Before we prove Theorem 2B, we first quote a lemmé [8, 17, 18] which
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we will use it in our proof later.

Lemma B

Let £ ¢: I + I satisfy the following conditions:

(0 - 0,) [f(cl) - f(oz)] 2 0 Vo,0,€L

Then for all j € J+

N
12-% ai_jf(oi) b3 g.;) 0,£(0,) Vo, €I, VNE J,

If, in addition, £(-0) = -f(0), then for all i € J+

N N
'12‘:) °1—jf(°1) < 12% oif(oi) Voi €z, YNE J+

Proof of Theorem 2B

We prove the theorem by means of Theorem 2.

Since, by assumption, g and m are in 21, we have

I(Mcel)NHZ = [(m=g* el)uﬂ2 = Qo] el le ), Ve,€Z, VNEJ,
- (55)

This shows that (12') of Theorem 2 is satisfied with yi 2 | m lﬂgﬂl and

Bi = 0. Now by Parseval theorem, we. get



ot
%
4
&
;
#
k2

!

gl S

Ce), MGe)) = -2% f et (2) B(z) B(z) &y (2) 21

- -2!'1? fl Re[a(z) g(z)] g’in(z) gm(z) 21 4z
|z|=1

> alem|§ (56)

where § 4 itixfl '{Re[g(z) g(z)]} .
z -

Clearly (56) is in the form of (13') of Theorem 2 with §! = § and

1
ai = 0. Before we apply Theorem 2, we need only to check conditions (14')

and (15'). Now consider

i=0

i-1

N
12-:0 moea1¥(egg) * 2 (2 € (1 )> vie,,) (57)
and using the assumption N1, N2 and Lemma B, we obtain successively

i=0

(cont.)




i -

2 =2 Y vie,) - Inl, D e, ule,,)
k, 12-30 21 1 &y “a¥

w
8

(...9. - !E.'.l)h, |2
kz kl 2N* 2

w>

, ‘
v anl; (58)

where we have used (29b) and defined €y by

A % fnf,
2 K, k;

So (58) is ir the form of (14') of Theorem 2. By assumption, clear-
ly condition (15') of Theorem 2 is satisfied. Therefore it follows from

Theorem 2 that e €y ¥, and y, are in 22.

Proof of Theorem 2C

By identical argwments as in the proof of Theorem 2B, we obtain

2

! = 5 -] > (¢
(e, Mea ) 2 6lﬂem||2 (59)
where Gi 8 ,ﬁnf}g{{i 1 gl - znl)]g(z)}. B
@i =l .
Next we causider
N
(Mey, dey)y = D (m* ey vley,) (60)




a2

Denote 3(2) =1+ q(1 - 2-1) = (1+q) - qz-l g L + mlz-l, then o, = 1

+ q and m = -q. Since

m*e), = mey)y +meyi4)

= (1 adey - agy(im)

We obtain from (60)

N N
(Mez, ¢e2)N = §) (1 + q)euw(eu) -q 12;) eZ(i-!-l)w(eZi) (6l)

Applying Lemma B to (61) and noting that q 2 0

N N
(Meyy 0oy) 2 (L+@) D e0(ey) = 0 D &y(yypybley)
i<0 1=0
N N
SR IEMICRET D ITAICN
1=0 1=0
- 1 s~ 2 1 2
D, eabley) 2 g Qo Ve = iy,
i=0 i=0
A 2
E25"'(‘321)}1“2 -

Assumption (32) implies that 6i + €, > 0. So we have shown that all con-
ditions of Theorem 2 are satisfied, conseuqently we conclude from Theorem

. 02 2
2 that U, u, € L° implies that @15 € ¥y and y, are in 7.

-34-
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Conclusion

Using some results of Part I and slightly generalized versions of
the Small Gain and of the Passivity theorems we obtain in a unified man-
ner several general stability criteria for multiple-input, multiple-
output discrete systems. We hope further work in this direction will
lead to a unified presentation of stability theory of nonlinear feedback

systems.
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FIGURE CAPTIONS
The system i under consideration.
The system rém which is the system gfwith the multiplier M.

The system which is obtained from the system J by a standard
system transformation. ~
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