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APPROXIMATION TO THE STATISTICS OF
MIDCOURSE VELOCITY CORRECTIONS

By Lawrence H. Hoffman and George R. Young
Langley Research Center

SUMMARY

A simple approximation for the mean and standard deviation of the magnitude of a
statistical velocity correction vector is derived. Approximate methods are presented for
making probability statements about the velocity correction vector. These methods are
shown to be adequate for calculating the fuel budget for a velocity correction. Compari-
sons are made with exact results obtained by numerical integration. Results obtained by
the root-sum-square method of determining a fuel budget are also compared with the
exact numerically integrated results.

The data presented indicate that the probability density function of the magnitude of
a velocity correction vector can be fitted accurately with a Gamma distribution having an
integer shape parameter, and thus probability statements about the magnitude can be
made. The accuracy of the Gamma distribution fit is examined for a number of repre-
sentative covariance matrices,

INTRODUCTION

Estimating the amount of fuel required for a midcourse velocity correction maneu-
ver is a problem of considerable importance for many types of space missions. Overes-
timation of the required fuel budget may result in overly large fuel systems and thereby
reduce usable payload and mission utility. Conversely, underestimation may result in
compromising mission reliability.

In this paper an approximation to the statistical magnitude of a velocity correction
is obtained. It is assumed herein that velocity corrections are impulsive and can be
represented by a trivariate, normally distributed, random vector with zero component
means and with a specified covariance matrix. Justification of the normal-distribution
assumption may be inferred from the following observations:

(1) Injection~-error sources are usually distributed normally.

(2) The nonstandard trajectories differ only slightly from the nominal; hence, linear
methods may be used for error propagation.
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(3) The velocity correction is usually the result of a linear function of the state at

midcourse time.

(4) Linear mapping of normally distributed variables results in normal variables.

The reader at this point may ask why it is necessary to approximate at all. Why
not write the equation for the variable of interest (the magnitude of the velocity correction
vector) and use the standard methods of transforming random variables to obtain the
probability density and cumulative distribution functions? The answer is that the equa-
tions are intractable and have only been solved symbolically for the general case (ref. 1).

Several methods have been used to make probability statements about the magnitude
of a velocity correction vector. Two of these, the Monte Carlo method (refs. 2 and 3) and
numerical integration, can be made as accurate as desired if a computer is employed. A
third method is to use the distribution of the magnitude of a random variable that is nor-
mally distributed with zero mean and with a standard deviation which is the root-sum-
square value of the three standard deviations for the three-dimensional distribution.

This distribution, alternately known as Chi, half-normal, or generalized Rayleigh, is
referred to herein as Rayleigh and is compared with the results of the present paper.

SYMBOILS
a constant
ai,ag,ag coefficients of polynomial .
b constant representing upper limit of integration
E() expected value of ()
e base of natural logarithm
f function of V;,V;;,V;
g(ﬁ) normal density function of Vx,Vy,Vy

g(Vi,V?,,VZ) normal density function of transformed variables
h(IVD Gamma density function

i,j,k,n integers



K()

P()

VX’Vy,VZ
Vi, Vg,V

* ok K
Ve VeV

<

polynomial in X

probability of ()

radius

trace of midcourse maneuver matrix

components of V

components of V'

transformed variables

midcourse maneuver vector (velocity to be gained)
midcourse maneuver vector before diagonalization of covariance matrix
parameters in Gamma density

Gamma function of ()

polar coordinates

eigenvalues

mean of I_V_l

means of components of v

ijkth moment of transformed variables about the origin

standard deviation of lV‘

transpose of ()

magnitude



ANALYSIS

Calculation of the Moments of IV}

In the formulation of most fuel budget problems, one normally has been given or
has calculated a velocity-to-be-gained covariance matrix of the form

VXVX E(Vxvy)  E(Vivy)
[ )] = [E(v E(VyVy) E(VyV,) (1)

(VZVX) E(VyVy) E(V}ZV;Z)

In order to get the mean and variance of the magnitude of Vy, it is necessary to
obtain the first and second moments about the origin. Thus, the problem herein is to
determine the moments about the origin of IV'I. One can, without loss of generality
(see app.), apply a similarity transformation to equation (1) and work with the diago-

nalized matrix

A 0 0
E(WT) =lo x 0 (2)
0 0 A3

where the \'s are eigenvalues of the matrix in equation (1). The magnitude of the vec-

tor V can be written as

/2
>1

V= (v +v2 V2 )

The moments of IV, are required. The vector V has a three-dimensional normal

distribution which can be written as

_Lx ux) gV uy) (Vz o)

—3/2 _2 3

g(V _em (4)
YA 1r2r3
where
Vx
V=|Vy (-0 < Vx,Vy,Vz < )
VZ

and where [y, u&,, and p, are the means of the components of V.
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The most direct way to find the nth moment of 'V' is to multiply g(V) from

equation (4) by |V|n and integrate from -« to <« in all three variables. After
finding the first and second moments about the origin, the standard deviation can be found

2 2
of‘v' - E(IV') - E<|V|> (5)

Unfortunately, the form of equation (3) prohibits the integration of the product of
equations (3) and (4) in general, and recourse must be made to numerical integration (see
ref. 1).

from

The approach adopted here is to expand lVIn in a Taylor series about some
point, multiply the resulting series by g(V) from equation (4), and perform the triple
integration. From the form of a Taylor series, it is obvious that this procedure is
equivalent to finding the mixed moments of Vy, Vy,and V3 about the origin. Since
g(V) is symmetric about the origin, the most obvious expansion is about the point
(Vx,Vy,VZ> = (0,0,0). However, the derivatives of lVIn are not defined at the origin.
If the expansion were about some point other than the origin, the resulting Taylor series
radius of convergence would stop at the origin and the expansion would not predict across
the origin. To avoid this problem, a transformation of coordinates was used which would

n/2
preserve the statistical properties of V}z{ + V}2, + V%) but which would allow the inte-

gration to take place within the series radius of convergence. The following transforma-
tion was assumed:

Vi - [V
vy = vyl (6)
vz = [V

~ n/2 n/2
Thus [(V;)z + (V;‘,)z + (V;)z = ( }2{ + V?, + Vg) and the functions of interest have

not been changed. The transformed density function would then be the sum of the densi-
ties in the eight octants (see ref. 4, p. 222). For the transformed density function, the
following equation can be written:



1| (b’ A5 “y) ()

-3/2 9 A A3
(VX’VY’VZ) (zx:)xzxs >
2 2 s \2 N
f(rzosf (5 (e e () (Vi)
E Kz * ?t3 2L 7\1 7\2 * )\3

1 <V;;+U~x)2 +@+uy)2 . (V;”'FL Z)Z

2 )\1 A9 ?\3 -
.. ve (VX,Vy,VZ > o) (7)

After setting py = By = Hg = 0,

8(2m) /2

Vh1kzh3

The intention now is to make the Taylor series expansion about a point in the domain of
the new distribution. The analysis that follows requires the calculation of the ijkth
moment of the transformed variables. Let

g(VX,Vy,VZ) e (V;*;,V;*,,V; = o) (8)

I VN PN
Vi = So §o So (V;;) (V§) (V;) g(vgﬁ,v;,v;)dvgg vy avy

() () ()

X 3/2 2| x T T
g Swg V* V* )k 8@m) "7, ' ? ’ av}; dvy avy (9)
VK1A2K3
which can be written in the form,
B 2l o[ 2|
_1(_2 21 (V;’) | 1 (VE}
i 22X i 2T k 2 X3
PRI LA (L (LT WP
) g ZTTKI .J g 277?\2 j L 27T>\3 .




Then equation (10) can be integrated three times to yield

] (2)\1)1/ 2 (%2):1/ 2<2A3)k/ 21-.<i ; 1) r(j -2+ 1)1,(1{; 1)

“ijle 3/2

(11)
m

Equation (11) represents the product moments about the origin of the magnitudes of the
components of V. Substituting various values of i, j, and k into equation (11) yields

27t1 27\2 2h3 w
v = ||— 1% = H—— V. = |f——
100 ~ |7 010 p 001 -
Y900 = M Y020 = *2 Y002 = *3 (12)
2 r— 2 2
1/110 = ? 7&1)\2 VlO]. = —7-T- )\1)&3 1/011 = ? >\2)\3

J

Now, E(lVD can be found by the Taylor series expansion. The series expansion will be

_(i[axg (Jaxg faxg . .
made about the point T and the maximum percentage error in

mini-
T —

7]
mized. This form is taken because when a = 2, the expansion would be about the means
of the components. Expansion of equation (3) yields

o1 ) ol o ) ol s
\ 2
ol R - ) el - )
i ary |[arg jlarg arg 1 axl arg a7\3\ arg
+§fV§V;<V:’ 7 'v’—: ><V§ i T> +§fV*V*<vI 7 "v[ T "v’ 7 )("3 i T)

\
axty Jarg Jarxg il ary (..« arg
+fV;‘2V§<V 7 ’VT’\/—W‘ <Vx ) T)(VZ o Y A (13



where the subscripts on the f denote partial differentiation. By taking the expected
value of lV' from equation (13) and substituting the partial derivatives, it is possible to
obtain, after some manipulation, the second-order equation

E(IVD = @ 1+ ;2_;;2<7\1?\2 +Aqrg + ?\27\3) (14)

where T is the trace of the matrix in equation (2) and where expressions from equa-
tions (12) have been used for the moments. The second moment of I‘Vl about the origin
can be evaluated without expanding in a Taylor series because

o I [ o e i O (P B -
which from equations (9) to (12) can be written as
2
E ‘Vl = V900 * Y020 * Yoo2 =M tA2+ 23 (16)

The variance can then be written as

o|2 = E<|V|2> - E(lV])z (17)

vl

or, to second order, as

2
o°_ FA1+2A9+ ?\3 - V— 1+ 1)\2 + 7\17\3 + 7\2)&3 (18)
7] i ;/EET )

Higher order approximations to equations (14) and (18) can be obtained at will with a cor-
responding increase in complexity, However, in the next section, in an attempt to make
probability statements about [Vi an approximation will be needed which will negate to a
large extent the usefulness of a third-order fit to the moments.

Association of Probability Statements With | V|

Given the mean and standard deviation of the magnitude of the velocity to be gained,
it is of interest to determine what probability of having enough velocity capability can be
associated with the mean plus 1o, the mean plus 20, and so forth. This problem is diffi-
cult at best, because it requires the integration of the density function of the magnitude of
V between arbitrary limits. In fact, as stated previously, the density function has only
been written symbolically in reference 1. Probability statements can be made, however,
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if one is willing to accept an approximate fit to the density function with a Gamma distri-
bution. The Gamma distribution is a logical choice because it is a standard distribution
defined on the interval (0,~) as is IV' The Gamma distribution is characterized by the
scale and shape parameters which can be related to the mean and variance,

A variable with a Gamma distribution has a density function which can be written as

h(lx_/'b =r(a—+11)3_a+ilvlae-? (o =|¥| < oo) (19)

The Gamma density has a mean of B(a+ 1) and a second moment about the origin of
Bz(a + 1)(a+ 2). From the first and second moments about the origin, the variance can
be calculated from equation (5) to be

o2 =p2(a+1) (20)

2
V]

The Gamma distribution can be fitted to the first and second moments. The fit is

E<|VD = Ivsz 1+ ;2_'1122@1)\2 +AqAg + A2A3) = Bla+ 1) = U9 (21a)
a

and
2
E<|_\7 >=>\ + X + Ao = B2(a + 1)(a+2)=02__ +p.2_ (21p)
I 1 2 3 lV| ‘V‘

These two equations can be solved simultaneously to yield

ra
ooVl (22a)
0'2__
|V
and
o
= v (22D)
R
v

Given equations (19), (22a), and (22b), probability statements can be made by

P(O =|v| = t) - g; h(IVl)dITfl (23)



E(iuation (23) must be integrated numerically unless « is a positive integer, in which
case it can be integrated successively by parts to yield (see ref. 4, p. 128)

k=«a

P(O = v éb) =1- z %(%)ke-b/ﬁ (24)

An attempt should be made to fit the distribution with the integer nearest to the resulting
o and thereby simplify the calculations.

NUMERICAL RESULTS AND DISCUSSION

In order to check the range of validity of the approximation included in the analysis
section, 17 covariance matrices were chosen to be representative of general midcourse
maneuver covariance matrices. Each of the matrices was chosen such that the trace
("1 + A9 + 7\3) was equal to 1 and the eigenvalues had various ratios. (See fig. 1.)

In figure 1(a) is presented a plane in three-dimensional eigenvalue space equivalent
to Xy + A9 +2ag=1. Then, every choice of three eigenvalues (with T = 1) must be a
point on that plane. Figure 1(b) is a small sketch indicating that the eigenvalue plane has
been sectioned, and section B is presented in figure 1(c). The 17 points are indicated in
figure 1(c) along with the corresponding eigenvalue ratios. Because of symmetry of the
mathematical formulation, each point of section B is equivalent to a point on each of the
remaining five sections. For example, the point (0.5,0.5,0) would give the same mean
and standard deviation of the magnitude as the point (0.5,0,0.5) and the point (0,0.5,0.5).
Investigating the results for these 17 cases is equivalent to considering 76 points in fig-
ure 1(a), which should be more than adequate to represent the plane. The vertical line in
figure 1(c) corresponds to the three-dimensional cases with two eigenvalues the same.
The inclined line also corresponds to three-dimensional cases. The horizontal line cor-
responds to the two-dimensional ‘cases. Along this line the largest eigenvalue X1
becomes greater as it approaches the point (1,(),0) from the right. In the vertical direc-
tion the smallest eigenvalue 213 becomes smaller as it approaches the point (1,1,0)

from above.

For each of these 17 cases the mean and standard deviation were calculated from
equations (14) and (18), respectively. It was not known, a priori, which value of a in
equations (14) and (18) would yield the most accurate values for the mean and standard
deviation and therefore a was varied from 2 to 2.8 by increments of 0.1 and the per-
centage absolute error in the standard deviation plotted in figure 2 as a function of a.
The approximate values were compared with exact values obtained by multiplying g(V)
from equation (4) by IVI “and performing the numerical integration. The actual
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integration was performed by transforming to polar coordinates, integrating out the r
coordinate analytically, and integrating from 0° to 360° in ¢ and 6 numerically by a
40-point Gauss integration technique. The integrated values were accurate to 12 places.

The error in the mean was not plotted because it is directly related to the error in
the standard deviation. From figure 2 it can be seen that a value of a = 2.7 gives the
best fit. This value was chosen and will be used for the remainder of the present paper.
The results of the approximations for a = 2.7 for each of the 17 cases are presented in
table I. In the second, third, and fourth columns are shown the actual eigenvalues used
for each of the cases, and the corresponding ratios are given in the fifth column. The
next three columns show the exact mean, the approximate mean, and the percent error in
mean. For all cases the percent error in mean was 1.65 or less. The error for case 5
is zero because the function considered in the expansion was 'VI = IVxl = ﬁf_}% and the
Taylor series had only one term. In the next three columns the same information is
shown for the standard deviation. The standard-deviation errors are much larger than
the errors in mean because the standard deviation is calculated from equation (18) as a
function of the square of the mean. In no case, however, was the error found to be
greater than 4.52 percent; the accuracy is probably adequate for fuel budget calculations.

Next the Gamma function was fitted to the mean and the standard deviation for the
17 cases. Equation (22a) was used to find the parameter « and equation (22b) was used
to find B. As stated previously, if « is a positive integer, equation (23) can be inte-
grated by parts to obtain equation (24). Therefore, in the Gamma function fit investigated
herein, the nearest integer was chosen for « and the corresponding B was calculated
as MIVI o + 1. Figures 3(a), 3(b), 3(c), and 3(d) show a comparison of this approximate

dengity function (eq. (19)) and the exact density function for four eigenvalue ratios.
Included in each figure is a plot of the right half of a normal density function with a mean
of 0 and a standard deviation of 1. Also included is the Rayleigh density function as dis-
cussed in the introduction. It is easily seen that for all these ratios except 1-0-0, the
approximation fits better than the Rayleigh density. For the 1-0-0 ratio, the Rayleigh is
exact. However, the important curve in terms of probability statements is the cumulative
distribution function (eq. (23)), and therefore only four of the worst density functions have
been presented as a matter of interest.

The cumulative functions tell a much better story of the fit (see figs. 4(a) to 4(q)).
In figure 4 the magnitude of the velocity to be gained IVI, normalized to the square root
of the trace, has been plotted as a function of probability on probability paper. For ref-
erence the normal cumulative curve has been included. Probability paper has the char-
acteristic of making the cumulative normal distribution appear as a straight line. The
curvature, then, is a measure of the deviation from a normal curve.
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It can be seen from figures 4(a) to 4(q) that the approximation is consistently better
than the Rayleigh results (except perhaps where the Rayleigh curve crosses the exact
curve). One other exception occurs for the eigenvalue ratio 1-0-0 (fig. 4(e)); as
explained previously, the Rayleigh and exact results are equivalent for this ratio. It has
commonly been assumed that the Rayleigh assumption is conservative (see, for instance,
ref. 2), Figure 4 shows that at '7[ /;/-T— =3 the Rayleigh assumption is conservative
(i.e., the real probability is higher than predicted) for all ratios. However, for the lower
values of I'Vl A-T— (less than 1.2), or probability less than 75 percent, the Rayleigh
assumption is not generally conservative. For this reason, care should be used in the
application of the Rayleigh assumption.

CONCLUDING REMARKS

- A method for calculating the first two moments of the distribution of the magnitude
of a midcourse maneuver has been presented. A Gamma distribution with an integer
shape parameter has been fitted to these two moments and the approximation results
compared with exact integrated results for representative eigenvalue ratios. In addition,
a comparison is made with results of the Rayleigh assumption commonly used. Approx-
imations for the mean, standard deviation, and cumulative distribution function are shown
to be reasonable. The Rayleigh assumption is shown to be conservative for values of
probability greater than 75 percent or normalized velocity-to-be-gained magnitude
greater than 1.2.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., April 23, 1969,
194-82-01-05-23.
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APPENDIX

USING THE RESULTS WITHOUT DIAGONALIZATION

In the text the assumption was made that a matrix of the form

- -\ = -
E(VxVy 0 0 Ay 0 0

E(V\T'T) = o E(Vyvy) 0 =lo 29 0 (A1)
L 0 0 E(VZVZZ Lo 0 )\::

was to be given and the analysis could be performed on this matrix. However, in the
more general case, a matrix of the form

w(vy) B @)
E[V’ V)lj - [E(vyvy)  E(yv)  E(VyVy (A2)
E V;V}'{> E(V,Vy E<V'ng

will be available. L ( ( ) J

The problem of finding Ay, XAg, and Xz interms of elements of the matrix in
equation (A2) requires solution of a cubic. However, for the second-order solutions
(egs. (14) and (18)), it is only necessary to know X7 + g + A3 and Xqdg + A1A3 + A2A3.
If these two expressions are known, it would not be necessary to diagonalize the matrix
in equation (A2). In order to find these two quantities, the characteristic equation of the
matrix in equation (A2) can be written as (see ref. 5)

KQ\) = A3 4+ a17\2 +agh +ag =0 (A3)
and the characteristic equation for the matrix in equation (A1) can be written as
K(\) = A3 - (7\1 + A9 + 7\3) A2 4 (Al)\z + A1A3 + ?\2)\3>7\ - AqAgxg =0 (A4)
If the coefficients of like powers of X are equated, the result is

a; = '(7‘1 + A9 + A3)
ag = AqAg + A {23 + 223 (A5)

ag = -A1A273

13



APPENDIX

If the characteristic equation is written for the matrix in equation (A2), the following

expressions are obtained for aj, ag, and ag:

"\
1 1 ] 1 1 1
ay = -[E(vax) + E(VyVy> + E(VZVZ)]
|4 t \i 1 ! 1 t 14 t ] ! 1]
ag = E(VXVX>E<VyVy) . E(VXVX>E<VZVZ> + E(VYVY)E(VZVZ)
- Ez(v'yv;) - E2<V}'{V9 - E2<V}'<V'Z> f (A6)
ag = -EEJ (V,’(V;{)E(V}’,V;,)E@;V;) - E(V}'(V,'{)E2<V3',Vé> - E2<V;{V§)E<V;V;>
- E2<V}'{Vé>E<V5',Vg,> + 2E<V;(V9 E<V}'(VQ)E<V§,V'ZB
: J
Combining equations (A5) and (A6) yields
-

AL+ A9+ Ag = E(V;(V}'() + E(Vyvy) . E(V;V;)

Ahg + Aqhg + Aghg = E(V}'{V}'()E(V;,Vg,) + E(V,'{V}'{)E(V;V;) + E(V&V&)E(VéVé)

- E2<V§,V;> - E2<V;<V§> - EZ<V}'(Vé)

—

(A7)

J

Thus, X1 +2Xg+ 23 and XAjrg + AqA3 + AgAg can be found in any coordinate system

without diagonalization. The resulis of the text can then be applied to any covariance

matrix, diagonal or not.
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TABLE I.- ACCURACY OF CALCULATION OF THE MEANS AND STANDARD DEVIATIONS OF

V] FOR VARIOUS EIGENVALUE RATIOS

[a=

2.1

canel 25 | pao ot [mxact[approstmate[FPereset], Bxact [Aeprosimatelpereent ervorl ™ T 5 dor teger

Ay | Ay | Ag |eigenvalues mean mean  iin mean|deviation| deviation deviation nearest to o
1 10.333/0.333/0.333 1-1-1  0.9213] 0.9285 |+0.78 | 0.3888 0.3712 -4.52 5.256 10.1484'  0.1547
2 .250 .250| .500 1-1-2 9158 .9204 +.49 .4016 .3910 -2.63 4.539  .1661 .1534
3 .666 .166| .166 1-1-4 .8991 .8958 -.36 .437 444 +1.52 3.065 .2203 .2239
4 866 .066 .066  1-1-13 .8591 8449  -1.65 5118 .5349 +4.51 1.495 .3386 .4224
5 1.00 0 0 1-0-0 79178 7978 0 .6028 .6028 0 7519 .4554 .3989
6 .800 .2000 1-4-0 .8643 .8606 -.43 .5030 .5093 +1.24 1.855 .3014 .2868
7 .650 .3500 7-13-0 .8811 .88170 +.67 .4728 .4616 -2.37 2.692 .2401 .2217
8 .500 .5000 1-1-0 .8862 .8958  +1.09 .4632 .4443 -4.09 3.066 .2203 .2239
9 .450 .450 .100 2-9-9 9077 .9125 +531  .4195 .4089 -2.52 3.978 .1833 .1825
10 .400 .400 .200 1-2-2 .91173 .9233 +.653  .3981 .3840 -3.54 4780 .1597 .1539
11 .443 .333 .224 443-333-224 9179  .9238 +643  .3967 .3827 -3.515  4.825 .1586 .1539
12 .570 .270 .160 57-27-16  .9089  .9109 +2110  .4168 .4126 -1.009  3.873 .1869 =  .1822
13 .769 .154 0769 1-2-10 .8809  .8721  -1.01 L4730 .489 +3.42 2.176 .2745 .2907
14 .520 .410 .070  52-41-7  .9025  .9069 +495 4306 .4212 -2.203  3.637 .1956 .1814
15 .500 .333 .166 1-2-3 .9133 .9176 +481  .4074 .3974 -2.45 4.333  .1721 .1835
16 .555 .333 .111 1-3-5 .9063 .9092 +3121  .4225 .4164 -1.449  3.767 .1907 .1818
17 .650 .250 .100  2-5-13 .8984  .8968 -.171 . .4392 .4423 +714 3,111 .2181 .2242




f= gl

Lt

(.167,.333,.500)

o <+ (0,1,0)
.
(1,0,0)
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Ay
(a) Plane in three-dimensional eigenvalue space. 1
Section
B
10
9
5 O} —0 8

7

(c) Section B, with 17 points and corresponding eigenvalue ratios indicated.

Figure 1.- Definition of eigenvalue ratios.

4
~ Section B‘

(b) Sectioning of the plane.

Case ,EigenYalue Case EigenYalue :
. ratio ratio
1 1-1-1 10 1-2-2
2 1-1-2 o 11 443-333-224
3 1-1-4 . 12 ¢ 57-27-16
4 1-1-13 13 1-2-10
5 1-0-0 A 52-41-7
6 1-4-0 . 15 1-2-3
7 7-13-0 16 | 1-3-5
8 1-1-0 ” 17 2-5-13
9 2-9-9 ||
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