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Auroral Micropulsation Instability

F. V. Coroniti” and C. F. Kennel

Physics Department, University of California, Los Angeles, California 90024

Abstract

In this paper we describe a drift instability of Alfven
waves driven by the sharp electron thermal gradient at the
inner edge of the electron plasma sheet. The analysis predicts
a localized instability with wavelengths perpendicular to the
magnetic field comparable with an ion cyclotron radius and
para1191~wave1engths comparable with the length of field lines.
The fastest growing wave should have an = 10 second period,
consistent with observations of Pi 1 micropulsations observed

during substorms.

* Also at Physics Department, and Space Science Laboratory, University

of California, Berkeley, California.



1. Introduction

Intense low frequency micropulsations occur during magnetic storms
and auroral substorms. Ground magnetometer observations (McPherron, et
al., 1968) reveal a variety of oscillations, each with its own local time
and spectral characteristics whose éomplex morphology makes it unlikely
that a single mechanism explain all the observations. We attempt to-
identify = 10 second period magnétic micropulsations, which are morning
‘side manifestations of substorms associated with modulations of enecrgetic
electron precipitation fluxes (Parks, et al., 1968a) with a particular
drift instability of Alfven waves, driven by the strong electron thermal
gradient at the inner edge of the electron plasma sheet (Vasyliunas,
1968a, b; Frank, 1968).

Except for the Pc-1 band, micropulsation frequencies are much smaller
than the equatorial proton cyclotron frequency. Thus, except for Pc-1,
only extremely high energy particles can be in cyclotron resonance, of
which there are presumably too few to trigger an instability. We therefore
rule out cyclotron resonance interactions and pitch angle anisotropy as a
low frequency micropulsation source.

Multiplying the long wave periods by a characteristic propagation
speed (such as the Alfven speed) suggests that at least one micropulsation
spatial dimension should be roughly the length of the line of force. Yet
the association of 5-40 second period micropulsatiohs with precipitation
pulsations (McPherron, et al., 1968) yields indirect evidence that
micropulsations are localized transverse to the magnetic field. Due to
our poor understanding of mode structure, propagation, and ionospheric

coupling, ground magnetometer measurements do not fix reliably the size and



location of micropulsation geperation regions. Since electrons are guided
by the magnetic: field, electron‘precipitation pulsations give inherently
better information than micropulsations, which cannot be guaranteed

a priori to be so guided, Barcus and Rosenberg (1965), Barcus, et al.,
{1966), and Parks, et al., (1968a), found electron precipitation pulsations
to be limited to 100-200 km regions in the ionosphere, which project onto
the equatorial plane as several thousand kilometer regions, less by far
than the length of auroral lines of force.

The large scale lengths parallel and small lengths transverse to the
magnetic field direction, together with the low frequency, are consistent
with drift waves. Furthermore, drift instabilities derive their energy
from spatial gradients in the distribution of resonant particles. 1In
straight magnetic fields, the important wave-particle interaction is Landau
resonance (i.e., the particle parallel velocity v, matches the parallel
phase velocity w/k, ); the analog of Landau resonance in mirror geometry
is bounce resonance. Cyclotron resonances do not affect low frequency
drift instabilities.

The steep inner edge of the electron plasma sheet (Vasyliunas, 1968a)
is an obvious candidate for various drift instabilities. We search here
for one which produces magnetic micropulsations between the ion and
electron bounce frequencies. While magnetic fluctuations on the ground
could originate from a rotating ionospheric line current driven by a
purely electrostatic wave (Wilson, 1966), a simplér_hypothesis is that
micropulsations are magnetically polarized in deep space. We therefore
generalize, for magnetospheric conditions, an analysis by Mikhailovsky
and Rudakov (1963) of drift instabilities of Alfven waves. D'Angelo (1969)

has also suggested drift instabilities are responsible for micropulsations.



Earlier, Swift (1967) analyzed an electrostatic érift instability without
considering coupling to an oscillating magnetic field,

Section 2 elucidates when Alfven waves can have drift couplings to
resonant particles, using physical arguments drawn from the two-fluid
theory of low frequency waves in spatially homogeneous plasmas and a
uniform magnetic field. In section 3, we derive a kinetic theory dispersion
relation for drift waves in a spatially inhomogeneous plasma, assuming the
magnetic field approximately uniform. While the techniques used arc
standard, many approximations are needed. These are discussed in 3.2,
and the calculation described in 3.3. Those uninterested in calculational
details may turn to section 4, where a simple dispersion relation,
appropriate to the auroral electron boundary, is described. Here the range
of unstable frequencies and wavelengths for Alfven waves in a strong
temperature gradient is outlined. A comparison with observations in
section 5 indicates that the present ideas are consistent with the
observed spatial localization, magnetic polarization, and range of unstable
frequencies and wavelengths of 10 second micropulsations. However, further
theoretical work removing many of our simplifying assumptions is needed

for truly definitive conclusions.



2, Motivation of Drift Approximation

~

2.1) Introduction

Information about changihg plasma conditions propagates at various
characteristic wave and particle speeds. For example, in single-fluid
hydromagnetics, the relevant waves are the fast, intermediate, and slow
waves (Kantrowitz and Petschek, 1966). In spatially inhomogeneous plasmas,
particle drifts are additional physically significant propagation speeds.
When the magnetic field strength B and the ion (+) 0r~eiectron )

+
pressure P~ have spatial gradients, the corresponding drifts are
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- where 'v* is the particle's velocity component perpendicular to the
magnetic field, pi is the ion or electron mass density, 5 is the
magnetic field, and Qi = % eB/Mic is the ion or electron frequency.

( e is the magnitude of the electronic charge in esu; ¢ , the velocity
of light; and Mt , the ion or electron mass. Henceforth, we will use
Gaussian units.) v * is an actual guiding center drift, while v * R
the pressure drift, is not; XP+ - XP_ is the macroscopic drift between
electrons and ions providing the diamagnetic magnetic field gradients
associated with pressure gradients. We eventually treat B to be

; ' + .
approximately uniform; therefore we concentrate on vp o - Let us now estimate

its order of magnitude:
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where ¢ _ is the ion thermal speed, R, = c+/9+ , the thermal ion cyclotron

+ . . T .,
radius, and T  the ion or electron temperature in energy units. Lp is a

logarithmic pressure scale length. Ordinarily R+/Lpi << 1 , so that vpi is
much smaller than the particle thermal speeds.

For weak spatial inhomogeneities, the dispersion relation obtained
from homogeneous plasma theory often describes wave properties well. One
index of the importance of drift corrections to the dispersion relation is
the ratio of vpi s whiﬁh is perpendicular to the!magnetic field, to the
perpendicular phase velocity obtained from homogeneous theory. When
klvpi/w = 1 , plasma inhomogeneity significantly modifies the wave propagation
speeds and unstable growth rates, Since vpi is small, only small
perpendicular phase velocity waves have important drift corrections. We

search for such waves in section 2.2.

2.2) Low Frequency Waves in the Two-Fluid Approximation.

By treating the ion and electron gases separately, the two-fluid
description allows for the effects of the finite inertia of the individual
particle species, which manifests itself in the inability of first ions
and then electrons to produce rapid variations in plasma current. The
two-fluid dispersion relation for the three wave modes with frequencies
below the electron plasma frequency is (Braginskii, 1957; Stringer, 1963;

Formisano and'Kennel, 1969)

[ - WA [ - W] (el - WP =
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where w is the wave frequencf, 'k the wave number, and w/k the phase

vélocity. Cps Cp» and ¢ are the fast, intermediate, and slow hydro-

SL

magnetic wave speeds, defined by

5 1/2
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] = A "% s T - C. €, cos’ 0
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SL -
) (2.4)
_ 2 2
¢y = €, cos 0
8= cos'1 k;/k is the angle between the wave vector and the magnetic
field, C is the Alfven speed
2 2 ,
cy = Bo /4'n'NM+ (2.5)
where N is the equilibrium mmber demsity, ¢g , the sound spced
5 -
2 Y.,,T + Y_T,
¢~ = —--TE:~——~ (2.6)

and 7y, , the ion or electron ratio of specific heats.
The term kch2/9+2 represents finite ion inertia. The current

velocities in hydromagnetic waves are the order of ¢ for wavelengths

A’

comparable with the ion cyclotron radius based upon c,, ion currents decouple

A’
from the waves. Since ion inertia is decoupled from moving lines of
fbrce,‘the effective Alfven wave speed increases; since the degree of
decoupling is wavelength dependent, the propagation is disﬁersive. When
k increases to w_ /c , finite electron inertia reduces the electron

current, thereby slowing the effective Alfven speed. Since this occurs

at wavelengths much shorter than those of interest here, finite electron



inertia terms have been dropped in (2.2), When -kcA/Q+ +0, (2.2)
reprqduces the Single fluid hydromagqgtic result of three uncoupled
nondispersive waves; finite ion inertia couples and makes dispersive the
three hydromagnetic waves.

Before considering finite ion inertia specifically, we compare the
drift velocity with single fluid hydromagnetic wave speeds. For example,
when csz/cA2 is small, the fast wave speed is given approximately by
Qz = kchz + K;?CSZ , where k, = k sinf . Since w/klv>> vpi (when
R+/Lpt << 1 ) for all angles of propagation, the fast wave weakly couples
to drift motions. In general, hydromagnetic velocities are comparable
with the thermal speeds, and so drift effects may be neglected. Propagation
almost perpendicular to the magnetic field (k  >> k,) is an exception.
For example, w = k;c, for the intermediate wave for all angles of

A

propagation; by choosing ky/k,

i

, +
R+/Lp“ << 1 , we can reduce w/k_

+
enough to be comparable with VP' . A similar argument applies to the

slow wave; for example, when csz/cA2 << 1, w2 = kazcsz

independent of k; , so that increasing k; decreases w/k. . Thus,

; again w is

the intermediate and slow waves have drift modifications when their
perpendicular wavelength is much less than their parallel wavelength.
The above argument suggests that we need consider the effects of

finite ion inertia only upon the nearly perpendicular intermediate and

2
F

bi-cubic (2.3) reduces to a biquadratic, removing the fast wave from

slow waves. When k, >> k,, , ¢ >> wz/k2 for these waves, and the

‘consideration.
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where T = — > -17 is a finite ion inertia parameter; r # 0 couples
Q* g

the intermediate and slow branches. The sign of the dispersive coupling

depends upon the ratio of w/k and ¢ Solving (2.8),
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When 0 < r << 1 , the intermediate wave is given by
2 2
2 € =~ C
w 2 S 1
;(-2- = CI 1+ :‘2"':"—;2‘—' (2.10)
I SL
Since cI2 - ch > 0 always, intermediate wave specd increases as r
. . 2 2 . 2 2 2. 2 2
increases if Cg > cy and decreases if Cg < €y - €y T ¢, cos f
implies that when csz/cA2 <1, waves with 0 j_cosze < csz/cA2 speed
up, and those with csz/cA2 f'cosze slow down with increasing 1 .
Similarly, when r 1is small, the slow wave is
2 2
2 Cc =~ C
w 2 S SL
i T [ R I (2.11)
I SL
Since cS2 2.ch , the slow wave decreases its phase velocity with
increasing r . As 1 *> * , the intermediate wave approaches an
isotropic sound wave
e S (2.12)



and the slow wave approaches a wave resonance (w > {  cos6)

2 c 2 cz’ Q‘z cosze
w® F SsL N (2.13)
K w2l k2 '
A + S
. 2 2 2 2 2
since ¢ " cg = ¢, cg” cos 0 .

2.3) Polarizations

Here, we estimate the parallel wave electric field &E,; , and the
compressional component of the wave magnetic field, &B_. . The ratio of
S8E, to the electric field component in the direction of the perpendicular

wave vector, OE, , is (Stringer, 1963; Formisano and Kennel, 1969)

SE v [1 - (kzclz/wz)] cos® sinh
— = (2.14)
SE, [(wz/kzcsz) - 1] + 1 sinze [r - (kzclz/mz)]
YT
T = e
Y+T+ +y T

where the appropriate mz/k2 from (2.3) must be substituted in (2.14).

In the hydromagnetic limit (kcA/Q+ =0) , ws=s ke, precisely,
whereupon (2.14) implies 6E“ = 0 ; this means hydromagnetic waves have
no Landau resonance interactions. Thus, while their propagation may be
affected by drift terms, hydromagnetic Alfven waves can have no drift
instabilities (Kennel and Greene, 1966). Substituting (2.10) into (2.14),

GEH/GEL is, to lowest order in kcA/Q+ 5
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suggesting that strbng resonant Alfven wave-particle couplings occur when
kcA/S'l+ = 1 . By contrast, the slow wave has G8E, # 0 , and consequently
Landau resonance interactions, even when kcA/Q+ << 1 ., For example,
when cSZ/cA2 <1, 68“/65L = tanf = k“/kl‘, implying that the slow ion
acoustic wave is electrostatic, and has a zero wave magnetic field.

In this section, we removed the magnetosonic wave from consideration
by assuming CFZ >> wzlkz ; in the kinetic theory calculation, we will
do so by constrainihg the wave compressional magnetic field amplitude,
6B, , to be zero. (In hydromagnetics, the fast wave has a nonzero 88, ,

while the intermediate wave always has d&B, =0 , and when csz/cA2 << 1

the slow wave has a small 6B, . Thus, assuming &B = 0 picks out
only slow and intermediate waves.) If k, is in the y-direction, the

hydromagnetic intermediate wave has GBX # 0 . From two-fluid theory,

5B, ke ? 2 o tand
=(1-—1) Y * ; (2.16)
36, 2 27 o ; :
x w k Ca

B, ke, ¢" - ¢

Y VAR . (2.17)
X

Thus, both (2.16) and (2.17) indicate the hydromagnetic Alfven wave has
6B“= 0 . When csz/cA2 <1, SB‘. is small even when kcA/s’Z+ =1,

The slow wave is electrostatic when csz/cA2 << 1, implying a small ¢&B, .

. We may argue alternatively as follows: For perpendicular propagation, the
slow wave reduces to a discontinuity across which pressure is conserved. If
csz/cA2 is small, the fractional change in particle pressure across the slow

discontinuity is larger than that in the field strength.
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2,4) Summary

Finite ion inertia dispersion causes the intermediate wave speed to

approach c. at short wavelengths. If ¢, > ¢; » the phase speed

S
with increasing kcA/Q+ . When ¢

S

increases to ¢ the

phase speed decreases to Cg with increasing kcA/Q+ . The first
case is appropriate to the magnetosphere, where particle pressures
are large. Finite ion inertia decreases the slow speed; the slow

wave frequency is always less than Q+ cos® . These features are

illustrated in figure 1.

+ . . .
When k”/K* = R+/Lp << 1 , intermediate and slow waves can interact
with drift motions. Magnetosonic waves have no significant drift

interaction at any propagation angle,

The slow wave has a nonzero GEi‘, which permits Landau resonance
N ]

interactions.

Drift Alfven instabilities could explain magnetically polarized
micropulsations. However, GE“ = 0 in the hydromagnetic limit,

implying hydromagnetic Alfven waves have no Landau coupling to particles.

Finite ion inertia couples the slow and intermediate branches, causing
an exchange of polarizations. With increasing kcA/Q+ , the inter-
mediate Alfven wave acquires a 5E“ (from the almost electrostatic
slow wave), permitting Landau interactions at short wavelengths,

kcA/Q+ =1,
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613‘i is large for the fast wave, zero for the hydromagnetic
intermediate wave, and small for the slow ion acoustic wave when
cSZ/cA2 << 1 . These relations hold for finite kcA/Q+ so long

as csz/cA2 is not too large,
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3. Kinetic Theory of Drift Waves in a Uniform Magnetic Field

3.1) Introduction

Two-fluid theofy, even extended to spatially inhomogeneous plasmas,
describes neither resonant wave-farticle interactions, nor perpendicular
wavelengths near the ion thermal cyclotron radius. Therefore, we turn to
kihetic theory, making as many simplifying assumptions as possible before
performing the calculation; these are described in section 3.2. In
section 3.3, we derive a dispersion relation for coupled drift ion
acoustic (slow) and drift Alfven (intermediate) waves. Section 3.4
closes with a comparison with two-fluid theory and with previous work on

drift instabilities,

3.2) Approximations

a.) Straightline magnetic geometry.

We take the equilibrium magnetic field in the z-direction of
an (x,y,z) Cartesian coordinate‘system. The equilibrium is uniform in
y with gradients only along x . (For ra&ial mégnetosPheric gradients,
x ~ radius, y ~ longitude, z " direction along magnetic field.) By
neglecting field curvature, we cannot find the parallel mode structure,
important for relating ground and sateliite micropulsation experiments.
[Cummings et al. (1969) have in fact calculated the mode structure of
hydromagnetic standing Alfven waves in the period range of interest here.]
However, the instability is probably.qualitatively described by straightline
geometry. In a paper on electrostatic drift waves in curved magnetic

geométry; Rutherford and Frieman (1968) indicate that curvature introduces
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no new electrbstatic-modes or instabilities but only modifies details of
those previously found in straightline approximation., No curved field
calculations to date (e.g., Rosenbluth, 1968; Rutherford and Frieman, 1968;
Liu, 1969) treats either the electromagnetic polarizations or perpendicular
wavelengths near the'ion cyclotron radius, important here, Nonetheless,
from general geometry experience, we can extract two points, First,

Landau interactions in straightliﬁe geometry correspond to bounce resonance
interactions in general geometry. Since the most unstable drift waves have
long wavelengths parallel to the magnetic field, whose upper limit is the
length of the line of force, the k, v, in the Landau resonance condition,

w - k.v, = 0, corresponds approximately to the bounce frequency of a
particle mirroring near the earth. Second, general geometry calculations
involve quantities averaged over the length of the tube of force, i.e.,

<> = f T%%«-Q , where d2 1is an element of length along the line of

force. This averaging process emphasizes those points where |B| is small,
suggesting that equatorial plane parameters make the appropriate correspondence

between slab geometry calculations and the magnetosphere.

B.) Neglect of ionospheric attenuation and coupling.

We neglect wave energy losses due to resistive ionospheric
attenuation or to coupling to the ionosopheric wave guide. To overcome any
such losses and ensure instability, the equatorial planevgrowth rate must
be finite and positive. However, if ionospheric losses are not strongly
frequency dependent, the equatorial growth rate determines which modes

are most unstable.
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c.) Assumption of small magnetic,inhoﬁogéneity.

S * . . dfnp _dgmB
We assume vp << Vp . Th}s requires that > T
The hydromagnetic pressure equilibrium condition, V[p + (Bz/8n)] =0,

implies for slab geometry, that I S‘:___g?(_l’. = éi—g%ﬁ , where

B = 8ﬂp/B . Thus, if B << 1, IyDil << ]!pil

the electron plasma sheet, where N ~ 1/cm3 , T =3keV, B =60y,

. For the inner edge of

B = 0.3 , suggesting that lzpl = 0(5) lzD] . In other words, when the
electron B < 1 , the logarithmic gradient of the magnetic field is roughly
that of the dipole field. At L = 6 , the dipole scale length is = 2 Rg »
whereas the electron scalelength is < %-RE (Vasyliunas, 1968a). Our

analysis is restricted to such sharp particle distribution gradients.

d.) Annihilation of fast magnetosonic wave.

The magnectosonic mode is always faster than typical drift speeds,
and does not have large drift modifications; its presence only clutters
drift calculations with irrelevant terms. We remove it in advance, by
constraining the modes we do treat to have at most rotational magnetic
field components, i.e., by requiring GB” = 0 . Recall that only the fast
wave has a significant nonzero 6B, . An alternative argument is that the

fast wave adjusts the total pressure time scales shorter than drift time

scales, leaving only small SB“ adjustments to the other two waves.

e.) Localization of spatial eigenfunctions.

Because the plasma equilibrium is inhomogeneous, an
integrodifferential equation describes, in general, the x-dependence of
the waves' spatial eigenfunctions. For short x-wavelengths relative to

equiiibrium scale lengths, the WKB approximation, wherein the wave fields
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vary as exp i [}x kx(x‘) dx' + kyy + kzz - w{] , may be used, Since the
instability energy source is a localized spatial gradient, the fastest

growing modes should have eigenfunctions localized near the maximum plasma

gradient. For these waves, the WKB dispersion relation has the form

X2
I dx!’ kx(x';thky,kz) = nn
X
kx(xl) = kx(xz) = 0 (3.1)
where the wave amplitude must tend to zero as x =+ % « ., Rukhadze and Silin

(1964), Mikhailovsky (1967), Krall (1968), and others have argued that a
good estimate of the eigenfrequencies and growth rate can be ohtained by
examining the turning points, vwhere kx = 0 . Therefore, we set kx = 0
in advance, creating an algebraic dispersion relation, rather than an
integrodifferential equation with boundary conditions.

Cbmbining the 68“ = 0 and kx = 0 conditions with Faraday's law

implies that GEX » which carries the fast wave, is zero. The only

remaining wave components are dE

y GEZ

SE , 8B, k Fk.,

L1

and k =%k .
z

3.3) Calculation of Dispersion Relation

The equilibrium distribution functions Foi depend only upon the
particle constants of motion. Time invariance and translational
invariance along B' imply the particle energy and parallel momentum,
respectively, are conserved;in nonrglativistic plasmas, v, and v,

are equivalent constants of motion. From y-invariance, py = M+vy + eAy/C
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is conserved, For a constant magnetic field, the vector potential

y
+ .
We choose Fo' to be locally bi-Maxwellian:

. M, M, 12 My, 2 My 2
Fo‘(X,v ,v ) =N — e exp - —— . (3.2)
2T, " | |2, 74 S

e i

A = lB|x , So that X = x + (yy/ﬂi) is an equivalent constant of motion.

. + +
N(X) is the electron and ion number density, and T¢5(X). and T (X) ,
the electron or ion perpendicular and parallel temperature, respectively.
The equilibrium particle orbits in the frame for which equilibrium electric

fields are zero, are:

Ve =V, cos(w—Qtt) 3 Vy =V, sin(w-ﬂit) » YV, =V, (3.3)
Vi
x(t) = X, - ﬁ: [sin(w-ﬂit) - siny]
v,
y(t) =y, + g [cos(¥-Q,t) - siny] (3.4)
z(t) = 2, * v,t

where { 1is the Larmor phase at t = 0 , and (xo,yo,zc] is the
particle location at t = 0 . Finally,
vi_sin(w—ﬂtt)

X = x(t) + Q+ (3'5)

-—

For small amplitude harmonic wave fields, varying as e1(§'§-wt) s

the wave electric field satisfies

2
kx (k x8E) + 2y € *+ 8E = 0 (3.6)
c” = b

where the dielectric tensor € is defined by (Stix, 1962)
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4ni

Ami 67 = 6E + e [ dzy v(6f - 8f7) (3.7)

g‘SE'-': 6§ +T

«

8J is the perturbation current, and s£ , the perturbed distribution
function. We treat‘one sPeciesrof\singly charged ions, The dispersion
relation involves finding Gfi , mulfiplying by v, iﬁtegrating over
velocity space, expressing 6J in terms of OE , and solving the
determinant of (3.6).

Gfi» can be found by the method of characteristics (Rosenbluth,

1965; Mikhailovsky, 1967), wherein Sfi at t =0 1is given by an

integration following unperturbed particle trajectories:

+ c ov

o~

s P . v(t') x 8B oF *
855 [x(£=0),v(t=0) 0] =+j PO S M

exp (ilk,y(t") + k,z(t') - wt']} (3.8)

where t' is a time index following particle trajectories. Im w = Y

is assumed positive to ensure convergence of the integral at t' = - =,
‘Assuming GEX = GBZ = GBy = 0 , using Faraday's law to express GBX

in terms of GEy and GEZ , and making the change of coordinates

+ + + . . s .
Fo [x(t),v(t)] ~» Fo (X,v, ,v;) so that Fo is a constant in the t' integration:

v x éB 9F *

- E__ Py R [+] - + +
+ M. E+ — i M~ sin(y-Q,t) + N (3.9)
where
\ + 4 +
Eoe O (kb - KE) U
M, y dv w Vi SVL A
F Y E % (KE -KkE oF *
NS =1 & o ,Yy_o _(" " KE) Yu o (3.10)
M, WV @, X ® q, "X
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For the locally bi-Maxwellian distributions, (3,2),

v, kv * k v
Mi--i—e——- 4 E [1+"“Ai:]-E J.uAir Ft
2 y w zZ W :

M, e

2 . '
Ni—+e Wﬁu 1 kdﬁm) 2 Qﬂ”KﬁJ E 9 r
T ) e 52 Tul, X ufd, y X[ o
- ut B -
where the thermal speeds ¢, , c,+ are

+ 1/2 * 1/2
s = (T /M) 2, Gz = (T /M) /

+ + + + .
and the thermal anisotropy A~ is (T, - TL")/TA‘ . Note that

+ +
oF = n.~ v
o _ 048N * 1 2 il W
oX X 1-n, [_1-—5(vi/cj:i):|---2—— 1-
(c ,
ut
+ %
+ 9 fn T, ) + 92T,
M, T N L P
Using (3.4), we may write
ikex(t?)-wt! ikex i(n-m)[y+(n/2)] -i(d+nQ)t!
e =€ X JJ e e
nm
n,m
A=ow- kv,
an = Jn(kLY;/Qi) s m,n any integers

where we used the Bessel function identity e?a sing | zn Jn(a) emqb
twice. Combining (3.13) with (3.9), we perform the orbit integration

‘ +
noting that Fd"(X,VL,v“) is independent of t'

14

2

)

2

(3.11)

{(3.11a)

|

(3.12)

(3.13)
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i. .
Sf, " (XY 1205V, 5V, »¥) =

ik yo+ik z

g el (n-m) I+ (1/2)] [ nf

=i Z A X 3 Jn Mi + Nan e °
n,m A+ nQ, g Vi
- (3.14}
The perturbation currents are
&I, = § (xe) J a3y v, siny Y
Yy +,-
3 2,2
dvv, | n"Q + 0o
=i J (o)) - SIS S I T (3.15)
+,- S P Nt k 2 v ® kv, O
4 + b ol R N
3 +
83, = ) (ze) J v v, 8f
+,-
3
=i ] @e) [ f |- Y 2yt e g 2t (3.16)
4, A+ nﬂi e B n
+
Equations (3.15) and (3.16) contain Yl-integrations over Fo‘ , which
contains v, directly and also indirectly through X . In evaluating
- (3.15) and (3.16) we assume the equilibrium scale length is much longer
+ +
than the ion cyclotron radius, so that FO'(X) = Fo"(x) + O(Y;/Q+Lp) 5
and 9/9X = 3/9x , thereby neglecting the indirect v, dependenée,
When w , Y , and the "bounce" ‘frequencies k,v, of typical particles
are well below the. ion cyclotron frequency’ )\/Qi << 1 , and we may expand
the summation of cyclotron resonance denominators:
1-8_)
1 §no ( no A
= - LS S B S 3.17
Zn A+ nQ ot zn nQ (1 n, ) ( )

+ +
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where 6n0 =1 if n =0 and zero otherwise. Equation (3.17) implies
that we neglect all cyclotron resonance interactions. For perpendicular
wavelengths near the ion cyclotron radius, none of the ion Bessel functions
are small; thus we must sum contributions from all n . However, this is

faciliated using

2 (1-6no) 2

n n

2 2
2n (-8, Ip =1 -7,

Keeping the first nonvanishing terms in A/Q, , (3.15) and (3.16) reduce to

s [ash .
GJy = i z (ze) [ d v v, ———~7~—‘[-AM" + k v, N] (3.18)
w,- . —kiYL ‘
dsv v, i 2 + kgv‘,_Jo2 Ni
83, = i +):_ (ze) f R @ -DM = (3.19)

1

The corrections to (3.18] and (3.19).are at least OCX/Qi) smaller than the
"terms kept. Note that the y-current, which is responsible for Alfven waves,
has no 1/)X Landau resonance terms, whereas the z-current, which leads

to slow ion sound waves, ddes.

The relevant components of €. are:

-~

2 2 * .
w k, T -T, w*
e, =1+ [ B2 (6|14 | g -z (3.20a)
2 +
o 5 k’ 1 To—.— T-
e, = =- 1 £ & |- - (3.20b)
yz zy +,- Q w Mt
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2 2 * +
1+ D gt o (T T D.. (w,k) (3.20¢)
e =14+ - w, .20c
2z .- Q+2 wz Mi S
t . . . . 2. %
G~ , which arises from v, -integration of (l-JO )Fo is
* + +
s -t 1) 1-TF
G = - T (3.21)
z- z-
*+
h e tme?, rreet 1t d I i dified
where z =k, T, /M8~ , I "~ =e n(z )} , an o 1s amodifie
+
Bessel function of the first kind. As zi +0, G =+1; for
% + *
z7>> 1, G ~1/z7 .
w*y is a drift frequency:
2 2 * 2
k.e, (1-J ™) 9oF k.c”, d &n N
* 3 0 0 Ak + + 0% *
W, = j d v = [ +n (T~ +T,7)]
* in zi X + dx -0 1
(3.22)
% +
where the arguments 2z~ of To s Tl have been suppressed. Ds(w,k) =0
is the electrostatic drift wave dispersion relation;
+ +
| [ avv2a? R - ed /e, 6F /0]
Dg(w,k) = g“ -z (3.23)

k“w N

Since, in reaching (3.20), we set

we cannot treat instabilities from currents and heat flowing along lines

of force.

(w/ku) - Vﬂ

+
all odd - v,, moments of Fo 210,

Dropping terms small in M_/M_  (the largest of which is OU&I__/M“)I/2 ,

comparable with terms of ’0(A/Q+)

Q+2/w§+ = cAz/c2 and dropping the

already neglected), using

unity terms in (3.20a) and (3.20c),

which are of order cAzlc2 << 1 , we reduce (3.20) further:
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2 .
2 w* k
c + + i AT
€ =-=1G - 4+ (3.24a)
YY oo [ w wZ M+ ]
A L d
. ] 2 k k, AT , )
= == o 3.24b
yz zy . c 2 wZ M,
A “~
2 k2 oar
€y =5 5 T - Dg (w,k) (3.24c¢)
c W +

- + + - 4 . . .
AT = Z G"(Tﬂ' ~ T,”) is an effective temperature anisotropy.
4 ,- .

To correspond to frequencies between the ion and electron bounce
frequencies, we assume k ¢ << w <<k, ¢ . For the intermediate speed
to be smaller than the electron thermal speed (CA < C»_), SWNT“-/BZ =
B'; >2M_/M,) . (Thus, overall, we require 1 >> B“° >> 2(M_/M,) .)
For the slow speed to be larger than the ion thermal speed (cs > c“+) s
T"‘/T“+ > 1, 1If, moreover, we assume 7Y/w << 1 , then, for ions
k kv

LYY

1 = 52 1+ —Z;—-+ cee) = iﬁsignk“ 6[(w/k”) - “‘] (3.25a)

(m/k“) -V,

and, for electrons

.y ._1
(wk,) - v, v

1+ 2+ ..) - insignk, 8[(wk) - v, ] (3.25

where the Dirac delta functions signify Landau resonance wave-particle

interactions. Using (3.25), Ds(w,k) becomes

2
w
oo P* -2 2 2 + - ) ‘
Dg = - 557 [F 0" - B -k c” (17 - @,/w0)] + 18] . (3.2€
w k. "¢
v Ss
Unlike the fluid definition (2.9), here c¢® =T /M, . @, is an ion

drift frequency:
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k, c§+ 3 v\.z 2 aFo+ k, cizi+ dnN ..+ + + L+ +
w, = w2, d”v 2 Jo I wl, ax T A+mn)-zm (T +T) )]
L
) (3.27)
@ is the corresponding electron drift frequency
k. ¢
~ 4 - din N - - - -
W = s % [Fo -zn, (PO + Pl 1] (3.28)

In section 4, we will use the fact that when z << 1 , 6_ is a pure

number density drift. § contains resonant ion and electron effects:

kh C“ +

kﬂz cs2 mz mp+ 2 w 2. 1.2
6 =V1T/2 ""‘—-"2“—"""‘" z- ik‘ l C“+ exp["w /Zkhc i] o

2 4
k ¢ n,
+ « gt d ln i
< (T [ 1 - —5 : (1-—11- (w /k,, c”+)] ) }

R 4 * %
- =0 nTz2 (rC+Tr0) (3.29)

Using (3.20) - (3.29), we may find the dispersion relation:

+ 2 2 -2 2 - 2 20 * - .
[Gw - wa* - ku Cy ] [F Tt - W w - k“ cg (Po - (w+/w)) + i8]
2 -2
k,” ¢
194

4

where ¢, is an effective Alfven speed reflecting modifications by thermal

A
anisotropy (''firehose') and finite cyclotron radius effects,
- 2 2 -
Cp =€ - AT/M+
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3.4) Discussion .

Let us compare (3.30) with homogeneous two-fluid theory results,

Neglecting thermal anisotropies and spatial derivatives, (3.30) reduces to

2 2
k"¢
2 2. 2, + -2 2 2.+ ey 2 A2 2 2
[w® - (kn ) /G )] [Fow k. cg Po + i8] = -};—«—— k,, cg” w
(3.31)
&
Neglecting & , dnd noting that when 2z~ << 1 , G' and TOt approach
unity, (3.32) may be rewritten
2 2 2
2 k“k,” ¢
2 2,2 2 2,2 _w 2 Ma FLEY
[CI - (m /k )] [CSL - (U) /k )] ) CS T T ’ (3.32)
k k Q
. 2 2, 2,2 2, 2 2 2 2,2
using cg; = ¢g (k“ /k°) when cq /cA << 1 . When s >> Cg >> w /k°,
(3.32) and (2.8) reduce to approximately the same expression, with
k%c,?/0.% in (3.32) replacing k%c,%/2, in (2.8). Since k /k =1, this

difference is unimportant. Thus, kinetic theory reproduces homogeneous
two fluid theory results when csz/cA2 and zi are small, and resonant
particles may be neglected.

Finite cyclotron radius (FCR) effects, not described in fluid theory,
may be evaluated schematically by neglecting finite ion inertia in (3.31),
whereupon when 2z << 1 , the intermediate and slow waves are given by
w2 = k.chzlG* and wz = k“ZCSZI‘o+ respectively. Both FCR and finite ion
inertia increase the intermediate speed and decrease the slow speed as
k, increases, since both G' and To+ decrease as z' increases.

§ represents Landau wave-particle interactions, which in homogeneous

Maxwellian plasmas can only damp waves. Spatial inhomogeneity, however,
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permits instability in certain cases. It also m&difies the real part of
the wave frequency, through w* and‘ o, .

(3.30) reduces to the results of Mikhailovsky and Rudakov
(1963), who kept finite inertia coupling but assumed 25 << 1 and to
those of Kennel and'Greene (1966) who treated hydromagnetic drift
instabilities (z+ = kcA/Q+ = 0) for arbitrary csz/cA2 . When 2z =

+ + - s
n =n"=AT =0, (3.30) reproduces the results of Mikhailovsky (1967).
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4. Drift Instabilities of the Auroral Electron Boundary

N

4.1) Alfven Thermal Gradient Instability

The auroral boundary electron temperature gradient is much larger than
the number density gfadient (Vasyliunas, 1968a). The ions have no sharp
gradient near the electron boundary (Frank, 1968). Thus, we keep only
the electron temperature gradient. Since when 2z << 1, w_ =0 for
small number density gradient, (3.31) reduces to (3.32), the homogeneous

plasma dispersion relation, except that ¢ has thermal gradient contribu-
tions. When +vy/w << 1 , (3.32) reduces to separate equations for y and w :
2 02 2,44 02 2 2 4, 2.2 2.2 2.2
fw™ - (k)icA /G)] [w™ - k, g Po ]=w k7 ¢ (k_A_cA /SZ+ )
{(4.1a)
2 2 2,.%
W - (ky%e, /6"

) T2 3 |
[w - (k, ¢, cg ro*/c")]

gl

=-8
"2

(4.1b)

where AT is assumed zero. Yy > 0 signifies instability. In order that
+ . ceso s s

Y#0, wz # kchz/G ; this condition is always satisfied for the slow

wave, and for the intermediate wave only when finite ion inertia is

accounted for.

When z@ >0 , both FCR and finite ion inertia ensure wz > ki? cAz
and m2»< k‘? csz for the intermediate and slow waves respectively. Since,
moreover, cSZ/cA2 < 1 , we may decouple the two waves in (4.1a) by

assuming wz >> k.? cS2 Po* for the Alfven wave, whereupon

-T+' y A 4.2
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Similarly we may assume wzlk“2c+2 > 1, permitfing neglect of ion

Landau interactions. Then, substituting (4.2) into (4.1b)

c c
Y _. w R 2 2 2 .
L N O X 2

. [1 A (wzlkhzc_z)}]

A is the electron temperature drift frequency

2

L% atnT _ T + Ss
A= 20 dx ;T lg_- 2L

where Ly = (d 2n T_/dx)"1 . When A =0 , the Alfven wave is damped.

A sufficient condition for instability is

1+ %‘ [1- f/k 2 B <o

Since by assumption u?/kﬂzc_z <1

(4.3)

(4.4)

(4.5)

! 3 - -
s &0/w < -1 is a necessary condition

for instability, implying that the perpendicular phase velocity w/k, and

the thermal gradient drift velocity c_z/ZQ_ §~§§J£. are oppositely

directed. [A/w] > 1 implies

_q1/2
A L.C_S. 1 > ......__..._..'-1 +:_I'___
AT g oo KLp 1- Po+ T

Large AA leads to instability. T'/T+ large, cs/cA large, and a large

ratio of parallel wavelength to thermal gradient scalelength (khLT << 1)

, T f21.7" and
0

(1 - I‘(;")_1 = 1/z+ , so that instability does not occur for zr+0 .

s . - gz +
all contribute to instability. When 2z << 1

+ - . - .
z must surpass a threshold value for instability; for instance, when

(4.6)
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AA = 2 , and T'/T+ =2, z' > 0.8 for instability. Thus, except for
very large AA , instability sets in at wavelengths near the ion cyclotron
radius. Since when 2t >> 1 , both A S and w -grow as /gi' (for X
constant), a necessary condition for large z* and thus any z' to be
unstable is obtained by setting P°+ + 0 in (4.6), AA >+ 1T .

For k; constant, Y “increases with increasing w and z* until
we k,c_ , when Yy changes sign. When k, corresponds to the lowest
parallel mode, the unstable wave frequencies are below the electron bounce
frequénéy and above the larger of tbe Alfven bounce frequency, k“cA , or
the proton bounce frequeﬁcy, k“c+ (since ion Landau damping would kill
the instability). Since Y maximizes just before it changes sign, the
most unstable frequency is near but below the electron bounce frequency.
In curved magnetic geométry, the growth rate peaks even more strongly

near but below the bounce frequency since w/|k,|lc_ is replaced by a

term of O(cu/k“c__)3 (Rutherford and Frieman, 1968).

4.2) Ion Sound Thermal Gradient Instability

Assuming wz << k 2c 2

, the slow ion sound wave frequency and

A
growth rate are given by
. 2 2 2+
2 k.‘ P kn cS T

= ° (4.7)

W2
1+ (k_,_ c 2/9 )6 1+ /Y -1

€<
]
1
< B
ool =
o~
E
Ko
L —

A [1+£-—+(T/T)3/2 o exp[w/Zk2 2]:!

(4.8)
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where we assumed w/k“c‘ very small; true excepé when T‘/T+ is

unrealistically large. A necessary condition for instability is A/w < -1,
which requires

- rt 1/2
A= 1 5| 9

™ Rlr [ pe amha -

It

(4.9)

This instability criterion, while less stringent than that for Alfven
. . + s
waves, still requires that 2z  be finite. Therefore, the unstable

. . + .
frequencies lie below k“cs . As z  increases, w/k,6 decreases to c, »

U]
where the basic assumptions of this calculation break down. Thus, the

lowest parallel mode will probably be unstable only above the ion bounce

frequency.
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5. Summarx

Only the intermediate and slow wave branches have strong drift

interactions. To do so, they must propagate nearly perpendicular to the
2, 2
s /A

small. Then, the slow wave is the ion sound wave, which always has a

magnetic field (k“/kL £ R+/Lp << 1). We restrict ourselves to ¢

parallel electric field, and therefore, Landau interactions. On the
Alfven branch, OE, # 0 , permitting Landau resonance instabilitieg}only
at short perpendicular wavelengths, where finite ion inertia coupling
permits an exchange of polafization with the ion acoustic wave.

We derived the properties of drift Alfven and ion sound waves,
coupled by finite ion inertia, in section 3. The various limitations of
this theory are outlined in section 3.2; in particular, we neglect
magnetic curvature, and the effects of magnetic gradient drifts. The
second assumption restricts us to very sharp distribution function
gradients, such as the auroral electron boundary. 1In the remainder of
the magnetésphere, the density and magnetic drifts are comparable. In
this case, the appropriate drift calculations must be generaiizations of
Rosenbluth, Krall and Rostoker (1962), who treated k”f= 0 only, or of
Kennel and Greene (1966), who treated only zt<< 1 ., Mikhailbvsky and
Fridman (1968), have recently calculated the properties of high B drift
waves with vD #0 .

A great simplification occurs for the auroral electron boundary,
since we may neglect all spatial gradients but that of the electron
temperature. Here, the drift terms disappear from the real part of the
dispersion relation, leaving it very similar tofhomogeneous two-fluid
theory; however, the growth rate has a destabiliziﬁg contribution from
the temperature gradient, Let us now'compare the qualitative predictions

of this theory with experiment.
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5.1) Satisfaction of Instability Criterion

We compute AA for parameters appropriate to the postmidnight auroral
zone equatorial plane. For T =4 keV, T =1kev, B=707,
N = 1/cm3 ’

= 8.6 X‘107 cm/sec , = 4,8 % 108 cm/sec , and

s €a
cS/cA‘= .18 . The longest parallel wavelength available is the length of
the line of force, = 20 Rg at L= 6 . For this lowest parallel mode

) ) : - + N . . .y
AA = 1.1 RE/LT . From (4.6), AA >/1+T /T = 2.2 jimplies instability.
Thus, if LT < 0.5 RE > Alfven wave instability is possible. Observed
values of LT fall within this range (Vasyliunas, 1968a). On the other

hand, higher parallel modes are not likely to be unstable for this range

of parameters.

5.2) Unstable Frequencies and Wavelengths

When only the lowest parallel mode is exéited, the unstable frequency
range should be narrow, lying above the Alfven bounce frequency (knCA)
and the thermal electron bounce frequency (k,c ) . For the parameters
chosen above, these two outer limits correspond to periods of 4 and 25
seconds. Since the growth rate maximizes near but below kc_, waﬁes with
= 10 second periods should dominate the spectrum. McPherron et al. (1968)
have characterized the observed micropulsations as "band-limited" in the
5-15 second period range.

Co:responding to the narrow unstable frequency range, a small range
of perpendicular wavelengths, approximately 1 < V/;: < c_/cA (cf. Section

4.2), should be unstable: perpendicular wavelengths near the thermal

proton cyclotron radius in the equatorial plane, some tens of kilometers.
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5.3) Location, Localization, and Propagation

The association with the inner edge of the plasma sheet suggests that
Alfven micropulsations will be located equatorward of the main auroral
activity, in agreement with the location of auroral light pulsations
(Cresswell and Davis, 1966). The fastest growing modes will be localized in
radius to the region of maximum electron temperature gradient. If the
equatorial thermal scalelength is %‘RE = 3000 km , the ionospheric
scalelength is the order of 100 km, consistent with the localization of
energetic electron precipitation pulsations (Barcus et al., 1965; Barcus
et al., 1966; Parks et al., 1968a) and of 10 second auroral light modulations
{(Cresswell and Davis, 1966).

Since»the instability criterion (4.6) involves T/T' |, the steady
convection electric field across the magnetosphere (Axford and Hines, 1961)
could account for the oﬁserved diurnal occurrence pattern for 5-15 second
micropulsations. Electrons are accelerated on the morning side and ions
on the evening side (Brice, 1968). Thus, if T”/'I‘+ = 1 in the magnetospheric
tail, T'/T+ > 1 on the morning side and T°/T+ < 1 on the evening side.
Choosing T = 1keV and T = 4 keV with all other parameters the same as
above, AA = ,03 RE/LT » strongly suggesting that instability is not possible.
5-15 second auroral micropulsations are observed primarily in the 0200-1000
L.T. postmidnight sector (McPherron et al., 1968). Thus, while the auroral
electron boundary.is more pronounced on the evening side (Vasyliunas, 1968a)
than on the morning side (Vasyliumas, 1968b), it appears that the electron
to ion temperature ratio may play the controlling role in determining
instability.

If we aséume the eigenoscillation is a standing wave in x (radius)

and z (along the lines of foice), then energy propagates along y , or in
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longitude. From (4.5), the unstable waves propagate opposite to the
electron thermal gradient drift, or towards morning, with phase velocities
less than A/K+ = 10 km/sec, in the equatorial plane. This velocity,
mapped onto the ionosphere, is = 1 km/sec. If the micropulsations modulate
electron precipitation, then the phase surfaces of associated auroral light
irregularities should progress eastward at near but below this velocity.
Cresswell and Davis (1966) found pulsating auroras move eastward with

0.1 - 1 km/sec velocities. The fact that no nortﬁ-south motions were

observed is consistent with a radially confined mode.

5.4) Poiarization

Our calculation keeps only GBx ,» corresponding to a radial perturbation
magnetic field in the equatorial plane, which maps into a north-south
perturbation field in the ionosphere if there is no rotation of the
polarization along the line of force. Accurate calculations of the x-dependence
of the eigenfunction are needed to determine the actual GBY s or longitudinal
component. In any case, the rotational components of the perturbation field
shouid be larger than the cqmpressional components, though because cs/cA is
not always small, 6B is not necessarily strictly zero, as was assumed
here. 5-15 second band limited micropulsations are:observed magnetically
‘on the ground (McPherron et al., 1968), consistent with a magnetic polariza-

tion in space.
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5.5) Estimate of Saturation Amplitude

The development of the drift instability should smooth the electron
temperature gradient driving it, by diffusing particles across lines of
force. Assuming this process is incoherent, we can write an approximate

heat flow equation

. 5 -
oT T

= 5 (5.1)
T9X

at‘D

.where the heat conduction coefficient should be given;dimensionally by the
magnitude of the particle velocities in the wave (cdE /Bo) and the wave
frequency D = (cSE /Bo)zgs-l . In the strong diffusion picture of the
auroral electron boundary (Petschek and Kennel, 1966; Kennel, 1969;
Vasyliunas, to be published) the minimum lifetime for electron precipitation

Ty is the scale tine for boundary formation. Assuming that thermal

transport also has this scale time permits a crude estimate of the amplitude.

Equating Ty = LTZID = 103 sec (for L = 6 and keV electrons), and
noting 6E = (cA/c) éB ,
T = (L./c,)? w(6B/B )2 (5.2)
M T A o ’

For LT = 0.5 RE , W= 27/10 radians/sec , c, = 2 x 108 cm/sec ,

GB/Bo = ,03 , or 6B =3y when B, = 102 Y . This wave amplitude ought
to be dominantly rotational. Ground based measurements indicate 6B =1 v
(McPherron, private communication). Let us now ask whether Alfven micro-
pulsations can create an electron precipitation pulsation. To achieve an
effective compressional magnetic component the Alfven wave must carry
particles into an increasing part of the dipole field. In this case, the

effective compressional amplitude b , defined in Coroniti and Kennel (1969),

is
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<4

b = BOFR—E— {(5.3)

where A, is the perpendicular wavelength., Choosing Bo = 102 Y,

A = 30 km (approximately a 1 keV ion cyclotron radius), RE =6 X 103 km,
and L =6, we find b =1.5Y , consistent with their estimate for
electron precipitation pulsations with peak-to-valley flux ratios of 2.
Thus, if this picture is correct, whistler amplitudes ought occasionally
to be modulated by Alfven micropﬁlsations. Brody et al. (1969) have
reported preliminary observations of whistler chords bursts, which repeat
quasi-periodically with typically 6-11 second periods, in the postmidnight.
auroral equatorial plane. A schematic summary of these ideas is shown in

figure 2.

5.6) Ion Sound Thermal Gradient Instability

.According to (4.9), kuLT need not be as small for ion sound
instability as for Alfven instability, suggesting that if Alfven waves are
excited, so will lower frequency ion sound waves. However, if Alfven waves
are somewhat above marginal stability, their growth rate is larger than
the ion sound growth rate. Then, if waves with the largest growth rate
dominate the developed spectrum, or if ionospheric damping is important,
the ion sound component_ma& not be apparent. Since higher parallel ion
sound modes could also be unstable, estimates of the unstable frequency
spectrum must wait until curved magnetic field calculations with ionospheric
damping are carried out. However an interesting, if extremely difficult,
experimental question is raised: are there nearly electrostatic micro-
pulsations?

Before the question of whether drift instabilities can account for

various different micropulsations can be answered, several thecoretical and
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experimental developments are necessary. Some of these necessary
developments have been indicated by the present calculation. On the
theoretical side, curved magnetic geoﬁetry calculations, including full
electromagnetic polarizations, finite 8, resonant particles, and short
nonhydromagnetic wavelengths, must be carried out. The magnetic gradient
and curvature guiding center drifts must also be retained, since the
particle scalelengths will be longer than in the auroral electron

bouﬁdary elsewhere in the magnetosphere. Even in the present calculation,
neglect of the gradient drift presents some uncertainty, since the
unstable waves propagate eastward with a velocity comparable with the
guiding center drift velocity of Van Allen electrons of a few tens of keV
energy. The loss of wave energy to the ioﬁosphere should be evaluated.

On the experimental side, the relationship of spatial gradients'in the
particle distributions to micropulsation activity needs to be elucidated.
The question of electrostatic micropulsations is unresolved experimentally.
Here the association with precipitation pulsations could prove quite
useful, since particle modulations in the absence of magnetic oscillations
could be evidence for electrostatic micropulsations. Nevertheless,
despite these technical obstacles, drift instabilities appear to be a serious
candidate for various micropulsations. An instability analysis of the
auroral electron boundary, the one case where the particle gradient is
experimentally well-defined and which fortuitously is open to the limited
analytic techniques used here, has led us to propose a wave generation
mechanism which is at least not inconsistent with the observations of period,
spatial location and localization, and propagation speed and direction, of

a common auroral micropulsation.
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Figure 1.

Figure 2.

Figure Captions

Oblique Hydromagnetic Waves with Ion Inertia.

These plots schematically summarize the effects of ion inertia
on wave propagation nearly across the magnetic field in a homogeneous
plasma. Figure la describes the cg/c; > 1 case ordinarily appropriate
to the magnetosphere, and 1lb, the cS/cI < 1 case. In both cases,
the fast wave has much larger phase and group velocities than the
slow and intermediate wave. In both cases, finite ion inertia converts
the intermediate wave into an isotropic sound wave (w/k = cs) , and
drives the slow wave to an oblique ion cyclotron resonance, w = { cosf .
The slow and intermediate waves have a small compressional magnetic
field component, SBH . EM denotes mixed electric and magnetic, and

ES, approximately electrostatic polarization.

Disturbed Auroral Electron Boundary.

When the electron boundary is sharp enough, a drift Alfven
instability creates = 10 secoﬁd period micropulsations, primarily
after midnight. When unstable whistler turbulence is alrgady present,
the micropulsations modulate the whistler instability, leading to
finite amplitude precipitation pulsations observable in the auroral

ionosphere.
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