
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

1 (/`Z L

i

cli
vr^Q

or

r^ NP ̂ ^^^ ^ Uv

N	 N 6 9
0
F	 IA.',CE:.SIOU 1:UMt)frRf	 ITNRUI

20	 C'?1

_F	 (PACCS)	 /CODE)

J

	

(NASA CR ON TMA OR %L) NuMUER) 	 (CA'.EQORY)

J E T P R 0 P U L 5 1 0 N L A B O R A T O R Y

C A L I F O R N I A I N S T I T U T E O F T E C H N O L O G Y

P A S A D E N A	 C A L I F O R N I A

C

A COMPUTATIONAL ALGORITHM FOR SEQUENTIAL ESTIMATION

Richard J. Hanson
Jet Propulsion Laboratory

Section 314

Peter Dyer
Jet Propulsion Laboratory

Section 311

This paper presents the results of one phase of research carried out at
the Jet Propulsion Laboratory, California Institute of Technology, under
Contract No. NAS 7-100, sponsored by the National Aeronautics and
Space Administration.

.

ABSTRACT

This paper details a highly reliable computational algorithm for

sequential least squares estimation (filtering) with process noise. The

various modular components of the algorithm are described in detail so that

their conversion to computer code is straightforward. These components

can also be used to solve any least squares problem with possibly rank

deficient coefficient matrices.

I-

KEYWORDS: Kalman filters, square root filters, sequential least squares
estimation, numerical solutions of linear least squares.

-i-

ALGORITHM FOR SEQUENTIAL ESTIMATION

Introduction

In this paper we will describe a reliable Computational procedure for

estimating the state vector of a noisy system from a set of noisy measure-

ments. The state of the system, x(i) = [x1 (i), x2(i),...,xn(i)]T, is

described by a sequence of transition equations,

x(k+l) = F(k)x(k) + G(k)w(k)	 ,	 k - 0,1,...,N-1 ,	 (1)

where F(k) and G(k) are n x n matrices and w(k) = [w 1(k), w2(k),...,wn(k)]T

is the process noise vector. The measurements z(k) = [z 1(k), z2(k),

... , zm(k)] T are given by,

Z(k) = H(k)x(k) + Q(k)v(k) 	 (2)

where H(k) and Q(k) are m x n and m x m matrices respectively and

v(k) = [v1 (k), v2(k),...,v m(k)]T is the measurement noise vector.

An estimation procedure for sequentially estimating the state x(k),

(k 0,1,...,N-1), using orthonormal Householder transformations was described

in a recent paper by Dyer and McReynolds (Ref. 1). That paper showed that

this procedure was equivalent to, and substantially more accurate than, the

Kalman Filter (Ref. 2) and gave some numerical results. However, few details

were given of the computational algorithm and there was little effort made

to maximize the efficiency of the routine. In this paper details of a refined

form of the algorithm are given. This new algorithm is substantially faster

and requires only half the storage'of the algorithm indicated in Ref. 1.

These points are described in Appendices A and R.

It should be stated that this algorithm requires a rather large investment

in programming to develop from the beginning. (We feel one-man year is a

good estimate). We will, however, provide a set of (documented FORTRAN Its)

subroutines to any interested requester. There is one feature of the present

algorithm which we feel more than compensates for its complexity: it is

-1-

-2-

completely reliable in the sense that rank deficiencies will not cause a

system to fail and roundoff errors are minimized. This program can, there-

for:!, be a welcome ccmponent of many automatic control systems.

We will now review the algebraic operations required in the algorithm.

Description of the Algorithm

As stated above the problem is to estimate the state of a dynamic

system in the presence of noise. It is assumed that the components of the

noise vectors w and v are statistically independent and gaussian with zero

means and unit variances. This assumption is not restrictive because any

set of correlated gaussian random variables maybe linearly transformed to

a new set of independent gaussian random variables. One technique which

effects this transformation is as follows: Let w(k) denote correlated

process noise with covariance C(k). Now employing the Cholesky square root

algorithm (Ref. 3) a matrix D(k) is found such that C(k) = D(k)D(k)T. By
setting w = D(k)w, equation (1) may be written

x(k+l) = F(k) x(k) + G(k)D(k)w(k)

where the components of w(k) are independent random parameters with zero

mean and unit covaria -e.

The problem of estimating x(k) is equivalent to minimizing

k

J(k)	 T=
^i v(1)ii2 + ^^w (i)^^ 2

} + 11x(l) -
x (1)112 -1

i=1	
A (1)

with respect to the random sequences v(i) and w(i), (i = 1,2, ... ,k), subject

to the constraints of equations (1) and (2). In equation (3) 3F(1) denotes

the a priori mean of x(1), while A(1) denotes the .a priori covariance of

x(1).

,e

(3)

-3-

Let J opt (K) denote the minimum return function for this problem
expressed in terms of x(k). Then

J opt (k) = IIx (k)	 x (k)112
A (k)
-^	 + r2 (k)	 (!^)

Here x(k) is the conditional mean of x(k), A(k) is the conditional covariance,

and r2 (k) denotes the sum of the squares of the residuals.

The Dyer-McReynolds algorithm computes R(k) and d(k) where,

R(k) = A-'(k)

d(k) - A_'(k) X(k)	 (5)

In terms of R(k) and d(k), the return J opt (k) is given by

J opt (k) = IIR (k)x (k) - d(k)112 + r2 (k)	 (6)
-i

Clearly, if R(k) is non-singular,, x(k) and A(k) are given by,

x(k) = R-1(k)d(k)

and	 (7)
A(k) = R_1(k) R-1(k)T

The algorithm shall be developed in two steps. First, the measurements

at the kth stage will be incorporated with the a priori information,

Secondly, the information will be transformed from the k th to the k+1st

stage, corrupted by the effects of process noise.

The best estimate of x(k) employing measurements z(1),,,..,z(k-1) is

obtained by minimizing,

k-1	 k
J(k) =	 IIv(i)II2 +	 II w (i)II 2 + 11x(l) - x(1)I?2

i=1	 iml	 A-1(1)

	 (' 1

subject to the constraints imposed by Eqs. (1) and (2).

1 See Cox, (Ref. 4) for the formulation of sequential es;:imation in terms
of dynamic programming.

-4-

Note that,

J(k) = J(k) + IIv(k)II2

Ste 1: Measurements

Now assume that J(k) has been transformed to,

J(k) = 11k(k)x(k) - d(k)I1 2 + r2(k-1)

N
(This will normally be the case. At the initial time R(1) and d(1) are

formed from the a priori covariance and mean). The inclusion of measure-

ments implies the minimization of,

J(k) = 11i(k)x(k) - d(k)11 2 + 1Iv(k)II2 + r2 (k)

Substitutir - for v(k) from equation (2) gives,

J(k) = IIR(k)x(k) - (k) 112 + IIQ 1(k)H(k)x(k) - Q l (k)z(k)112 + r2 (k)

(9)

(10)

(11)

which may be written,

2

	R(k)	 d(k) 1

J(k) _
	 x(k) _	 +r2 (k)

Q 1(k) H(k)	
Q 1(k) z(k)

I I
Now an orthogonal (n+m) x (n+m) matrix, P, is constructed such that,

	

n	 n

R(k)	 n	 FR(k)1 ^n

P	 =
Q-1(k) H(k)	

Im	
0	 Im

(12)

(13)

2 If the measurements are genuinely noisy then Q(k) is nonsingular.

-5-

Here R(k) is an upper triangular matrix./ Let d(k) and d'(k) be defined by,

d(k)	
in

	
d(k) in

P
	 (i4)
LQ-lz(k)j Im
	

dl (k)
1

m

The matrix P is a product of Householder transformations, i.e.,

P = PnOPn-1 ... P1

where

P.1 	 I
A
 + UTui/Pi	 (i = 1,..., n) , (I = m + n)

Each Pi is orthonormal and symmetric. It should be noted, however, that none

of the full (n+m) x (n+m) matrices P i have to be formed explicitly. It•is

only necessary to store the I -vector u and the scalar P i . Further details

regarding the construction of these parameters are given in Appendix B,

Algorithm 1.

The return J(k) may now be written,

J(k) = IIR(k)x(k) - d(k)112 + r2 (k)	 (15)

where r2 (k) = r2 (k) + Iid'(k)II 2. The vectors d(k) and d 1 (k) are defined in Eq. (14),

The best estimate of x(k) and its covariance are given by,

F(k) = 1^.- 1(k)d(k)

(16)

A(k) = R_1(k)R-1(k)T

Details of the computation of 3F(k) and A(k) are given in Algorithms 3, 4, and 5

of Appendix B. and the sequertial processing of new data is outlined in Algorithm 2.

w 6w

M

Std Mapping and Process Noise

Mapping forwards introduces process noise, and the return J(k+l) is

given by,

J(k+l) = I1w (k)II2 + IIR (k)x (k) - d(k)11 2 + r2 (k)	 (17)

From equation (1)s

x(k) = F-1 (k) (x(k+l) - G(k)w(k))

Hence writing equation (17) in terms of x(k+l),

I.

J(k+l) = IIw(k)II2 + IIR(k)F -l (k)x(k+l) - R(k)F-1(k)G(k)w(k) - d(k)I1 2 	 (18)

This equation must now be minimized with respect to w(k) and w(k) eliminated.

Equation (18) may be written,
11 1

2

	J(k+l) =1 In

	 0
	

w(k)	 0	

+ r2(k)
	

(19)

R(k)F-1(k)CT(k)
	

R(k)F-1(k)
	

x(k+l)	 d(k)
L

The matrix I n of Eq. (9) is the n x n identity matrix.

The coefficient matrices R(k)F-1(k)G(k) and R(k)F-1 (k) in Eq. (19) are

computed in the following way.

A product of n - 1 Householder orthonormal transformations

S = S	 ... S ,	 i
S 	 (I + u i

uT^^.), 	 is found such that
n-1	 1	 n	 i ^.

(20)F(k) = S1 ... Sn-1T

where T is upper triangular.

Since F(k) is nonsingular,

F-1(k) = T-1Sn-1 ... S 1

Then premultiplying by R(k) find postmultiplying by G(k) gives,

(21)

-7-

R(k)F-1(k)G(k) = R(k)(T-1(3 n_19..SlG(k.)))	 (22)

while,

R(k)F-1(k) = R(k)(.. , (Tr1Sn-])...Sl)	 (23)

In Algorithm 6 it will be shown that the formation of the matrix products on
the left hand side of Eqs. (22) And (23) require only n additional storage

locations.

A (2n) x (2n) orthonormal matrix, again a product of 2n - 1 Householder

transformations:

X X2n-1 ... X1	Xi = I2n + uiuVoi	
(i = 1,...,2n-1) s

is now chosen such that;

.°	 1

T
	

0	 A B.
n

X
	

(24)

R(k)F-l(k)G(k)
	

R(k)F-1(k)	 0 R(k+l)

TinAlgorithm 7 we ::ill shoe that the right member of Fq, (24) can be generated

in such a way that only 2.5n2 + 3.5n+1 memory locations are needed at each

s-;ep of the calculation. Exactly 2.5n2 of these cells are the working arrays

which initially held the matrices F(k), G(k), and R(k).

We further remark here that the matrix A in the right member of Eq. (24)

is nonsingular. This follows from the observation that A is upper triangular

and the modulus of each diagonal term has the value one at least.

With,

0	 [' (k+1) in

X	 =
	

(25)

d(k)d(k+l) In

the value of J(k+l) is5

-8-

J(k+l) = (jR(k+l)x(k+l) - d(k+2)11" + J`Aw(k) + Bx(k+l) - d' (k+l)^;2

If R(k+l) is nonsingular the best estimate of x(k+l), given measurements

through the kth stage, is given by,

x(k+l) = R-1(k+l)d(k+l)	 (26)

The sn ^thed value of w(k) is given by,

w(k) = A 1[d' (k+l) - Bx(,k+l)] 	 (^7)

The covariance associated with x(k+l) is given by,

A(k+l) _ [R-l(k+l).,'[R-1(k+l)]T	 (28)

N
The hypothesis that R(k+l) be nonsingular is not critical. We can replace

the indicated inverse in Eq. (25) by a pseudoinverse (Ref. 3) which•

always exists.	 '- 1

In this case the covariance matrix of Eq. (28) no longer exists; one

can, however agree to solve for certain of the variables and set the remaining

ones to zero. This amounts to obtaining a pseudoinverse solution (;n a

li rr-i ti ng sense) With A we i ghted euclidean metric,_ In the latter case one

can obtain a covariance matrix for the variables which were solved for.

The details of this are given in Algorithm 5 of Appendix B.

APPENDIX A

The flow diagram of Appendix—A is intended to indicate the overall

structure of the filter and how it makes use of the various component

algorithms of Appendix D. These algorithms of Appendix B can be used for

solving any least squares problem,

-9-

APPENDIX B

Many of the algorithms presented below have appeared in a slightly

different form in Ref. 5. They are repeated and expanded here for the sake

of the completeness of this paper. Algorithm 3 is essentially due to

Businger and Golub using a special case of Algorithm 1.

Algorithm 1

The basic Householder transformation; its construction and application.

PURPOSE

Suppose that a	 ...	
T

PP	 Y Cyl'	
,ym] is an arbitrary vector of length m. Given

three nonnegative integers A. t, and m. We wish to construct an orthonormal

transformation Q = I + uuT/O such that for Qw:

a) Components 1 through A are to be left unchanged
b) Components I + 1 is permitted to change

c) Components I + 2 through I + t + 1 are to be left unchanged

d) Components A + t + 2 through m are to be zero.

This can be accomplisied with the following

METHOD

Let p = A + 1 and q = I + t + 2.

k

P

With.?

U = [O,..4,0, u p	 q,...,u,...,u]l'	 m

1
2

Q = CYP +Y q + ... + y.] .(-sgn (Y ^)
P

up = Yp - a

P = a- up
(= - 11u ll 2/2)

U = yip (i = q,...,m)

Al. 1

Al.2

Al. 3

A1.4

Al. 5

-10-

the matrix,

Q = Im + uuT/0	 A1.6

is orthonormal and,

y + (uTY/P)u	P # 0
Qy =	 A1.7

y	 = 0

_ [Yl , ... , yy , Q, Y.4+2-1 ... , yq-1' 0 -1 ... , 0]
T
	 A1.8

which satisfies the requirements of a) through d) above.

(In Eq. A1.2, sgn (yF) = 1, if yp ^ 0, and equals -1 if y < 0.)

The algorithm for computing the vector u and the scalar a is now given.

The input to this algorithm will consist of three previously mentioned integers

A, t, and m, the m-vector y and a single free cell to hold p upon output.

For later reference we will designate the output of this algorithm

Hl(,Z, t, m, p) y). The vector u will occupy just those positions of y which

were implicitly zeroed plus the one extra location labeled up . The scalar a

replaces y in storage.

Type:	 Integer	 ;2, t, m, i, p, q;

Real	 yip
Double Precision	 s•

Procedure: Hl(,, t) n;, up, Y)

Step Number
	

Description

1	 Set 	 ±1; s	 o +t+2,
2

s :=y P , i :=q.

2	 if i s m set s := s + yi , 	 i + 1 and go

to step 2. Else

i
3	 Set Q := [-sgn (yp)I

S 2,

-11-

Step Number	 Description

4	 Set u := w - a.
P	 P

5	 Set yp := a.

REMARK

The vector u has now been calculated; the scalar 0 = au is later

available as the indicated product and need not be explicitly saved.

The scalers ui = yi , (i = q,... m), require no change of (or extra) storage.

Assume now that c = [cl,...,cm]T is an m-vector, and that we wish to

compute the matrix product Qc and place it into the storage previously occupied

by c.

From the equality c T Q = NOT (Q is symmetric) we see that only matrix

products of the form Qc need be discussed here.

The matrix product Qc is given bye

Qc = c + [(uTc)/P]u	 A1.9

and so the matrix Q need not be explicitly formed.

We will now present an algorithm for computing the matrix product indicated

in Al. q. This procedure will be designated by the symbol H2(1. t, m, u, up , r).

Type:	 Integer	 Ap t, m, i, p, q;

Real	 ci, (i = 1,00.)m)! up I ui p (i = 1 1 000 9 m), a,

Double Precision 	 s;

Procedure; H2(1. t) m, u, P, C)

Step Number	 Description

1	 Set p : = I + 1, q : _ I + t + 21

S := u • c , i := q.
P P

-12-

$tep Number
	 Description

2	 If i :9 m set s := s + ui • c i , i := i + 19

and go to step 2. Else

3
	

If s = 0 go to step 9. Else

4	 Set	 := Q•up.

5	 If p = 0 go to step 9. Else

6	 Set s := s1p.

7	 Set cp

8	 If i s

and go

9	 The ve

•- c.- P

m set

to st

ctor c

+ u
P

• s, i := q.

ep 8. Else

has been replaced by Qc.

REMARK

Note that only those components numbered p = ,t + 1, and q,,,,,m,

(q = A + t + 2), are changed by premultiplication of c by Q. Further, if

these components of c are known to be zero (or, more generally uTO = 0) then

Qc = c and no explicit computation is required.

	

Al 	bl

A

A =	
2	

b -

A	 b

	

q	 q

1

A2.2

-13-

Algorithm 2

PURPOSE

Sequential acceptance of equations to achieve upper triangular form as a

preliminary step.

ME-

Suppose we have a large linear least squares problem of the form,

Ax = b
	

A2.1

The matrix A and the vector b are written in partitioned form,

..heL a e ach matrix A.. is m. x n and each bi is a vector of length m^. yhe

integers m can be as small as one.

Let m = ml+,,.+mq. We construct orthonormal matrices Ql,...,Qq, each

of which are a direct sum of an identity matrix and products of at most n

Householder transformations and permutation matrices P 2 ,...,Pq such that

n	 1

	

R , d	 n

QgPq ... Q2P2Ql[A,b]
	

d , r	 1	 A2.3

	

L° ' O	 Im -_=_-I

Here R is upper triangular, d is an n-vector and Irl is the residual vector

length if R is nonsingular.

-14-

To this end set p = max(ml,...,mq) and let W denote a compute working

array with v Z n + 1 + µ rows and n + 1 columns. We will let W(i i :12 1 ii:j2)
denote the subarray of W consisting of rows i1 through i2 and columns j1

through j2.

Type:	 Integer	 t, A,, r, i, j, m, fit , n;

Real	 Ai, bi , (i = 1) ..,,q), s;

Procedure: Sequential Triangularization

Step Number	 Description

1	 Set t := 1 and	 = 0. ()

2	 Set r	 + m

3	 Set W(I + 1:r, 1:n+1) := [At,bt]	
.' 1

4	 Set i := 1

Compute

5	 Hl(i - 1, max(0,A-i), r, s, W(l:r,i:i));

6	 If i s min(r,n), compute H2(i-l,max(0,I-i),

r,W(1.r,i:i), s, W(l:r,j.,j))., (j = i+l,...,n+l
Set i := i+l, and go to step 6. Else

7	 If i s q, set t := t 4 1, A := min[n+1,r],

and go to step 2. Else

8	 The matrix A has been reduced to upper tri-

angular form as indicated in A2.3.

O If there is an a priori matrix present in the first n rows of the
working; array 77dC is zero below the main diagonal, then one may
start with Y- = n. This a priori matrix will usually be the matrix Al
of Eq. A2.2.

REMARKS

As we mentioned previously, one.can have m = 1, (t = 2,...,q). Then

W need occupy , at most (n+2)•(n+l) computer words.

Following these transformations the strictly lower triangular part of

W may contain remnants of the processing; these cells should be zeroed. The

matrix R of A2.3 is in the upper triangular part of W; the vector d occupies

W(l:n, n + l:n + 1); the residual vector length (except possibly for sign)

occupies W(n + 1:n + 1, n + 1:n + 1).

-16-

Algorithm 3

PURPOSE

Forward triangularization of square matrices with column scaling,

column interchanges and rank determination.

METHOD

Suppose we wish to solve a n x n syatem (which may have a singular

coefficient matrix) in the least squares sense.

Ax = b
	

A3.1

Here A is an n x n real matrix of rank r s n and b is a real n-vector.

We construct a nonsingular diagonal matrix D, a permutation matrix P and an

orthonormal matrix Q =.Qn-1	 Q1_ ' (Qi
yn + uiui/pi)'

such that

A = QT PTD-1
	

A3.2

so that if A is nonsingular,

A-1 = DY2-1Q,

Here, in general, T is upper triangular with _ts first r diagonal terms

nonzero and with its last n-r rows identically zero.

We remark here that the matrix in the right member of Eq. A3.2 may

actually be a replacement for A in the following sense:

The data which constitutes the matrix A in the machine is usually only

a representative member of a class of matrices Q which is determined by the

original uncertainty in the data and the uncertainty caused by subsequent

computer arithmetic; operations on this data. Thus, it may be apparent during

the calculation that there is a matrix A e C(such that rank (A) c max [rank (A)];
AeLZ

it is such a matrix A which replaces A in Eqs. A3.1 and A3.2.

17..

We now describe the details of this forward triangularization procedure.

Let W denote an n x (n+l) working array; W(i1:12,jl:j2)' as before, will

denote the subarray of W'consisting of rows-i 1 through i2 and columns j

through j2.

Type:	 Integer	 i, j, n, p(l:n), rank;

Real	 t, c, d(l:n), u(l:n), eps;

Procedure: Forward Triangularization

Step Number
	

Description

1	 W := [A,b];

Scale the n columns of W. Save the reciprocals

of these scale factors in d(j), U = 1,...,n).

The optimal choice of scaling, when one is presented with data which is

uncertain, is beyond the scope of this peper. One method which is simple

to describe and has worked satisfactorilavw`or us is to set the columns of W

to have euclidean length one (unless they are identically zero).

2	 Set u(j) := square of the length of the jth

column of W following the scaling of step 1,

(j = 1, ... ,n).

3	 Set j := 1, p(i) := i, (i = 1,...,n), and

rank : = n.

4	 If 1 < j < n set u(i) := u(i) - W(j-1: j- l,i:i)21

(i = j,...,n). Else

5
	

If j = n go to step 13. Else

6	 Find the smallest i z j, such that u(i) z u(L),

7	 If i = j go to step 9. Else

-18-

Step Number	 De; cr^ption

	

8	 Exchange columns i and j of W; Set u(i) := u(j);

Exchange p(j) and p(i).

	

9
	

If u(j) s eps, set rank := min(rank, j - 1);

xEWx

It may be that the rank of the matrix which is to replace the matrix in

W is already known and need not be calculated as in step 8. This prior

calculation of rank can be done quite effectively by computing a singular

value decomposition fc A. See Ref. 5 for further details.

	

10	 Compute

Hl(j-1, 0, n) u (j)) W (l : n) j : j))

	11	 Compute
	 "

H20-1, 0, n, W(l:n, j:j), u(j), W(l:n,i:i)),
(i = j+l,...,n+l).

	

12	 Set j := j:1 and go to step 4.

	

13	 The algorithm indicated in A3.2 is completed.

In case the matrix A of Eq. A3.1 is nonsingular (or of rank n) we may compute

the unique solution to this problem with the following steps:

	

14	 Solve the triangular system Ty = d for y;

The matrix T is in the upper triangular part of

the array W; the vector d is in W(l:n, n+l:n+l).

	

15	 Apply the permutation matrix P to y.

	

16	 Form the product x = D(Py) to obtain the

unique solution.

1^}-

REMARK

The steps 14 through 16 described directly above can each replace the

result of the previous one in Ltorage. The details in steps 14 through 16
above are not completely described here due to the fact that they constitute

straightforward and extremely well,-known computing methods.

-20-

Algorithm 4

PURPOSE

Computing the solution of minimum length for rank deficient problems.

METHOD

The method described in Algorithm 3 allows us to assume, with no loss

of generalitf, that for a given system as in A3.1, we may write:

A = QTTPTD-1 .	 A4.1

Here QT is a product of n - 1 Householder transformations, m is upper tri-

angular with its first r diagonal terms nonzero and its last n - r rows

identically zero, PT is a permutation matrix, and D -1 is a diagonal matrix.

Let us su *eose, then, that W is again a working ari as) in Algorithm 3
	 f 1

and that T is in the first r rows of the upper triai?.gu ar ;art of W.

We will first find r Householder transformations K r , ... ,K1 such that

S 0
TKr ... K1 =	 A4.2

0 0

where S is r x r upper triangular and nonsingular.

The solution of minimum length or the pseudoinverse solution (Ref. 3)

(with the norm ljx,12 = xTD-2x) is given by

y = (Qn-1 ... Qlb)	 A4.3

C = 1st r components of y ,	 A4.4

d = S-1c	 A4.5

-21-

d)r
e = Kr ... K1 0)n-r	 A4.6

e

and

x = D(Pe)
	

A4.7

We now describe the computation of Eqs. A4.3 through A4.7.

Type:	 Integer	 r, i, j, n;

Real	 t(l:n);

Procedure: Backward Triangularization

Step Number
	

Description
t 1

1	 Use Algorithm 3 to compute y of Eq. A4.3.

Place y in W(l:n, n+l:n+l).

2
	

Set j := r.

3	 If j > 0, compute

Hl(j-1, r-j, n, t(j), W(j:j, l:n)) and compute

H2(j-1, r-j, n. W(j : j , 1:n), t (j),

W(i :i, l:n)), (i = j-1,...,1), (in this order).

Then set j := j+l and go to step 3. Else

4	 Multiply the first r components of the vector

in W(1:n, n+l: n+l) by S-
1. Here S is the r x r

upper triangular matrix in the first r rows of

the upper triangular part of W. This multiplica-

tion should be accomplished by solving Sd = c

of Eq. A4.5.

5	 Then compute

H2(i-1, r-i, n. W(i :i, l:n), t(i), W(l:n, n+l: n+l)),

(i = 1,...,r), (in this order).

-22-

Step Dumber	 Description

6	 Set W(i:i, n+l: n+l) := 0, (i = r+l,...,n).

7	 Apply the permutation matrix P to the vector

y in W(l:n, n+l: n+l).

8	 Form the matrix product x = D(Py) in

W(1:n, n+l: n+l).

9 The pseudoinverse solution of Ax = b (with

respect to the norm IIxII 2 = xTD-2x) is now

in W(1:n, n+l:n+l).

Often the pseudoinverse solution, whose calculation is defined above,

must be replaced by the approximate solution obtained by netting the last

n -,r components or the vector x to zero. 	 "I

Thus

rx ^
x = D (P 1)	 A4.8

0

where

-I-	 A4.9
xl Tll yl

Here T11 is the r x r upper triangular matrix formed with the first r columns

of the matrix T of Eq. A4.1, while y1 is the first r components of the

vector y of Eq. A4.3.

We will comment further on this in Algorithm 5.

-23-

Algorithm 5

PURPOSE

Computation of the covariance matrix.

METHOD

Let us suppose, as J,n Algorithm 4, that we have

A = QTTPTD-1	A5.1

Let

r	 n-r

T 	
Ir

T =	 A5.2

0	 0	 }n--r

where T11 is r x r, upper triangular and nonsingular ,. In case either

r = rank (A) = rank (T) = n, or the solution is obtained by setting the last

n r components Of PTD-jn to Zero, the ('urn-OCaled) cOv G&.L anc - matrix Of t4.

variables which were solved for can be defined by

FT-111.-l\T
11^ 11!

C(A) = DP

0

vl

P
T

D
	

A5.3

0

If r = rank (A) = n, then

C(A) = (ATA)-1
	

A5.4

as can easily be verified. (See Ref. 7.)

We will now describe the algorithm for computing the right side of

Eq. A5.3. The matrix T will be in the first r rows Of the upper triaang 'lar

part of the working array, W.

-24-

Type:	 Integer r,	 i,	 j,	 n, k.	 Zt p;

Real W;

Double Precision s;

Procedure:	 Covariance matrix computation

Step Number Description

1 W(j:j,	 j : j)	 := 1/W(j : j ,	 j : j)a (j	 =	 1,...,r).

2 If r = 1 go to step 17. Else

3 Set j	 := 2.

4 Set 	 :=r+2 - j.

5 Set i := 2.

6 Set p : = k + 1 - i, s 	 : = 01

7 Set s	 := s + W (p : p , k:k),

(,2	 = p + 1,...,k).

8 Set :,(p:p, k:k) 	 ;o -a-	 (p:p , P:p)

9 If i < k, set i ;= i + 1 and go to step 6.	 Else

10 If j < r, set j	 ;= j + 1 and go to step 4.	 Else

11 Set,

REMARK

The matrix T- 	has now replaced the matrix T 	 the storage array W.

12 Set i

13 Set s	 := 0.

14 Set s	 ;_ s + W(1:1,	 j:j)•W(i:i, j:j).g	 (j	 =	 i,...,r).

-25-

Step Number	 Description

15	 Set W(1:1, i : i)

16	 If i < r, i := i + 1 and go to step 13. Use

17	 If A < r, set I := A + 1 and go to step 12. Else

REMARK

The upper triangular part of the symmetric matrix T11(T_1)T
has now

replaced T
1

1 in storage.

18	 Zero the last n-r columns of the upper tri-

angular part of W.

19	 Compute W := PWPT.

20
	

Compute W := DWD.

21	 The upper triangular part of the symmetric

matrix C(A) of Eq.. A5.3 is now in the upper

triangular part of the array W.

REMARK

In steps 19 and 20 only the upper triangular part of W need be referenced.

We will not comment on these details.

-26-

Algorithm 6

PURPOSE

Computation of the matrix products associated with forward mapping of

process noise.

METHOD

In Eqs. (22) and (23) we see that matrix products of the forms RF-1G

and RF-1 must be formed where R is upper triangular, F is nonsingular

and G is arbitrary. All of these matrices are rr x n.

Analogous with Eq. (22) set

F-1	 T-lQn-1 ... Q1 , (Qi = In + uiu1 1	 i=1,...,n-1)	 A6.1

Then

RF-1G = R(T-1Qn-I ... Q1G) 	
A6.2

and

RF 1 = R(T^'Qn_l...Ql) 	 A6.3

For the purpose of describing the formation of these matrix products,

suppose that R is located in the upper triangular part of a working array W

and that F and G are in partitioned form in an n x 2n working array Y.

Type:	 Integer
	

i, j;

Real
	

u(l:n), t(l:n);

Step Number
	

Description

1
	

Set j : = 1.

2	 If j < n, compute Hl(j-1, 0, n, u(j), Y(l:n, j:j))

and next compute H2 (j =1, 0, n, Y (l: n, j : j) , u (j) ,

Y(l:n, i:i)), (i = j-¢1, ... ,n); then set

, j := j + 1 and go to step 2. Else

1.

-27-

REMARK

The matrix T is in the upper triangular part of the left half of Y;

G is in the right half of Y.

Step Number	 Description

3	 Compute F-1G by solving the n systems

of n equations FX = G for X; the

matrix X can replace G in storage in

the right half of Y.

4	 Set t (j): = Y O X ., (j=l,...,r).
5	 Compute the matrix T -1 ; this matrix

can replace T in storage in the upper

triangular part of the first n columns

of Y. (See Algorithm 5, Steps 1-10).

The matrix F-1G is now in the right half of Y.
	 11 1

6	 Set j : = n - 1.

If j > 0 fii^st set t(i) := W(i:i, j:j)

and then W(i:i, j:j)	 0, (i=j+1,,,,,n},

Next compute H20-1., 0 3 n, t(l:n), u(j),

Y(i:i, l:n)), (i = 1,..,,n). Else

REMARK

In step 6 the last n - j + 1 columns of the left half of Y are all that
is affected by multiplication from the right by Qj,

7	 The working array Y contains the

augmented matrix [F -1 , F
-1 G1. Note

that the order of these matrices is

reversed from that required in

Algorithm 7.

8	 Compute the product R[F
-1 9

 F-1G].

This matrix can replace [F -1, F 1G]

in the Y array.

-28-

Algorithm 7

PURPOSE

Forward triangularization when mapping forwards with process noise.

METHOD

As indicated in Eq. (30), we wish to find an orthonormal matrix X such

that for given n x n.matrices Ci , (i = 1 1 2), and a given n-vector d,

In , 0	 , 0	 A , B , el

XS = X	 =	 A7.1

C1 , C2 , d	 0 , R , e2

where both matrices A and R are upper triangular. The vector d l is of length	 f1
n as are the vectors e i , (i = 1 1 2). The matrix B will, in general, have no

special structure. The definition of the matrix S is self-explanatory.

If the n x 2n matrix [C 1 , C2 1 occupies part of an (n+l)(2n+1) working
array Y, and if an n x n working array W is available, then the right hand

side of Eq. A7.1 can be computed and stored in the working array Y together

with the upper triangular part of the array W. In total this requires

2.5n2 + 3.5n + 1 computer words; this is in marked contrast to the 4n2 + 2n

cells of memory which might at first seem to be re quired to calculate the

right side of Eq. A7.1.

Let [c 1,...-',c2n] denote the 2n column vectors of the n x 2n matrix

[C1 , C2]. The first column of the matrix which is the right factor of the

middle term of Eq. A7.1 is the 2n vector

n	 T

w1 = [1 2 0,40. 2 0, cl]

After constructing the Householder transformation

Xl In + ulul/P 1

A7.2

such that

-2q-

2n
M

X
1
w
l	 lf [l + Ile 1123 	 [1) 0,...,01T

	
A7.3

The details of Algorithm 1 show that:

n
(1) After the matrix products Xl[ei'ci]' (i=2,...,n), Xl[O,ci

,(i=n+l,.,.2n) and X,[O,d1] are computed, only the first component

or the last n components are possibly nonzero. The vectors e are

the unit coordinate vectors.

(2) Thus only one row of the matrices A and B and one component of the

vector e1Nwill be calculated at each step in the construction of

a matrix X = Xn ... X1 such that

A B 1
XS =	 A7.4

0 R 2
r' 1

The matrix R of Eq. A7.4 is n x n but is not necessarily.upper

triangular.

(3) As the rows of A and B and the components of
1

are calculated

i-L. y	 1-1 	 p, C CIe%A
into —t o .,f the -worki rr arro-ire Y and W where

lil1G call vG ZGL<:GU J it V ai VLa Vi. vl a- >t -La1 n8 ^s i . J w +

space has come available.

We now present a step-by-step procedure which effects these space-and

labor saving remarks.

Type:	 Integer
	

i, j, n;

Real
	

t;

Step Number
	

Description

1	 Move the 2n + 1 components of the n + 1st row

of S (now in the 1st row of Y, say) to the 2nth

row of the working array Y.

2	 Set j : = 1.

-30-

Step Number
	

Description

3	 Set Y(1:1, i:i) := 0, (i = j,...,2n+1) and

Y(1:1) j:j) := 1.

4	 If j s n, compute H1(0, 0, n+l, t, N(1:n+1, j:j)),

and next compute

H2(0 1 0, n+l, Y(l:n+l, j:j), t,

(i = j+1) ... ,2n+1),

Y(1:1) j0-j) := Y(1:1, 2n+1:2n+1

Y(1:1) i:i), (i = n+l,...,2n),

W(j:j, i:i) := Y(1:1, i:i), (i

u(j) := Y(1:1, j:j); then set j
go to step 3. Else

Y(l:n+l, i:i)),

Y(2:i, j:j)

j+l,...,n),

j +land

REMARK

At this point BT occupiesY(2:n+1, l:n); note that each column of BT

moves in to occupy the storage implicitly zeroed with the successive House-

holder transformations; the strictly lower triangular part of the matrix AT

is in the strictly lower part of the array W; diagonal terms of A T are now

in

5	 Triangularize the matrix R now in Y(2:n+1, n+1:2n)

with Algorithm 3.

6	 Place the strictly lower part of AT into the

lower part of Y(2:n+1, n+l: 2n).

REMARK

Step 6 completes the forward mappir43 procedure; a solution and its
covariance may be obtained by means of Algorithms 3 - 5.

.._.... _._ ._..__.._...,	 ...,...A^•+:YA....,.;,+i•..•.is.•.^..r..iu-i.iir. i+o-s.r.^•...r.: ..,.

1

-31-

The smoothed value of the process noise is then trivially computed by

means of Eq. (27). Recall that BT is in Y(2:n+1, l:n), the strictly lower

part of AT is in the strictly lower part of Y(2-,n+1, n+1: 2n), the diagonal

entries of AT are in u(l:n), and the vector d'(k+l) of Eq. (^7) is in

Y(1:1 1 1:n).

N
To restart the basic cycle the upper triangular matrix R together with

the vector e2 of Eq. A7.1 are now in the upper part of Y(2:n+1, n+1:2n+1) and

must be copied to the upper triangular part of W(l:n, 1:n+1).

-32-

REFERENCES

1. Dyer, P., and McReynolds, S. R., "The Extension of Square-Root Filtering
to Include Process Noise", Journal of Opt.; Theory and Appl., 1969.

2. Kalman, R. E., "A new Approach to Linear Filtering and Prediction Problems",
Journal Basic Eng. 82, D, i96o, 35-45•

3. Faddeeva, V. N., Computational Methods of Linear Algebra, Dover, 1959,
PP. 81-85.

4. Cox, H. C., "Estimation of State Variables via Dynamic Programming",
Proc. 1964, J. A. C. C., 376-381.

5. Lawson, C. L., and Hanson, R. J., "Extensions and Applications of the
Householder Algorithm for Solving Linear Least Squares Problems", Jet
Propulsion Laboratory, Section 314 Technical Memorandum No. 200,
12 July 1968. (To appear in Math. of Comp.)

6. Businger, P., and Golub, G., "Least Squares, Singular Values and Matrix
Approximations; An ALGOL Procedure for Computing the Singular Value
Decomposition", Stanford Computer Sciences Dept., Technical Report No.
CS73, July 1967, (Mimo, 12 leaves).

7,, Businger, P., and Golub, G., "Linear Least Squares Solution by Householder
transformation", Numer. Math. 7, p. 269-275, 1965.

APPENDIX A

FLOW SEQUENCE FOR THE FILTER WITH PROCESS NOISE

1
SET UP

A-PRIORI

PROCESS NEW
MEASUREMENTS
(STEP 1)

MAP WITH
PROCESS NOISE
(STEP 2)

>

a) W AND Y REFER TO
WORKING AREAS 11'st THE
COMPUTER OF DIMENSIONS
(n+'1+i1)x(n+1)AND
(n+1)x(2n+1)
RESPECTIVELY. (HERE
µ= MAX NUMBER OF NEW
MEASUREMENTS PROCESSED
AT ONE TIME.)

b) Alg N DENOTES THE
ALOGORITHM IN APPENDIX
B WHICH DESCRIBES THE
RELEVANT COMPUTATION

APPENDIX A (contd)

DETERMINATION OF RANK, COMPUTATION OF SOLUTION AND COVARIAN,',E

A

MAKE FORWARD
TRIANGULARIZATION

WITH SCALING
W, AIg 3

TEST FOR RANK
DEFICIENCY

SET RANK AND OBTAIN
EITHER THE SOLUTION OR

COVARIANCE MATRIX
W, Algs, 3, 4, 5

B I	 f C

	GeneralDisclaimer.pdf
	0003A03.pdf
	0003A03_.pdf
	0003A04.pdf
	0003A05.pdf
	0003A06.pdf
	0003A07.pdf
	0003A08.pdf
	0003A09.pdf
	0003A10.pdf
	0003A11.pdf
	0003A12.pdf
	0003B01.pdf
	0003B02.pdf
	0003B03.pdf
	0003B04.pdf
	0003B05.pdf
	0003B06.pdf
	0003B07.pdf
	0003B08.pdf
	0003B09.pdf
	0003B10.pdf
	0003B11.pdf
	0003B12.pdf
	0003C01.pdf
	0003C02.pdf
	0003C03.pdf
	0003C04.pdf
	0003C05.pdf
	0003C06.pdf
	0003C07.pdf
	0003C08.pdf
	0003C09.pdf
	0003C10.pdf
	0003C11.pdf
	0003C12.pdf
	0003D01.pdf
	0003D02.pdf
	0003D03.pdf

